]> git.proxmox.com Git - mirror_edk2.git/blob - NetworkPkg/IpSecDxe/IpSecImpl.c
Before decrypting the packet, Ipsec will check if the inbound protected packet is...
[mirror_edk2.git] / NetworkPkg / IpSecDxe / IpSecImpl.c
1 /** @file
2 The implementation of IPsec.
3
4 Copyright (c) 2009 - 2011, Intel Corporation. All rights reserved.<BR>
5
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at
9 http://opensource.org/licenses/bsd-license.php.
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #include "IpSecImpl.h"
17 #include "IkeService.h"
18 #include "IpSecDebug.h"
19 #include "IpSecCryptIo.h"
20 #include "IpSecConfigImpl.h"
21
22 /**
23 Check if the specified Address is the Valid Address Range.
24
25 This function checks if the bytes after prefixed length are all Zero in this
26 Address. This Address is supposed to point to a range address. That means it
27 should gives the correct prefixed address and the bytes outside the prefixed are
28 zero.
29
30 @param[in] IpVersion The IP version.
31 @param[in] Address Points to EFI_IP_ADDRESS to be checked.
32 @param[in] PrefixLength The PrefixeLength of this address.
33
34 @retval TRUE The address is a vaild address range.
35 @retval FALSE The address is not a vaild address range.
36
37 **/
38 BOOLEAN
39 IpSecValidAddressRange (
40 IN UINT8 IpVersion,
41 IN EFI_IP_ADDRESS *Address,
42 IN UINT8 PrefixLength
43 )
44 {
45 UINT8 Div;
46 UINT8 Mod;
47 UINT8 Mask;
48 UINT8 AddrLen;
49 UINT8 *Addr;
50 EFI_IP_ADDRESS ZeroAddr;
51
52 if (PrefixLength == 0) {
53 return TRUE;
54 }
55
56 AddrLen = (UINT8) ((IpVersion == IP_VERSION_4) ? 32 : 128);
57
58 if (AddrLen <= PrefixLength) {
59 return FALSE;
60 }
61
62 Div = (UINT8) (PrefixLength / 8);
63 Mod = (UINT8) (PrefixLength % 8);
64 Addr = (UINT8 *) Address;
65 ZeroMem (&ZeroAddr, sizeof (EFI_IP_ADDRESS));
66
67 //
68 // Check whether the mod part of host scope is zero or not.
69 //
70 if (Mod > 0) {
71 Mask = (UINT8) (0xFF << (8 - Mod));
72
73 if ((Addr[Div] | Mask) != Mask) {
74 return FALSE;
75 }
76
77 Div++;
78 }
79 //
80 // Check whether the div part of host scope is zero or not.
81 //
82 if (CompareMem (
83 &Addr[Div],
84 &ZeroAddr,
85 sizeof (EFI_IP_ADDRESS) - Div
86 ) != 0) {
87 return FALSE;
88 }
89
90 return TRUE;
91 }
92
93 /**
94 Extrct the Address Range from a Address.
95
96 This function keep the prefix address and zero other part address.
97
98 @param[in] Address Point to a specified address.
99 @param[in] PrefixLength The prefix length.
100 @param[out] Range Contain the return Address Range.
101
102 **/
103 VOID
104 IpSecExtractAddressRange (
105 IN EFI_IP_ADDRESS *Address,
106 IN UINT8 PrefixLength,
107 OUT EFI_IP_ADDRESS *Range
108 )
109 {
110 UINT8 Div;
111 UINT8 Mod;
112 UINT8 Mask;
113 UINT8 *Addr;
114
115 if (PrefixLength == 0) {
116 return ;
117 }
118
119 Div = (UINT8) (PrefixLength / 8);
120 Mod = (UINT8) (PrefixLength % 8);
121 Addr = (UINT8 *) Range;
122
123 CopyMem (Range, Address, sizeof (EFI_IP_ADDRESS));
124
125 //
126 // Zero the mod part of host scope.
127 //
128 if (Mod > 0) {
129 Mask = (UINT8) (0xFF << (8 - Mod));
130 Addr[Div] = (UINT8) (Addr[Div] & Mask);
131 Div++;
132 }
133 //
134 // Zero the div part of host scope.
135 //
136 ZeroMem (&Addr[Div], sizeof (EFI_IP_ADDRESS) - Div);
137
138 }
139
140 /**
141 Checks if the IP Address in the address range of AddressInfos specified.
142
143 @param[in] IpVersion The IP version.
144 @param[in] IpAddr Point to EFI_IP_ADDRESS to be check.
145 @param[in] AddressInfo A list of EFI_IP_ADDRESS_INFO that is used to check
146 the IP Address is matched.
147 @param[in] AddressCount The total numbers of the AddressInfo.
148
149 @retval TRUE If the Specified IP Address is in the range of the AddressInfos specified.
