]> git.proxmox.com Git - mirror_edk2.git/blob - MdePkg/Library/UefiLib/UefiLib.c
MdePkg/UefiLib: introduce EfiEventGroupSignal
[mirror_edk2.git] / MdePkg / Library / UefiLib / UefiLib.c
1 /** @file
2 The UEFI Library provides functions and macros that simplify the development of
3 UEFI Drivers and UEFI Applications. These functions and macros help manage EFI
4 events, build simple locks utilizing EFI Task Priority Levels (TPLs), install
5 EFI Driver Model related protocols, manage Unicode string tables for UEFI Drivers,
6 and print messages on the console output and standard error devices.
7
8 Copyright (c) 2006 - 2012, Intel Corporation. All rights reserved.<BR>
9 This program and the accompanying materials
10 are licensed and made available under the terms and conditions of the BSD License
11 which accompanies this distribution. The full text of the license may be found at
12 http://opensource.org/licenses/bsd-license.php.
13
14 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
15 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
16
17 **/
18
19
20 #include "UefiLibInternal.h"
21
22 /**
23 Empty constructor function that is required to resolve dependencies between
24 libraries.
25
26 ** DO NOT REMOVE **
27
28 @param ImageHandle The firmware allocated handle for the EFI image.
29 @param SystemTable A pointer to the EFI System Table.
30
31 @retval EFI_SUCCESS The constructor executed correctly.
32
33 **/
34 EFI_STATUS
35 EFIAPI
36 UefiLibConstructor (
37 IN EFI_HANDLE ImageHandle,
38 IN EFI_SYSTEM_TABLE *SystemTable
39 )
40 {
41 return EFI_SUCCESS;
42 }
43
44 /**
45 Compare whether two names of languages are identical.
46
47 @param Language1 Name of language 1.
48 @param Language2 Name of language 2.
49
50 @retval TRUE Language 1 and language 2 are the same.
51 @retval FALSE Language 1 and language 2 are not the same.
52
53 **/
54 BOOLEAN
55 CompareIso639LanguageCode (
56 IN CONST CHAR8 *Language1,
57 IN CONST CHAR8 *Language2
58 )
59 {
60 UINT32 Name1;
61 UINT32 Name2;
62
63 Name1 = ReadUnaligned24 ((CONST UINT32 *) Language1);
64 Name2 = ReadUnaligned24 ((CONST UINT32 *) Language2);
65
66 return (BOOLEAN) (Name1 == Name2);
67 }
68
69 /**
70 Retrieves a pointer to the system configuration table from the EFI System Table
71 based on a specified GUID.
72
73 This function searches the list of configuration tables stored in the EFI System Table
74 for a table with a GUID that matches TableGuid. If a match is found, then a pointer to
75 the configuration table is returned in Table., and EFI_SUCCESS is returned. If a matching GUID
76 is not found, then EFI_NOT_FOUND is returned.
77 If TableGuid is NULL, then ASSERT().
78 If Table is NULL, then ASSERT().
79
80 @param TableGuid The pointer to table's GUID type.
81 @param Table The pointer to the table associated with TableGuid in the EFI System Table.
82
83 @retval EFI_SUCCESS A configuration table matching TableGuid was found.
84 @retval EFI_NOT_FOUND A configuration table matching TableGuid could not be found.
85
86 **/
87 EFI_STATUS
88 EFIAPI
89 EfiGetSystemConfigurationTable (
90 IN EFI_GUID *TableGuid,
91 OUT VOID **Table
92 )
93 {
94 EFI_SYSTEM_TABLE *SystemTable;
95 UINTN Index;
96
97 ASSERT (TableGuid != NULL);
98 ASSERT (Table != NULL);
99
100 SystemTable = gST;
101 *Table = NULL;
102 for (Index = 0; Index < SystemTable->NumberOfTableEntries; Index++) {
103 if (CompareGuid (TableGuid, &(SystemTable->ConfigurationTable[Index].VendorGuid))) {
104 *Table = SystemTable->ConfigurationTable[Index].VendorTable;
105 return EFI_SUCCESS;
106 }
107 }
108
109 return EFI_NOT_FOUND;
110 }
111
112 /**
113 Creates and returns a notification event and registers that event with all the protocol
114 instances specified by ProtocolGuid.
115
116 This function causes the notification function to be executed for every protocol of type
117 ProtocolGuid instance that exists in the system when this function is invoked. If there are
118 no instances of ProtocolGuid in the handle database at the time this function is invoked,
119 then the notification function is still executed one time. In addition, every time a protocol
120 of type ProtocolGuid instance is installed or reinstalled, the notification function is also
121 executed. This function returns the notification event that was created.
122 If ProtocolGuid is NULL, then ASSERT().
123 If NotifyTpl is not a legal TPL value, then ASSERT().
124 If NotifyFunction is NULL, then ASSERT().
125 If Registration is NULL, then ASSERT().
126
127
128 @param ProtocolGuid Supplies GUID of the protocol upon whose installation the event is fired.
129 @param NotifyTpl Supplies the task priority level of the event notifications.
130 @param NotifyFunction Supplies the function to notify when the event is signaled.
131 @param NotifyContext The context parameter to pass to NotifyFunction.
132 @param Registration A pointer to a memory location to receive the registration value.
133 This value is passed to LocateHandle() to obtain new handles that
134 have been added that support the ProtocolGuid-specified protocol.
135
136 @return The notification event that was created.
137
138 **/
139 EFI_EVENT
140 EFIAPI
141 EfiCreateProtocolNotifyEvent(
142 IN EFI_GUID *ProtocolGuid,
143 IN EFI_TPL NotifyTpl,
144 IN EFI_EVENT_NOTIFY NotifyFunction,
145 IN VOID *NotifyContext, OPTIONAL
146 OUT VOID **Registration
147 )
148 {
149 EFI_STATUS Status;
150 EFI_EVENT Event;
151
152 ASSERT (ProtocolGuid != NULL);
153 ASSERT (NotifyFunction != NULL);
154 ASSERT (Registration != NULL);
155
156 //
157 // Create the event
158 //
159
160 Status = gBS->CreateEvent (
161 EVT_NOTIFY_SIGNAL,
162 NotifyTpl,
163 NotifyFunction,
164 NotifyContext,
165 &Event
166 );
167 ASSERT_EFI_ERROR (Status);
168
169 //
170 // Register for protocol notifications on this event
171 //
172
173 Status = gBS->RegisterProtocolNotify (
174 ProtocolGuid,
175 Event,
176 Registration
177 );
178
179 ASSERT_EFI_ERROR (Status);
180
181 //
182 // Kick the event so we will perform an initial pass of
183 // current installed drivers
184 //
185
186 gBS->SignalEvent (Event);
187 return Event;
188 }
189
190 /**
191 Creates a named event that can be signaled with EfiNamedEventSignal().
192
193 This function creates an event using NotifyTpl, NoifyFunction, and NotifyContext.
194 This event is signaled with EfiNamedEventSignal(). This provides the ability for one or more
195 listeners on the same event named by the GUID specified by Name.
196 If Name is NULL, then ASSERT().
197 If NotifyTpl is not a legal TPL value, then ASSERT().
198 If NotifyFunction is NULL, then ASSERT().
199
200 @param Name Supplies the GUID name of the event.
