]> git.proxmox.com Git - mirror_edk2.git/blob - NetworkPkg/IpSecDxe/IpSecImpl.c
347bdd994ef45201d70f93b6401643b9c2c82f36
[mirror_edk2.git] / NetworkPkg / IpSecDxe / IpSecImpl.c
1 /** @file
2 The implementation of IPsec.
3
4 Copyright (c) 2009 - 2011, Intel Corporation. All rights reserved.<BR>
5
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at
9 http://opensource.org/licenses/bsd-license.php.
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #include "IpSecImpl.h"
17 #include "IkeService.h"
18 #include "IpSecDebug.h"
19 #include "IpSecCryptIo.h"
20 #include "IpSecConfigImpl.h"
21
22 /**
23 Check if the specified Address is the Valid Address Range.
24
25 This function checks if the bytes after prefixed length are all Zero in this
26 Address. This Address is supposed to point to a range address. That means it
27 should gives the correct prefixed address and the bytes outside the prefixed are
28 zero.
29
30 @param[in] IpVersion The IP version.
31 @param[in] Address Points to EFI_IP_ADDRESS to be checked.
32 @param[in] PrefixLength The PrefixeLength of this address.
33
34 @retval TRUE The address is a vaild address range.
35 @retval FALSE The address is not a vaild address range.
36
37 **/
38 BOOLEAN
39 IpSecValidAddressRange (
40 IN UINT8 IpVersion,
41 IN EFI_IP_ADDRESS *Address,
42 IN UINT8 PrefixLength
43 )
44 {
45 UINT8 Div;
46 UINT8 Mod;
47 UINT8 Mask;
48 UINT8 AddrLen;
49 UINT8 *Addr;
50 EFI_IP_ADDRESS ZeroAddr;
51
52 if (PrefixLength == 0) {
53 return TRUE;
54 }
55
56 AddrLen = (UINT8) ((IpVersion == IP_VERSION_4) ? 32 : 128);
57
58 if (AddrLen <= PrefixLength) {
59 return FALSE;
60 }
61
62 Div = (UINT8) (PrefixLength / 8);
63 Mod = (UINT8) (PrefixLength % 8);
64 Addr = (UINT8 *) Address;
65 ZeroMem (&ZeroAddr, sizeof (EFI_IP_ADDRESS));
66
67 //
68 // Check whether the mod part of host scope is zero or not.
69 //
70 if (Mod > 0) {
71 Mask = (UINT8) (0xFF << (8 - Mod));
72
73 if ((Addr[Div] | Mask) != Mask) {
74 return FALSE;
75 }
76
77 Div++;
78 }
79 //
80 // Check whether the div part of host scope is zero or not.
81 //
82 if (CompareMem (
83 &Addr[Div],
84 &ZeroAddr,
85 sizeof (EFI_IP_ADDRESS) - Div
86 ) != 0) {
87 return FALSE;
88 }
89
90 return TRUE;
91 }
92
93 /**
94 Extrct the Address Range from a Address.
95
96 This function keep the prefix address and zero other part address.
97
98 @param[in] Address Point to a specified address.
99 @param[in] PrefixLength The prefix length.
100 @param[out] Range Contain the return Address Range.
101
102 **/
103 VOID
104 IpSecExtractAddressRange (
105 IN EFI_IP_ADDRESS *Address,
106 IN UINT8 PrefixLength,
107 OUT EFI_IP_ADDRESS *Range
108 )
109 {
110 UINT8 Div;
111 UINT8 Mod;
112 UINT8 Mask;
113 UINT8 *Addr;
114
115 if (PrefixLength == 0) {
116 return ;
117 }
118
119 Div = (UINT8) (PrefixLength / 8);
120 Mod = (UINT8) (PrefixLength % 8);
121 Addr = (UINT8 *) Range;
122
123 CopyMem (Range, Address, sizeof (EFI_IP_ADDRESS));
124
125 //
126 // Zero the mod part of host scope.
127 //
128 if (Mod > 0) {
129 Mask = (UINT8) (0xFF << (8 - Mod));
130 Addr[Div] = (UINT8) (Addr[Div] & Mask);
131 Div++;
132 }
133 //
134 // Zero the div part of host scope.
135 //
136 ZeroMem (&Addr[Div], sizeof (EFI_IP_ADDRESS) - Div);
137
138 }
139
140 /**
141 Checks if the IP Address in the address range of AddressInfos specified.
142
143 @param[in] IpVersion The IP version.
144 @param[in] IpAddr Point to EFI_IP_ADDRESS to be check.
145 @param[in] AddressInfo A list of EFI_IP_ADDRESS_INFO that is used to check
146 the IP Address is matched.
147 @param[in] AddressCount The total numbers of the AddressInfo.
148
149 @retval TRUE If the Specified IP Address is in the range of the AddressInfos specified.
150 @retval FALSE If the Specified IP Address is not in the range of the AddressInfos specified.
151
152 **/
153 BOOLEAN
154 IpSecMatchIpAddress (
155 IN UINT8 IpVersion,
156 IN EFI_IP_ADDRESS *IpAddr,
157 IN EFI_IP_ADDRESS_INFO *AddressInfo,
158 IN UINT32 AddressCount
159 )
160 {
161 EFI_IP_ADDRESS Range;
162 UINT32 Index;
163 BOOLEAN IsMatch;
164
165 IsMatch = FALSE;
166
167 for (Index = 0; Index < AddressCount; Index++) {
168 //
169 // Check whether the target address is in the address range
170 // if it's a valid range of address.
171 //
172 if (IpSecValidAddressRange (
173 IpVersion,
174 &AddressInfo[Index].Address,
175 AddressInfo[Index].PrefixLength
176 )) {
177 //
178 // Get the range of the target address belongs to.
179 //
180 ZeroMem (&Range, sizeof (EFI_IP_ADDRESS));
181 IpSecExtractAddressRange (
182 IpAddr,
183 AddressInfo[Index].PrefixLength,
184 &Range
185 );
186
187 if (CompareMem (
188 &Range,
189 &AddressInfo[Index].Address,
190 sizeof (EFI_IP_ADDRESS)
191 ) == 0) {
192 //
193 // The target address is in the address range.
194 //
195 IsMatch = TRUE;
196 break;
197 }
198 }
199
200 if (CompareMem (
201 IpAddr,
202 &AddressInfo[Index].Address,
203 sizeof (EFI_IP_ADDRESS)
204 ) == 0) {
205 //
206 // The target address is exact same as the address.
207 //
208 IsMatch = TRUE;
209 break;
210 }
211 }
212 return IsMatch;
213 }
214
215 /**
216 Check if the specified Protocol and Prot is supported by the specified SPD Entry.
217
218 This function is the subfunction of IPsecLookUpSpdEntry() that is used to
219 check if the sent/received IKE packet has the related SPD entry support.
220
221 @param[in] Protocol The Protocol to be checked.
222 @param[in] IpPayload Point to IP Payload to be check.
223 @param[in] SpdProtocol The Protocol supported by SPD.
224 @param[in] SpdLocalPort The Local Port in SPD.
225 @param[in] SpdRemotePort The Remote Port in SPD.
226 @param[in] IsOutbound Flag to indicate the is for IKE Packet sending or recieving.
227
228 @retval TRUE The Protocol and Port are supported by the SPD Entry.
229 @retval FALSE The Protocol and Port are not supported by the SPD Entry.
230
231 **/
232 BOOLEAN
233 IpSecMatchNextLayerProtocol (
234 IN UINT8 Protocol,
235 IN UINT8 *IpPayload,
236 IN UINT16 SpdProtocol,
237 IN UINT16 SpdLocalPort,
238 IN UINT16 SpdRemotePort,
239 IN BOOLEAN IsOutbound
240 )
241 {
242 BOOLEAN IsMatch;
243
244 if (SpdProtocol == EFI_IPSEC_ANY_PROTOCOL) {
245 return TRUE;
246 }
247
248 IsMatch = FALSE;
249
250 if (SpdProtocol == Protocol) {
251 switch (Protocol) {
252 case EFI_IP_PROTO_UDP:
253 case EFI_IP_PROTO_TCP:
254 //
255 // For udp and tcp, (0, 0) means no need to check local and remote
256 // port. The payload is passed from upper level, which means it should
257 // be in network order.
258 //
259 IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
260 IsMatch = (BOOLEAN) (IsMatch ||
261 (IsOutbound &&
262 (BOOLEAN)(
263 NTOHS (((EFI_UDP_HEADER *) IpPayload)->SrcPort) == SpdLocalPort &&
264 NTOHS (((EFI_UDP_HEADER *) IpPayload)->DstPort) == SpdRemotePort
265 )
266 ));
267
268 IsMatch = (BOOLEAN) (IsMatch ||
269 (!IsOutbound &&
270 (BOOLEAN)(
271 NTOHS (((EFI_UDP_HEADER *) IpPayload)->DstPort) == SpdLocalPort &&
272 NTOHS (((EFI_UDP_HEADER *) IpPayload)->SrcPort) == SpdRemotePort
273 )
274 ));
275 break;
276
277 case EFI_IP_PROTO_ICMP:
278 //
279 // For icmpv4, type code is replaced with local port and remote port,
280 // and (0, 0) means no need to check.
281 //
282 IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
283 IsMatch = (BOOLEAN) (IsMatch ||
284 (BOOLEAN) (((IP4_ICMP_HEAD *) IpPayload)->Type == SpdLocalPort &&
285 ((IP4_ICMP_HEAD *) IpPayload)->Code == SpdRemotePort
286 )
287 );
288 break;
289
290 case IP6_ICMP:
291 //
292 // For icmpv6, type code is replaced with local port and remote port,
293 // and (0, 0) means no need to check.