150 @retval FALSE If the Specified IP Address is not in the range of the AddressInfos specified.
151
152 **/
153 BOOLEAN
154 IpSecMatchIpAddress (
155 IN UINT8 IpVersion,
156 IN EFI_IP_ADDRESS *IpAddr,
157 IN EFI_IP_ADDRESS_INFO *AddressInfo,
158 IN UINT32 AddressCount
159 )
160 {
161 EFI_IP_ADDRESS Range;
162 UINT32 Index;
163 BOOLEAN IsMatch;
164
165 IsMatch = FALSE;
166
167 for (Index = 0; Index < AddressCount; Index++) {
168 //
169 // Check whether the target address is in the address range
170 // if it's a valid range of address.
171 //
172 if (IpSecValidAddressRange (
173 IpVersion,
174 &AddressInfo[Index].Address,
175 AddressInfo[Index].PrefixLength
176 )) {
177 //
178 // Get the range of the target address belongs to.
179 //
180 ZeroMem (&Range, sizeof (EFI_IP_ADDRESS));
181 IpSecExtractAddressRange (
182 IpAddr,
183 AddressInfo[Index].PrefixLength,
184 &Range
185 );
186
187 if (CompareMem (
188 &Range,
189 &AddressInfo[Index].Address,
190 sizeof (EFI_IP_ADDRESS)
191 ) == 0) {
192 //
193 // The target address is in the address range.
194 //
195 IsMatch = TRUE;
196 break;
197 }
198 }
199
200 if (CompareMem (
201 IpAddr,
202 &AddressInfo[Index].Address,
203 sizeof (EFI_IP_ADDRESS)
204 ) == 0) {
205 //
206 // The target address is exact same as the address.
207 //
208 IsMatch = TRUE;
209 break;
210 }
211 }
212 return IsMatch;
213 }
214
215 /**
216 Check if the specified Protocol and Prot is supported by the specified SPD Entry.
217
218 This function is the subfunction of IPsecLookUpSpdEntry() that is used to
219 check if the sent/received IKE packet has the related SPD entry support.
220
221 @param[in] Protocol The Protocol to be checked.
222 @param[in] IpPayload Point to IP Payload to be check.
223 @param[in] SpdProtocol The Protocol supported by SPD.
224 @param[in] SpdLocalPort The Local Port in SPD.
225 @param[in] SpdRemotePort The Remote Port in SPD.
226 @param[in] IsOutbound Flag to indicate the is for IKE Packet sending or recieving.
227
228 @retval TRUE The Protocol and Port are supported by the SPD Entry.
229 @retval FALSE The Protocol and Port are not supported by the SPD Entry.
230
231 **/
232 BOOLEAN
233 IpSecMatchNextLayerProtocol (
234 IN UINT8 Protocol,
235 IN UINT8 *IpPayload,
236 IN UINT16 SpdProtocol,
237 IN UINT16 SpdLocalPort,
238 IN UINT16 SpdRemotePort,
239 IN BOOLEAN IsOutbound
240 )
241 {
242 BOOLEAN IsMatch;
243
244 if (SpdProtocol == EFI_IPSEC_ANY_PROTOCOL) {
245 return TRUE;
246 }
247
248 IsMatch = FALSE;
249
250 if (SpdProtocol == Protocol) {
251 switch (Protocol) {
252 case EFI_IP_PROTO_UDP:
253 case EFI_IP_PROTO_TCP:
254 //
255 // For udp and tcp, (0, 0) means no need to check local and remote
256 // port. The payload is passed from upper level, which means it should
257 // be in network order.
258 //
259 IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
260 IsMatch = (BOOLEAN) (IsMatch ||
261 (IsOutbound &&
262 (BOOLEAN)(
263 NTOHS (((EFI_UDP_HEADER *) IpPayload)->SrcPort) == SpdLocalPort &&
264 NTOHS (((EFI_UDP_HEADER *) IpPayload)->DstPort) == SpdRemotePort
265 )
266 ));
267
268 IsMatch = (BOOLEAN) (IsMatch ||
269 (!IsOutbound &&
270 (BOOLEAN)(
271 NTOHS (((EFI_UDP_HEADER *) IpPayload)->DstPort) == SpdLocalPort &&
272 NTOHS (((EFI_UDP_HEADER *) IpPayload)->SrcPort) == SpdRemotePort
273 )
274 ));
275 break;
276
277 case EFI_IP_PROTO_ICMP:
278 //
279 // For icmpv4, type code is replaced with local port and remote port,
280 // and (0, 0) means no need to check.
281 //
282 IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
283 IsMatch = (BOOLEAN) (IsMatch ||
284 (BOOLEAN) (((IP4_ICMP_HEAD *) IpPayload)->Type == SpdLocalPort &&
285 ((IP4_ICMP_HEAD *) IpPayload)->Code == SpdRemotePort
286 )
287 );
288 break;
289
290 case IP6_ICMP:
291 //
292 // For icmpv6, type code is replaced with local port and remote port,
293 // and (0, 0) means no need to check.