201 @param NotifyTpl Supplies the task priority level of the event notifications.
202 @param NotifyFunction Supplies the function to notify when the event is signaled.
203 @param NotifyContext The context parameter to pass to NotifyFunction.
204 @param Registration A pointer to a memory location to receive the registration value.
205
206 @retval EFI_SUCCESS A named event was created.
207 @retval EFI_OUT_OF_RESOURCES There are not enough resource to create the named event.
208
209 **/
210 EFI_STATUS
211 EFIAPI
212 EfiNamedEventListen (
213 IN CONST EFI_GUID *Name,
214 IN EFI_TPL NotifyTpl,
215 IN EFI_EVENT_NOTIFY NotifyFunction,
216 IN CONST VOID *NotifyContext, OPTIONAL
217 OUT VOID *Registration OPTIONAL
218 )
219 {
220 EFI_STATUS Status;
221 EFI_EVENT Event;
222 VOID *RegistrationLocal;
223
224 ASSERT (Name != NULL);
225 ASSERT (NotifyFunction != NULL);
226 ASSERT (NotifyTpl <= TPL_HIGH_LEVEL);
227
228 //
229 // Create event
230 //
231 Status = gBS->CreateEvent (
232 EVT_NOTIFY_SIGNAL,
233 NotifyTpl,
234 NotifyFunction,
235 (VOID *) NotifyContext,
236 &Event
237 );
238 ASSERT_EFI_ERROR (Status);
239
240 //
241 // The Registration is not optional to RegisterProtocolNotify().
242 // To make it optional to EfiNamedEventListen(), may need to substitute with a local.
243 //
244 if (Registration != NULL) {
245 RegistrationLocal = Registration;
246 } else {
247 RegistrationLocal = &RegistrationLocal;
248 }
249
250 //
251 // Register for an installation of protocol interface
252 //
253
254 Status = gBS->RegisterProtocolNotify (
255 (EFI_GUID *) Name,
256 Event,
257 RegistrationLocal
258 );
259 ASSERT_EFI_ERROR (Status);
260
261 return Status;
262 }
263
264 /**
265 Signals a named event created with EfiNamedEventListen().
266
267 This function signals the named event specified by Name. The named event must have been
268 created with EfiNamedEventListen().
269 If Name is NULL, then ASSERT().
270
271 @param Name Supplies the GUID name of the event.
272
273 @retval EFI_SUCCESS A named event was signaled.
274 @retval EFI_OUT_OF_RESOURCES There are not enough resource to signal the named event.
275
276 **/
277 EFI_STATUS
278 EFIAPI
279 EfiNamedEventSignal (
280 IN CONST EFI_GUID *Name
281 )
282 {
283 EFI_STATUS Status;
284 EFI_HANDLE Handle;
285
286 ASSERT(Name != NULL);
287
288 Handle = NULL;
289 Status = gBS->InstallProtocolInterface (
290 &Handle,
291 (EFI_GUID *) Name,
292 EFI_NATIVE_INTERFACE,
293 NULL
294 );
295 ASSERT_EFI_ERROR (Status);
296
297 Status = gBS->UninstallProtocolInterface (
298 Handle,
299 (EFI_GUID *) Name,
300 NULL
301 );
302 ASSERT_EFI_ERROR (Status);
303
304 return Status;
305 }
306
307 /**
308 Signals an event group by placing a new event in the group temporarily and
309 signaling it.
310
311 @param[in] EventGroup Supplies the unique identifier of the event
312 group to signal.
313
314 @retval EFI_SUCCESS The event group was signaled successfully.
315 @retval EFI_INVALID_PARAMETER EventGroup is NULL.
316 @return Error codes that report problems about event
317 creation or signaling.
318 **/
319 EFI_STATUS
320 EFIAPI
321 EfiEventGroupSignal (
322 IN CONST EFI_GUID *EventGroup
323 )
324 {
325 EFI_STATUS Status;
326 EFI_EVENT Event;
327
328 if (EventGroup == NULL) {
329 return EFI_INVALID_PARAMETER;
330 }
331
332 Status = gBS->CreateEventEx (
333 EVT_NOTIFY_SIGNAL,
334 TPL_CALLBACK,
335 InternalEmptyFunction,
336 NULL,
337 EventGroup,
338 &Event
339 );
340 if (EFI_ERROR (Status)) {
341 return Status;
342 }
343
344 Status = gBS->SignalEvent (Event);
345 gBS->CloseEvent (Event);
346
347 return Status;
348 }
349
350 /**
351 Returns the current TPL.
352
353 This function returns the current TPL. There is no EFI service to directly
354 retrieve the current TPL. Instead, the RaiseTPL() function is used to raise
355 the TPL to TPL_HIGH_LEVEL. This will return the current TPL. The TPL level
356 can then immediately be restored back to the current TPL level with a call
357 to RestoreTPL().
358
359 @return The current TPL.
360
361 **/
362 EFI_TPL
363 EFIAPI
364 EfiGetCurrentTpl (
365 VOID
366 )
367 {
368 EFI_TPL Tpl;
369
370 Tpl = gBS->RaiseTPL (TPL_HIGH_LEVEL);
371 gBS->RestoreTPL (Tpl);
372
373 return Tpl;
374 }
375
376
377 /**
378 Initializes a basic mutual exclusion lock.
379
380 This function initializes a basic mutual exclusion lock to the released state
381 and returns the lock. Each lock provides mutual exclusion access at its task
382 priority level. Since there is no preemption or multiprocessor support in EFI,
383 acquiring the lock only consists of raising to the locks TPL.
384 If Lock is NULL, then ASSERT().
385 If Priority is not a valid TPL value, then ASSERT().
386
387 @param Lock A pointer to the lock data structure to initialize.
388 @param Priority EFI TPL is associated with the lock.
389
390 @return The lock.
391
392 **/
393 EFI_LOCK *
394 EFIAPI
395 EfiInitializeLock (
396 IN OUT EFI_LOCK *Lock,
397 IN EFI_TPL Priority
398 )
399 {
400 ASSERT (Lock != NULL);
401 ASSERT (Priority <= TPL_HIGH_LEVEL);
402
403 Lock->Tpl = Priority;
404 Lock->OwnerTpl = TPL_APPLICATION;
405 Lock->Lock = EfiLockReleased ;
406 return Lock;
407 }
408
409 /**
410 Acquires ownership of a lock.
411
412 This function raises the system's current task priority level to the task
413 priority level of the mutual exclusion lock. Then, it places the lock in the
414 acquired state.
415 If Lock is NULL, then ASSERT().
416 If Lock is not initialized, then ASSERT().
417 If Lock is already in the acquired state, then ASSERT().
418
419 @param Lock A pointer to the lock to acquire.
420
421 **/
422 VOID
423 EFIAPI
424 EfiAcquireLock (
425 IN EFI_LOCK *Lock
426 )
427 {
428 ASSERT (Lock != NULL);
429 ASSERT (Lock->Lock == EfiLockReleased);
430
431 Lock->OwnerTpl = gBS->RaiseTPL (Lock->Tpl);
432 Lock->Lock = EfiLockAcquired;
433 }
434
435 /**
436 Acquires ownership of a lock.
437
438 This function raises the system's current task priority level to the task priority
439 level of the mutual exclusion lock. Then, it attempts to place the lock in the acquired state.