294 //
295 IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
296
297 IsMatch = (BOOLEAN) (IsMatch ||
298 (BOOLEAN) (((IP6_ICMP_HEAD *) IpPayload)->Type == SpdLocalPort &&
299 ((IP6_ICMP_HEAD *) IpPayload)->Code == SpdRemotePort
300 )
301 );
302 break;
303
304 default:
305 IsMatch = TRUE;
306 break;
307 }
308 }
309
310 return IsMatch;
311 }
312
313 /**
314 Find the SAD through a specified SPD's SAD list.
315
316 @param[in] SadList SAD list related to a specified SPD entry.
317 @param[in] DestAddress The destination address used to find the SAD entry.
318 @param[in] IpVersion The IP version. Ip4 or Ip6.
319
320 @return The pointer to a certain SAD entry.
321
322 **/
323 IPSEC_SAD_ENTRY *
324 IpSecLookupSadBySpd (
325 IN LIST_ENTRY *SadList,
326 IN EFI_IP_ADDRESS *DestAddress,
327 IN UINT8 IpVersion
328 )
329 {
330 LIST_ENTRY *Entry;
331 IPSEC_SAD_ENTRY *SadEntry;
332
333 NET_LIST_FOR_EACH (Entry, SadList) {
334
335 SadEntry = IPSEC_SAD_ENTRY_FROM_SPD (Entry);
336 //
337 // Find the right SAD entry which contains the appointed dest address.
338 //
339 if (IpSecMatchIpAddress (
340 IpVersion,
341 DestAddress,
342 SadEntry->Data->SpdSelector->RemoteAddress,
343 SadEntry->Data->SpdSelector->RemoteAddressCount
344 )){
345 return SadEntry;
346 }
347 }
348
349 return NULL;
350 }
351
352 /**
353 Find the SAD through whole SAD list.
354
355 @param[in] Spi The SPI used to search the SAD entry.
356 @param[in] DestAddress The destination used to search the SAD entry.
357 @param[in] IpVersion The IP version. Ip4 or Ip6.
358
359 @return the pointer to a certain SAD entry.
360
361 **/
362 IPSEC_SAD_ENTRY *
363 IpSecLookupSadBySpi (
364 IN UINT32 Spi,
365 IN EFI_IP_ADDRESS *DestAddress,
366 IN UINT8 IpVersion
367 )
368 {
369 LIST_ENTRY *Entry;
370 LIST_ENTRY *SadList;
371 IPSEC_SAD_ENTRY *SadEntry;
372
373 SadList = &mConfigData[IPsecConfigDataTypeSad];
374
375 NET_LIST_FOR_EACH (Entry, SadList) {
376
377 SadEntry = IPSEC_SAD_ENTRY_FROM_LIST (Entry);
378
379 //
380 // Find the right SAD entry which contain the appointed spi and dest addr.
381 //
382 if (SadEntry->Id->Spi == Spi) {
383 if (SadEntry->Data->Mode == EfiIPsecTunnel) {
384 if (CompareMem (
385 &DestAddress,
386 &SadEntry->Data->TunnelDestAddress,
387 sizeof (EFI_IP_ADDRESS)
388 )) {
389 return SadEntry;
390 }
391 } else {
392 if (SadEntry->Data->SpdSelector != NULL &&
393 IpSecMatchIpAddress (
394 IpVersion,
395 DestAddress,
396 SadEntry->Data->SpdSelector->RemoteAddress,
397 SadEntry->Data->SpdSelector->RemoteAddressCount
398 )
399 ) {
400 return SadEntry;
401 }
402 }
403 }
404 }
405 return NULL;
406 }
407
408 /**
409 Look up if there is existing SAD entry for specified IP packet sending.
410
411 This function is called by the IPsecProcess when there is some IP packet needed to
412 send out. This function checks if there is an existing SAD entry that can be serviced
413 to this IP packet sending. If no existing SAD entry could be used, this
414 function will invoke an IPsec Key Exchange Negotiation.
415
416 @param[in] Private Points to private data.
417 @param[in] NicHandle Points to a NIC handle.
418 @param[in] IpVersion The version of IP.
419 @param[in] IpHead The IP Header of packet to be sent out.
420 @param[in] IpPayload The IP Payload to be sent out.
421 @param[in] OldLastHead The Last protocol of the IP packet.
422 @param[in] SpdEntry Points to a related SPD entry.
423 @param[out] SadEntry Contains the Point of a related SAD entry.
424
425 @retval EFI_DEVICE_ERROR One of following conditions is TRUE:
426 - If don't find related UDP service.
427 - Sequence Number is used up.
428 - Extension Sequence Number is used up.
429 @retval EFI_NOT_READY No existing SAD entry could be used.
430 @retval EFI_SUCCESS Find the related SAD entry.
431
432 **/
433 EFI_STATUS
434 IpSecLookupSadEntry (
435 IN IPSEC_PRIVATE_DATA *Private,
436 IN EFI_HANDLE NicHandle,
437 IN UINT8 IpVersion,
438 IN VOID *IpHead,
439 IN UINT8 *IpPayload,
440 IN UINT8 OldLastHead,
441 IN IPSEC_SPD_ENTRY *SpdEntry,
442 OUT IPSEC_SAD_ENTRY **SadEntry
443 )
444 {
445 IKE_UDP_SERVICE *UdpService;
446 IPSEC_SAD_ENTRY *Entry;
447 IPSEC_SAD_DATA *Data;
448 EFI_IP_ADDRESS DestIp;
449 UINT32 SeqNum32;
450
451 *SadEntry = NULL;
452 UdpService = IkeLookupUdp (Private, NicHandle, IpVersion);
453
454 if (UdpService == NULL) {
455 return EFI_DEVICE_ERROR;
456 }
457 //
458 // Parse the destination address from ip header.
459 //
460 ZeroMem (&DestIp, sizeof (EFI_IP_ADDRESS));
461 if (IpVersion == IP_VERSION_4) {
462 CopyMem (
463 &DestIp,
464 &((IP4_HEAD *) IpHead)->Dst,
465 sizeof (IP4_ADDR)
466 );
467 } else {
468 CopyMem (
469 &DestIp,
470 &((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
471 sizeof (EFI_IP_ADDRESS)
472 );
473 }
474
475 //
476 // Find the SAD entry in the spd.sas list according to the dest address.
477 //
478 Entry = IpSecLookupSadBySpd (&SpdEntry->Data->Sas, &DestIp, IpVersion);
479
480 if (Entry == NULL) {
481 if (OldLastHead != IP6_ICMP ||
482 (OldLastHead == IP6_ICMP && *IpPayload == ICMP_V6_ECHO_REQUEST)
483 ) {
484 //
485 // Start ike negotiation process except the request packet of ping.
486 //
487 if (SpdEntry->Data->ProcessingPolicy->Mode == EfiIPsecTunnel) {
488 IkeNegotiate (
489 UdpService,
490 SpdEntry,
491 &SpdEntry->Data->ProcessingPolicy->TunnelOption->RemoteTunnelAddress
492 );
493 } else {
494 IkeNegotiate (
495 UdpService,
496 SpdEntry,
497 &DestIp
498 );
499 }
500
501 }
502
503 return EFI_NOT_READY;
504 }
505
506 Data = Entry->Data;
507
508 if (!Data->ManualSet) {
509 if (Data->ESNEnabled) {
510 //
511 // Validate the 64bit sn number if 64bit sn enabled.
512 //
513 if ((UINT64) (Data->SequenceNumber + 1) == 0) {
514 //
515 // TODO: Re-negotiate SA
516 //
517 return EFI_DEVICE_ERROR;
518 }
519 } else {
520 //
521 // Validate the 32bit sn number if 64bit sn disabled.
522 //
523 SeqNum32 = (UINT32) Data->SequenceNumber;
524 if ((UINT32) (SeqNum32 + 1) == 0) {
525 //
526 // TODO: Re-negotiate SA
527 //
528 return EFI_DEVICE_ERROR;
529 }
530 }
531 }
532
533 *SadEntry = Entry;
534
535 return EFI_SUCCESS;
536 }
537
538 /**
539 Find a PAD entry according to a remote IP address.
540
541 @param[in] IpVersion The version of IP.
542 @param[in] IpAddr Points to remote IP address.
543
544 @return the pointer of related PAD entry.
545
546 **/
547 IPSEC_PAD_ENTRY *
548 IpSecLookupPadEntry (
549 IN UINT8 IpVersion,
550 IN EFI_IP_ADDRESS *IpAddr
551 )
552 {
553 LIST_ENTRY *PadList;
554 LIST_ENTRY *Entry;
555 EFI_IP_ADDRESS_INFO *IpAddrInfo;
556 IPSEC_PAD_ENTRY *PadEntry;
557
558 PadList = &mConfigData[IPsecConfigDataTypePad];
559
560 for (Entry = PadList->ForwardLink; Entry != PadList; Entry = Entry->ForwardLink) {
561
562 PadEntry = IPSEC_PAD_ENTRY_FROM_LIST (Entry);
563 IpAddrInfo = &PadEntry->Id->Id.IpAddress;
564 //
565 // Find the right pad entry which contain the appointed dest addr.
566 //
567 if (IpSecMatchIpAddress (IpVersion, IpAddr, IpAddrInfo, 1)) {
568 return PadEntry;
569 }
570 }
571
572 return NULL;
573 }
574
575 /**
576 Check if the specified IP packet can be serviced by this SPD entry.
577
578 @param[in] SpdEntry Point to SPD entry.
579 @param[in] IpVersion Version of IP.
580 @param[in] IpHead Point to IP header.
581 @param[in] IpPayload Point to IP payload.
582 @param[in] Protocol The Last protocol of IP packet.
