]> git.proxmox.com Git - mirror_edk2.git/blob - MdePkg/Library/UefiLib/UefiLib.c
MdePkg: Replace BSD License with BSD+Patent License
[mirror_edk2.git] / MdePkg / Library / UefiLib / UefiLib.c
1 /** @file
2 The UEFI Library provides functions and macros that simplify the development of
3 UEFI Drivers and UEFI Applications. These functions and macros help manage EFI
4 events, build simple locks utilizing EFI Task Priority Levels (TPLs), install
5 EFI Driver Model related protocols, manage Unicode string tables for UEFI Drivers,
6 and print messages on the console output and standard error devices.
7
8 Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
9 SPDX-License-Identifier: BSD-2-Clause-Patent
10
11 **/
12
13
14 #include "UefiLibInternal.h"
15
16 /**
17 Empty constructor function that is required to resolve dependencies between
18 libraries.
19
20 ** DO NOT REMOVE **
21
22 @param ImageHandle The firmware allocated handle for the EFI image.
23 @param SystemTable A pointer to the EFI System Table.
24
25 @retval EFI_SUCCESS The constructor executed correctly.
26
27 **/
28 EFI_STATUS
29 EFIAPI
30 UefiLibConstructor (
31 IN EFI_HANDLE ImageHandle,
32 IN EFI_SYSTEM_TABLE *SystemTable
33 )
34 {
35 return EFI_SUCCESS;
36 }
37
38 /**
39 Compare whether two names of languages are identical.
40
41 @param Language1 Name of language 1.
42 @param Language2 Name of language 2.
43
44 @retval TRUE Language 1 and language 2 are the same.
45 @retval FALSE Language 1 and language 2 are not the same.
46
47 **/
48 BOOLEAN
49 CompareIso639LanguageCode (
50 IN CONST CHAR8 *Language1,
51 IN CONST CHAR8 *Language2
52 )
53 {
54 UINT32 Name1;
55 UINT32 Name2;
56
57 Name1 = ReadUnaligned24 ((CONST UINT32 *) Language1);
58 Name2 = ReadUnaligned24 ((CONST UINT32 *) Language2);
59
60 return (BOOLEAN) (Name1 == Name2);
61 }
62
63 /**
64 Retrieves a pointer to the system configuration table from the EFI System Table
65 based on a specified GUID.
66
67 This function searches the list of configuration tables stored in the EFI System Table
68 for a table with a GUID that matches TableGuid. If a match is found, then a pointer to
69 the configuration table is returned in Table., and EFI_SUCCESS is returned. If a matching GUID
70 is not found, then EFI_NOT_FOUND is returned.
71 If TableGuid is NULL, then ASSERT().
72 If Table is NULL, then ASSERT().
73
74 @param TableGuid The pointer to table's GUID type.
75 @param Table The pointer to the table associated with TableGuid in the EFI System Table.
76
77 @retval EFI_SUCCESS A configuration table matching TableGuid was found.
78 @retval EFI_NOT_FOUND A configuration table matching TableGuid could not be found.
79
80 **/
81 EFI_STATUS
82 EFIAPI
83 EfiGetSystemConfigurationTable (
84 IN EFI_GUID *TableGuid,
85 OUT VOID **Table
86 )
87 {
88 EFI_SYSTEM_TABLE *SystemTable;
89 UINTN Index;
90
91 ASSERT (TableGuid != NULL);
92 ASSERT (Table != NULL);
93
94 SystemTable = gST;
95 *Table = NULL;
96 for (Index = 0; Index < SystemTable->NumberOfTableEntries; Index++) {
97 if (CompareGuid (TableGuid, &(SystemTable->ConfigurationTable[Index].VendorGuid))) {
98 *Table = SystemTable->ConfigurationTable[Index].VendorTable;
99 return EFI_SUCCESS;
100 }
101 }
102
103 return EFI_NOT_FOUND;
104 }
105
106 /**
107 Creates and returns a notification event and registers that event with all the protocol
108 instances specified by ProtocolGuid.
109
110 This function causes the notification function to be executed for every protocol of type
111 ProtocolGuid instance that exists in the system when this function is invoked. If there are
112 no instances of ProtocolGuid in the handle database at the time this function is invoked,
113 then the notification function is still executed one time. In addition, every time a protocol
114 of type ProtocolGuid instance is installed or reinstalled, the notification function is also
115 executed. This function returns the notification event that was created.
116 If ProtocolGuid is NULL, then ASSERT().
117 If NotifyTpl is not a legal TPL value, then ASSERT().
118 If NotifyFunction is NULL, then ASSERT().
119 If Registration is NULL, then ASSERT().
120
121
122 @param ProtocolGuid Supplies GUID of the protocol upon whose installation the event is fired.
123 @param NotifyTpl Supplies the task priority level of the event notifications.
124 @param NotifyFunction Supplies the function to notify when the event is signaled.
125 @param NotifyContext The context parameter to pass to NotifyFunction.
126 @param Registration A pointer to a memory location to receive the registration value.
127 This value is passed to LocateHandle() to obtain new handles that
128 have been added that support the ProtocolGuid-specified protocol.
129
130 @return The notification event that was created.
131
132 **/
133 EFI_EVENT
134 EFIAPI
135 EfiCreateProtocolNotifyEvent(
136 IN EFI_GUID *ProtocolGuid,
137 IN EFI_TPL NotifyTpl,
138 IN EFI_EVENT_NOTIFY NotifyFunction,
139 IN VOID *NotifyContext, OPTIONAL
140 OUT VOID **Registration
141 )
142 {
143 EFI_STATUS Status;
144 EFI_EVENT Event;
145
146 ASSERT (ProtocolGuid != NULL);
147 ASSERT (NotifyFunction != NULL);
148 ASSERT (Registration != NULL);
149
150 //
151 // Create the event
152 //
153
154 Status = gBS->CreateEvent (
155 EVT_NOTIFY_SIGNAL,
156 NotifyTpl,
157 NotifyFunction,
158 NotifyContext,
159 &Event
160 );
161 ASSERT_EFI_ERROR (Status);
162
163 //
164 // Register for protocol notifications on this event
165 //
166
167 Status = gBS->RegisterProtocolNotify (
168 ProtocolGuid,
169 Event,
170 Registration
171 );
172
173 ASSERT_EFI_ERROR (Status);
174
175 //
176 // Kick the event so we will perform an initial pass of
177 // current installed drivers
178 //
179
180 gBS->SignalEvent (Event);
181 return Event;
182 }
183
184 /**
185 Creates a named event that can be signaled with EfiNamedEventSignal().
186
187 This function creates an event using NotifyTpl, NoifyFunction, and NotifyContext.
188 This event is signaled with EfiNamedEventSignal(). This provides the ability for one or more
189 listeners on the same event named by the GUID specified by Name.
190 If Name is NULL, then ASSERT().
191 If NotifyTpl is not a legal TPL value, then ASSERT().
192 If NotifyFunction is NULL, then ASSERT().
193
194 @param Name Supplies the GUID name of the event.
195 @param NotifyTpl Supplies the task priority level of the event notifications.
196 @param NotifyFunction Supplies the function to notify when the event is signaled.
197 @param NotifyContext The context parameter to pass to NotifyFunction.
198 @param Registration A pointer to a memory location to receive the registration value.
199
200 @retval EFI_SUCCESS A named event was created.
201 @retval EFI_OUT_OF_RESOURCES There are not enough resource to create the named event.
202
203 **/
204 EFI_STATUS
205 EFIAPI
206 EfiNamedEventListen (
207 IN CONST EFI_GUID *Name,
208 IN EFI_TPL NotifyTpl,
209 IN EFI_EVENT_NOTIFY NotifyFunction,
210 IN CONST VOID *NotifyContext, OPTIONAL
211 OUT VOID *Registration OPTIONAL
212 )
213 {
214 EFI_STATUS Status;
215 EFI_EVENT Event;
216 VOID *RegistrationLocal;
217
218 ASSERT (Name != NULL);
219 ASSERT (NotifyFunction != NULL);
220 ASSERT (NotifyTpl <= TPL_HIGH_LEVEL);
221
222 //
223 // Create event
224 //
225 Status = gBS->CreateEvent (
226 EVT_NOTIFY_SIGNAL,
227 NotifyTpl,
228 NotifyFunction,
229 (VOID *) NotifyContext,
230 &Event
231 );
232 ASSERT_EFI_ERROR (Status);
233
234 //
235 // The Registration is not optional to RegisterProtocolNotify().
236 // To make it optional to EfiNamedEventListen(), may need to substitute with a local.
237 //
238 if (Registration != NULL) {
239 RegistrationLocal = Registration;
240 } else {
241 RegistrationLocal = &RegistrationLocal;
242 }
243
244 //
245 // Register for an installation of protocol interface
246 //
247
248 Status = gBS->RegisterProtocolNotify (
249 (EFI_GUID *) Name,
250 Event,
251 RegistrationLocal
252 );
253 ASSERT_EFI_ERROR (Status);
254
255 return Status;
256 }
257
258 /**
259 Signals a named event created with EfiNamedEventListen().
260
261 This function signals the named event specified by Name. The named event must have been
262 created with EfiNamedEventListen().