294 //
295 IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
296
297 IsMatch = (BOOLEAN) (IsMatch ||
298 (BOOLEAN) (((IP6_ICMP_HEAD *) IpPayload)->Type == SpdLocalPort &&
299 ((IP6_ICMP_HEAD *) IpPayload)->Code == SpdRemotePort
300 )
301 );
302 break;
303
304 default:
305 IsMatch = TRUE;
306 break;
307 }
308 }
309
310 return IsMatch;
311 }
312
313 /**
314 Find the SAD through a specified SPD's SAD list.
315
316 @param[in] SadList SAD list related to a specified SPD entry.
317 @param[in] DestAddress The destination address used to find the SAD entry.
318 @param[in] IpVersion The IP version. Ip4 or Ip6.
319
320 @return The pointer to a certain SAD entry.
321
322 **/
323 IPSEC_SAD_ENTRY *
324 IpSecLookupSadBySpd (
325 IN LIST_ENTRY *SadList,
326 IN EFI_IP_ADDRESS *DestAddress,
327 IN UINT8 IpVersion
328 )
329 {
330 LIST_ENTRY *Entry;
331 IPSEC_SAD_ENTRY *SadEntry;
332
333 NET_LIST_FOR_EACH (Entry, SadList) {
334
335 SadEntry = IPSEC_SAD_ENTRY_FROM_SPD (Entry);
336 //
337 // Find the right SAD entry which contains the appointed dest address.
338 //
339 if (IpSecMatchIpAddress (
340 IpVersion,
341 DestAddress,
342 SadEntry->Data->SpdSelector->RemoteAddress,
343 SadEntry->Data->SpdSelector->RemoteAddressCount
344 )){
345 return SadEntry;
346 }
347 }
348
349 return NULL;
350 }
351
352 /**
353 Find the SAD through whole SAD list.
354
355 @param[in] Spi The SPI used to search the SAD entry.
356 @param[in] DestAddress The destination used to search the SAD entry.
357 @param[in] IpVersion The IP version. Ip4 or Ip6.
358
359 @return the pointer to a certain SAD entry.
360
361 **/
362 IPSEC_SAD_ENTRY *
363 IpSecLookupSadBySpi (
364 IN UINT32 Spi,
365 IN EFI_IP_ADDRESS *DestAddress,
366 IN UINT8 IpVersion
367 )
368 {
369 LIST_ENTRY *Entry;
370 LIST_ENTRY *SadList;
371 IPSEC_SAD_ENTRY *SadEntry;
372
373 SadList = &mConfigData[IPsecConfigDataTypeSad];
374
375 NET_LIST_FOR_EACH (Entry, SadList) {
376
377 SadEntry = IPSEC_SAD_ENTRY_FROM_LIST (Entry);
378
379 //
380 // Find the right SAD entry which contain the appointed spi and dest addr.
381 //
382 if (SadEntry->Id->Spi == Spi) {
383 if (SadEntry->Data->Mode == EfiIPsecTunnel) {
384 if (CompareMem (
385 &DestAddress,
386 &SadEntry->Data->TunnelDestAddress,
387 sizeof (EFI_IP_ADDRESS)
388 )) {
389 return SadEntry;
390 }
391 } else {
392 if (SadEntry->Data->SpdSelector != NULL &&
393 IpSecMatchIpAddress (
394 IpVersion,
395 DestAddress,
396 SadEntry->Data->SpdSelector->RemoteAddress,
397 SadEntry->Data->SpdSelector->RemoteAddressCount
398 )
399 ) {
400 return SadEntry;
401 }
402 }
403 }
404 }
405 return NULL;
406 }
407
408 /**
409 Look up if there is existing SAD entry for specified IP packet sending.
410
411 This function is called by the IPsecProcess when there is some IP packet needed to
412 send out. This function checks if there is an existing SAD entry that can be serviced
413 to this IP packet sending. If no existing SAD entry could be used, this
414 function will invoke an IPsec Key Exchange Negotiation.
415
416 @param[in] Private Points to private data.
417 @param[in] NicHandle Points to a NIC handle.
418 @param[in] IpVersion The version of IP.
419 @param[in] IpHead The IP Header of packet to be sent out.
420 @param[in] IpPayload The IP Payload to be sent out.
421 @param[in] OldLastHead The Last protocol of the IP packet.
422 @param[in] SpdEntry Points to a related SPD entry.
423 @param[out] SadEntry Contains the Point of a related SAD entry.
424
425 @retval EFI_DEVICE_ERROR One of following conditions is TRUE:
426 - If don't find related UDP service.
427 - Sequence Number is used up.