583 @param[in] IsOutbound Traffic direction.
584 @param[out] Action The support action of SPD entry.
585
586 @retval EFI_SUCCESS Find the related SPD.
587 @retval EFI_NOT_FOUND Not find the related SPD entry;
588
589 **/
590 EFI_STATUS
591 IpSecLookupSpdEntry (
592 IN IPSEC_SPD_ENTRY *SpdEntry,
593 IN UINT8 IpVersion,
594 IN VOID *IpHead,
595 IN UINT8 *IpPayload,
596 IN UINT8 Protocol,
597 IN BOOLEAN IsOutbound,
598 OUT EFI_IPSEC_ACTION *Action
599 )
600 {
601 EFI_IPSEC_SPD_SELECTOR *SpdSel;
602 IP4_HEAD *Ip4;
603 EFI_IP6_HEADER *Ip6;
604 EFI_IP_ADDRESS SrcAddr;
605 EFI_IP_ADDRESS DstAddr;
606 BOOLEAN SpdMatch;
607
608 ASSERT (SpdEntry != NULL);
609 SpdSel = SpdEntry->Selector;
610 Ip4 = (IP4_HEAD *) IpHead;
611 Ip6 = (EFI_IP6_HEADER *) IpHead;
612
613 ZeroMem (&SrcAddr, sizeof (EFI_IP_ADDRESS));
614 ZeroMem (&DstAddr, sizeof (EFI_IP_ADDRESS));
615
616 //
617 // Parse the source and destination address from ip header.
618 //
619 if (IpVersion == IP_VERSION_4) {
620 CopyMem (&SrcAddr, &Ip4->Src, sizeof (IP4_ADDR));
621 CopyMem (&DstAddr, &Ip4->Dst, sizeof (IP4_ADDR));
622 } else {
623 CopyMem (&SrcAddr, &Ip6->SourceAddress, sizeof (EFI_IPv6_ADDRESS));
624 CopyMem (&DstAddr, &Ip6->DestinationAddress, sizeof (EFI_IPv6_ADDRESS));
625 }
626 //
627 // Check the local and remote addresses for outbound traffic
628 //
629 SpdMatch = (BOOLEAN)(IsOutbound &&
630 IpSecMatchIpAddress (
631 IpVersion,
632 &SrcAddr,
633 SpdSel->LocalAddress,
634 SpdSel->LocalAddressCount
635 ) &&
636 IpSecMatchIpAddress (
637 IpVersion,
638 &DstAddr,
639 SpdSel->RemoteAddress,
640 SpdSel->RemoteAddressCount
641 )
642 );
643
644 //
645 // Check the local and remote addresses for inbound traffic
646 //
647 SpdMatch = (BOOLEAN) (SpdMatch ||
648 (!IsOutbound &&
649 IpSecMatchIpAddress (
650 IpVersion,
651 &DstAddr,
652 SpdSel->LocalAddress,
653 SpdSel->LocalAddressCount
654 ) &&
655 IpSecMatchIpAddress (
656 IpVersion,
657 &SrcAddr,
658 SpdSel->RemoteAddress,
659 SpdSel->RemoteAddressCount
660 )
661 ));
662
663 //
664 // Check the next layer protocol and local and remote ports.
665 //
666 SpdMatch = (BOOLEAN) (SpdMatch &&
667 IpSecMatchNextLayerProtocol (
668 Protocol,
669 IpPayload,
670 SpdSel->NextLayerProtocol,
671 SpdSel->LocalPort,
672 SpdSel->RemotePort,
673 IsOutbound
674 )
675 );
676
677 if (SpdMatch) {
678 //
679 // Find the right SPD entry if match the 5 key elements.
680 //
681 *Action = SpdEntry->Data->Action;
682 return EFI_SUCCESS;
683 }
684
685 return EFI_NOT_FOUND;
686 }
687
688 /**
689 The call back function of NetbufFromExt.
690
691 @param[in] Arg The argument passed from the caller.
692
693 **/
694 VOID
695 EFIAPI
696 IpSecOnRecyclePacket (
697 IN VOID *Arg
698 )
699 {
700 }
701
702 /**
703 This is a Notification function. It is called when the related IP6_TXTOKEN_WRAP
704 is released.
705
706 @param[in] Event The related event.
707 @param[in] Context The data passed by the caller.
708
709 **/
710 VOID
711 EFIAPI
712 IpSecRecycleCallback (
713 IN EFI_EVENT Event,
714 IN VOID *Context
715 )
716 {
717 IPSEC_RECYCLE_CONTEXT *RecycleContext;
718
719 RecycleContext = (IPSEC_RECYCLE_CONTEXT *) Context;
720
721 if (RecycleContext->FragmentTable != NULL) {
722 FreePool (RecycleContext->FragmentTable);
723 }
724
725 if (RecycleContext->PayloadBuffer != NULL) {
726 FreePool (RecycleContext->PayloadBuffer);
727 }
728
729 FreePool (RecycleContext);
730 gBS->CloseEvent (Event);
731
732 }
733
734 /**
735 Calculate the extension hader of IP. The return length only doesn't contain
736 the fixed IP header length.
737
738 @param[in] IpHead Points to an IP head to be calculated.
739 @param[in] LastHead Points to the last header of the IP header.
740
741 @return The length of the extension header.
742
743 **/
744 UINT16
745 IpSecGetPlainExtHeadSize (
746 IN VOID *IpHead,
747 IN UINT8 *LastHead
748 )
749 {
750 UINT16 Size;
751
752 Size = (UINT16) (LastHead - (UINT8 *) IpHead);
753
754 if (Size > sizeof (EFI_IP6_HEADER)) {
755 //
756 // * (LastHead+1) point the last header's length but not include the first
757 // 8 octers, so this formluation add 8 at the end.
758 //
759 Size = (UINT16) (Size - sizeof (EFI_IP6_HEADER) + *(LastHead + 1) + 8);
760 } else {
761 Size = 0;
762 }
763
764 return Size;
765 }
766
767 /**
768 Verify if the Authentication payload is correct.
769
770 @param[in] EspBuffer Points to the ESP wrapped buffer.
771 @param[in] EspSize The size of the ESP wrapped buffer.
772 @param[in] SadEntry The related SAD entry to store the authentication
773 algorithm key.
774 @param[in] IcvSize The length of ICV.
775
776 @retval EFI_SUCCESS The authentication data is correct.
777 @retval EFI_ACCESS_DENIED The authentication data is not correct.
778
779 **/
780 EFI_STATUS
781 IpSecEspAuthVerifyPayload (
782 IN UINT8 *EspBuffer,
783 IN UINTN EspSize,
784 IN IPSEC_SAD_ENTRY *SadEntry,
785 IN UINTN IcvSize
786 )
787 {
788 EFI_STATUS Status;
789 UINTN AuthSize;
790 UINT8 IcvBuffer[12];
791 HASH_DATA_FRAGMENT HashFragment[1];
792
793 //
794 // Calculate the size of authentication payload.
795 //
796 AuthSize = EspSize - IcvSize;
797
798 //
799 // Calculate the icv buffer and size of the payload.
800 //
801 HashFragment[0].Data = EspBuffer;
802 HashFragment[0].DataSize = AuthSize;
803
804 Status = IpSecCryptoIoHmac (
805 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId,
806 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKey,
807 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKeyLength,
808 HashFragment,
809 1,
810 IcvBuffer,
811 IcvSize
812 );
813 if (EFI_ERROR (Status)) {
814 return Status;
815 }
816
817 //
818 // Compare the calculated icv and the appended original icv.
819 //
820 if (CompareMem (EspBuffer + AuthSize, IcvBuffer, IcvSize) == 0) {
821 return EFI_SUCCESS;
822 }
823
824 DEBUG ((DEBUG_ERROR, "Error auth verify payload\n"));
825 return EFI_ACCESS_DENIED;
826 }
827
828 /**
829 Search the related SAD entry by the input .
830
831 @param[in] IpHead The pointer to IP header.
832 @param[in] IpVersion The version of IP (IP4 or IP6).
833 @param[in] Spi The SPI used to search the related SAD entry.
834
835
836 @retval NULL Not find the related SAD entry.
837 @retval IPSEC_SAD_ENTRY Return the related SAD entry.
838
839 **/
840 IPSEC_SAD_ENTRY *
841 IpSecFoundSadFromInboundPacket (
842 UINT8 *IpHead,
843 UINT8 IpVersion,
844 UINT32 Spi
845 )
846 {
847 EFI_IP_ADDRESS DestIp;
848
849 //
850 // Parse destination address from ip header.
851 //
852 ZeroMem (&DestIp, sizeof (EFI_IP_ADDRESS));
853 if (IpVersion == IP_VERSION_4) {
854 CopyMem (
855 &DestIp,
856 &((IP4_HEAD *) IpHead)->Dst,
857 sizeof (IP4_ADDR)
858 );
859 } else {
860 CopyMem (
861 &DestIp,
862 &((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
863 sizeof (EFI_IPv6_ADDRESS)
864 );
865 }
866
867 //
868 // Lookup SAD entry according to the spi and dest address.
869 //
870 return IpSecLookupSadBySpi (Spi, &DestIp, IpVersion);
871 }
872
873 /**
874 Validate the IP6 extension header format for both the packets we received
875 and that we will transmit.
876
877 @param[in] NextHeader The next header field in IPv6 basic header.
878 @param[in] ExtHdrs The first bye of the option.
879 @param[in] ExtHdrsLen The length of the whole option.
880 @param[out] LastHeader The pointer of NextHeader of the last extension
881 header processed by IP6.
882 @param[out] RealExtsLen The length of extension headers processed by IP6 layer.