263 If Name is NULL, then ASSERT().
264
265 @param Name Supplies the GUID name of the event.
266
267 @retval EFI_SUCCESS A named event was signaled.
268 @retval EFI_OUT_OF_RESOURCES There are not enough resource to signal the named event.
269
270 **/
271 EFI_STATUS
272 EFIAPI
273 EfiNamedEventSignal (
274 IN CONST EFI_GUID *Name
275 )
276 {
277 EFI_STATUS Status;
278 EFI_HANDLE Handle;
279
280 ASSERT(Name != NULL);
281
282 Handle = NULL;
283 Status = gBS->InstallProtocolInterface (
284 &Handle,
285 (EFI_GUID *) Name,
286 EFI_NATIVE_INTERFACE,
287 NULL
288 );
289 ASSERT_EFI_ERROR (Status);
290
291 Status = gBS->UninstallProtocolInterface (
292 Handle,
293 (EFI_GUID *) Name,
294 NULL
295 );
296 ASSERT_EFI_ERROR (Status);
297
298 return Status;
299 }
300
301 /**
302 Signals an event group by placing a new event in the group temporarily and
303 signaling it.
304
305 @param[in] EventGroup Supplies the unique identifier of the event
306 group to signal.
307
308 @retval EFI_SUCCESS The event group was signaled successfully.
309 @retval EFI_INVALID_PARAMETER EventGroup is NULL.
310 @return Error codes that report problems about event
311 creation or signaling.
312 **/
313 EFI_STATUS
314 EFIAPI
315 EfiEventGroupSignal (
316 IN CONST EFI_GUID *EventGroup
317 )
318 {
319 EFI_STATUS Status;
320 EFI_EVENT Event;
321
322 if (EventGroup == NULL) {
323 return EFI_INVALID_PARAMETER;
324 }
325
326 Status = gBS->CreateEventEx (
327 EVT_NOTIFY_SIGNAL,
328 TPL_CALLBACK,
329 EfiEventEmptyFunction,
330 NULL,
331 EventGroup,
332 &Event
333 );
334 if (EFI_ERROR (Status)) {
335 return Status;
336 }
337
338 Status = gBS->SignalEvent (Event);
339 gBS->CloseEvent (Event);
340
341 return Status;
342 }
343
344 /**
345 An empty function that can be used as NotifyFunction parameter of
346 CreateEvent() or CreateEventEx().
347
348 @param Event Event whose notification function is being invoked.
349 @param Context The pointer to the notification function's context,
350 which is implementation-dependent.
351
352 **/
353 VOID
354 EFIAPI
355 EfiEventEmptyFunction (
356 IN EFI_EVENT Event,
357 IN VOID *Context
358 )
359 {
360 }
361
362 /**
363 Returns the current TPL.
364
365 This function returns the current TPL. There is no EFI service to directly
366 retrieve the current TPL. Instead, the RaiseTPL() function is used to raise
367 the TPL to TPL_HIGH_LEVEL. This will return the current TPL. The TPL level
368 can then immediately be restored back to the current TPL level with a call
369 to RestoreTPL().
370
371 @return The current TPL.
372
373 **/
374 EFI_TPL
375 EFIAPI
376 EfiGetCurrentTpl (
377 VOID
378 )
379 {
380 EFI_TPL Tpl;
381
382 Tpl = gBS->RaiseTPL (TPL_HIGH_LEVEL);
383 gBS->RestoreTPL (Tpl);
384
385 return Tpl;
386 }
387
388
389 /**
390 Initializes a basic mutual exclusion lock.
391
392 This function initializes a basic mutual exclusion lock to the released state
393 and returns the lock. Each lock provides mutual exclusion access at its task
394 priority level. Since there is no preemption or multiprocessor support in EFI,
395 acquiring the lock only consists of raising to the locks TPL.
396 If Lock is NULL, then ASSERT().
397 If Priority is not a valid TPL value, then ASSERT().
398
399 @param Lock A pointer to the lock data structure to initialize.
400 @param Priority EFI TPL is associated with the lock.
401
402 @return The lock.
403
404 **/
405 EFI_LOCK *
406 EFIAPI
407 EfiInitializeLock (
408 IN OUT EFI_LOCK *Lock,
409 IN EFI_TPL Priority
410 )
411 {
412 ASSERT (Lock != NULL);
413 ASSERT (Priority <= TPL_HIGH_LEVEL);
414
415 Lock->Tpl = Priority;
416 Lock->OwnerTpl = TPL_APPLICATION;
417 Lock->Lock = EfiLockReleased ;
418 return Lock;
419 }
420
421 /**
422 Acquires ownership of a lock.
423
424 This function raises the system's current task priority level to the task
425 priority level of the mutual exclusion lock. Then, it places the lock in the
426 acquired state.
427 If Lock is NULL, then ASSERT().
428 If Lock is not initialized, then ASSERT().
429 If Lock is already in the acquired state, then ASSERT().
430
431 @param Lock A pointer to the lock to acquire.
432
433 **/
434 VOID
435 EFIAPI
436 EfiAcquireLock (
437 IN EFI_LOCK *Lock
438 )
439 {
440 ASSERT (Lock != NULL);
441 ASSERT (Lock->Lock == EfiLockReleased);
442
443 Lock->OwnerTpl = gBS->RaiseTPL (Lock->Tpl);
444 Lock->Lock = EfiLockAcquired;
445 }
446
447 /**
448 Acquires ownership of a lock.
449
450 This function raises the system's current task priority level to the task priority
451 level of the mutual exclusion lock. Then, it attempts to place the lock in the acquired state.
452 If the lock is already in the acquired state, then EFI_ACCESS_DENIED is returned.
453 Otherwise, EFI_SUCCESS is returned.
454 If Lock is NULL, then ASSERT().
455 If Lock is not initialized, then ASSERT().
456
457 @param Lock A pointer to the lock to acquire.
458
459 @retval EFI_SUCCESS The lock was acquired.
460 @retval EFI_ACCESS_DENIED The lock could not be acquired because it is already owned.
461
462 **/
463 EFI_STATUS
464 EFIAPI
465 EfiAcquireLockOrFail (
466 IN EFI_LOCK *Lock
467 )
468 {
469
470 ASSERT (Lock != NULL);
471 ASSERT (Lock->Lock != EfiLockUninitialized);
472
473 if (Lock->Lock == EfiLockAcquired) {
474 //
475 // Lock is already owned, so bail out
476 //
477 return EFI_ACCESS_DENIED;
478 }
479
480 Lock->OwnerTpl = gBS->RaiseTPL (Lock->Tpl);
481
482 Lock->Lock = EfiLockAcquired;
483
484 return EFI_SUCCESS;
485 }
486
487 /**
488 Releases ownership of a lock.
489
490 This function transitions a mutual exclusion lock from the acquired state to
491 the released state, and restores the system's task priority level to its
492 previous level.
493 If Lock is NULL, then ASSERT().
494 If Lock is not initialized, then ASSERT().
495 If Lock is already in the released state, then ASSERT().
496
497 @param Lock A pointer to the lock to release.
498
499 **/
500 VOID
501 EFIAPI
502 EfiReleaseLock (
503 IN EFI_LOCK *Lock
504 )
505 {
506 EFI_TPL Tpl;
507
508 ASSERT (Lock != NULL);
509 ASSERT (Lock->Lock == EfiLockAcquired);
510
511 Tpl = Lock->OwnerTpl;
512
513 Lock->Lock = EfiLockReleased;
514
515 gBS->RestoreTPL (Tpl);
516 }
517
518 /**
519 Tests whether a controller handle is being managed by a specific driver.
520
521 This function tests whether the driver specified by DriverBindingHandle is
522 currently managing the controller specified by ControllerHandle. This test
523 is performed by evaluating if the the protocol specified by ProtocolGuid is
524 present on ControllerHandle and is was opened by DriverBindingHandle with an
525 attribute of EFI_OPEN_PROTOCOL_BY_DRIVER.
526 If ProtocolGuid is NULL, then ASSERT().
527
528 @param ControllerHandle A handle for a controller to test.
529 @param DriverBindingHandle Specifies the driver binding handle for the
530 driver.
531 @param ProtocolGuid Specifies the protocol that the driver specified
532 by DriverBindingHandle opens in its Start()
533 function.
534
535 @retval EFI_SUCCESS ControllerHandle is managed by the driver
536 specified by DriverBindingHandle.
537 @retval EFI_UNSUPPORTED ControllerHandle is not managed by the driver
538 specified by DriverBindingHandle.