440 If the lock is already in the acquired state, then EFI_ACCESS_DENIED is returned.
441 Otherwise, EFI_SUCCESS is returned.
442 If Lock is NULL, then ASSERT().
443 If Lock is not initialized, then ASSERT().
444
445 @param Lock A pointer to the lock to acquire.
446
447 @retval EFI_SUCCESS The lock was acquired.
448 @retval EFI_ACCESS_DENIED The lock could not be acquired because it is already owned.
449
450 **/
451 EFI_STATUS
452 EFIAPI
453 EfiAcquireLockOrFail (
454 IN EFI_LOCK *Lock
455 )
456 {
457
458 ASSERT (Lock != NULL);
459 ASSERT (Lock->Lock != EfiLockUninitialized);
460
461 if (Lock->Lock == EfiLockAcquired) {
462 //
463 // Lock is already owned, so bail out
464 //
465 return EFI_ACCESS_DENIED;
466 }
467
468 Lock->OwnerTpl = gBS->RaiseTPL (Lock->Tpl);
469
470 Lock->Lock = EfiLockAcquired;
471
472 return EFI_SUCCESS;
473 }
474
475 /**
476 Releases ownership of a lock.
477
478 This function transitions a mutual exclusion lock from the acquired state to
479 the released state, and restores the system's task priority level to its
480 previous level.
481 If Lock is NULL, then ASSERT().
482 If Lock is not initialized, then ASSERT().
483 If Lock is already in the released state, then ASSERT().
484
485 @param Lock A pointer to the lock to release.
486
487 **/
488 VOID
489 EFIAPI
490 EfiReleaseLock (
491 IN EFI_LOCK *Lock
492 )
493 {
494 EFI_TPL Tpl;
495
496 ASSERT (Lock != NULL);
497 ASSERT (Lock->Lock == EfiLockAcquired);
498
499 Tpl = Lock->OwnerTpl;
500
501 Lock->Lock = EfiLockReleased;
502
503 gBS->RestoreTPL (Tpl);
504 }
505
506 /**
507 Tests whether a controller handle is being managed by a specific driver.
508
509 This function tests whether the driver specified by DriverBindingHandle is
510 currently managing the controller specified by ControllerHandle. This test
511 is performed by evaluating if the the protocol specified by ProtocolGuid is
512 present on ControllerHandle and is was opened by DriverBindingHandle with an
513 attribute of EFI_OPEN_PROTOCOL_BY_DRIVER.
514 If ProtocolGuid is NULL, then ASSERT().
515
516 @param ControllerHandle A handle for a controller to test.
517 @param DriverBindingHandle Specifies the driver binding handle for the
518 driver.
519 @param ProtocolGuid Specifies the protocol that the driver specified
520 by DriverBindingHandle opens in its Start()
521 function.
522
523 @retval EFI_SUCCESS ControllerHandle is managed by the driver
524 specified by DriverBindingHandle.
525 @retval EFI_UNSUPPORTED ControllerHandle is not managed by the driver
526 specified by DriverBindingHandle.
527
528 **/
529 EFI_STATUS
530 EFIAPI
531 EfiTestManagedDevice (
532 IN CONST EFI_HANDLE ControllerHandle,
533 IN CONST EFI_HANDLE DriverBindingHandle,
534 IN CONST EFI_GUID *ProtocolGuid
535 )
536 {
537 EFI_STATUS Status;
538 VOID *ManagedInterface;
539
540 ASSERT (ProtocolGuid != NULL);
541
542 Status = gBS->OpenProtocol (
543 ControllerHandle,
544 (EFI_GUID *) ProtocolGuid,
545 &ManagedInterface,
546 DriverBindingHandle,
547 ControllerHandle,
548 EFI_OPEN_PROTOCOL_BY_DRIVER
549 );
550 if (!EFI_ERROR (Status)) {
551 gBS->CloseProtocol (
552 ControllerHandle,
553 (EFI_GUID *) ProtocolGuid,
554 DriverBindingHandle,
555 ControllerHandle
556 );
557 return EFI_UNSUPPORTED;
558 }
559
560 if (Status != EFI_ALREADY_STARTED) {
561 return EFI_UNSUPPORTED;
562 }
563
564 return EFI_SUCCESS;
565 }
566
567 /**
568 Tests whether a child handle is a child device of the controller.
569
570 This function tests whether ChildHandle is one of the children of
571 ControllerHandle. This test is performed by checking to see if the protocol
572 specified by ProtocolGuid is present on ControllerHandle and opened by
573 ChildHandle with an attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
574 If ProtocolGuid is NULL, then ASSERT().
575
576 @param ControllerHandle A handle for a (parent) controller to test.
577 @param ChildHandle A child handle to test.
578 @param ProtocolGuid Supplies the protocol that the child controller
579 opens on its parent controller.
580
581 @retval EFI_SUCCESS ChildHandle is a child of the ControllerHandle.
582 @retval EFI_UNSUPPORTED ChildHandle is not a child of the
583 ControllerHandle.
584
585 **/
586 EFI_STATUS
587 EFIAPI
588 EfiTestChildHandle (
589 IN CONST EFI_HANDLE ControllerHandle,
590 IN CONST EFI_HANDLE ChildHandle,
591 IN CONST EFI_GUID *ProtocolGuid
592 )
593 {
594 EFI_STATUS Status;
595 EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfoBuffer;
596 UINTN EntryCount;
597 UINTN Index;
598
599 ASSERT (ProtocolGuid != NULL);
600
601 //
602 // Retrieve the list of agents that are consuming the specific protocol
603 // on ControllerHandle.
604 //
605 Status = gBS->OpenProtocolInformation (
606 ControllerHandle,
607 (EFI_GUID *) ProtocolGuid,
608 &OpenInfoBuffer,
609 &EntryCount
610 );
611 if (EFI_ERROR (Status)) {
612 return EFI_UNSUPPORTED;
613 }
614
615 //
616 // Inspect if ChildHandle is one of the agents.
617 //
618 Status = EFI_UNSUPPORTED;
619 for (Index = 0; Index < EntryCount; Index++) {
620 if ((OpenInfoBuffer[Index].ControllerHandle == ChildHandle) &&
621 (OpenInfoBuffer[Index].Attributes & EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER) != 0) {
622 Status = EFI_SUCCESS;
623 break;
624 }
625 }
626
627 FreePool (OpenInfoBuffer);
628 return Status;
629 }
630
631 /**
632 This function looks up a Unicode string in UnicodeStringTable.
633
634 If Language is a member of SupportedLanguages and a Unicode string is found in
635 UnicodeStringTable that matches the language code specified by Language, then it
636 is returned in UnicodeString.
637
638 @param Language A pointer to the ISO 639-2 language code for the
639 Unicode string to look up and return.
640 @param SupportedLanguages A pointer to the set of ISO 639-2 language codes
641 that the Unicode string table supports. Language
642 must be a member of this set.
643 @param UnicodeStringTable A pointer to the table of Unicode strings.
644 @param UnicodeString A pointer to the Unicode string from UnicodeStringTable
645 that matches the language specified by Language.