883 This is an optional parameter that may be NULL.
884
885 @retval TRUE The option is properly formated.
886 @retval FALSE The option is malformated.
887
888 **/
889 BOOLEAN
890 IpSecIsIp6ExtsValid (
891 IN UINT8 *NextHeader,
892 IN UINT8 *ExtHdrs,
893 IN UINT32 ExtHdrsLen,
894 OUT UINT8 **LastHeader,
895 OUT UINT32 *RealExtsLen OPTIONAL
896 )
897 {
898 UINT32 Pointer;
899 UINT8 *Option;
900 UINT8 OptionLen;
901 BOOLEAN Flag;
902 UINT8 CountD;
903 UINT8 CountF;
904 UINT8 CountA;
905
906 if (RealExtsLen != NULL) {
907 *RealExtsLen = 0;
908 }
909
910 *LastHeader = NextHeader;
911
912 if (ExtHdrs == NULL && ExtHdrsLen == 0) {
913 return TRUE;
914 }
915
916 if ((ExtHdrs == NULL && ExtHdrsLen != 0) || (ExtHdrs != NULL && ExtHdrsLen == 0)) {
917 return FALSE;
918 }
919
920 Pointer = 0;
921 Flag = FALSE;
922 CountD = 0;
923 CountF = 0;
924 CountA = 0;
925
926 while (Pointer <= ExtHdrsLen) {
927
928 switch (*NextHeader) {
929 case IP6_HOP_BY_HOP:
930 if (Pointer != 0) {
931 return FALSE;
932 }
933
934 Flag = TRUE;
935
936 //
937 // Fall through
938 //
939 case IP6_DESTINATION:
940 if (*NextHeader == IP6_DESTINATION) {
941 CountD++;
942 }
943
944 if (CountD > 2) {
945 return FALSE;
946 }
947
948 NextHeader = ExtHdrs + Pointer;
949
950 Pointer++;
951 Option = ExtHdrs + Pointer;
952 OptionLen = (UINT8) ((*Option + 1) * 8 - 2);
953 Option++;
954 Pointer++;
955
956 Pointer = Pointer + OptionLen;
957 break;
958
959 case IP6_FRAGMENT:
960 if (++CountF > 1) {
961 return FALSE;
962 }
963 //
964 // RFC2402, AH header should after fragment header.
965 //
966 if (CountA > 1) {
967 return FALSE;
968 }
969
970 NextHeader = ExtHdrs + Pointer;
971 Pointer = Pointer + 8;
972 break;
973
974 case IP6_AH:
975 if (++CountA > 1) {
976 return FALSE;
977 }
978
979 Option = ExtHdrs + Pointer;
980 NextHeader = Option;
981 Option++;
982 //
983 // RFC2402, Payload length is specified in 32-bit words, minus "2".
984 //
985 OptionLen = (UINT8) ((*Option + 2) * 4);
986 Pointer = Pointer + OptionLen;
987 break;
988
989 default:
990 *LastHeader = NextHeader;
991 if (RealExtsLen != NULL) {
992 *RealExtsLen = Pointer;
993 }
994
995 return TRUE;
996 }
997 }
998
999 *LastHeader = NextHeader;
1000
1001 if (RealExtsLen != NULL) {
1002 *RealExtsLen = Pointer;
1003 }
1004
1005 return TRUE;
1006 }
1007
1008 /**
1009 The actual entry to process the tunnel header and inner header for tunnel mode
1010 outbound traffic.
1011
1012 This function is the subfunction of IpSecEspInboundPacket(). It change the destination
1013 Ip address to the station address and recalculate the uplayyer's checksum.
1014
1015
1016 @param[in, out] IpHead Points to the IP header containing the ESP header
1017 to be trimed on input, and without ESP header
1018 on return.
1019 @param[in] IpPayload The decrypted Ip payload. It start from the inner
1020 header.
1021 @param[in] IpVersion The version of IP.
1022 @param[in] SadData Pointer of the relevant SAD.
1023 @param[in, out] LastHead The Last Header in IP header on return.
1024
1025 **/
1026 VOID
1027 IpSecTunnelInboundPacket (
1028 IN OUT UINT8 *IpHead,
1029 IN UINT8 *IpPayload,
1030 IN UINT8 IpVersion,
1031 IN IPSEC_SAD_DATA *SadData,
1032 IN OUT UINT8 *LastHead
1033 )
1034 {
1035 EFI_UDP_HEADER *UdpHeader;
1036 TCP_HEAD *TcpHeader;
1037 UINT16 *Checksum;
1038 UINT16 PseudoChecksum;
1039 UINT16 PacketChecksum;
1040 UINT32 OptionLen;
1041 IP6_ICMP_HEAD *Icmp6Head;
1042
1043 Checksum = NULL;
1044
1045 if (IpVersion == IP_VERSION_4) {
1046 //
1047 // Zero OutIP header use this to indicate the input packet is under
1048 // IPsec Tunnel protected.
1049 //
1050 ZeroMem (
1051 (IP4_HEAD *)IpHead,
1052 sizeof (IP4_HEAD)
1053 );
1054 CopyMem (
1055 &((IP4_HEAD *)IpPayload)->Dst,
1056 &SadData->TunnelDestAddress.v4,
1057 sizeof (EFI_IPv4_ADDRESS)
1058 );
1059
1060 //
1061 // Recalculate IpHeader Checksum
1062 //
1063 if (((IP4_HEAD *)(IpPayload))->Checksum != 0 ) {
1064 ((IP4_HEAD *)(IpPayload))->Checksum = 0;
1065 ((IP4_HEAD *)(IpPayload))->Checksum = (UINT16) (~NetblockChecksum (
1066 (UINT8 *)IpPayload,
1067 ((IP4_HEAD *)IpPayload)->HeadLen << 2
1068 ));
1069
1070
1071 }
1072
1073 //
1074 // Recalcualte PseudoChecksum
1075 //
1076 switch (((IP4_HEAD *)IpPayload)->Protocol) {
1077 case EFI_IP_PROTO_UDP :
1078 UdpHeader = (EFI_UDP_HEADER *)((UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2));
1079 Checksum = & UdpHeader->Checksum;
1080 *Checksum = 0;
1081 break;
1082
1083 case EFI_IP_PROTO_TCP:
1084 TcpHeader = (TCP_HEAD *) ((UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2));
1085 Checksum = &TcpHeader->Checksum;
1086 *Checksum = 0;
1087 break;
1088
1089 default:
1090 break;
1091 }
1092 PacketChecksum = NetblockChecksum (
1093 (UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2),
1094 NTOHS (((IP4_HEAD *)IpPayload)->TotalLen) - (((IP4_HEAD *)IpPayload)->HeadLen << 2)
1095 );
1096 PseudoChecksum = NetPseudoHeadChecksum (
1097 ((IP4_HEAD *)IpPayload)->Src,
1098 ((IP4_HEAD *)IpPayload)->Dst,
1099 ((IP4_HEAD *)IpPayload)->Protocol,
1100 0
1101 );
1102
1103 if (Checksum != NULL) {
1104 *Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
1105 *Checksum = (UINT16) ~(NetAddChecksum (*Checksum, HTONS((UINT16)(NTOHS (((IP4_HEAD *)IpPayload)->TotalLen) - (((IP4_HEAD *)IpPayload)->HeadLen << 2)))));
1106 }
1107 }else {
1108 //
1109 // Zero OutIP header use this to indicate the input packet is under
1110 // IPsec Tunnel protected.
1111 //
1112 ZeroMem (
1113 IpHead,
1114 sizeof (EFI_IP6_HEADER)
1115 );
1116 CopyMem (
1117 &((EFI_IP6_HEADER*)IpPayload)->DestinationAddress,
1118 &SadData->TunnelDestAddress.v6,
1119 sizeof (EFI_IPv6_ADDRESS)
1120 );
1121
1122 //
1123 // Get the Extension Header and Header length.
1124 //
1125 IpSecIsIp6ExtsValid (
1126 &((EFI_IP6_HEADER *)IpPayload)->NextHeader,
1127 IpPayload + sizeof (EFI_IP6_HEADER),
1128 ((EFI_IP6_HEADER *)IpPayload)->PayloadLength,
1129 &LastHead,
1130 &OptionLen
1131 );
1132
1133 //
1134 // Recalcualte PseudoChecksum
1135 //
1136 switch (*LastHead) {
1137 case EFI_IP_PROTO_UDP:
1138 UdpHeader = (EFI_UDP_HEADER *)((UINT8 *)IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
1139 Checksum = &UdpHeader->Checksum;
1140 *Checksum = 0;
1141 break;
1142
1143 case EFI_IP_PROTO_TCP:
1144 TcpHeader = (TCP_HEAD *)(IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
1145 Checksum = &TcpHeader->Checksum;
1146 *Checksum = 0;
1147 break;
1148
1149 case IP6_ICMP:
1150 Icmp6Head = (IP6_ICMP_HEAD *) (IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
1151 Checksum = &Icmp6Head->Checksum;
1152 *Checksum = 0;
1153 break;
1154 }
1155 PacketChecksum = NetblockChecksum (
1156 IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen,
1157 NTOHS(((EFI_IP6_HEADER *)IpPayload)->PayloadLength) - OptionLen
1158 );
1159 PseudoChecksum = NetIp6PseudoHeadChecksum (
1160 &((EFI_IP6_HEADER *)IpPayload)->SourceAddress,
1161 &((EFI_IP6_HEADER *)IpPayload)->DestinationAddress,
1162 *LastHead,
1163 0
1164 );
1165
1166 if (Checksum != NULL) {
1167 *Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
1168 *Checksum = (UINT16) ~(NetAddChecksum (
1169 *Checksum,
1170 HTONS ((UINT16)((NTOHS (((EFI_IP6_HEADER *)(IpPayload))->PayloadLength)) - OptionLen))
1171 ));
1172 }
1173 }
1174 }
1175
1176 /**
1177 The actual entry to create inner header for tunnel mode inbound traffic.
1178
1179 This function is the subfunction of IpSecEspOutboundPacket(). It create
1180 the sending packet by encrypting its payload and inserting ESP header in the orginal
1181 IP header, then return the IpHeader and IPsec protected Fragmentable.
1182
1183 @param[in, out] IpHead Points to IP header containing the orginal IP header
1184 to be processed on input, and inserted ESP header
1185 on return.