539
540 **/
541 EFI_STATUS
542 EFIAPI
543 EfiTestManagedDevice (
544 IN CONST EFI_HANDLE ControllerHandle,
545 IN CONST EFI_HANDLE DriverBindingHandle,
546 IN CONST EFI_GUID *ProtocolGuid
547 )
548 {
549 EFI_STATUS Status;
550 VOID *ManagedInterface;
551
552 ASSERT (ProtocolGuid != NULL);
553
554 Status = gBS->OpenProtocol (
555 ControllerHandle,
556 (EFI_GUID *) ProtocolGuid,
557 &ManagedInterface,
558 DriverBindingHandle,
559 ControllerHandle,
560 EFI_OPEN_PROTOCOL_BY_DRIVER
561 );
562 if (!EFI_ERROR (Status)) {
563 gBS->CloseProtocol (
564 ControllerHandle,
565 (EFI_GUID *) ProtocolGuid,
566 DriverBindingHandle,
567 ControllerHandle
568 );
569 return EFI_UNSUPPORTED;
570 }
571
572 if (Status != EFI_ALREADY_STARTED) {
573 return EFI_UNSUPPORTED;
574 }
575
576 return EFI_SUCCESS;
577 }
578
579 /**
580 Tests whether a child handle is a child device of the controller.
581
582 This function tests whether ChildHandle is one of the children of
583 ControllerHandle. This test is performed by checking to see if the protocol
584 specified by ProtocolGuid is present on ControllerHandle and opened by
585 ChildHandle with an attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
586 If ProtocolGuid is NULL, then ASSERT().
587
588 @param ControllerHandle A handle for a (parent) controller to test.
589 @param ChildHandle A child handle to test.
590 @param ProtocolGuid Supplies the protocol that the child controller
591 opens on its parent controller.
592
593 @retval EFI_SUCCESS ChildHandle is a child of the ControllerHandle.
594 @retval EFI_UNSUPPORTED ChildHandle is not a child of the
595 ControllerHandle.
596
597 **/
598 EFI_STATUS
599 EFIAPI
600 EfiTestChildHandle (
601 IN CONST EFI_HANDLE ControllerHandle,
602 IN CONST EFI_HANDLE ChildHandle,
603 IN CONST EFI_GUID *ProtocolGuid
604 )
605 {
606 EFI_STATUS Status;
607 EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfoBuffer;
608 UINTN EntryCount;
609 UINTN Index;
610
611 ASSERT (ProtocolGuid != NULL);
612
613 //
614 // Retrieve the list of agents that are consuming the specific protocol
615 // on ControllerHandle.
616 //
617 Status = gBS->OpenProtocolInformation (
618 ControllerHandle,
619 (EFI_GUID *) ProtocolGuid,
620 &OpenInfoBuffer,
621 &EntryCount
622 );
623 if (EFI_ERROR (Status)) {
624 return EFI_UNSUPPORTED;
625 }
626
627 //
628 // Inspect if ChildHandle is one of the agents.
629 //
630 Status = EFI_UNSUPPORTED;
631 for (Index = 0; Index < EntryCount; Index++) {
632 if ((OpenInfoBuffer[Index].ControllerHandle == ChildHandle) &&
633 (OpenInfoBuffer[Index].Attributes & EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER) != 0) {
634 Status = EFI_SUCCESS;
635 break;
636 }
637 }
638
639 FreePool (OpenInfoBuffer);
640 return Status;
641 }
642
643 /**
644 This function looks up a Unicode string in UnicodeStringTable.
645
646 If Language is a member of SupportedLanguages and a Unicode string is found in
647 UnicodeStringTable that matches the language code specified by Language, then it
648 is returned in UnicodeString.
649
650 @param Language A pointer to the ISO 639-2 language code for the
651 Unicode string to look up and return.
652 @param SupportedLanguages A pointer to the set of ISO 639-2 language codes
653 that the Unicode string table supports. Language
654 must be a member of this set.
655 @param UnicodeStringTable A pointer to the table of Unicode strings.
656 @param UnicodeString A pointer to the Unicode string from UnicodeStringTable
657 that matches the language specified by Language.
658
659 @retval EFI_SUCCESS The Unicode string that matches the language
660 specified by Language was found
661 in the table of Unicode strings UnicodeStringTable,
662 and it was returned in UnicodeString.
663 @retval EFI_INVALID_PARAMETER Language is NULL.
664 @retval EFI_INVALID_PARAMETER UnicodeString is NULL.
665 @retval EFI_UNSUPPORTED SupportedLanguages is NULL.
666 @retval EFI_UNSUPPORTED UnicodeStringTable is NULL.
667 @retval EFI_UNSUPPORTED The language specified by Language is not a
668 member of SupportedLanguages.
669 @retval EFI_UNSUPPORTED The language specified by Language is not
670 supported by UnicodeStringTable.
671
672 **/
673 EFI_STATUS
674 EFIAPI
675 LookupUnicodeString (
676 IN CONST CHAR8 *Language,
677 IN CONST CHAR8 *SupportedLanguages,
678 IN CONST EFI_UNICODE_STRING_TABLE *UnicodeStringTable,
679 OUT CHAR16 **UnicodeString
680 )
681 {
682 //
683 // Make sure the parameters are valid
684 //
685 if (Language == NULL || UnicodeString == NULL) {
686 return EFI_INVALID_PARAMETER;
687 }
688
689 //
690 // If there are no supported languages, or the Unicode String Table is empty, then the
691 // Unicode String specified by Language is not supported by this Unicode String Table
692 //
693 if (SupportedLanguages == NULL || UnicodeStringTable == NULL) {
694 return EFI_UNSUPPORTED;
695 }
696
697 //
698 // Make sure Language is in the set of Supported Languages
699 //
700 while (*SupportedLanguages != 0) {
701 if (CompareIso639LanguageCode (Language, SupportedLanguages)) {
702
703 //
704 // Search the Unicode String Table for the matching Language specifier
705 //
706 while (UnicodeStringTable->Language != NULL) {
707 if (CompareIso639LanguageCode (Language, UnicodeStringTable->Language)) {
708
709 //
710 // A matching string was found, so return it
711 //
712 *UnicodeString = UnicodeStringTable->UnicodeString;
713 return EFI_SUCCESS;
714 }
715
716 UnicodeStringTable++;
717 }
718
719 return EFI_UNSUPPORTED;
720 }
721
722 SupportedLanguages += 3;
723 }
724
725 return EFI_UNSUPPORTED;
726 }
727
728
729
730 /**
731 This function looks up a Unicode string in UnicodeStringTable.
732
733 If Language is a member of SupportedLanguages and a Unicode string is found in
734 UnicodeStringTable that matches the language code specified by Language, then
735 it is returned in UnicodeString.
736
737 @param Language A pointer to an ASCII string containing the ISO 639-2 or the
738 RFC 4646 language code for the Unicode string to look up and
739 return. If Iso639Language is TRUE, then this ASCII string is
740 not assumed to be Null-terminated, and only the first three
741 characters are used. If Iso639Language is FALSE, then this ASCII
742 string must be Null-terminated.
743 @param SupportedLanguages A pointer to a Null-terminated ASCII string that contains a
744 set of ISO 639-2 or RFC 4646 language codes that the Unicode
745 string table supports. Language must be a member of this set.
746 If Iso639Language is TRUE, then this string contains one or more
747 ISO 639-2 language codes with no separator characters. If Iso639Language
748 is FALSE, then is string contains one or more RFC 4646 language
749 codes separated by ';'.
750 @param UnicodeStringTable A pointer to the table of Unicode strings. Type EFI_UNICODE_STRING_TABLE
751 is defined in "Related Definitions".
752 @param UnicodeString A pointer to the Null-terminated Unicode string from UnicodeStringTable
753 that matches the language specified by Language.
754 @param Iso639Language Specifies the supported language code format. If it is TRUE, then
755 Language and SupportedLanguages follow ISO 639-2 language code format.
756 Otherwise, they follow RFC 4646 language code format.
757
758
759 @retval EFI_SUCCESS The Unicode string that matches the language specified by Language
760 was found in the table of Unicode strings UnicodeStringTable, and
761 it was returned in UnicodeString.
762 @retval EFI_INVALID_PARAMETER Language is NULL.
763 @retval EFI_INVALID_PARAMETER UnicodeString is NULL.
764 @retval EFI_UNSUPPORTED SupportedLanguages is NULL.
765 @retval EFI_UNSUPPORTED UnicodeStringTable is NULL.
766 @retval EFI_UNSUPPORTED The language specified by Language is not a member of SupportedLanguages.
767 @retval EFI_UNSUPPORTED The language specified by Language is not supported by UnicodeStringTable.