646
647 @retval EFI_SUCCESS The Unicode string that matches the language
648 specified by Language was found
649 in the table of Unicode strings UnicodeStringTable,
650 and it was returned in UnicodeString.
651 @retval EFI_INVALID_PARAMETER Language is NULL.
652 @retval EFI_INVALID_PARAMETER UnicodeString is NULL.
653 @retval EFI_UNSUPPORTED SupportedLanguages is NULL.
654 @retval EFI_UNSUPPORTED UnicodeStringTable is NULL.
655 @retval EFI_UNSUPPORTED The language specified by Language is not a
656 member of SupportedLanguages.
657 @retval EFI_UNSUPPORTED The language specified by Language is not
658 supported by UnicodeStringTable.
659
660 **/
661 EFI_STATUS
662 EFIAPI
663 LookupUnicodeString (
664 IN CONST CHAR8 *Language,
665 IN CONST CHAR8 *SupportedLanguages,
666 IN CONST EFI_UNICODE_STRING_TABLE *UnicodeStringTable,
667 OUT CHAR16 **UnicodeString
668 )
669 {
670 //
671 // Make sure the parameters are valid
672 //
673 if (Language == NULL || UnicodeString == NULL) {
674 return EFI_INVALID_PARAMETER;
675 }
676
677 //
678 // If there are no supported languages, or the Unicode String Table is empty, then the
679 // Unicode String specified by Language is not supported by this Unicode String Table
680 //
681 if (SupportedLanguages == NULL || UnicodeStringTable == NULL) {
682 return EFI_UNSUPPORTED;
683 }
684
685 //
686 // Make sure Language is in the set of Supported Languages
687 //
688 while (*SupportedLanguages != 0) {
689 if (CompareIso639LanguageCode (Language, SupportedLanguages)) {
690
691 //
692 // Search the Unicode String Table for the matching Language specifier
693 //
694 while (UnicodeStringTable->Language != NULL) {
695 if (CompareIso639LanguageCode (Language, UnicodeStringTable->Language)) {
696
697 //
698 // A matching string was found, so return it
699 //
700 *UnicodeString = UnicodeStringTable->UnicodeString;
701 return EFI_SUCCESS;
702 }
703
704 UnicodeStringTable++;
705 }
706
707 return EFI_UNSUPPORTED;
708 }
709
710 SupportedLanguages += 3;
711 }
712
713 return EFI_UNSUPPORTED;
714 }
715
716
717
718 /**
719 This function looks up a Unicode string in UnicodeStringTable.
720
721 If Language is a member of SupportedLanguages and a Unicode string is found in
722 UnicodeStringTable that matches the language code specified by Language, then
723 it is returned in UnicodeString.
724
725 @param Language A pointer to an ASCII string containing the ISO 639-2 or the
726 RFC 4646 language code for the Unicode string to look up and
727 return. If Iso639Language is TRUE, then this ASCII string is
728 not assumed to be Null-terminated, and only the first three
729 characters are used. If Iso639Language is FALSE, then this ASCII
730 string must be Null-terminated.
731 @param SupportedLanguages A pointer to a Null-terminated ASCII string that contains a
732 set of ISO 639-2 or RFC 4646 language codes that the Unicode
733 string table supports. Language must be a member of this set.
734 If Iso639Language is TRUE, then this string contains one or more
735 ISO 639-2 language codes with no separator characters. If Iso639Language
736 is FALSE, then is string contains one or more RFC 4646 language
737 codes separated by ';'.
738 @param UnicodeStringTable A pointer to the table of Unicode strings. Type EFI_UNICODE_STRING_TABLE
739 is defined in "Related Definitions".
740 @param UnicodeString A pointer to the Null-terminated Unicode string from UnicodeStringTable
741 that matches the language specified by Language.
742 @param Iso639Language Specifies the supported language code format. If it is TRUE, then
743 Language and SupportedLanguages follow ISO 639-2 language code format.
744 Otherwise, they follow RFC 4646 language code format.
745
746
747 @retval EFI_SUCCESS The Unicode string that matches the language specified by Language
748 was found in the table of Unicode strings UnicodeStringTable, and
749 it was returned in UnicodeString.
750 @retval EFI_INVALID_PARAMETER Language is NULL.
751 @retval EFI_INVALID_PARAMETER UnicodeString is NULL.
752 @retval EFI_UNSUPPORTED SupportedLanguages is NULL.
753 @retval EFI_UNSUPPORTED UnicodeStringTable is NULL.
754 @retval EFI_UNSUPPORTED The language specified by Language is not a member of SupportedLanguages.
755 @retval EFI_UNSUPPORTED The language specified by Language is not supported by UnicodeStringTable.
756
757 **/
758 EFI_STATUS
759 EFIAPI
760 LookupUnicodeString2 (
761 IN CONST CHAR8 *Language,
762 IN CONST CHAR8 *SupportedLanguages,
763 IN CONST EFI_UNICODE_STRING_TABLE *UnicodeStringTable,
764 OUT CHAR16 **UnicodeString,
765 IN BOOLEAN Iso639Language
766 )
767 {
768 BOOLEAN Found;
769 UINTN Index;
770 CHAR8 *LanguageString;
771
772 //
773 // Make sure the parameters are valid
774 //
775 if (Language == NULL || UnicodeString == NULL) {
776 return EFI_INVALID_PARAMETER;
777 }
778
779 //
780 // If there are no supported languages, or the Unicode String Table is empty, then the
781 // Unicode String specified by Language is not supported by this Unicode String Table
782 //
783 if (SupportedLanguages == NULL || UnicodeStringTable == NULL) {
784 return EFI_UNSUPPORTED;
785 }
786
787 //
788 // Make sure Language is in the set of Supported Languages
789 //
790 Found = FALSE;
791 while (*SupportedLanguages != 0) {
792 if (Iso639Language) {
793 if (CompareIso639LanguageCode (Language, SupportedLanguages)) {
794 Found = TRUE;
795 break;
796 }
797 SupportedLanguages += 3;
798 } else {
799 for (Index = 0; SupportedLanguages[Index] != 0 && SupportedLanguages[Index] != ';'; Index++);
800 if ((AsciiStrnCmp(SupportedLanguages, Language, Index) == 0) && (Language[Index] == 0)) {
801 Found = TRUE;
802 break;
803 }
804 SupportedLanguages += Index;
805 for (; *SupportedLanguages != 0 && *SupportedLanguages == ';'; SupportedLanguages++);
806 }
807 }
808
809 //
810 // If Language is not a member of SupportedLanguages, then return EFI_UNSUPPORTED
811 //
812 if (!Found) {
813 return EFI_UNSUPPORTED;
814 }
815
816 //
817 // Search the Unicode String Table for the matching Language specifier
818 //
819 while (UnicodeStringTable->Language != NULL) {
820 LanguageString = UnicodeStringTable->Language;
821 while (0 != *LanguageString) {
822 for (Index = 0 ;LanguageString[Index] != 0 && LanguageString[Index] != ';'; Index++);
823 if (AsciiStrnCmp(LanguageString, Language, Index) == 0) {
824 *UnicodeString = UnicodeStringTable->UnicodeString;
825 return EFI_SUCCESS;
826 }
827 LanguageString += Index;
828 for (Index = 0 ;LanguageString[Index] != 0 && LanguageString[Index] == ';'; Index++);
829 }
830 UnicodeStringTable++;
831 }
832
833 return EFI_UNSUPPORTED;
834 }
835
836
837 /**
838 This function adds a Unicode string to UnicodeStringTable.
839
840 If Language is a member of SupportedLanguages then UnicodeString is added to
841 UnicodeStringTable. New buffers are allocated for both Language and
842 UnicodeString. The contents of Language and UnicodeString are copied into
843 these new buffers. These buffers are automatically freed when
844 FreeUnicodeStringTable() is called.
845
846 @param Language A pointer to the ISO 639-2 language code for the Unicode
847 string to add.