1186 @param[in] IpVersion The version of IP.
1187 @param[in] SadData The related SAD data.
1188 @param[in, out] LastHead The Last Header in IP header.
1189 @param[in] OptionsBuffer Pointer to the options buffer.
1190 @param[in] OptionsLength Length of the options buffer.
1191 @param[in, out] FragmentTable Pointer to a list of fragments to be protected by
1192 IPsec on input, and with IPsec protected
1193 on return.
1194 @param[in] FragmentCount The number of fragments.
1195
1196 @retval EFI_SUCCESS The operation was successful.
1197 @retval EFI_OUT_OF_RESOURCES The required system resources can't be allocated.
1198
1199 **/
1200 UINT8 *
1201 IpSecTunnelOutboundPacket (
1202 IN OUT UINT8 *IpHead,
1203 IN UINT8 IpVersion,
1204 IN IPSEC_SAD_DATA *SadData,
1205 IN OUT UINT8 *LastHead,
1206 IN VOID **OptionsBuffer,
1207 IN UINT32 *OptionsLength,
1208 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
1209 IN UINT32 *FragmentCount
1210 )
1211 {
1212 UINT8 *InnerHead;
1213 NET_BUF *Packet;
1214 UINT16 PacketChecksum;
1215 UINT16 *Checksum;
1216 UINT16 PseudoChecksum;
1217 IP6_ICMP_HEAD *IcmpHead;
1218
1219 Checksum = NULL;
1220 if (OptionsLength == NULL) {
1221 return NULL;
1222 }
1223
1224 if (IpVersion == IP_VERSION_4) {
1225 InnerHead = AllocateZeroPool (sizeof (IP4_HEAD) + *OptionsLength);
1226 ASSERT (InnerHead != NULL);
1227 CopyMem (
1228 InnerHead,
1229 IpHead,
1230 sizeof (IP4_HEAD)
1231 );
1232 CopyMem (
1233 InnerHead + sizeof (IP4_HEAD),
1234 *OptionsBuffer,
1235 *OptionsLength
1236 );
1237 } else {
1238 InnerHead = AllocateZeroPool (sizeof (EFI_IP6_HEADER) + *OptionsLength);
1239 ASSERT (InnerHead != NULL);
1240 CopyMem (
1241 InnerHead,
1242 IpHead,
1243 sizeof (EFI_IP6_HEADER)
1244 );
1245 CopyMem (
1246 InnerHead + sizeof (EFI_IP6_HEADER),
1247 *OptionsBuffer,
1248 *OptionsLength
1249 );
1250 }
1251 if (OptionsBuffer != NULL) {
1252 if (*OptionsLength != 0) {
1253
1254 *OptionsBuffer = NULL;
1255 *OptionsLength = 0;
1256 }
1257 }
1258
1259 //
1260 // 2. Reassamlbe Fragment into Packet
1261 //
1262 Packet = NetbufFromExt (
1263 (NET_FRAGMENT *)(*FragmentTable),
1264 *FragmentCount,
1265 0,
1266 0,
1267 IpSecOnRecyclePacket,
1268 NULL
1269 );
1270 ASSERT (Packet != NULL);
1271 //
1272 // 3. Check the Last Header, if it is TCP, UDP or ICMP recalcualate its pesudo
1273 // CheckSum.
1274 //
1275 switch (*LastHead) {
1276 case EFI_IP_PROTO_UDP:
1277 Packet->Udp = (EFI_UDP_HEADER *) NetbufGetByte (Packet, 0, 0);
1278 ASSERT (Packet->Udp != NULL);
1279 Checksum = &Packet->Udp->Checksum;
1280 *Checksum = 0;
1281 break;
1282
1283 case EFI_IP_PROTO_TCP:
1284 Packet->Tcp = (TCP_HEAD *) NetbufGetByte (Packet, 0, 0);
1285 ASSERT (Packet->Tcp != NULL);
1286 Checksum = &Packet->Tcp->Checksum;
1287 *Checksum = 0;
1288 break;
1289
1290 case IP6_ICMP:
1291 IcmpHead = (IP6_ICMP_HEAD *) NetbufGetByte (Packet, 0, NULL);
1292 ASSERT (IcmpHead != NULL);
1293 Checksum = &IcmpHead->Checksum;
1294 *Checksum = 0;
1295 break;
1296
1297 default:
1298 break;
1299 }
1300
1301 PacketChecksum = NetbufChecksum (Packet);
1302
1303 if (IpVersion == IP_VERSION_4) {
1304 //
1305 // Replace the source address of Inner Header.
1306 //
1307 CopyMem (
1308 &((IP4_HEAD *)InnerHead)->Src,
1309 &SadData->SpdSelector->LocalAddress[0].Address.v4,
1310 sizeof (EFI_IPv4_ADDRESS)
1311 );
1312
1313 PacketChecksum = NetbufChecksum (Packet);
1314 PseudoChecksum = NetPseudoHeadChecksum (
1315 ((IP4_HEAD *)InnerHead)->Src,
1316 ((IP4_HEAD *)InnerHead)->Dst,
1317 *LastHead,
1318 0
1319 );
1320
1321 } else {
1322 //
1323 // Replace the source address of Inner Header.
1324 //
1325 CopyMem (
1326 &((EFI_IP6_HEADER *)InnerHead)->SourceAddress,
1327 &(SadData->SpdSelector->LocalAddress[0].Address.v6),
1328 sizeof (EFI_IPv6_ADDRESS)
1329 );
1330 PacketChecksum = NetbufChecksum (Packet);
1331 PseudoChecksum = NetIp6PseudoHeadChecksum (
1332 &((EFI_IP6_HEADER *)InnerHead)->SourceAddress,
1333 &((EFI_IP6_HEADER *)InnerHead)->DestinationAddress,
1334 *LastHead,
1335 0
1336 );
1337
1338 }
1339 if (Checksum != NULL) {
1340 *Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
1341 *Checksum = (UINT16) ~(NetAddChecksum ((UINT16)*Checksum, HTONS ((UINT16) Packet->TotalSize)));
1342 }
1343
1344 if (Packet != NULL) {
1345 NetbufFree (Packet);
1346 }
1347 return InnerHead;
1348 }
1349
1350 /**
1351 The actual entry to relative function processes the inbound traffic of ESP header.
1352
1353 This function is the subfunction of IpSecProtectInboundPacket(). It checks the
1354 received packet security property and trim the ESP header and then returns without
1355 an IPsec protected IP Header and FramgmentTable.
1356
1357 @param[in] IpVersion The version of IP.
1358 @param[in, out] IpHead Points to the IP header containing the ESP header
1359 to be trimed on input, and without ESP header
1360 on return.
1361 @param[out] LastHead The Last Header in IP header on return.
1362 @param[in, out] OptionsBuffer Pointer to the options buffer.
1363 @param[in, out] OptionsLength Length of the options buffer.
1364 @param[in, out] FragmentTable Pointer to a list of fragments in the form of IPsec
1365 protected on input, and without IPsec protected
1366 on return.
1367 @param[in, out] FragmentCount The number of fragments.
1368 @param[out] SpdSelector Pointer to contain the address of SPD selector on return.
1369 @param[out] RecycleEvent The event for recycling of resources.
1370
1371 @retval EFI_SUCCESS The operation was successful.
1372 @retval EFI_ACCESS_DENIED One or more following conditions is TRUE:
1373 - ESP header was not found or mal-format.
1374 - The related SAD entry was not found.
1375 - The related SAD entry does not support the ESP protocol.
1376 @retval EFI_OUT_OF_RESOURCES The required system resource can't be allocated.
1377
1378 **/
1379 EFI_STATUS
1380 IpSecEspInboundPacket (
1381 IN UINT8 IpVersion,
1382 IN OUT VOID *IpHead,
1383 OUT UINT8 *LastHead,
1384 IN OUT VOID **OptionsBuffer,
1385 IN OUT UINT32 *OptionsLength,
1386 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
1387 IN OUT UINT32 *FragmentCount,
1388 OUT EFI_IPSEC_SPD_SELECTOR **SpdSelector,
1389 OUT EFI_EVENT *RecycleEvent
1390 )
1391 {
1392 EFI_STATUS Status;
1393 NET_BUF *Payload;
1394 UINTN EspSize;
1395 UINTN IvSize;
1396 UINTN BlockSize;
1397 UINTN MiscSize;
1398 UINTN PlainPayloadSize;
1399 UINTN PaddingSize;
1400 UINTN IcvSize;
1401 UINT8 *ProcessBuffer;
1402 EFI_ESP_HEADER *EspHeader;
1403 EFI_ESP_TAIL *EspTail;
1404 EFI_IPSEC_SA_ID *SaId;
1405 IPSEC_SAD_DATA *SadData;
1406 IPSEC_SAD_ENTRY *SadEntry;
1407 IPSEC_RECYCLE_CONTEXT *RecycleContext;
1408 UINT8 NextHeader;
1409 UINT16 IpSecHeadSize;
1410 UINT8 *InnerHead;
1411
1412 Status = EFI_SUCCESS;
1413 Payload = NULL;
1414 ProcessBuffer = NULL;
1415 RecycleContext = NULL;
1416 *RecycleEvent = NULL;
1417 PlainPayloadSize = 0;
1418 NextHeader = 0;
1419
1420 //
1421 // Build netbuf from fragment table first.