768
769 **/
770 EFI_STATUS
771 EFIAPI
772 LookupUnicodeString2 (
773 IN CONST CHAR8 *Language,
774 IN CONST CHAR8 *SupportedLanguages,
775 IN CONST EFI_UNICODE_STRING_TABLE *UnicodeStringTable,
776 OUT CHAR16 **UnicodeString,
777 IN BOOLEAN Iso639Language
778 )
779 {
780 BOOLEAN Found;
781 UINTN Index;
782 CHAR8 *LanguageString;
783
784 //
785 // Make sure the parameters are valid
786 //
787 if (Language == NULL || UnicodeString == NULL) {
788 return EFI_INVALID_PARAMETER;
789 }
790
791 //
792 // If there are no supported languages, or the Unicode String Table is empty, then the
793 // Unicode String specified by Language is not supported by this Unicode String Table
794 //
795 if (SupportedLanguages == NULL || UnicodeStringTable == NULL) {
796 return EFI_UNSUPPORTED;
797 }
798
799 //
800 // Make sure Language is in the set of Supported Languages
801 //
802 Found = FALSE;
803 while (*SupportedLanguages != 0) {
804 if (Iso639Language) {
805 if (CompareIso639LanguageCode (Language, SupportedLanguages)) {
806 Found = TRUE;
807 break;
808 }
809 SupportedLanguages += 3;
810 } else {
811 for (Index = 0; SupportedLanguages[Index] != 0 && SupportedLanguages[Index] != ';'; Index++);
812 if ((AsciiStrnCmp(SupportedLanguages, Language, Index) == 0) && (Language[Index] == 0)) {
813 Found = TRUE;
814 break;
815 }
816 SupportedLanguages += Index;
817 for (; *SupportedLanguages != 0 && *SupportedLanguages == ';'; SupportedLanguages++);
818 }
819 }
820
821 //
822 // If Language is not a member of SupportedLanguages, then return EFI_UNSUPPORTED
823 //
824 if (!Found) {
825 return EFI_UNSUPPORTED;
826 }
827
828 //
829 // Search the Unicode String Table for the matching Language specifier
830 //
831 while (UnicodeStringTable->Language != NULL) {
832 LanguageString = UnicodeStringTable->Language;
833 while (0 != *LanguageString) {
834 for (Index = 0 ;LanguageString[Index] != 0 && LanguageString[Index] != ';'; Index++);
835 if (AsciiStrnCmp(LanguageString, Language, Index) == 0) {
836 *UnicodeString = UnicodeStringTable->UnicodeString;
837 return EFI_SUCCESS;
838 }
839 LanguageString += Index;
840 for (Index = 0 ;LanguageString[Index] != 0 && LanguageString[Index] == ';'; Index++);
841 }
842 UnicodeStringTable++;
843 }
844
845 return EFI_UNSUPPORTED;
846 }
847
848
849 /**
850 This function adds a Unicode string to UnicodeStringTable.
851
852 If Language is a member of SupportedLanguages then UnicodeString is added to
853 UnicodeStringTable. New buffers are allocated for both Language and
854 UnicodeString. The contents of Language and UnicodeString are copied into
855 these new buffers. These buffers are automatically freed when
856 FreeUnicodeStringTable() is called.
857
858 @param Language A pointer to the ISO 639-2 language code for the Unicode
859 string to add.
860 @param SupportedLanguages A pointer to the set of ISO 639-2 language codes
861 that the Unicode string table supports.
862 Language must be a member of this set.
863 @param UnicodeStringTable A pointer to the table of Unicode strings.
864 @param UnicodeString A pointer to the Unicode string to add.
865
866 @retval EFI_SUCCESS The Unicode string that matches the language
867 specified by Language was found in the table of
868 Unicode strings UnicodeStringTable, and it was
869 returned in UnicodeString.
870 @retval EFI_INVALID_PARAMETER Language is NULL.
871 @retval EFI_INVALID_PARAMETER UnicodeString is NULL.
872 @retval EFI_INVALID_PARAMETER UnicodeString is an empty string.
873 @retval EFI_UNSUPPORTED SupportedLanguages is NULL.
874 @retval EFI_ALREADY_STARTED A Unicode string with language Language is
875 already present in UnicodeStringTable.
876 @retval EFI_OUT_OF_RESOURCES There is not enough memory to add another
877 Unicode string to UnicodeStringTable.
878 @retval EFI_UNSUPPORTED The language specified by Language is not a
879 member of SupportedLanguages.
880
881 **/
882 EFI_STATUS
883 EFIAPI
884 AddUnicodeString (
885 IN CONST CHAR8 *Language,
886 IN CONST CHAR8 *SupportedLanguages,
887 IN OUT EFI_UNICODE_STRING_TABLE **UnicodeStringTable,
888 IN CONST CHAR16 *UnicodeString
889 )
890 {
891 UINTN NumberOfEntries;
892 EFI_UNICODE_STRING_TABLE *OldUnicodeStringTable;
893 EFI_UNICODE_STRING_TABLE *NewUnicodeStringTable;
894 UINTN UnicodeStringLength;
895
896 //
897 // Make sure the parameter are valid
898 //
899 if (Language == NULL || UnicodeString == NULL || UnicodeStringTable == NULL) {
900 return EFI_INVALID_PARAMETER;
901 }
902
903 //
904 // If there are no supported languages, then a Unicode String can not be added
905 //
906 if (SupportedLanguages == NULL) {
907 return EFI_UNSUPPORTED;
908 }
909
910 //
911 // If the Unicode String is empty, then a Unicode String can not be added
912 //
913 if (UnicodeString[0] == 0) {
914 return EFI_INVALID_PARAMETER;
915 }
916
917 //
918 // Make sure Language is a member of SupportedLanguages
919 //
920 while (*SupportedLanguages != 0) {
921 if (CompareIso639LanguageCode (Language, SupportedLanguages)) {
922
923 //
924 // Determine the size of the Unicode String Table by looking for a NULL Language entry
925 //
926 NumberOfEntries = 0;
927 if (*UnicodeStringTable != NULL) {
928 OldUnicodeStringTable = *UnicodeStringTable;
929 while (OldUnicodeStringTable->Language != NULL) {
930 if (CompareIso639LanguageCode (Language, OldUnicodeStringTable->Language)) {
931 return EFI_ALREADY_STARTED;
932 }
933
934 OldUnicodeStringTable++;
935 NumberOfEntries++;
936 }
937 }
938
939 //
940 // Allocate space for a new Unicode String Table. It must hold the current number of
941 // entries, plus 1 entry for the new Unicode String, plus 1 entry for the end of table
942 // marker
943 //
944 NewUnicodeStringTable = AllocatePool ((NumberOfEntries + 2) * sizeof (EFI_UNICODE_STRING_TABLE));
945 if (NewUnicodeStringTable == NULL) {
946 return EFI_OUT_OF_RESOURCES;
947 }
948
949 //
950 // If the current Unicode String Table contains any entries, then copy them to the
951 // newly allocated Unicode String Table.
952 //
953 if (*UnicodeStringTable != NULL) {
954 CopyMem (
955 NewUnicodeStringTable,
956 *UnicodeStringTable,
957 NumberOfEntries * sizeof (EFI_UNICODE_STRING_TABLE)
958 );
959 }
960
961 //
962 // Allocate space for a copy of the Language specifier
963 //
964 NewUnicodeStringTable[NumberOfEntries].Language = AllocateCopyPool (3, Language);
965 if (NewUnicodeStringTable[NumberOfEntries].Language == NULL) {
966 FreePool (NewUnicodeStringTable);
967 return EFI_OUT_OF_RESOURCES;
968 }
969
970 //
971 // Compute the length of the Unicode String
972 //
973 for (UnicodeStringLength = 0; UnicodeString[UnicodeStringLength] != 0; UnicodeStringLength++)
974 ;
975
976 //
977 // Allocate space for a copy of the Unicode String
978 //
979 NewUnicodeStringTable[NumberOfEntries].UnicodeString = AllocateCopyPool (
980 (UnicodeStringLength + 1) * sizeof (CHAR16),
981 UnicodeString
982 );
983 if (NewUnicodeStringTable[NumberOfEntries].UnicodeString == NULL) {
984 FreePool (NewUnicodeStringTable[NumberOfEntries].Language);
985 FreePool (NewUnicodeStringTable);
986 return EFI_OUT_OF_RESOURCES;
987 }
988
989 //
990 // Mark the end of the Unicode String Table
991 //
992 NewUnicodeStringTable[NumberOfEntries + 1].Language = NULL;
993 NewUnicodeStringTable[NumberOfEntries + 1].UnicodeString = NULL;
994
995 //
996 // Free the old Unicode String Table
997 //
998 if (*UnicodeStringTable != NULL) {
999 FreePool (*UnicodeStringTable);
1000 }
1001
1002 //
1003 // Point UnicodeStringTable at the newly allocated Unicode String Table
1004 //
1005 *UnicodeStringTable = NewUnicodeStringTable;
1006
1007 return EFI_SUCCESS;
1008 }
1009
1010 SupportedLanguages += 3;
1011 }
1012
1013 return EFI_UNSUPPORTED;
1014 }
1015
1016
1017 /**
1018 This function adds the Null-terminated Unicode string specified by UnicodeString
1019 to UnicodeStringTable.
1020
1021 If Language is a member of SupportedLanguages then UnicodeString is added to
1022 UnicodeStringTable. New buffers are allocated for both Language and UnicodeString.
1023 The contents of Language and UnicodeString are copied into these new buffers.
1024 These buffers are automatically freed when EfiLibFreeUnicodeStringTable() is called.
1025
1026 @param Language A pointer to an ASCII string containing the ISO 639-2 or
1027 the RFC 4646 language code for the Unicode string to add.
1028 If Iso639Language is TRUE, then this ASCII string is not
1029 assumed to be Null-terminated, and only the first three
1030 chacters are used. If Iso639Language is FALSE, then this
1031 ASCII string must be Null-terminated.
1032 @param SupportedLanguages A pointer to a Null-terminated ASCII string that contains
1033 a set of ISO 639-2 or RFC 4646 language codes that the Unicode
1034 string table supports. Language must be a member of this set.