428 - Extension Sequence Number is used up.
429 @retval EFI_NOT_READY No existing SAD entry could be used.
430 @retval EFI_SUCCESS Find the related SAD entry.
431
432 **/
433 EFI_STATUS
434 IpSecLookupSadEntry (
435 IN IPSEC_PRIVATE_DATA *Private,
436 IN EFI_HANDLE NicHandle,
437 IN UINT8 IpVersion,
438 IN VOID *IpHead,
439 IN UINT8 *IpPayload,
440 IN UINT8 OldLastHead,
441 IN IPSEC_SPD_ENTRY *SpdEntry,
442 OUT IPSEC_SAD_ENTRY **SadEntry
443 )
444 {
445 IKE_UDP_SERVICE *UdpService;
446 IPSEC_SAD_ENTRY *Entry;
447 IPSEC_SAD_DATA *Data;
448 EFI_IP_ADDRESS DestIp;
449 UINT32 SeqNum32;
450
451 *SadEntry = NULL;
452 UdpService = IkeLookupUdp (Private, NicHandle, IpVersion);
453
454 if (UdpService == NULL) {
455 return EFI_DEVICE_ERROR;
456 }
457 //
458 // Parse the destination address from ip header.
459 //
460 ZeroMem (&DestIp, sizeof (EFI_IP_ADDRESS));
461 if (IpVersion == IP_VERSION_4) {
462 CopyMem (
463 &DestIp,
464 &((IP4_HEAD *) IpHead)->Dst,
465 sizeof (IP4_ADDR)
466 );
467 } else {
468 CopyMem (
469 &DestIp,
470 &((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
471 sizeof (EFI_IP_ADDRESS)
472 );
473 }
474
475 //
476 // Find the SAD entry in the spd.sas list according to the dest address.
477 //
478 Entry = IpSecLookupSadBySpd (&SpdEntry->Data->Sas, &DestIp, IpVersion);
479
480 if (Entry == NULL) {
481
482 if (OldLastHead != IP6_ICMP ||
483 (OldLastHead == IP6_ICMP && *IpPayload == ICMP_V6_ECHO_REQUEST)
484 ) {
485 //
486 // Start ike negotiation process except the request packet of ping.
487 //
488 if (SpdEntry->Data->ProcessingPolicy->Mode == EfiIPsecTunnel) {
489 IkeNegotiate (
490 UdpService,
491 SpdEntry,
492 &SpdEntry->Data->ProcessingPolicy->TunnelOption->RemoteTunnelAddress
493 );
494 } else {
495 IkeNegotiate (
496 UdpService,
497 SpdEntry,
498 &DestIp
499 );
500 }
501
502 }
503
504 return EFI_NOT_READY;
505 }
506
507 Data = Entry->Data;
508
509 if (!Data->ManualSet) {
510 if (Data->ESNEnabled) {
511 //
512 // Validate the 64bit sn number if 64bit sn enabled.
513 //
514 if ((UINT64) (Data->SequenceNumber + 1) == 0) {
515 //
516 // TODO: Re-negotiate SA
517 //
518 return EFI_DEVICE_ERROR;
519 }
520 } else {
521 //
522 // Validate the 32bit sn number if 64bit sn disabled.
523 //
524 SeqNum32 = (UINT32) Data->SequenceNumber;
525 if ((UINT32) (SeqNum32 + 1) == 0) {
526 //
527 // TODO: Re-negotiate SA
528 //
529 return EFI_DEVICE_ERROR;
530 }
531 }
532 }
533
534 *SadEntry = Entry;
535
536 return EFI_SUCCESS;
537 }
538
539 /**
540 Find a PAD entry according to a remote IP address.
541
542 @param[in] IpVersion The version of IP.
543 @param[in] IpAddr Points to remote IP address.
544
545 @return the pointer of related PAD entry.
546
547 **/
548 IPSEC_PAD_ENTRY *
549 IpSecLookupPadEntry (
550 IN UINT8 IpVersion,
551 IN EFI_IP_ADDRESS *IpAddr
552 )
553 {
554 LIST_ENTRY *PadList;
555 LIST_ENTRY *Entry;
556 EFI_IP_ADDRESS_INFO *IpAddrInfo;
557 IPSEC_PAD_ENTRY *PadEntry;
558
559 PadList = &mConfigData[IPsecConfigDataTypePad];
560
561 for (Entry = PadList->ForwardLink; Entry != PadList; Entry = Entry->ForwardLink) {
562
563 PadEntry = IPSEC_PAD_ENTRY_FROM_LIST (Entry);
564 IpAddrInfo = &PadEntry->Id->Id.IpAddress;
565 //
566 // Find the right pad entry which contain the appointed dest addr.