1422 //
1423 Payload = NetbufFromExt (
1424 (NET_FRAGMENT *) *FragmentTable,
1425 *FragmentCount,
1426 0,
1427 sizeof (EFI_ESP_HEADER),
1428 IpSecOnRecyclePacket,
1429 NULL
1430 );
1431 if (Payload == NULL) {
1432 Status = EFI_OUT_OF_RESOURCES;
1433 goto ON_EXIT;
1434 }
1435
1436 //
1437 // Get the esp size and esp header from netbuf.
1438 //
1439 EspSize = Payload->TotalSize;
1440 EspHeader = (EFI_ESP_HEADER *) NetbufGetByte (Payload, 0, NULL);
1441
1442 if (EspHeader == NULL) {
1443 Status = EFI_ACCESS_DENIED;
1444 goto ON_EXIT;
1445 }
1446
1447 //
1448 // Parse destination address from ip header and found the related SAD Entry.
1449 //
1450 SadEntry = IpSecFoundSadFromInboundPacket (
1451 IpHead,
1452 IpVersion,
1453 NTOHL (EspHeader->Spi)
1454 );
1455
1456 if (SadEntry == NULL) {
1457 Status = EFI_ACCESS_DENIED;
1458 goto ON_EXIT;
1459 }
1460
1461 SaId = SadEntry->Id;
1462 SadData = SadEntry->Data;
1463
1464 //
1465 // Only support esp protocol currently.
1466 //
1467 if (SaId->Proto != EfiIPsecESP) {
1468 Status = EFI_ACCESS_DENIED;
1469 goto ON_EXIT;
1470 }
1471
1472 if (!SadData->ManualSet) {
1473 //
1474 // TODO: Check SA lifetime and sequence number
1475 //
1476 }
1477
1478 //
1479 // Allocate buffer for decryption and authentication.
1480 //
1481 ProcessBuffer = AllocateZeroPool (EspSize);
1482 if (ProcessBuffer == NULL) {
1483 Status = EFI_OUT_OF_RESOURCES;
1484 goto ON_EXIT;
1485 }
1486
1487 NetbufCopy (Payload, 0, (UINT32) EspSize, ProcessBuffer);
1488
1489 //
1490 // Get the IcvSize for authentication and BlockSize/IvSize for Decryption.
1491 //
1492 IcvSize = IpSecGetIcvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId);
1493 IvSize = IpSecGetEncryptIvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
1494 BlockSize = IpSecGetEncryptBlockSize (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
1495
1496 //
1497 // Make sure the ESP packet is not mal-formt.
1498 // 1. Check whether the Espsize is larger than ESP header + IvSize + EspTail + IcvSize.
1499 // 2. Check whether the left payload size is multiple of IvSize.
1500 //
1501 MiscSize = sizeof (EFI_ESP_HEADER) + IvSize + IcvSize;
1502 if (EspSize <= (MiscSize + sizeof (EFI_ESP_TAIL))) {
1503 Status = EFI_ACCESS_DENIED;
1504 goto ON_EXIT;
1505 }
1506 if ((EspSize - MiscSize) % BlockSize != 0) {
1507 Status = EFI_ACCESS_DENIED;
1508 goto ON_EXIT;
1509 }
1510
1511 //
1512 // Authenticate the ESP packet.
1513 //
1514 if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
1515 Status = IpSecEspAuthVerifyPayload (
1516 ProcessBuffer,
1517 EspSize,
1518 SadEntry,
1519 IcvSize
1520 );
1521 if (EFI_ERROR (Status)) {
1522 goto ON_EXIT;
1523 }
1524 }
1525 //
1526 // Decrypt the payload by the SAD entry if it has decrypt key.
1527 //
1528 if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
1529 Status = IpSecCryptoIoDecrypt (
1530 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId,
1531 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKey,
1532 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKeyLength << 3,
1533 ProcessBuffer + sizeof (EFI_ESP_HEADER),
1534 ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize,
1535 EspSize - sizeof (EFI_ESP_HEADER) - IvSize - IcvSize,
1536 ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize
1537 );
1538 if (EFI_ERROR (Status)) {
1539 goto ON_EXIT;
1540 }
1541 }
1542
1543 //
1544 // Parse EspTail and compute the plain payload size.
1545 //
1546 EspTail = (EFI_ESP_TAIL *) (ProcessBuffer + EspSize - IcvSize - sizeof (EFI_ESP_TAIL));
1547 PaddingSize = EspTail->PaddingLength;
1548 NextHeader = EspTail->NextHeader;
1549
1550 if (EspSize <= (MiscSize + sizeof (EFI_ESP_TAIL) + PaddingSize)) {
1551 Status = EFI_ACCESS_DENIED;
1552 goto ON_EXIT;
1553 }
1554 PlainPayloadSize = EspSize - MiscSize - sizeof (EFI_ESP_TAIL) - PaddingSize;
1555
1556 //
1557 // TODO: handle anti-replay window
1558 //
1559 //
1560 // Decryption and authentication with esp has been done, so it's time to
1561 // reload the new packet, create recycle event and fixup ip header.
1562 //
1563 RecycleContext = AllocateZeroPool (sizeof (IPSEC_RECYCLE_CONTEXT));
1564 if (RecycleContext == NULL) {
1565 Status = EFI_OUT_OF_RESOURCES;
1566 goto ON_EXIT;
1567 }
1568
1569 Status = gBS->CreateEvent (
1570 EVT_NOTIFY_SIGNAL,
1571 TPL_NOTIFY,
1572 IpSecRecycleCallback,
1573 RecycleContext,
1574 RecycleEvent
1575 );
1576 if (EFI_ERROR (Status)) {
1577 goto ON_EXIT;
1578 }
1579
1580 //
1581 // The caller will take responsible to handle the original fragment table
1582 //
1583 *FragmentTable = AllocateZeroPool (sizeof (EFI_IPSEC_FRAGMENT_DATA));
1584 if (*FragmentTable == NULL) {
1585 Status = EFI_OUT_OF_RESOURCES;
1586 goto ON_EXIT;
1587 }
1588
1589 RecycleContext->PayloadBuffer = ProcessBuffer;
1590 RecycleContext->FragmentTable = *FragmentTable;
1591
1592 //
1593 // If Tunnel, recalculate upper-layyer PesudoCheckSum and trim the out
1594 //
1595 if (SadData->Mode == EfiIPsecTunnel) {
1596 InnerHead = ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize;
1597 IpSecTunnelInboundPacket (
1598 IpHead,
1599 InnerHead,
1600 IpVersion,
1601 SadData,
1602 LastHead
1603 );
1604
1605 if (IpVersion == IP_VERSION_4) {
1606 (*FragmentTable)[0].FragmentBuffer = InnerHead ;
1607 (*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
1608
1609 }else {
1610 (*FragmentTable)[0].FragmentBuffer = InnerHead;
1611 (*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
1612 }
1613 } else {
1614 (*FragmentTable)[0].FragmentBuffer = ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize;
1615 (*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
1616 }
1617
1618 *FragmentCount = 1;
1619
1620 //
1621 // Update the total length field in ip header since processed by esp.
1622 //
1623 if (!SadData->Mode == EfiIPsecTunnel) {
1624 if (IpVersion == IP_VERSION_4) {
1625 ((IP4_HEAD *) IpHead)->TotalLen = HTONS ((UINT16) ((((IP4_HEAD *) IpHead)->HeadLen << 2) + PlainPayloadSize));
1626 } else {
1627 IpSecHeadSize = IpSecGetPlainExtHeadSize (IpHead, LastHead);
1628 ((EFI_IP6_HEADER *) IpHead)->PayloadLength = HTONS ((UINT16)(IpSecHeadSize + PlainPayloadSize));
1629 }
1630 //
1631 // Update the next layer field in ip header since esp header inserted.
1632 //
1633 *LastHead = NextHeader;
1634 }
1635
1636
1637 //
1638 // Update the SPD association of the SAD entry.
1639 //
1640 *SpdSelector = SadData->SpdSelector;
1641
1642 ON_EXIT:
1643 if (Payload != NULL) {
1644 NetbufFree (Payload);
1645 }
1646
1647 if (EFI_ERROR (Status)) {
1648 if (ProcessBuffer != NULL) {
1649 FreePool (ProcessBuffer);
1650 }
1651
1652 if (RecycleContext != NULL) {
1653 FreePool (RecycleContext);
1654 }
1655
1656 if (*RecycleEvent != NULL) {
1657 gBS->CloseEvent (*RecycleEvent);
1658 }
1659 }
1660
1661 return Status;
1662 }
1663
1664 /**
1665 The actual entry to the relative function processes the output traffic using the ESP protocol.
1666
1667 This function is the subfunction of IpSecProtectOutboundPacket(). It protected
1668 the sending packet by encrypting its payload and inserting ESP header in the orginal
1669 IP header, then return the IpHeader and IPsec protected Fragmentable.
1670
1671 @param[in] IpVersion The version of IP.
1672 @param[in, out] IpHead Points to IP header containing the orginal IP header
1673 to be processed on input, and inserted ESP header
1674 on return.
1675 @param[in, out] LastHead The Last Header in IP header.
1676 @param[in, out] OptionsBuffer Pointer to the options buffer.
1677 @param[in, out] OptionsLength Length of the options buffer.
1678 @param[in, out] FragmentTable Pointer to a list of fragments to be protected by
1679 IPsec on input, and with IPsec protected
1680 on return.