1035 If Iso639Language is TRUE, then this string contains one or more
1036 ISO 639-2 language codes with no separator characters.
1037 If Iso639Language is FALSE, then is string contains one or more
1038 RFC 4646 language codes separated by ';'.
1039 @param UnicodeStringTable A pointer to the table of Unicode strings. Type EFI_UNICODE_STRING_TABLE
1040 is defined in "Related Definitions".
1041 @param UnicodeString A pointer to the Unicode string to add.
1042 @param Iso639Language Specifies the supported language code format. If it is TRUE,
1043 then Language and SupportedLanguages follow ISO 639-2 language code format.
1044 Otherwise, they follow RFC 4646 language code format.
1045
1046 @retval EFI_SUCCESS The Unicode string that matches the language specified by
1047 Language was found in the table of Unicode strings UnicodeStringTable,
1048 and it was returned in UnicodeString.
1049 @retval EFI_INVALID_PARAMETER Language is NULL.
1050 @retval EFI_INVALID_PARAMETER UnicodeString is NULL.
1051 @retval EFI_INVALID_PARAMETER UnicodeString is an empty string.
1052 @retval EFI_UNSUPPORTED SupportedLanguages is NULL.
1053 @retval EFI_ALREADY_STARTED A Unicode string with language Language is already present in
1054 UnicodeStringTable.
1055 @retval EFI_OUT_OF_RESOURCES There is not enough memory to add another Unicode string UnicodeStringTable.
1056 @retval EFI_UNSUPPORTED The language specified by Language is not a member of SupportedLanguages.
1057
1058 **/
1059 EFI_STATUS
1060 EFIAPI
1061 AddUnicodeString2 (
1062 IN CONST CHAR8 *Language,
1063 IN CONST CHAR8 *SupportedLanguages,
1064 IN OUT EFI_UNICODE_STRING_TABLE **UnicodeStringTable,
1065 IN CONST CHAR16 *UnicodeString,
1066 IN BOOLEAN Iso639Language
1067 )
1068 {
1069 UINTN NumberOfEntries;
1070 EFI_UNICODE_STRING_TABLE *OldUnicodeStringTable;
1071 EFI_UNICODE_STRING_TABLE *NewUnicodeStringTable;
1072 UINTN UnicodeStringLength;
1073 BOOLEAN Found;
1074 UINTN Index;
1075 CHAR8 *LanguageString;
1076
1077 //
1078 // Make sure the parameter are valid
1079 //
1080 if (Language == NULL || UnicodeString == NULL || UnicodeStringTable == NULL) {
1081 return EFI_INVALID_PARAMETER;
1082 }
1083
1084 //
1085 // If there are no supported languages, then a Unicode String can not be added
1086 //
1087 if (SupportedLanguages == NULL) {
1088 return EFI_UNSUPPORTED;
1089 }
1090
1091 //
1092 // If the Unicode String is empty, then a Unicode String can not be added
1093 //
1094 if (UnicodeString[0] == 0) {
1095 return EFI_INVALID_PARAMETER;
1096 }
1097
1098 //
1099 // Make sure Language is a member of SupportedLanguages
1100 //
1101 Found = FALSE;
1102 while (*SupportedLanguages != 0) {
1103 if (Iso639Language) {
1104 if (CompareIso639LanguageCode (Language, SupportedLanguages)) {
1105 Found = TRUE;
1106 break;
1107 }
1108 SupportedLanguages += 3;
1109 } else {
1110 for (Index = 0; SupportedLanguages[Index] != 0 && SupportedLanguages[Index] != ';'; Index++);
1111 if (AsciiStrnCmp(SupportedLanguages, Language, Index) == 0) {
1112 Found = TRUE;
1113 break;
1114 }
1115 SupportedLanguages += Index;
1116 for (; *SupportedLanguages != 0 && *SupportedLanguages == ';'; SupportedLanguages++);
1117 }
1118 }
1119
1120 //
1121 // If Language is not a member of SupportedLanguages, then return EFI_UNSUPPORTED
1122 //
1123 if (!Found) {
1124 return EFI_UNSUPPORTED;
1125 }
1126
1127 //
1128 // Determine the size of the Unicode String Table by looking for a NULL Language entry
1129 //
1130 NumberOfEntries = 0;
1131 if (*UnicodeStringTable != NULL) {
1132 OldUnicodeStringTable = *UnicodeStringTable;
1133 while (OldUnicodeStringTable->Language != NULL) {
1134 LanguageString = OldUnicodeStringTable->Language;
1135
1136 while (*LanguageString != 0) {
1137 for (Index = 0; LanguageString[Index] != 0 && LanguageString[Index] != ';'; Index++);
1138
1139 if (AsciiStrnCmp (Language, LanguageString, Index) == 0) {
1140 return EFI_ALREADY_STARTED;
1141 }
1142 LanguageString += Index;
1143 for (; *LanguageString != 0 && *LanguageString == ';'; LanguageString++);
1144 }
1145 OldUnicodeStringTable++;
1146 NumberOfEntries++;
1147 }
1148 }
1149
1150 //
1151 // Allocate space for a new Unicode String Table. It must hold the current number of
1152 // entries, plus 1 entry for the new Unicode String, plus 1 entry for the end of table
1153 // marker
1154 //
1155 NewUnicodeStringTable = AllocatePool ((NumberOfEntries + 2) * sizeof (EFI_UNICODE_STRING_TABLE));
1156 if (NewUnicodeStringTable == NULL) {
1157 return EFI_OUT_OF_RESOURCES;
1158 }
1159
1160 //
1161 // If the current Unicode String Table contains any entries, then copy them to the
1162 // newly allocated Unicode String Table.
1163 //
1164 if (*UnicodeStringTable != NULL) {
1165 CopyMem (
1166 NewUnicodeStringTable,
1167 *UnicodeStringTable,
1168 NumberOfEntries * sizeof (EFI_UNICODE_STRING_TABLE)
1169 );
1170 }
1171
1172 //
1173 // Allocate space for a copy of the Language specifier
1174 //
1175 NewUnicodeStringTable[NumberOfEntries].Language = AllocateCopyPool (AsciiStrSize(Language), Language);
1176 if (NewUnicodeStringTable[NumberOfEntries].Language == NULL) {
1177 FreePool (NewUnicodeStringTable);
1178 return EFI_OUT_OF_RESOURCES;
1179 }
1180
1181 //
1182 // Compute the length of the Unicode String
1183 //
1184 for (UnicodeStringLength = 0; UnicodeString[UnicodeStringLength] != 0; UnicodeStringLength++);
1185
1186 //
1187 // Allocate space for a copy of the Unicode String
1188 //
1189 NewUnicodeStringTable[NumberOfEntries].UnicodeString = AllocateCopyPool (StrSize (UnicodeString), UnicodeString);
1190 if (NewUnicodeStringTable[NumberOfEntries].UnicodeString == NULL) {
1191 FreePool (NewUnicodeStringTable[NumberOfEntries].Language);
1192 FreePool (NewUnicodeStringTable);
1193 return EFI_OUT_OF_RESOURCES;
1194 }
1195
1196 //
1197 // Mark the end of the Unicode String Table
1198 //
1199 NewUnicodeStringTable[NumberOfEntries + 1].Language = NULL;
1200 NewUnicodeStringTable[NumberOfEntries + 1].UnicodeString = NULL;
1201
1202 //
1203 // Free the old Unicode String Table
1204 //
1205 if (*UnicodeStringTable != NULL) {
1206 FreePool (*UnicodeStringTable);
1207 }
1208
1209 //
1210 // Point UnicodeStringTable at the newly allocated Unicode String Table
1211 //
1212 *UnicodeStringTable = NewUnicodeStringTable;
1213
1214 return EFI_SUCCESS;
1215 }
1216
1217 /**
1218 This function frees the table of Unicode strings in UnicodeStringTable.
1219
1220 If UnicodeStringTable is NULL, then EFI_SUCCESS is returned.
1221 Otherwise, each language code, and each Unicode string in the Unicode string
1222 table are freed, and EFI_SUCCESS is returned.
1223
1224 @param UnicodeStringTable A pointer to the table of Unicode strings.
1225
1226 @retval EFI_SUCCESS The Unicode string table was freed.
1227
1228 **/
1229 EFI_STATUS
1230 EFIAPI
1231 FreeUnicodeStringTable (
1232 IN EFI_UNICODE_STRING_TABLE *UnicodeStringTable
1233 )
1234 {
1235 UINTN Index;
1236
1237 //
1238 // If the Unicode String Table is NULL, then it is already freed
1239 //
1240 if (UnicodeStringTable == NULL) {
1241 return EFI_SUCCESS;
1242 }
1243
1244 //
1245 // Loop through the Unicode String Table until we reach the end of table marker
1246 //
1247 for (Index = 0; UnicodeStringTable[Index].Language != NULL; Index++) {
1248
1249 //
1250 // Free the Language string from the Unicode String Table
1251 //
1252 FreePool (UnicodeStringTable[Index].Language);
1253
1254 //
1255 // Free the Unicode String from the Unicode String Table
1256 //
1257 if (UnicodeStringTable[Index].UnicodeString != NULL) {
1258 FreePool (UnicodeStringTable[Index].UnicodeString);
1259 }
1260 }
1261
1262 //
1263 // Free the Unicode String Table itself
1264 //
1265 FreePool (UnicodeStringTable);
1266
1267 return EFI_SUCCESS;
1268 }
1269
1270 #ifndef DISABLE_NEW_DEPRECATED_INTERFACES
1271
1272 /**
1273 [ATTENTION] This function will be deprecated for security reason.