848 @param SupportedLanguages A pointer to the set of ISO 639-2 language codes
849 that the Unicode string table supports.
850 Language must be a member of this set.
851 @param UnicodeStringTable A pointer to the table of Unicode strings.
852 @param UnicodeString A pointer to the Unicode string to add.
853
854 @retval EFI_SUCCESS The Unicode string that matches the language
855 specified by Language was found in the table of
856 Unicode strings UnicodeStringTable, and it was
857 returned in UnicodeString.
858 @retval EFI_INVALID_PARAMETER Language is NULL.
859 @retval EFI_INVALID_PARAMETER UnicodeString is NULL.
860 @retval EFI_INVALID_PARAMETER UnicodeString is an empty string.
861 @retval EFI_UNSUPPORTED SupportedLanguages is NULL.
862 @retval EFI_ALREADY_STARTED A Unicode string with language Language is
863 already present in UnicodeStringTable.
864 @retval EFI_OUT_OF_RESOURCES There is not enough memory to add another
865 Unicode string to UnicodeStringTable.
866 @retval EFI_UNSUPPORTED The language specified by Language is not a
867 member of SupportedLanguages.
868
869 **/
870 EFI_STATUS
871 EFIAPI
872 AddUnicodeString (
873 IN CONST CHAR8 *Language,
874 IN CONST CHAR8 *SupportedLanguages,
875 IN EFI_UNICODE_STRING_TABLE **UnicodeStringTable,
876 IN CONST CHAR16 *UnicodeString
877 )
878 {
879 UINTN NumberOfEntries;
880 EFI_UNICODE_STRING_TABLE *OldUnicodeStringTable;
881 EFI_UNICODE_STRING_TABLE *NewUnicodeStringTable;
882 UINTN UnicodeStringLength;
883
884 //
885 // Make sure the parameter are valid
886 //
887 if (Language == NULL || UnicodeString == NULL || UnicodeStringTable == NULL) {
888 return EFI_INVALID_PARAMETER;
889 }
890
891 //
892 // If there are no supported languages, then a Unicode String can not be added
893 //
894 if (SupportedLanguages == NULL) {
895 return EFI_UNSUPPORTED;
896 }
897
898 //
899 // If the Unicode String is empty, then a Unicode String can not be added
900 //
901 if (UnicodeString[0] == 0) {
902 return EFI_INVALID_PARAMETER;
903 }
904
905 //
906 // Make sure Language is a member of SupportedLanguages
907 //
908 while (*SupportedLanguages != 0) {
909 if (CompareIso639LanguageCode (Language, SupportedLanguages)) {
910
911 //
912 // Determine the size of the Unicode String Table by looking for a NULL Language entry
913 //
914 NumberOfEntries = 0;
915 if (*UnicodeStringTable != NULL) {
916 OldUnicodeStringTable = *UnicodeStringTable;
917 while (OldUnicodeStringTable->Language != NULL) {
918 if (CompareIso639LanguageCode (Language, OldUnicodeStringTable->Language)) {
919 return EFI_ALREADY_STARTED;
920 }
921
922 OldUnicodeStringTable++;
923 NumberOfEntries++;
924 }
925 }
926
927 //
928 // Allocate space for a new Unicode String Table. It must hold the current number of
929 // entries, plus 1 entry for the new Unicode String, plus 1 entry for the end of table
930 // marker
931 //
932 NewUnicodeStringTable = AllocatePool ((NumberOfEntries + 2) * sizeof (EFI_UNICODE_STRING_TABLE));
933 if (NewUnicodeStringTable == NULL) {
934 return EFI_OUT_OF_RESOURCES;
935 }
936
937 //
938 // If the current Unicode String Table contains any entries, then copy them to the
939 // newly allocated Unicode String Table.
940 //
941 if (*UnicodeStringTable != NULL) {
942 CopyMem (
943 NewUnicodeStringTable,
944 *UnicodeStringTable,
945 NumberOfEntries * sizeof (EFI_UNICODE_STRING_TABLE)
946 );
947 }
948
949 //
950 // Allocate space for a copy of the Language specifier
951 //
952 NewUnicodeStringTable[NumberOfEntries].Language = AllocateCopyPool (3, Language);
953 if (NewUnicodeStringTable[NumberOfEntries].Language == NULL) {
954 FreePool (NewUnicodeStringTable);
955 return EFI_OUT_OF_RESOURCES;
956 }
957
958 //
959 // Compute the length of the Unicode String
960 //
961 for (UnicodeStringLength = 0; UnicodeString[UnicodeStringLength] != 0; UnicodeStringLength++)
962 ;
963
964 //
965 // Allocate space for a copy of the Unicode String
966 //
967 NewUnicodeStringTable[NumberOfEntries].UnicodeString = AllocateCopyPool (
968 (UnicodeStringLength + 1) * sizeof (CHAR16),
969 UnicodeString
970 );
971 if (NewUnicodeStringTable[NumberOfEntries].UnicodeString == NULL) {
972 FreePool (NewUnicodeStringTable[NumberOfEntries].Language);
973 FreePool (NewUnicodeStringTable);
974 return EFI_OUT_OF_RESOURCES;
975 }
976
977 //
978 // Mark the end of the Unicode String Table
979 //
980 NewUnicodeStringTable[NumberOfEntries + 1].Language = NULL;
981 NewUnicodeStringTable[NumberOfEntries + 1].UnicodeString = NULL;
982
983 //
984 // Free the old Unicode String Table
985 //
986 if (*UnicodeStringTable != NULL) {
987 FreePool (*UnicodeStringTable);
988 }
989
990 //
991 // Point UnicodeStringTable at the newly allocated Unicode String Table
992 //
993 *UnicodeStringTable = NewUnicodeStringTable;
994
995 return EFI_SUCCESS;
996 }
997
998 SupportedLanguages += 3;
999 }
1000
1001 return EFI_UNSUPPORTED;
1002 }
1003
1004
1005 /**
1006 This function adds the Null-terminated Unicode string specified by UnicodeString
1007 to UnicodeStringTable.
1008
1009 If Language is a member of SupportedLanguages then UnicodeString is added to
1010 UnicodeStringTable. New buffers are allocated for both Language and UnicodeString.
1011 The contents of Language and UnicodeString are copied into these new buffers.
1012 These buffers are automatically freed when EfiLibFreeUnicodeStringTable() is called.
1013
1014 @param Language A pointer to an ASCII string containing the ISO 639-2 or
1015 the RFC 4646 language code for the Unicode string to add.