567 //
568 if (IpSecMatchIpAddress (IpVersion, IpAddr, IpAddrInfo, 1)) {
569 return PadEntry;
570 }
571 }
572
573 return NULL;
574 }
575
576 /**
577 Check if the specified IP packet can be serviced by this SPD entry.
578
579 @param[in] SpdEntry Point to SPD entry.
580 @param[in] IpVersion Version of IP.
581 @param[in] IpHead Point to IP header.
582 @param[in] IpPayload Point to IP payload.
583 @param[in] Protocol The Last protocol of IP packet.
584 @param[in] IsOutbound Traffic direction.
585 @param[out] Action The support action of SPD entry.
586
587 @retval EFI_SUCCESS Find the related SPD.
588 @retval EFI_NOT_FOUND Not find the related SPD entry;
589
590 **/
591 EFI_STATUS
592 IpSecLookupSpdEntry (
593 IN IPSEC_SPD_ENTRY *SpdEntry,
594 IN UINT8 IpVersion,
595 IN VOID *IpHead,
596 IN UINT8 *IpPayload,
597 IN UINT8 Protocol,
598 IN BOOLEAN IsOutbound,
599 OUT EFI_IPSEC_ACTION *Action
600 )
601 {
602 EFI_IPSEC_SPD_SELECTOR *SpdSel;
603 IP4_HEAD *Ip4;
604 EFI_IP6_HEADER *Ip6;
605 EFI_IP_ADDRESS SrcAddr;
606 EFI_IP_ADDRESS DstAddr;
607 BOOLEAN SpdMatch;
608
609 ASSERT (SpdEntry != NULL);
610 SpdSel = SpdEntry->Selector;
611 Ip4 = (IP4_HEAD *) IpHead;
612 Ip6 = (EFI_IP6_HEADER *) IpHead;
613
614 ZeroMem (&SrcAddr, sizeof (EFI_IP_ADDRESS));
615 ZeroMem (&DstAddr, sizeof (EFI_IP_ADDRESS));
616
617 //
618 // Parse the source and destination address from ip header.
619 //
620 if (IpVersion == IP_VERSION_4) {
621 CopyMem (&SrcAddr, &Ip4->Src, sizeof (IP4_ADDR));
622 CopyMem (&DstAddr, &Ip4->Dst, sizeof (IP4_ADDR));
623 } else {
624 CopyMem (&SrcAddr, &Ip6->SourceAddress, sizeof (EFI_IPv6_ADDRESS));
625 CopyMem (&DstAddr, &Ip6->DestinationAddress, sizeof (EFI_IPv6_ADDRESS));
626 }
627 //
628 // Check the local and remote addresses for outbound traffic
629 //
630 SpdMatch = (BOOLEAN)(IsOutbound &&
631 IpSecMatchIpAddress (
632 IpVersion,
633 &SrcAddr,
634 SpdSel->LocalAddress,
635 SpdSel->LocalAddressCount
636 ) &&
637 IpSecMatchIpAddress (
638 IpVersion,
639 &DstAddr,
640 SpdSel->RemoteAddress,
641 SpdSel->RemoteAddressCount
642 )
643 );
644
645 //
646 // Check the local and remote addresses for inbound traffic
647 //
648 SpdMatch = (BOOLEAN) (SpdMatch ||
649 (!IsOutbound &&
650 IpSecMatchIpAddress (
651 IpVersion,
652 &DstAddr,
653 SpdSel->LocalAddress,
654 SpdSel->LocalAddressCount
655 ) &&
656 IpSecMatchIpAddress (
657 IpVersion,
658 &SrcAddr,
659 SpdSel->RemoteAddress,
660 SpdSel->RemoteAddressCount
661 )
662 ));
663
664 //
665 // Check the next layer protocol and local and remote ports.
666 //
667 SpdMatch = (BOOLEAN) (SpdMatch &&
668 IpSecMatchNextLayerProtocol (
669 Protocol,
670 IpPayload,
671 SpdSel->NextLayerProtocol,
672 SpdSel->LocalPort,
673 SpdSel->RemotePort,
674 IsOutbound
675 )
676 );
677
678 if (SpdMatch) {
679 //
680 // Find the right SPD entry if match the 5 key elements.
681 //
682 *Action = SpdEntry->Data->Action;
683 return EFI_SUCCESS;
684 }
685
686 return EFI_NOT_FOUND;
687 }
688
689 /**
690 The call back function of NetbufFromExt.
691
692 @param[in] Arg The argument passed from the caller.
693
694 **/
695 VOID
696 EFIAPI
697 IpSecOnRecyclePacket (
698 IN VOID *Arg
699 )
700 {
701 }
702
703 /**
704 This is a Notification function. It is called when the related IP6_TXTOKEN_WRAP
705 is released.
706
707 @param[in] Event The related event.
708 @param[in] Context The data passed by the caller.