1274
1275 Returns a pointer to an allocated buffer that contains the contents of a
1276 variable retrieved through the UEFI Runtime Service GetVariable(). The
1277 returned buffer is allocated using AllocatePool(). The caller is responsible
1278 for freeing this buffer with FreePool().
1279
1280 If Name is NULL, then ASSERT().
1281 If Guid is NULL, then ASSERT().
1282
1283 @param[in] Name The pointer to a Null-terminated Unicode string.
1284 @param[in] Guid The pointer to an EFI_GUID structure
1285
1286 @retval NULL The variable could not be retrieved.
1287 @retval NULL There are not enough resources available for the variable contents.
1288 @retval Other A pointer to allocated buffer containing the variable contents.
1289
1290 **/
1291 VOID *
1292 EFIAPI
1293 GetVariable (
1294 IN CONST CHAR16 *Name,
1295 IN CONST EFI_GUID *Guid
1296 )
1297 {
1298 EFI_STATUS Status;
1299 UINTN Size;
1300 VOID *Value;
1301
1302 ASSERT (Name != NULL);
1303 ASSERT (Guid != NULL);
1304
1305 //
1306 // Try to get the variable size.
1307 //
1308 Value = NULL;
1309 Size = 0;
1310 Status = gRT->GetVariable ((CHAR16 *) Name, (EFI_GUID *) Guid, NULL, &Size, Value);
1311 if (Status != EFI_BUFFER_TOO_SMALL) {
1312 return NULL;
1313 }
1314
1315 //
1316 // Allocate buffer to get the variable.
1317 //
1318 Value = AllocatePool (Size);
1319 if (Value == NULL) {
1320 return NULL;
1321 }
1322
1323 //
1324 // Get the variable data.
1325 //
1326 Status = gRT->GetVariable ((CHAR16 *) Name, (EFI_GUID *) Guid, NULL, &Size, Value);
1327 if (EFI_ERROR (Status)) {
1328 FreePool(Value);
1329 return NULL;
1330 }
1331
1332 return Value;
1333 }
1334
1335 /**
1336 [ATTENTION] This function will be deprecated for security reason.
1337
1338 Returns a pointer to an allocated buffer that contains the contents of a
1339 variable retrieved through the UEFI Runtime Service GetVariable(). This
1340 function always uses the EFI_GLOBAL_VARIABLE GUID to retrieve variables.
1341 The returned buffer is allocated using AllocatePool(). The caller is
1342 responsible for freeing this buffer with FreePool().
1343
1344 If Name is NULL, then ASSERT().
1345
1346 @param[in] Name The pointer to a Null-terminated Unicode string.
1347
1348 @retval NULL The variable could not be retrieved.
1349 @retval NULL There are not enough resources available for the variable contents.
1350 @retval Other A pointer to allocated buffer containing the variable contents.
1351
1352 **/
1353 VOID *
1354 EFIAPI
1355 GetEfiGlobalVariable (
1356 IN CONST CHAR16 *Name
1357 )
1358 {
1359 return GetVariable (Name, &gEfiGlobalVariableGuid);
1360 }
1361 #endif
1362
1363 /**
1364 Returns the status whether get the variable success. The function retrieves
1365 variable through the UEFI Runtime Service GetVariable(). The
1366 returned buffer is allocated using AllocatePool(). The caller is responsible
1367 for freeing this buffer with FreePool().
1368
1369 If Name is NULL, then ASSERT().
1370 If Guid is NULL, then ASSERT().
1371 If Value is NULL, then ASSERT().
1372
1373 @param[in] Name The pointer to a Null-terminated Unicode string.
1374 @param[in] Guid The pointer to an EFI_GUID structure
1375 @param[out] Value The buffer point saved the variable info.
1376 @param[out] Size The buffer size of the variable.
1377
1378 @return EFI_OUT_OF_RESOURCES Allocate buffer failed.
1379 @return EFI_SUCCESS Find the specified variable.
1380 @return Others Errors Return errors from call to gRT->GetVariable.
1381
1382 **/
1383 EFI_STATUS
1384 EFIAPI
1385 GetVariable2 (
1386 IN CONST CHAR16 *Name,
1387 IN CONST EFI_GUID *Guid,
1388 OUT VOID **Value,
1389 OUT UINTN *Size OPTIONAL
1390 )
1391 {
1392 EFI_STATUS Status;
1393 UINTN BufferSize;
1394
1395 ASSERT (Name != NULL && Guid != NULL && Value != NULL);
1396
1397 //
1398 // Try to get the variable size.
1399 //
1400 BufferSize = 0;
1401 *Value = NULL;
1402 if (Size != NULL) {
1403 *Size = 0;
1404 }
1405
1406 Status = gRT->GetVariable ((CHAR16 *) Name, (EFI_GUID *) Guid, NULL, &BufferSize, *Value);
1407 if (Status != EFI_BUFFER_TOO_SMALL) {
1408 return Status;
1409 }
1410
1411 //
1412 // Allocate buffer to get the variable.
1413 //
1414 *Value = AllocatePool (BufferSize);
1415 ASSERT (*Value != NULL);
1416 if (*Value == NULL) {
1417 return EFI_OUT_OF_RESOURCES;
1418 }
1419
1420 //
1421 // Get the variable data.
1422 //
1423 Status = gRT->GetVariable ((CHAR16 *) Name, (EFI_GUID *) Guid, NULL, &BufferSize, *Value);
1424 if (EFI_ERROR (Status)) {
1425 FreePool(*Value);
1426 *Value = NULL;
1427 }
1428
1429 if (Size != NULL) {
1430 *Size = BufferSize;
1431 }
1432
1433 return Status;
1434 }
1435
1436 /** Return the attributes of the variable.
1437
1438 Returns the status whether get the variable success. The function retrieves
1439 variable through the UEFI Runtime Service GetVariable(). The
1440 returned buffer is allocated using AllocatePool(). The caller is responsible
1441 for freeing this buffer with FreePool(). The attributes are returned if
1442 the caller provides a valid Attribute parameter.
1443
1444 If Name is NULL, then ASSERT().
1445 If Guid is NULL, then ASSERT().
1446 If Value is NULL, then ASSERT().
1447
1448 @param[in] Name The pointer to a Null-terminated Unicode string.
1449 @param[in] Guid The pointer to an EFI_GUID structure
1450 @param[out] Value The buffer point saved the variable info.
1451 @param[out] Size The buffer size of the variable.
1452 @param[out] Attr The pointer to the variable attributes as found in var store
1453
1454 @retval EFI_OUT_OF_RESOURCES Allocate buffer failed.
1455 @retval EFI_SUCCESS Find the specified variable.
1456 @retval Others Errors Return errors from call to gRT->GetVariable.
1457
1458 **/
1459 EFI_STATUS
1460 EFIAPI
1461 GetVariable3(
1462 IN CONST CHAR16 *Name,
1463 IN CONST EFI_GUID *Guid,
1464 OUT VOID **Value,
1465 OUT UINTN *Size OPTIONAL,
1466 OUT UINT32 *Attr OPTIONAL
1467 )
1468 {
1469 EFI_STATUS Status;
1470 UINTN BufferSize;
1471
1472 ASSERT(Name != NULL && Guid != NULL && Value != NULL);
1473
1474 //
1475 // Try to get the variable size.
1476 //
1477 BufferSize = 0;
1478 *Value = NULL;
1479 if (Size != NULL) {
1480 *Size = 0;
1481 }
1482
1483 if (Attr != NULL) {
1484 *Attr = 0;
1485 }
1486
1487 Status = gRT->GetVariable((CHAR16 *)Name, (EFI_GUID *)Guid, Attr, &BufferSize, *Value);
1488 if (Status != EFI_BUFFER_TOO_SMALL) {
1489 return Status;
1490 }
1491
1492 //
1493 // Allocate buffer to get the variable.
1494 //
1495 *Value = AllocatePool(BufferSize);
1496 ASSERT(*Value != NULL);
1497 if (*Value == NULL) {
1498 return EFI_OUT_OF_RESOURCES;
1499 }
1500
1501 //
1502 // Get the variable data.
1503 //
1504 Status = gRT->GetVariable((CHAR16 *)Name, (EFI_GUID *)Guid, Attr, &BufferSize, *Value);
1505 if (EFI_ERROR(Status)) {
1506 FreePool(*Value);
1507 *Value = NULL;
1508 }
1509
1510 if (Size != NULL) {
1511 *Size = BufferSize;
1512 }
1513
1514 return Status;
1515 }
1516
1517 /**
1518 Returns a pointer to an allocated buffer that contains the contents of a
1519 variable retrieved through the UEFI Runtime Service GetVariable(). This
1520 function always uses the EFI_GLOBAL_VARIABLE GUID to retrieve variables.