1681 @param[in, out] FragmentCount The number of fragments.
1682 @param[in] SadEntry The related SAD entry.
1683 @param[out] RecycleEvent The event for recycling of resources.
1684
1685 @retval EFI_SUCCESS The operation was successful.
1686 @retval EFI_OUT_OF_RESOURCES The required system resources can't be allocated.
1687
1688 **/
1689 EFI_STATUS
1690 IpSecEspOutboundPacket (
1691 IN UINT8 IpVersion,
1692 IN OUT VOID *IpHead,
1693 IN OUT UINT8 *LastHead,
1694 IN OUT VOID **OptionsBuffer,
1695 IN OUT UINT32 *OptionsLength,
1696 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
1697 IN OUT UINT32 *FragmentCount,
1698 IN IPSEC_SAD_ENTRY *SadEntry,
1699 OUT EFI_EVENT *RecycleEvent
1700 )
1701 {
1702 EFI_STATUS Status;
1703 UINTN Index;
1704 EFI_IPSEC_SA_ID *SaId;
1705 IPSEC_SAD_DATA *SadData;
1706 IPSEC_RECYCLE_CONTEXT *RecycleContext;
1707 UINT8 *ProcessBuffer;
1708 UINTN BytesCopied;
1709 INTN EncryptBlockSize;// Size of encryption block, 4 bytes aligned and >= 4
1710 UINTN EspSize; // Total size of esp wrapped ip payload
1711 UINTN IvSize; // Size of IV, optional, might be 0
1712 UINTN PlainPayloadSize;// Original IP payload size
1713 UINTN PaddingSize; // Size of padding
1714 UINTN EncryptSize; // Size of data to be encrypted, start after IV and
1715 // stop before ICV
1716 UINTN IcvSize; // Size of ICV, optional, might be 0
1717 UINT8 *RestOfPayload; // Start of Payload after IV
1718 UINT8 *Padding; // Start address of padding
1719 EFI_ESP_HEADER *EspHeader; // Start address of ESP frame
1720 EFI_ESP_TAIL *EspTail; // Address behind padding
1721 UINT8 *InnerHead;
1722 HASH_DATA_FRAGMENT HashFragment[1];
1723
1724 Status = EFI_ACCESS_DENIED;
1725 SaId = SadEntry->Id;
1726 SadData = SadEntry->Data;
1727 ProcessBuffer = NULL;
1728 RecycleContext = NULL;
1729 *RecycleEvent = NULL;
1730 InnerHead = NULL;
1731
1732 if (!SadData->ManualSet &&
1733 SadData->AlgoInfo.EspAlgoInfo.EncKey == NULL &&
1734 SadData->AlgoInfo.EspAlgoInfo.AuthKey == NULL
1735 ) {
1736 //
1737 // Invalid manual SAD entry configuration.
1738 //
1739 goto ON_EXIT;
1740 }
1741
1742 //
1743 // Create OutHeader according to Inner Header
1744 //
1745 if (SadData->Mode == EfiIPsecTunnel) {
1746 InnerHead = IpSecTunnelOutboundPacket (
1747 IpHead,
1748 IpVersion,
1749 SadData,
1750 LastHead,
1751 OptionsBuffer,
1752 OptionsLength,
1753 FragmentTable,
1754 FragmentCount
1755 );
1756
1757 if (InnerHead == NULL) {
1758 return EFI_INVALID_PARAMETER;
1759 }
1760
1761 }
1762
1763 //
1764 // Calculate enctrypt block size, need iv by default and 4 bytes alignment.
1765 //
1766 EncryptBlockSize = 4;
1767
1768 if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
1769 EncryptBlockSize = IpSecGetEncryptBlockSize (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
1770
1771 if (EncryptBlockSize < 0 || (EncryptBlockSize != 1 && EncryptBlockSize % 4 != 0)) {
1772 goto ON_EXIT;
1773 }
1774 }
1775
1776 //
1777 // Calculate the plain payload size accroding to the fragment table.
1778 //
1779 PlainPayloadSize = 0;
1780 for (Index = 0; Index < *FragmentCount; Index++) {
1781 PlainPayloadSize += (*FragmentTable)[Index].FragmentLength;
1782 }
1783
1784 //
1785 // Add IPHeader size for Tunnel Mode
1786 //
1787 if (SadData->Mode == EfiIPsecTunnel) {
1788 if (IpVersion == IP_VERSION_4) {
1789 PlainPayloadSize += sizeof (IP4_HEAD);
1790 } else {
1791 PlainPayloadSize += sizeof (EFI_IP6_HEADER);
1792 }
1793 //
1794 // OPtions should be encryption into it
1795 //
1796 PlainPayloadSize += *OptionsLength;
1797 }
1798
1799
1800 //
1801 // Calculate icv size, optional by default and 4 bytes alignment.
1802 //
1803 IcvSize = 0;
1804 if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
1805 IcvSize = IpSecGetIcvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId);
1806 if (IcvSize % 4 != 0) {
1807 goto ON_EXIT;
1808 }
1809 }
1810
1811 //
1812 // Calcuate the total size of esp wrapped ip payload.
1813 //
1814 IvSize = IpSecGetEncryptIvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
1815 EncryptSize = (PlainPayloadSize + sizeof (EFI_ESP_TAIL) + EncryptBlockSize - 1) / EncryptBlockSize * EncryptBlockSize;
1816 PaddingSize = EncryptSize - PlainPayloadSize - sizeof (EFI_ESP_TAIL);
1817 EspSize = sizeof (EFI_ESP_HEADER) + IvSize + EncryptSize + IcvSize;
1818
1819 ProcessBuffer = AllocateZeroPool (EspSize);
1820 if (ProcessBuffer == NULL) {
1821 Status = EFI_OUT_OF_RESOURCES;
1822 goto ON_EXIT;
1823 }
1824
1825 //
1826 // Calculate esp header and esp tail including header, payload and padding.
1827 //
1828 EspHeader = (EFI_ESP_HEADER *) ProcessBuffer;
1829 RestOfPayload = (UINT8 *) (EspHeader + 1) + IvSize;
1830 Padding = RestOfPayload + PlainPayloadSize;
1831 EspTail = (EFI_ESP_TAIL *) (Padding + PaddingSize);
1832
1833 //
1834 // Fill the sn and spi fields in esp header.
1835 //
1836 EspHeader->SequenceNumber = HTONL ((UINT32) SadData->SequenceNumber + 1);
1837 //EspHeader->SequenceNumber = HTONL ((UINT32) SadData->SequenceNumber);
1838 EspHeader->Spi = HTONL (SaId->Spi);
1839
1840 //
1841 // Copy the rest of payload (after iv) from the original fragment buffer.
1842 //
1843 BytesCopied = 0;
1844
1845 //
1846 // For Tunnel Mode
1847 //
1848 if (SadData->Mode == EfiIPsecTunnel) {
1849 if (IpVersion == IP_VERSION_4) {
1850 //
1851 // HeadLen, Total Length
1852 //
1853 ((IP4_HEAD *)InnerHead)->HeadLen = (UINT8) ((sizeof (IP4_HEAD) + *OptionsLength) >> 2);
1854 ((IP4_HEAD *)InnerHead)->TotalLen = HTONS ((UINT16) PlainPayloadSize);
1855 ((IP4_HEAD *)InnerHead)->Checksum = 0;
1856 ((IP4_HEAD *)InnerHead)->Checksum = (UINT16) (~NetblockChecksum (
1857 (UINT8 *)InnerHead,
1858 sizeof(IP4_HEAD)
1859 ));
1860 CopyMem (
1861 RestOfPayload + BytesCopied,
1862 InnerHead,
1863 sizeof (IP4_HEAD) + *OptionsLength
1864 );
1865 BytesCopied += sizeof (IP4_HEAD) + *OptionsLength;
1866
1867 } else {
1868 ((EFI_IP6_HEADER *)InnerHead)->PayloadLength = HTONS ((UINT16) (PlainPayloadSize - sizeof (EFI_IP6_HEADER)));
1869 CopyMem (
1870 RestOfPayload + BytesCopied,
1871 InnerHead,
1872 sizeof (EFI_IP6_HEADER) + *OptionsLength
1873 );
1874 BytesCopied += sizeof (EFI_IP6_HEADER) + *OptionsLength;
1875 }
1876 }
1877
1878 for (Index = 0; Index < *FragmentCount; Index++) {
1879 CopyMem (
1880 (RestOfPayload + BytesCopied),
1881 (*FragmentTable)[Index].FragmentBuffer,
1882 (*FragmentTable)[Index].FragmentLength
1883 );
1884 BytesCopied += (*FragmentTable)[Index].FragmentLength;
1885 }
1886 //
1887 // Fill the padding buffer by natural number sequence.
1888 //
1889 for (Index = 0; Index < PaddingSize; Index++) {
1890 Padding[Index] = (UINT8) (Index + 1);
1891 }
1892 //
1893 // Fill the padding length and next header fields in esp tail.
1894 //
1895 EspTail->PaddingLength = (UINT8) PaddingSize;
1896 EspTail->NextHeader = *LastHead;
1897
1898 //
1899 // Fill the next header for Tunnel mode.
1900 //
1901 if (SadData->Mode == EfiIPsecTunnel) {
1902 if (IpVersion == IP_VERSION_4) {
1903 EspTail->NextHeader = 4;
1904 } else {
1905 EspTail->NextHeader = 41;
1906 }
1907 }
1908
1909 //
1910 // Generate iv at random by crypt library.
1911 //
1912 Status = IpSecGenerateIv (
1913 (UINT8 *) (EspHeader + 1),
1914 IvSize
1915 );
1916
1917
1918 if (EFI_ERROR (Status)) {
1919 goto ON_EXIT;
1920 }
1921
1922 //
1923 // Encryption the payload (after iv) by the SAD entry if has encrypt key.