709
710 **/
711 VOID
712 EFIAPI
713 IpSecRecycleCallback (
714 IN EFI_EVENT Event,
715 IN VOID *Context
716 )
717 {
718 IPSEC_RECYCLE_CONTEXT *RecycleContext;
719
720 RecycleContext = (IPSEC_RECYCLE_CONTEXT *) Context;
721
722 if (RecycleContext->FragmentTable != NULL) {
723 FreePool (RecycleContext->FragmentTable);
724 }
725
726 if (RecycleContext->PayloadBuffer != NULL) {
727 FreePool (RecycleContext->PayloadBuffer);
728 }
729
730 FreePool (RecycleContext);
731 gBS->CloseEvent (Event);
732
733 }
734
735 /**
736 Calculate the extension hader of IP. The return length only doesn't contain
737 the fixed IP header length.
738
739 @param[in] IpHead Points to an IP head to be calculated.
740 @param[in] LastHead Points to the last header of the IP header.
741
742 @return The length of the extension header.
743
744 **/
745 UINT16
746 IpSecGetPlainExtHeadSize (
747 IN VOID *IpHead,
748 IN UINT8 *LastHead
749 )
750 {
751 UINT16 Size;
752
753 Size = (UINT16) (LastHead - (UINT8 *) IpHead);
754
755 if (Size > sizeof (EFI_IP6_HEADER)) {
756 //
757 // * (LastHead+1) point the last header's length but not include the first
758 // 8 octers, so this formluation add 8 at the end.
759 //
760 Size = (UINT16) (Size - sizeof (EFI_IP6_HEADER) + *(LastHead + 1) + 8);
761 } else {
762 Size = 0;
763 }
764
765 return Size;
766 }
767
768 /**
769 Verify if the Authentication payload is correct.
770
771 @param[in] EspBuffer Points to the ESP wrapped buffer.
772 @param[in] EspSize The size of the ESP wrapped buffer.
773 @param[in] SadEntry The related SAD entry to store the authentication
774 algorithm key.
775 @param[in] IcvSize The length of ICV.
776
777 @retval EFI_SUCCESS The authentication data is correct.
778 @retval EFI_ACCESS_DENIED The authentication data is not correct.
779
780 **/
781 EFI_STATUS
782 IpSecEspAuthVerifyPayload (
783 IN UINT8 *EspBuffer,
784 IN UINTN EspSize,
785 IN IPSEC_SAD_ENTRY *SadEntry,
786 IN UINTN IcvSize
787 )
788 {
789 EFI_STATUS Status;
790 UINTN AuthSize;
791 UINT8 IcvBuffer[12];
792 HASH_DATA_FRAGMENT HashFragment[1];
793
794 //
795 // Calculate the size of authentication payload.
796 //
797 AuthSize = EspSize - IcvSize;
798
799 //
800 // Calculate the icv buffer and size of the payload.
801 //
802 HashFragment[0].Data = EspBuffer;
803 HashFragment[0].DataSize = AuthSize;
804
805 Status = IpSecCryptoIoHmac (
806 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId,
807 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKey,
808 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKeyLength,
809 HashFragment,
810 1,
811 IcvBuffer,
812 IcvSize
813 );
814 if (EFI_ERROR (Status)) {
815 return Status;
816 }
817
818 //
819 // Compare the calculated icv and the appended original icv.
820 //
821 if (CompareMem (EspBuffer + AuthSize, IcvBuffer, IcvSize) == 0) {
822 return EFI_SUCCESS;
823 }
824
825 DEBUG ((DEBUG_ERROR, "Error auth verify payload\n"));
826 return EFI_ACCESS_DENIED;
827 }
828
829 /**
830 Search the related SAD entry by the input .
831
832 @param[in] IpHead The pointer to IP header.
833 @param[in] IpVersion The version of IP (IP4 or IP6).
834 @param[in] Spi The SPI used to search the related SAD entry.
835
836
837 @retval NULL Not find the related SAD entry.
838 @retval IPSEC_SAD_ENTRY Return the related SAD entry.
839
840 **/
841 IPSEC_SAD_ENTRY *
842 IpSecFoundSadFromInboundPacket (
843 UINT8 *IpHead,
844 UINT8 IpVersion,
845 UINT32 Spi
846 )
847 {
848 EFI_IP_ADDRESS DestIp;
849
850 //
851 // Parse destination address from ip header.
852 //
853 ZeroMem (&DestIp, sizeof (EFI_IP_ADDRESS));
854 if (IpVersion == IP_VERSION_4) {
855 CopyMem (
856 &DestIp,
857 &((IP4_HEAD *) IpHead)->Dst,
858 sizeof (IP4_ADDR)
859 );
860 } else {
861 CopyMem (
862 &DestIp,
863 &((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
864 sizeof (EFI_IPv6_ADDRESS)
865 );
866 }
867
868 //
869 // Lookup SAD entry according to the spi and dest address.