1521 The returned buffer is allocated using AllocatePool(). The caller is
1522 responsible for freeing this buffer with FreePool().
1523
1524 If Name is NULL, then ASSERT().
1525 If Value is NULL, then ASSERT().
1526
1527 @param[in] Name The pointer to a Null-terminated Unicode string.
1528 @param[out] Value The buffer point saved the variable info.
1529 @param[out] Size The buffer size of the variable.
1530
1531 @return EFI_OUT_OF_RESOURCES Allocate buffer failed.
1532 @return EFI_SUCCESS Find the specified variable.
1533 @return Others Errors Return errors from call to gRT->GetVariable.
1534
1535 **/
1536 EFI_STATUS
1537 EFIAPI
1538 GetEfiGlobalVariable2 (
1539 IN CONST CHAR16 *Name,
1540 OUT VOID **Value,
1541 OUT UINTN *Size OPTIONAL
1542 )
1543 {
1544 return GetVariable2 (Name, &gEfiGlobalVariableGuid, Value, Size);
1545 }
1546
1547 /**
1548 Returns a pointer to an allocated buffer that contains the best matching language
1549 from a set of supported languages.
1550
1551 This function supports both ISO 639-2 and RFC 4646 language codes, but language
1552 code types may not be mixed in a single call to this function. The language
1553 code returned is allocated using AllocatePool(). The caller is responsible for
1554 freeing the allocated buffer using FreePool(). This function supports a variable
1555 argument list that allows the caller to pass in a prioritized list of language
1556 codes to test against all the language codes in SupportedLanguages.
1557
1558 If SupportedLanguages is NULL, then ASSERT().
1559
1560 @param[in] SupportedLanguages A pointer to a Null-terminated ASCII string that
1561 contains a set of language codes in the format
1562 specified by Iso639Language.
1563 @param[in] Iso639Language If not zero, then all language codes are assumed to be
1564 in ISO 639-2 format. If zero, then all language
1565 codes are assumed to be in RFC 4646 language format
1566 @param[in] ... A variable argument list that contains pointers to
1567 Null-terminated ASCII strings that contain one or more
1568 language codes in the format specified by Iso639Language.
1569 The first language code from each of these language
1570 code lists is used to determine if it is an exact or
1571 close match to any of the language codes in
1572 SupportedLanguages. Close matches only apply to RFC 4646
1573 language codes, and the matching algorithm from RFC 4647
1574 is used to determine if a close match is present. If
1575 an exact or close match is found, then the matching
1576 language code from SupportedLanguages is returned. If
1577 no matches are found, then the next variable argument
1578 parameter is evaluated. The variable argument list
1579 is terminated by a NULL.
1580
1581 @retval NULL The best matching language could not be found in SupportedLanguages.
1582 @retval NULL There are not enough resources available to return the best matching
1583 language.
1584 @retval Other A pointer to a Null-terminated ASCII string that is the best matching
1585 language in SupportedLanguages.
1586
1587 **/
1588 CHAR8 *
1589 EFIAPI
1590 GetBestLanguage (
1591 IN CONST CHAR8 *SupportedLanguages,
1592 IN UINTN Iso639Language,
1593 ...
1594 )
1595 {
1596 VA_LIST Args;
1597 CHAR8 *Language;
1598 UINTN CompareLength;
1599 UINTN LanguageLength;
1600 CONST CHAR8 *Supported;
1601 CHAR8 *BestLanguage;
1602
1603 ASSERT (SupportedLanguages != NULL);
1604
1605 VA_START (Args, Iso639Language);
1606 while ((Language = VA_ARG (Args, CHAR8 *)) != NULL) {
1607 //
1608 // Default to ISO 639-2 mode
1609 //
1610 CompareLength = 3;
1611 LanguageLength = MIN (3, AsciiStrLen (Language));
1612
1613 //
1614 // If in RFC 4646 mode, then determine the length of the first RFC 4646 language code in Language
1615 //
1616 if (Iso639Language == 0) {
1617 for (LanguageLength = 0; Language[LanguageLength] != 0 && Language[LanguageLength] != ';'; LanguageLength++);
1618 }
1619
1620 //
1621 // Trim back the length of Language used until it is empty
1622 //
1623 while (LanguageLength > 0) {
1624 //
1625 // Loop through all language codes in SupportedLanguages
1626 //
1627 for (Supported = SupportedLanguages; *Supported != '\0'; Supported += CompareLength) {
1628 //
1629 // In RFC 4646 mode, then Loop through all language codes in SupportedLanguages
1630 //
1631 if (Iso639Language == 0) {
1632 //
1633 // Skip ';' characters in Supported
1634 //
1635 for (; *Supported != '\0' && *Supported == ';'; Supported++);
1636 //
1637 // Determine the length of the next language code in Supported
1638 //
1639 for (CompareLength = 0; Supported[CompareLength] != 0 && Supported[CompareLength] != ';'; CompareLength++);
1640 //
1641 // If Language is longer than the Supported, then skip to the next language
1642 //
1643 if (LanguageLength > CompareLength) {
1644 continue;
1645 }
1646 }
1647 //
1648 // See if the first LanguageLength characters in Supported match Language
1649 //
1650 if (AsciiStrnCmp (Supported, Language, LanguageLength) == 0) {
1651 VA_END (Args);
1652 //
1653 // Allocate, copy, and return the best matching language code from SupportedLanguages
1654 //
1655 BestLanguage = AllocateZeroPool (CompareLength + 1);
1656 if (BestLanguage == NULL) {
1657 return NULL;
1658 }
1659 return CopyMem (BestLanguage, Supported, CompareLength);
1660 }
1661 }
1662
1663 if (Iso639Language != 0) {
1664 //
1665 // If ISO 639 mode, then each language can only be tested once
1666 //
1667 LanguageLength = 0;
1668 } else {
1669 //
1670 // If RFC 4646 mode, then trim Language from the right to the next '-' character
1671 //
1672 for (LanguageLength--; LanguageLength > 0 && Language[LanguageLength] != '-'; LanguageLength--);
1673 }
1674 }
1675 }
1676 VA_END (Args);
1677
1678 //
1679 // No matches were found
1680 //
1681 return NULL;
1682 }
1683
1684 /**
1685 Returns an array of protocol instance that matches the given protocol.
1686
1687 @param[in] Protocol Provides the protocol to search for.
1688 @param[out] NoProtocols The number of protocols returned in Buffer.
1689 @param[out] Buffer A pointer to the buffer to return the requested
1690 array of protocol instances that match Protocol.
1691 The returned buffer is allocated using
1692 EFI_BOOT_SERVICES.AllocatePool(). The caller is
1693 responsible for freeing this buffer with
1694 EFI_BOOT_SERVICES.FreePool().
1695
1696 @retval EFI_SUCCESS The array of protocols was returned in Buffer,
1697 and the number of protocols in Buffer was
1698 returned in NoProtocols.
1699 @retval EFI_NOT_FOUND No protocols found.
1700 @retval EFI_OUT_OF_RESOURCES There is not enough pool memory to store the
1701 matching results.
1702 @retval EFI_INVALID_PARAMETER Protocol is NULL.
1703 @retval EFI_INVALID_PARAMETER NoProtocols is NULL.
1704 @retval EFI_INVALID_PARAMETER Buffer is NULL.
1705
1706 **/
1707 EFI_STATUS
1708 EFIAPI
1709 EfiLocateProtocolBuffer (
1710 IN EFI_GUID *Protocol,
1711 OUT UINTN *NoProtocols,
1712 OUT VOID ***Buffer
1713 )
1714 {
1715 EFI_STATUS Status;
1716 UINTN NoHandles;
1717 EFI_HANDLE *HandleBuffer;
1718 UINTN Index;
1719
1720 //
1721 // Check input parameters
1722 //
1723 if (Protocol == NULL || NoProtocols == NULL || Buffer == NULL) {
1724 return EFI_INVALID_PARAMETER;
1725 }
1726
1727 //
1728 // Initialze output parameters
1729 //
1730 *NoProtocols = 0;
1731 *Buffer = NULL;
1732
1733 //
1734 // Retrieve the array of handles that support Protocol
1735 //
1736 Status = gBS->LocateHandleBuffer (
1737 ByProtocol,
1738 Protocol,
1739 NULL,
1740 &NoHandles,
1741 &HandleBuffer
1742 );
1743 if (EFI_ERROR (Status)) {
1744 return Status;
1745 }
1746
1747 //
1748 // Allocate array of protocol instances
1749 //
1750 Status = gBS->AllocatePool (
1751 EfiBootServicesData,
1752 NoHandles * sizeof (VOID *),
1753 (VOID **)Buffer
1754 );
1755 if (EFI_ERROR (Status)) {
1756 //
1757 // Free the handle buffer
1758 //
1759 gBS->FreePool (HandleBuffer);
1760 return EFI_OUT_OF_RESOURCES;
1761 }
1762 ZeroMem (*Buffer, NoHandles * sizeof (VOID *));
1763
1764 //
1765 // Lookup Protocol on each handle in HandleBuffer to fill in the array of
1766 // protocol instances. Handle case where protocol instance was present when
1767 // LocateHandleBuffer() was called, but is not present when HandleProtocol()
1768 // is called.