1924 //
1925 if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
1926 Status = IpSecCryptoIoEncrypt (
1927 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId,
1928 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKey,
1929 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKeyLength << 3,
1930 (UINT8 *)(EspHeader + 1),
1931 RestOfPayload,
1932 EncryptSize,
1933 RestOfPayload
1934 );
1935
1936 if (EFI_ERROR (Status)) {
1937 goto ON_EXIT;
1938 }
1939 }
1940
1941 //
1942 // Authenticate the esp wrapped buffer by the SAD entry if it has auth key.
1943 //
1944 if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
1945
1946 HashFragment[0].Data = ProcessBuffer;
1947 HashFragment[0].DataSize = EspSize - IcvSize;
1948 Status = IpSecCryptoIoHmac (
1949 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId,
1950 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKey,
1951 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKeyLength,
1952 HashFragment,
1953 1,
1954 ProcessBuffer + EspSize - IcvSize,
1955 IcvSize
1956 );
1957 if (EFI_ERROR (Status)) {
1958 goto ON_EXIT;
1959 }
1960 }
1961
1962 //
1963 // Encryption and authentication with esp has been done, so it's time to
1964 // reload the new packet, create recycle event and fixup ip header.
1965 //
1966 RecycleContext = AllocateZeroPool (sizeof (IPSEC_RECYCLE_CONTEXT));
1967 if (RecycleContext == NULL) {
1968 Status = EFI_OUT_OF_RESOURCES;
1969 goto ON_EXIT;
1970 }
1971
1972 Status = gBS->CreateEvent (
1973 EVT_NOTIFY_SIGNAL,
1974 TPL_NOTIFY,
1975 IpSecRecycleCallback,
1976 RecycleContext,
1977 RecycleEvent
1978 );
1979 if (EFI_ERROR (Status)) {
1980 goto ON_EXIT;
1981 }
1982 //
1983 // Caller take responsible to handle the original fragment table.
1984 //
1985 *FragmentTable = AllocateZeroPool (sizeof (EFI_IPSEC_FRAGMENT_DATA));
1986 if (*FragmentTable == NULL) {
1987 Status = EFI_OUT_OF_RESOURCES;
1988 goto ON_EXIT;
1989 }
1990
1991 RecycleContext->FragmentTable = *FragmentTable;
1992 RecycleContext->PayloadBuffer = ProcessBuffer;
1993 (*FragmentTable)[0].FragmentBuffer = ProcessBuffer;
1994 (*FragmentTable)[0].FragmentLength = (UINT32) EspSize;
1995 *FragmentCount = 1;
1996
1997 //
1998 // Update the total length field in ip header since processed by esp.
1999 //
2000 if (IpVersion == IP_VERSION_4) {
2001 ((IP4_HEAD *) IpHead)->TotalLen = HTONS ((UINT16) ((((IP4_HEAD *) IpHead)->HeadLen << 2) + EspSize));
2002 } else {
2003 ((EFI_IP6_HEADER *) IpHead)->PayloadLength = (UINT16) (IpSecGetPlainExtHeadSize (IpHead, LastHead) + EspSize);
2004 }
2005
2006 //
2007 // If tunnel mode, it should change the outer Ip header with tunnel source address
2008 // and destination tunnel address.
2009 //
2010 if (SadData->Mode == EfiIPsecTunnel) {
2011 if (IpVersion == IP_VERSION_4) {
2012 CopyMem (
2013 &((IP4_HEAD *) IpHead)->Src,
2014 &SadData->TunnelSourceAddress.v4,
2015 sizeof (EFI_IPv4_ADDRESS)
2016 );
2017 CopyMem (
2018 &((IP4_HEAD *) IpHead)->Dst,
2019 &SadData->TunnelDestAddress.v4,
2020 sizeof (EFI_IPv4_ADDRESS)
2021 );
2022 } else {
2023 CopyMem (
2024 &((EFI_IP6_HEADER *) IpHead)->SourceAddress,
2025 &SadData->TunnelSourceAddress.v6,
2026 sizeof (EFI_IPv6_ADDRESS)
2027 );
2028 CopyMem (
2029 &((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
2030 &SadData->TunnelDestAddress.v6,
2031 sizeof (EFI_IPv6_ADDRESS)
2032 );
2033 }
2034 }
2035
2036 //
2037 // Update the next layer field in ip header since esp header inserted.
2038 //
2039 *LastHead = IPSEC_ESP_PROTOCOL;
2040
2041 //
2042 // Increase the sn number in SAD entry according to rfc4303.
2043 //
2044 SadData->SequenceNumber++;
2045
2046 ON_EXIT:
2047 if (EFI_ERROR (Status)) {
2048 if (ProcessBuffer != NULL) {
2049 FreePool (ProcessBuffer);
2050 }
2051
2052 if (RecycleContext != NULL) {
2053 FreePool (RecycleContext);
2054 }
2055
2056 if (*RecycleEvent != NULL) {
2057 gBS->CloseEvent (*RecycleEvent);
2058 }
2059 }
2060
2061 return Status;
2062 }
2063
2064 /**
2065 This function processes the inbound traffic with IPsec.
2066
2067 It checks the received packet security property, trims the ESP/AH header, and then
2068 returns without an IPsec protected IP Header and FragmentTable.
2069
2070 @param[in] IpVersion The version of IP.
2071 @param[in, out] IpHead Points to IP header containing the ESP/AH header
2072 to be trimed on input, and without ESP/AH header
2073 on return.
2074 @param[in, out] LastHead The Last Header in IP header on return.
2075 @param[in, out] OptionsBuffer Pointer to the options buffer.
2076 @param[in, out] OptionsLength Length of the options buffer.
2077 @param[in, out] FragmentTable Pointer to a list of fragments in form of IPsec
2078 protected on input, and without IPsec protected
2079 on return.
2080 @param[in, out] FragmentCount The number of fragments.
2081 @param[out] SpdEntry Pointer to contain the address of SPD entry on return.
2082 @param[out] RecycleEvent The event for recycling of resources.
2083
2084 @retval EFI_SUCCESS The operation was successful.
2085 @retval EFI_UNSUPPORTED The IPSEC protocol is not supported.
2086
2087 **/
2088 EFI_STATUS
2089 IpSecProtectInboundPacket (
2090 IN UINT8 IpVersion,
2091 IN OUT VOID *IpHead,
2092 IN OUT UINT8 *LastHead,
2093 IN OUT VOID **OptionsBuffer,
2094 IN OUT UINT32 *OptionsLength,
2095 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
2096 IN OUT UINT32 *FragmentCount,
2097 OUT EFI_IPSEC_SPD_SELECTOR **SpdEntry,
2098 OUT EFI_EVENT *RecycleEvent
2099 )
2100 {
2101 if (*LastHead == IPSEC_ESP_PROTOCOL) {
2102 //
2103 // Process the esp ipsec header of the inbound traffic.
2104 //
2105 return IpSecEspInboundPacket (
2106 IpVersion,
2107 IpHead,
2108 LastHead,
2109 OptionsBuffer,
2110 OptionsLength,
2111 FragmentTable,
2112 FragmentCount,
2113 SpdEntry,
2114 RecycleEvent
2115 );
2116 }
2117 //
2118 // The other protocols are not supported.
2119 //
2120 return EFI_UNSUPPORTED;
2121 }
2122
2123 /**
2124 This fucntion processes the output traffic with IPsec.
2125
2126 It protected the sending packet by encrypting it payload and inserting ESP/AH header
2127 in the orginal IP header, then return the IpHeader and IPsec protected Fragmentable.
2128
2129 @param[in] IpVersion The version of IP.
2130 @param[in, out] IpHead Point to IP header containing the orginal IP header
2131 to be processed on input, and inserted ESP/AH header
2132 on return.
2133 @param[in, out] LastHead The Last Header in IP header.
2134 @param[in, out] OptionsBuffer Pointer to the options buffer.
2135 @param[in, out] OptionsLength Length of the options buffer.
2136 @param[in, out] FragmentTable Pointer to a list of fragments to be protected by
2137 IPsec on input, and with IPsec protected
2138 on return.
2139 @param[in, out] FragmentCount Number of fragments.
2140 @param[in] SadEntry Related SAD entry.
2141 @param[out] RecycleEvent Event for recycling of resources.
2142
2143 @retval EFI_SUCCESS The operation is successful.
2144 @retval EFI_UNSUPPORTED If the IPSEC protocol is not supported.
2145
2146 **/
2147 EFI_STATUS
2148 IpSecProtectOutboundPacket (
2149 IN UINT8 IpVersion,
2150 IN OUT VOID *IpHead,
2151 IN OUT UINT8 *LastHead,
2152 IN OUT VOID **OptionsBuffer,
2153 IN OUT UINT32 *OptionsLength,
2154 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
2155 IN OUT UINT32 *FragmentCount,
2156 IN IPSEC_SAD_ENTRY *SadEntry,
2157 OUT EFI_EVENT *RecycleEvent
2158 )
2159 {
2160 if (SadEntry->Id->Proto == EfiIPsecESP) {
2161 //
2162 // Process the esp ipsec header of the outbound traffic.
2163 //
2164 return IpSecEspOutboundPacket (
2165 IpVersion,
2166 IpHead,
2167 LastHead,
2168 OptionsBuffer,
2169 OptionsLength,
2170 FragmentTable,
2171 FragmentCount,
2172 SadEntry,
2173 RecycleEvent
2174 );
2175 }
2176 //
2177 // The other protocols are not supported.
2178 //
2179 return EFI_UNSUPPORTED;
2180 }