870 //
871 return IpSecLookupSadBySpi (Spi, &DestIp, IpVersion);
872 }
873
874 /**
875 Validate the IP6 extension header format for both the packets we received
876 and that we will transmit.
877
878 @param[in] NextHeader The next header field in IPv6 basic header.
879 @param[in] ExtHdrs The first bye of the option.
880 @param[in] ExtHdrsLen The length of the whole option.
881 @param[out] LastHeader The pointer of NextHeader of the last extension
882 header processed by IP6.
883 @param[out] RealExtsLen The length of extension headers processed by IP6 layer.
884 This is an optional parameter that may be NULL.
885
886 @retval TRUE The option is properly formated.
887 @retval FALSE The option is malformated.
888
889 **/
890 BOOLEAN
891 IpSecIsIp6ExtsValid (
892 IN UINT8 *NextHeader,
893 IN UINT8 *ExtHdrs,
894 IN UINT32 ExtHdrsLen,
895 OUT UINT8 **LastHeader,
896 OUT UINT32 *RealExtsLen OPTIONAL
897 )
898 {
899 UINT32 Pointer;
900 UINT8 *Option;
901 UINT8 OptionLen;
902 BOOLEAN Flag;
903 UINT8 CountD;
904 UINT8 CountF;
905 UINT8 CountA;
906
907 if (RealExtsLen != NULL) {
908 *RealExtsLen = 0;
909 }
910
911 *LastHeader = NextHeader;
912
913 if (ExtHdrs == NULL && ExtHdrsLen == 0) {
914 return TRUE;
915 }
916
917 if ((ExtHdrs == NULL && ExtHdrsLen != 0) || (ExtHdrs != NULL && ExtHdrsLen == 0)) {
918 return FALSE;
919 }
920
921 Pointer = 0;
922 Flag = FALSE;
923 CountD = 0;
924 CountF = 0;
925 CountA = 0;
926
927 while (Pointer <= ExtHdrsLen) {
928
929 switch (*NextHeader) {
930 case IP6_HOP_BY_HOP:
931 if (Pointer != 0) {
932 return FALSE;
933 }
934
935 Flag = TRUE;
936
937 //
938 // Fall through
939 //
940 case IP6_DESTINATION:
941 if (*NextHeader == IP6_DESTINATION) {
942 CountD++;
943 }
944
945 if (CountD > 2) {
946 return FALSE;
947 }
948
949 NextHeader = ExtHdrs + Pointer;
950
951 Pointer++;
952 Option = ExtHdrs + Pointer;
953 OptionLen = (UINT8) ((*Option + 1) * 8 - 2);
954 Option++;
955 Pointer++;
956
957 Pointer = Pointer + OptionLen;
958 break;
959
960 case IP6_FRAGMENT:
961 if (++CountF > 1) {
962 return FALSE;
963 }
964 //
965 // RFC2402, AH header should after fragment header.
966 //
967 if (CountA > 1) {
968 return FALSE;
969 }
970
971 NextHeader = ExtHdrs + Pointer;
972 Pointer = Pointer + 8;
973 break;
974
975 case IP6_AH:
976 if (++CountA > 1) {
977 return FALSE;
978 }
979
980 Option = ExtHdrs + Pointer;
981 NextHeader = Option;
982 Option++;
983 //
984 // RFC2402, Payload length is specified in 32-bit words, minus "2".
985 //
986 OptionLen = (UINT8) ((*Option + 2) * 4);
987 Pointer = Pointer + OptionLen;
988 break;
989
990 default:
991 *LastHeader = NextHeader;
992 if (RealExtsLen != NULL) {
993 *RealExtsLen = Pointer;
994 }
995
996 return TRUE;
997 }
998 }
999
1000 *LastHeader = NextHeader;
1001
1002 if (RealExtsLen != NULL) {
1003 *RealExtsLen = Pointer;
1004 }
1005
1006 return TRUE;
1007 }
1008
1009 /**
1010 The actual entry to process the tunnel header and inner header for tunnel mode
1011 outbound traffic.
1012
1013 This function is the subfunction of IpSecEspInboundPacket(). It change the destination
1014 Ip address to the station address and recalculate the uplayyer's checksum.
1015
1016
1017 @param[in, out] IpHead Points to the IP header containing the ESP header
1018 to be trimed on input, and without ESP header
1019 on return.
1020 @param[in] IpPayload The decrypted Ip payload. It start from the inner
1021 header.
1022 @param[in] IpVersion The version of IP.
1023 @param[in] SadData Pointer of the relevant SAD.
1024 @param[in, out] LastHead The Last Header in IP header on return.