1769 //
1770 for (Index = 0, *NoProtocols = 0; Index < NoHandles; Index++) {
1771 Status = gBS->HandleProtocol (
1772 HandleBuffer[Index],
1773 Protocol,
1774 &((*Buffer)[*NoProtocols])
1775 );
1776 if (!EFI_ERROR (Status)) {
1777 (*NoProtocols)++;
1778 }
1779 }
1780
1781 //
1782 // Free the handle buffer
1783 //
1784 gBS->FreePool (HandleBuffer);
1785
1786 //
1787 // Make sure at least one protocol instance was found
1788 //
1789 if (*NoProtocols == 0) {
1790 gBS->FreePool (*Buffer);
1791 *Buffer = NULL;
1792 return EFI_NOT_FOUND;
1793 }
1794
1795 return EFI_SUCCESS;
1796 }
1797
1798 /**
1799 Open or create a file or directory, possibly creating the chain of
1800 directories leading up to the directory.
1801
1802 EfiOpenFileByDevicePath() first locates EFI_SIMPLE_FILE_SYSTEM_PROTOCOL on
1803 FilePath, and opens the root directory of that filesystem with
1804 EFI_SIMPLE_FILE_SYSTEM_PROTOCOL.OpenVolume().
1805
1806 On the remaining device path, the longest initial sequence of
1807 FILEPATH_DEVICE_PATH nodes is node-wise traversed with
1808 EFI_FILE_PROTOCOL.Open().
1809
1810 (As a consequence, if OpenMode includes EFI_FILE_MODE_CREATE, and Attributes
1811 includes EFI_FILE_DIRECTORY, and each FILEPATH_DEVICE_PATH specifies a single
1812 pathname component, then EfiOpenFileByDevicePath() ensures that the specified
1813 series of subdirectories exist on return.)
1814
1815 The EFI_FILE_PROTOCOL identified by the last FILEPATH_DEVICE_PATH node is
1816 output to the caller; intermediate EFI_FILE_PROTOCOL instances are closed. If
1817 there are no FILEPATH_DEVICE_PATH nodes past the node that identifies the
1818 filesystem, then the EFI_FILE_PROTOCOL of the root directory of the
1819 filesystem is output to the caller. If a device path node that is different
1820 from FILEPATH_DEVICE_PATH is encountered relative to the filesystem, the
1821 traversal is stopped with an error, and a NULL EFI_FILE_PROTOCOL is output.
1822
1823 @param[in,out] FilePath On input, the device path to the file or directory
1824 to open or create. The caller is responsible for
1825 ensuring that the device path pointed-to by FilePath
1826 is well-formed. On output, FilePath points one past
1827 the last node in the original device path that has
1828 been successfully processed. FilePath is set on
1829 output even if EfiOpenFileByDevicePath() returns an
1830 error.
1831
1832 @param[out] File On error, File is set to NULL. On success, File is
1833 set to the EFI_FILE_PROTOCOL of the root directory
1834 of the filesystem, if there are no
1835 FILEPATH_DEVICE_PATH nodes in FilePath; otherwise,
1836 File is set to the EFI_FILE_PROTOCOL identified by
1837 the last node in FilePath.
1838
1839 @param[in] OpenMode The OpenMode parameter to pass to
1840 EFI_FILE_PROTOCOL.Open().
1841
1842 @param[in] Attributes The Attributes parameter to pass to
1843 EFI_FILE_PROTOCOL.Open().
1844
1845 @retval EFI_SUCCESS The file or directory has been opened or
1846 created.
1847
1848 @retval EFI_INVALID_PARAMETER FilePath is NULL; or File is NULL; or FilePath
1849 contains a device path node, past the node
1850 that identifies
1851 EFI_SIMPLE_FILE_SYSTEM_PROTOCOL, that is not a
1852 FILEPATH_DEVICE_PATH node.
1853
1854 @retval EFI_OUT_OF_RESOURCES Memory allocation failed.
1855
1856 @return Error codes propagated from the
1857 LocateDevicePath() and OpenProtocol() boot
1858 services, and from the
1859 EFI_SIMPLE_FILE_SYSTEM_PROTOCOL.OpenVolume()
1860 and EFI_FILE_PROTOCOL.Open() member functions.
1861 **/
1862 EFI_STATUS
1863 EFIAPI
1864 EfiOpenFileByDevicePath (
1865 IN OUT EFI_DEVICE_PATH_PROTOCOL **FilePath,
1866 OUT EFI_FILE_PROTOCOL **File,
1867 IN UINT64 OpenMode,
1868 IN UINT64 Attributes
1869 )
1870 {
1871 EFI_STATUS Status;
1872 EFI_HANDLE FileSystemHandle;
1873 EFI_SIMPLE_FILE_SYSTEM_PROTOCOL *FileSystem;
1874 EFI_FILE_PROTOCOL *LastFile;
1875 FILEPATH_DEVICE_PATH *FilePathNode;
1876 CHAR16 *AlignedPathName;
1877 CHAR16 *PathName;
1878 EFI_FILE_PROTOCOL *NextFile;
1879
1880 if (File == NULL) {
1881 return EFI_INVALID_PARAMETER;
1882 }
1883 *File = NULL;
1884
1885 if (FilePath == NULL) {
1886 return EFI_INVALID_PARAMETER;
1887 }
1888
1889 //
1890 // Look up the filesystem.
1891 //
1892 Status = gBS->LocateDevicePath (
1893 &gEfiSimpleFileSystemProtocolGuid,
1894 FilePath,
1895 &FileSystemHandle
1896 );
1897 if (EFI_ERROR (Status)) {
1898 return Status;
1899 }
1900 Status = gBS->OpenProtocol (
1901 FileSystemHandle,
1902 &gEfiSimpleFileSystemProtocolGuid,
1903 (VOID **)&FileSystem,
1904 gImageHandle,
1905 NULL,
1906 EFI_OPEN_PROTOCOL_GET_PROTOCOL
1907 );
1908 if (EFI_ERROR (Status)) {
1909 return Status;
1910 }
1911
1912 //
1913 // Open the root directory of the filesystem. After this operation succeeds,
1914 // we have to release LastFile on error.
1915 //
1916 Status = FileSystem->OpenVolume (FileSystem, &LastFile);
1917 if (EFI_ERROR (Status)) {
1918 return Status;
1919 }
1920
1921 //
1922 // Traverse the device path nodes relative to the filesystem.
1923 //
1924 while (!IsDevicePathEnd (*FilePath)) {
1925 if (DevicePathType (*FilePath) != MEDIA_DEVICE_PATH ||
1926 DevicePathSubType (*FilePath) != MEDIA_FILEPATH_DP) {
1927 Status = EFI_INVALID_PARAMETER;
1928 goto CloseLastFile;
1929 }
1930 FilePathNode = (FILEPATH_DEVICE_PATH *)*FilePath;
1931
1932 //
1933 // FilePathNode->PathName may be unaligned, and the UEFI specification
1934 // requires pointers that are passed to protocol member functions to be
1935 // aligned. Create an aligned copy of the pathname if necessary.
1936 //
1937 if ((UINTN)FilePathNode->PathName % sizeof *FilePathNode->PathName == 0) {
1938 AlignedPathName = NULL;
1939 PathName = FilePathNode->PathName;
1940 } else {
1941 AlignedPathName = AllocateCopyPool (
1942 (DevicePathNodeLength (FilePathNode) -
1943 SIZE_OF_FILEPATH_DEVICE_PATH),
1944 FilePathNode->PathName
1945 );
1946 if (AlignedPathName == NULL) {
1947 Status = EFI_OUT_OF_RESOURCES;
1948 goto CloseLastFile;
1949 }
1950 PathName = AlignedPathName;
1951 }
1952
1953 //
1954 // Open or create the file corresponding to the next pathname fragment.
1955 //
1956 Status = LastFile->Open (
1957 LastFile,
1958 &NextFile,
1959 PathName,
1960 OpenMode,
1961 Attributes
1962 );
1963
1964 //
1965 // Release any AlignedPathName on both error and success paths; PathName is
1966 // no longer needed.
1967 //
1968 if (AlignedPathName != NULL) {
1969 FreePool (AlignedPathName);
1970 }
1971 if (EFI_ERROR (Status)) {
1972 goto CloseLastFile;
1973 }
1974
1975 //
1976 // Advance to the next device path node.
1977 //
1978 LastFile->Close (LastFile);
1979 LastFile = NextFile;
1980 *FilePath = NextDevicePathNode (FilePathNode);
1981 }
1982
1983 *File = LastFile;
1984 return EFI_SUCCESS;
1985
1986 CloseLastFile:
1987 LastFile->Close (LastFile);
1988
1989 //
1990 // We are on the error path; we must have set an error Status for returning
1991 // to the caller.
1992 //
1993 ASSERT (EFI_ERROR (Status));
1994 return Status;
1995 }