1016 If Iso639Language is TRUE, then this ASCII string is not
1017 assumed to be Null-terminated, and only the first three
1018 chacters are used. If Iso639Language is FALSE, then this
1019 ASCII string must be Null-terminated.
1020 @param SupportedLanguages A pointer to a Null-terminated ASCII string that contains
1021 a set of ISO 639-2 or RFC 4646 language codes that the Unicode
1022 string table supports. Language must be a member of this set.
1023 If Iso639Language is TRUE, then this string contains one or more
1024 ISO 639-2 language codes with no separator characters.
1025 If Iso639Language is FALSE, then is string contains one or more
1026 RFC 4646 language codes separated by ';'.
1027 @param UnicodeStringTable A pointer to the table of Unicode strings. Type EFI_UNICODE_STRING_TABLE
1028 is defined in "Related Definitions".
1029 @param UnicodeString A pointer to the Unicode string to add.
1030 @param Iso639Language Specifies the supported language code format. If it is TRUE,
1031 then Language and SupportedLanguages follow ISO 639-2 language code format.
1032 Otherwise, they follow RFC 4646 language code format.
1033
1034 @retval EFI_SUCCESS The Unicode string that matches the language specified by
1035 Language was found in the table of Unicode strings UnicodeStringTable,
1036 and it was returned in UnicodeString.
1037 @retval EFI_INVALID_PARAMETER Language is NULL.
1038 @retval EFI_INVALID_PARAMETER UnicodeString is NULL.
1039 @retval EFI_INVALID_PARAMETER UnicodeString is an empty string.
1040 @retval EFI_UNSUPPORTED SupportedLanguages is NULL.
1041 @retval EFI_ALREADY_STARTED A Unicode string with language Language is already present in
1042 UnicodeStringTable.
1043 @retval EFI_OUT_OF_RESOURCES There is not enough memory to add another Unicode string UnicodeStringTable.
1044 @retval EFI_UNSUPPORTED The language specified by Language is not a member of SupportedLanguages.
1045
1046 **/
1047 EFI_STATUS
1048 EFIAPI
1049 AddUnicodeString2 (
1050 IN CONST CHAR8 *Language,
1051 IN CONST CHAR8 *SupportedLanguages,
1052 IN EFI_UNICODE_STRING_TABLE **UnicodeStringTable,
1053 IN CONST CHAR16 *UnicodeString,
1054 IN BOOLEAN Iso639Language
1055 )
1056 {
1057 UINTN NumberOfEntries;
1058 EFI_UNICODE_STRING_TABLE *OldUnicodeStringTable;
1059 EFI_UNICODE_STRING_TABLE *NewUnicodeStringTable;
1060 UINTN UnicodeStringLength;
1061 BOOLEAN Found;
1062 UINTN Index;
1063 CHAR8 *LanguageString;
1064
1065 //
1066 // Make sure the parameter are valid
1067 //
1068 if (Language == NULL || UnicodeString == NULL || UnicodeStringTable == NULL) {
1069 return EFI_INVALID_PARAMETER;
1070 }
1071
1072 //
1073 // If there are no supported languages, then a Unicode String can not be added
1074 //
1075 if (SupportedLanguages == NULL) {
1076 return EFI_UNSUPPORTED;
1077 }
1078
1079 //
1080 // If the Unicode String is empty, then a Unicode String can not be added
1081 //
1082 if (UnicodeString[0] == 0) {
1083 return EFI_INVALID_PARAMETER;
1084 }
1085
1086 //
1087 // Make sure Language is a member of SupportedLanguages
1088 //
1089 Found = FALSE;
1090 while (*SupportedLanguages != 0) {
1091 if (Iso639Language) {
1092 if (CompareIso639LanguageCode (Language, SupportedLanguages)) {
1093 Found = TRUE;
1094 break;
1095 }
1096 SupportedLanguages += 3;
1097 } else {
1098 for (Index = 0; SupportedLanguages[Index] != 0 && SupportedLanguages[Index] != ';'; Index++);
1099 if (AsciiStrnCmp(SupportedLanguages, Language, Index) == 0) {
1100 Found = TRUE;
1101 break;
1102 }
1103 SupportedLanguages += Index;
1104 for (; *SupportedLanguages != 0 && *SupportedLanguages == ';'; SupportedLanguages++);
1105 }
1106 }
1107
1108 //
1109 // If Language is not a member of SupportedLanguages, then return EFI_UNSUPPORTED
1110 //
1111 if (!Found) {
1112 return EFI_UNSUPPORTED;
1113 }
1114
1115 //
1116 // Determine the size of the Unicode String Table by looking for a NULL Language entry
1117 //
1118 NumberOfEntries = 0;
1119 if (*UnicodeStringTable != NULL) {
1120 OldUnicodeStringTable = *UnicodeStringTable;
1121 while (OldUnicodeStringTable->Language != NULL) {
1122 LanguageString = OldUnicodeStringTable->Language;
1123
1124 while (*LanguageString != 0) {
1125 for (Index = 0; LanguageString[Index] != 0 && LanguageString[Index] != ';'; Index++);
1126
1127 if (AsciiStrnCmp (Language, LanguageString, Index) == 0) {
1128 return EFI_ALREADY_STARTED;
1129 }
1130 LanguageString += Index;
1131 for (; *LanguageString != 0 && *LanguageString == ';'; LanguageString++);
1132 }
1133 OldUnicodeStringTable++;
1134 NumberOfEntries++;
1135 }
1136 }
1137
1138 //
1139 // Allocate space for a new Unicode String Table. It must hold the current number of
1140 // entries, plus 1 entry for the new Unicode String, plus 1 entry for the end of table
1141 // marker
1142 //
1143 NewUnicodeStringTable = AllocatePool ((NumberOfEntries + 2) * sizeof (EFI_UNICODE_STRING_TABLE));
1144 if (NewUnicodeStringTable == NULL) {
1145 return EFI_OUT_OF_RESOURCES;
1146 }
1147
1148 //
1149 // If the current Unicode String Table contains any entries, then copy them to the
1150 // newly allocated Unicode String Table.
1151 //
1152 if (*UnicodeStringTable != NULL) {
1153 CopyMem (
1154 NewUnicodeStringTable,
1155 *UnicodeStringTable,
1156 NumberOfEntries * sizeof (EFI_UNICODE_STRING_TABLE)
1157 );
1158 }
1159
1160 //
1161 // Allocate space for a copy of the Language specifier
1162 //
1163 NewUnicodeStringTable[NumberOfEntries].Language = AllocateCopyPool (AsciiStrSize(Language), Language);
1164 if (NewUnicodeStringTable[NumberOfEntries].Language == NULL) {
1165 FreePool (NewUnicodeStringTable);
1166 return EFI_OUT_OF_RESOURCES;
1167 }
1168
1169 //
1170 // Compute the length of the Unicode String
1171 //
1172 for (UnicodeStringLength = 0; UnicodeString[UnicodeStringLength] != 0; UnicodeStringLength++);
1173
1174 //
1175 // Allocate space for a copy of the Unicode String
1176 //
1177 NewUnicodeStringTable[NumberOfEntries].UnicodeString = AllocateCopyPool (StrSize (UnicodeString), UnicodeString);
1178 if (NewUnicodeStringTable[NumberOfEntries].UnicodeString == NULL) {
1179 FreePool (NewUnicodeStringTable[NumberOfEntries].Language);
1180 FreePool (NewUnicodeStringTable);
1181 return EFI_OUT_OF_RESOURCES;
1182 }
1183
1184 //
1185 // Mark the end of the Unicode String Table
1186 //
1187 NewUnicodeStringTable[NumberOfEntries + 1].Language = NULL;
1188 NewUnicodeStringTable[NumberOfEntries + 1].UnicodeString = NULL;
1189
1190 //
1191 // Free the old Unicode String Table
1192 //
1193 if (*UnicodeStringTable != NULL) {
1194 FreePool (*UnicodeStringTable);
1195 }
1196
1197 //
1198 // Point UnicodeStringTable at the newly allocated Unicode String Table
1199 //
1200 *UnicodeStringTable = NewUnicodeStringTable;
1201
1202 return EFI_SUCCESS;
1203 }
1204
1205 /**
1206 This function frees the table of Unicode strings in UnicodeStringTable.
1207
1208 If UnicodeStringTable is NULL, then EFI_SUCCESS is returned.
1209 Otherwise, each language code, and each Unicode string in the Unicode string
1210 table are freed, and EFI_SUCCESS is returned.
1211
1212 @param UnicodeStringTable A pointer to the table of Unicode strings.
1213
1214 @retval EFI_SUCCESS The Unicode string table was freed.
1215
1216 **/
1217 EFI_STATUS
1218 EFIAPI
1219 FreeUnicodeStringTable (
1220 IN EFI_UNICODE_STRING_TABLE *UnicodeStringTable
1221 )
1222 {
1223 UINTN Index;
1224
1225 //
1226 // If the Unicode String Table is NULL, then it is already freed
1227 //
1228 if (UnicodeStringTable == NULL) {
1229 return EFI_SUCCESS;
1230 }
1231
1232 //
1233 // Loop through the Unicode String Table until we reach the end of table marker
1234 //
1235 for (Index = 0; UnicodeStringTable[Index].Language != NULL; Index++) {
1236
1237 //
1238 // Free the Language string from the Unicode String Table
1239 //
1240 FreePool (UnicodeStringTable[Index].Language);
1241
1242 //
1243 // Free the Unicode String from the Unicode String Table
1244 //
1245 if (UnicodeStringTable[Index].UnicodeString != NULL) {
1246 FreePool (UnicodeStringTable[Index].UnicodeString);
1247 }
1248 }
1249
1250 //
1251 // Free the Unicode String Table itself
1252 //
1253 FreePool (UnicodeStringTable);
1254
1255 return EFI_SUCCESS;
1256 }
1257
1258 #ifndef DISABLE_NEW_DEPRECATED_INTERFACES
1259
1260 /**
1261 [ATTENTION] This function will be deprecated for security reason.
1262
1263 Returns a pointer to an allocated buffer that contains the contents of a
1264 variable retrieved through the UEFI Runtime Service GetVariable(). The
1265 returned buffer is allocated using AllocatePool(). The caller is responsible
1266 for freeing this buffer with FreePool().
1267
1268 If Name is NULL, then ASSERT().
1269 If Guid is NULL, then ASSERT().
1270
1271 @param[in] Name The pointer to a Null-terminated Unicode string.
1272 @param[in] Guid The pointer to an EFI_GUID structure
1273
1274 @retval NULL The variable could not be retrieved.
1275 @retval NULL There are not enough resources available for the variable contents.
1276 @retval Other A pointer to allocated buffer containing the variable contents.
1277
1278 **/
1279 VOID *
1280 EFIAPI
1281 GetVariable (
1282 IN CONST CHAR16 *Name,
1283 IN CONST EFI_GUID *Guid
1284 )
1285 {
1286 EFI_STATUS Status;
1287 UINTN Size;
1288 VOID *Value;
1289
1290 ASSERT (Name != NULL);
1291 ASSERT (Guid != NULL);
1292
1293 //
1294 // Try to get the variable size.
1295 //
1296 Value = NULL;
1297 Size = 0;
1298 Status = gRT->GetVariable ((CHAR16 *) Name, (EFI_GUID *) Guid, NULL, &Size, Value);
1299 if (Status != EFI_BUFFER_TOO_SMALL) {
1300 return NULL;
1301 }
1302
1303 //
1304 // Allocate buffer to get the variable.
1305 //
1306 Value = AllocatePool (Size);
1307 if (Value == NULL) {
1308 return NULL;
1309 }
1310
1311 //
1312 // Get the variable data.
1313 //
1314 Status = gRT->GetVariable ((CHAR16 *) Name, (EFI_GUID *) Guid, NULL, &Size, Value);
1315 if (EFI_ERROR (Status)) {
1316 FreePool(Value);
1317 return NULL;
1318 }
1319
1320 return Value;
1321 }
1322
1323 /**
1324 [ATTENTION] This function will be deprecated for security reason.
1325
1326 Returns a pointer to an allocated buffer that contains the contents of a
1327 variable retrieved through the UEFI Runtime Service GetVariable(). This
1328 function always uses the EFI_GLOBAL_VARIABLE GUID to retrieve variables.
1329 The returned buffer is allocated using AllocatePool(). The caller is
1330 responsible for freeing this buffer with FreePool().
1331
1332 If Name is NULL, then ASSERT().
1333
1334 @param[in] Name The pointer to a Null-terminated Unicode string.
1335
1336 @retval NULL The variable could not be retrieved.
1337 @retval NULL There are not enough resources available for the variable contents.
1338 @retval Other A pointer to allocated buffer containing the variable contents.
1339
1340 **/
1341 VOID *
1342 EFIAPI
1343 GetEfiGlobalVariable (
1344 IN CONST CHAR16 *Name
1345 )
1346 {
1347 return GetVariable (Name, &gEfiGlobalVariableGuid);
1348 }
1349 #endif
1350
1351 /**
1352 Returns the status whether get the variable success. The function retrieves
1353 variable through the UEFI Runtime Service GetVariable(). The
1354 returned buffer is allocated using AllocatePool(). The caller is responsible
1355 for freeing this buffer with FreePool().
1356
1357 If Name is NULL, then ASSERT().
1358 If Guid is NULL, then ASSERT().
1359 If Value is NULL, then ASSERT().
1360
1361 @param[in] Name The pointer to a Null-terminated Unicode string.
1362 @param[in] Guid The pointer to an EFI_GUID structure
1363 @param[out] Value The buffer point saved the variable info.
1364 @param[out] Size The buffer size of the variable.
1365
1366 @return EFI_OUT_OF_RESOURCES Allocate buffer failed.
1367 @return EFI_SUCCESS Find the specified variable.
1368 @return Others Errors Return errors from call to gRT->GetVariable.
1369
1370 **/
1371 EFI_STATUS
1372 EFIAPI
1373 GetVariable2 (
1374 IN CONST CHAR16 *Name,
1375 IN CONST EFI_GUID *Guid,
1376 OUT VOID **Value,
1377 OUT UINTN *Size OPTIONAL
1378 )
1379 {
1380 EFI_STATUS Status;
1381 UINTN BufferSize;
1382
1383 ASSERT (Name != NULL && Guid != NULL && Value != NULL);
1384
1385 //
1386 // Try to get the variable size.
1387 //
1388 BufferSize = 0;
1389 *Value = NULL;
1390 if (Size != NULL) {
1391 *Size = 0;
1392 }
1393
1394 Status = gRT->GetVariable ((CHAR16 *) Name, (EFI_GUID *) Guid, NULL, &BufferSize, *Value);
1395 if (Status != EFI_BUFFER_TOO_SMALL) {
1396 return Status;
1397 }
1398
1399 //
1400 // Allocate buffer to get the variable.
1401 //
1402 *Value = AllocatePool (BufferSize);
1403 ASSERT (*Value != NULL);
1404 if (*Value == NULL) {
1405 return EFI_OUT_OF_RESOURCES;
1406 }
1407
1408 //
1409 // Get the variable data.
1410 //
1411 Status = gRT->GetVariable ((CHAR16 *) Name, (EFI_GUID *) Guid, NULL, &BufferSize, *Value);
1412 if (EFI_ERROR (Status)) {
1413 FreePool(*Value);
1414 *Value = NULL;
1415 }
1416
1417 if (Size != NULL) {
1418 *Size = BufferSize;
1419 }
1420
1421 return Status;
1422 }
1423
1424 /**
1425 Returns a pointer to an allocated buffer that contains the contents of a
1426 variable retrieved through the UEFI Runtime Service GetVariable(). This
1427 function always uses the EFI_GLOBAL_VARIABLE GUID to retrieve variables.
1428 The returned buffer is allocated using AllocatePool(). The caller is
1429 responsible for freeing this buffer with FreePool().
1430
1431 If Name is NULL, then ASSERT().
1432 If Value is NULL, then ASSERT().
1433
1434 @param[in] Name The pointer to a Null-terminated Unicode string.
1435 @param[out] Value The buffer point saved the variable info.
1436 @param[out] Size The buffer size of the variable.
1437
1438 @return EFI_OUT_OF_RESOURCES Allocate buffer failed.
1439 @return EFI_SUCCESS Find the specified variable.
1440 @return Others Errors Return errors from call to gRT->GetVariable.
1441
1442 **/
1443 EFI_STATUS
1444 EFIAPI
1445 GetEfiGlobalVariable2 (
1446 IN CONST CHAR16 *Name,
1447 OUT VOID **Value,
1448 OUT UINTN *Size OPTIONAL
1449 )
1450 {
1451 return GetVariable2 (Name, &gEfiGlobalVariableGuid, Value, Size);
1452 }
1453
1454 /**
1455 Returns a pointer to an allocated buffer that contains the best matching language
1456 from a set of supported languages.
1457
1458 This function supports both ISO 639-2 and RFC 4646 language codes, but language
1459 code types may not be mixed in a single call to this function. The language
1460 code returned is allocated using AllocatePool(). The caller is responsible for
1461 freeing the allocated buffer using FreePool(). This function supports a variable
1462 argument list that allows the caller to pass in a prioritized list of language
1463 codes to test against all the language codes in SupportedLanguages.
1464
1465 If SupportedLanguages is NULL, then ASSERT().
1466
1467 @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that
1468 contains a set of language codes in the format
1469 specified by Iso639Language.
1470 @param[in] Iso639Language If TRUE, then all language codes are assumed to be
1471 in ISO 639-2 format. If FALSE, then all language
1472 codes are assumed to be in RFC 4646 language format
1473 @param[in] ... A variable argument list that contains pointers to
1474 Null-terminated ASCII strings that contain one or more
1475 language codes in the format specified by Iso639Language.
1476 The first language code from each of these language
1477 code lists is used to determine if it is an exact or
1478 close match to any of the language codes in
1479 SupportedLanguages. Close matches only apply to RFC 4646
1480 language codes, and the matching algorithm from RFC 4647
1481 is used to determine if a close match is present. If
1482 an exact or close match is found, then the matching
1483 language code from SupportedLanguages is returned. If
1484 no matches are found, then the next variable argument
1485 parameter is evaluated. The variable argument list
1486 is terminated by a NULL.
1487
1488 @retval NULL The best matching language could not be found in SupportedLanguages.
1489 @retval NULL There are not enough resources available to return the best matching
1490 language.
1491 @retval Other A pointer to a Null-terminated ASCII string that is the best matching
1492 language in SupportedLanguages.
1493
1494 **/
1495 CHAR8 *
1496 EFIAPI
1497 GetBestLanguage (
1498 IN CONST CHAR8 *SupportedLanguages,
1499 IN BOOLEAN Iso639Language,
1500 ...
1501 )
1502 {
1503 VA_LIST Args;
1504 CHAR8 *Language;
1505 UINTN CompareLength;
1506 UINTN LanguageLength;
1507 CONST CHAR8 *Supported;
1508 CHAR8 *BestLanguage;
1509
1510 ASSERT (SupportedLanguages != NULL);
1511
1512 VA_START (Args, Iso639Language);
1513 while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) {
1514 //
1515 // Default to ISO 639-2 mode
1516 //
1517 CompareLength = 3;
1518 LanguageLength = MIN (3, AsciiStrLen (Language));
1519
1520 //
1521 // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language
1522 //
1523 if (!Iso639Language) {
1524 for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++);
1525 }
1526
1527 //
1528 // Trim back the length of Language used until it is empty
1529 //
1530 while (LanguageLength > 0) {
1531 //
1532 // Loop through all language codes in SupportedLanguages
1533 //
1534 for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) {
1535 //
1536 // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages
1537 //
1538 if (!Iso639Language) {
1539 //
1540 // Skip ';' characters in Supported
1541 //
1542 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1543 //
1544 // Determine the length of the next language code in Supported
1545 //
1546 for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++);
1547 //
1548 // If Language is longer than the Supported, then skip to the next language
1549 //
1550 if (LanguageLength > CompareLength) {
1551 continue;
1552 }
1553 }
1554 //
1555 // See if the first LanguageLength characters in Supported match Language
1556 //
1557 if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) {
1558 VA_END (Args);
1559 //
1560 // Allocate, copy, and return the best matching language code from SupportedLanguages
1561 //
1562 BestLanguage = AllocateZeroPool (CompareLength + 1);
1563 if (BestLanguage == NULL) {
1564 return NULL;
1565 }
1566 return CopyMem (BestLanguage, Supported, CompareLength);
1567 }
1568 }
1569
1570 if (Iso639Language) {
1571 //
1572 // If ISO 639 mode, then each language can only be tested once
1573 //
1574 LanguageLength = 0;
1575 } else {
1576 //
1577 // If RFC 4646 mode, then trim Language from the right to the next '-' character
1578 //
1579 for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--);
1580 }
1581 }
1582 }
1583 VA_END (Args);
1584
1585 //
1586 // No matches were found
1587 //
1588 return NULL;
1589 }
1590
1591 /**
1592 An empty function to pass error checking of CreateEventEx ().
1593
1594 This empty function ensures that EVT_NOTIFY_SIGNAL_ALL is error
1595 checked correctly since it is now mapped into CreateEventEx() in UEFI 2.0.
1596
1597 @param Event Event whose notification function is being invoked.
1598 @param Context The pointer to the notification function's context,
1599 which is implementation-dependent.
1600
1601 **/
1602 VOID
1603 EFIAPI
1604 InternalEmptyFunction (
1605 IN EFI_EVENT Event,
1606 IN VOID *Context
1607 )
1608 {
1609 }