1025
1026 **/
1027 VOID
1028 IpSecTunnelInboundPacket (
1029 IN OUT UINT8 *IpHead,
1030 IN UINT8 *IpPayload,
1031 IN UINT8 IpVersion,
1032 IN IPSEC_SAD_DATA *SadData,
1033 IN OUT UINT8 *LastHead
1034 )
1035 {
1036 EFI_UDP_HEADER *UdpHeader;
1037 TCP_HEAD *TcpHeader;
1038 UINT16 *Checksum;
1039 UINT16 PseudoChecksum;
1040 UINT16 PacketChecksum;
1041 UINT32 OptionLen;
1042 IP6_ICMP_HEAD *Icmp6Head;
1043
1044 Checksum = NULL;
1045
1046 if (IpVersion == IP_VERSION_4) {
1047 //
1048 // Zero OutIP header use this to indicate the input packet is under
1049 // IPsec Tunnel protected.
1050 //
1051 ZeroMem (
1052 (IP4_HEAD *)IpHead,
1053 sizeof (IP4_HEAD)
1054 );
1055 CopyMem (
1056 &((IP4_HEAD *)IpPayload)->Dst,
1057 &SadData->TunnelDestAddress.v4,
1058 sizeof (EFI_IPv4_ADDRESS)
1059 );
1060
1061 //
1062 // Recalculate IpHeader Checksum
1063 //
1064 if (((IP4_HEAD *)(IpPayload))->Checksum != 0 ) {
1065 ((IP4_HEAD *)(IpPayload))->Checksum = 0;
1066 ((IP4_HEAD *)(IpPayload))->Checksum = (UINT16) (~NetblockChecksum (
1067 (UINT8 *)IpPayload,
1068 ((IP4_HEAD *)IpPayload)->HeadLen << 2
1069 ));
1070
1071
1072 }
1073
1074 //
1075 // Recalcualte PseudoChecksum
1076 //
1077 switch (((IP4_HEAD *)IpPayload)->Protocol) {
1078 case EFI_IP_PROTO_UDP :
1079 UdpHeader = (EFI_UDP_HEADER *)((UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2));
1080 Checksum = & UdpHeader->Checksum;
1081 *Checksum = 0;
1082 break;
1083
1084 case EFI_IP_PROTO_TCP:
1085 TcpHeader = (TCP_HEAD *) ((UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2));
1086 Checksum = &TcpHeader->Checksum;
1087 *Checksum = 0;
1088 break;
1089
1090 default:
1091 break;
1092 }
1093 PacketChecksum = NetblockChecksum (
1094 (UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2),
1095 NTOHS (((IP4_HEAD *)IpPayload)->TotalLen) - (((IP4_HEAD *)IpPayload)->HeadLen << 2)
1096 );
1097 PseudoChecksum = NetPseudoHeadChecksum (
1098 ((IP4_HEAD *)IpPayload)->Src,
1099 ((IP4_HEAD *)IpPayload)->Dst,
1100 ((IP4_HEAD *)IpPayload)->Protocol,
1101 0
1102 );
1103
1104 if (Checksum != NULL) {
1105 *Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
1106 *Checksum = (UINT16) ~(NetAddChecksum (*Checksum, HTONS((UINT16)(NTOHS (((IP4_HEAD *)IpPayload)->TotalLen) - (((IP4_HEAD *)IpPayload)->HeadLen << 2)))));
1107 }
1108 }else {
1109 //
1110 // Zero OutIP header use this to indicate the input packet is under
1111 // IPsec Tunnel protected.
1112 //
1113 ZeroMem (
1114 IpHead,
1115 sizeof (EFI_IP6_HEADER)
1116 );
1117 CopyMem (
1118 &((EFI_IP6_HEADER*)IpPayload)->DestinationAddress,
1119 &SadData->TunnelDestAddress.v6,
1120 sizeof (EFI_IPv6_ADDRESS)
1121 );
1122
1123 //
1124 // Get the Extension Header and Header length.
1125 //
1126 IpSecIsIp6ExtsValid (
1127 &((EFI_IP6_HEADER *)IpPayload)->NextHeader,
1128 IpPayload + sizeof (EFI_IP6_HEADER),
1129 ((EFI_IP6_HEADER *)IpPayload)->PayloadLength,
1130 &LastHead,
1131 &OptionLen
1132 );
1133
1134 //
1135 // Recalcualte PseudoChecksum
1136 //
1137 switch (*LastHead) {
1138 case EFI_IP_PROTO_UDP:
1139 UdpHeader = (EFI_UDP_HEADER *)((UINT8 *)IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
1140 Checksum = &UdpHeader->Checksum;
1141 *Checksum = 0;
1142 break;
1143
1144 case EFI_IP_PROTO_TCP:
1145 TcpHeader = (TCP_HEAD *)(IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
1146 Checksum = &TcpHeader->Checksum;
1147 *Checksum = 0;
1148 break;
1149
1150 case IP6_ICMP:
1151 Icmp6Head = (IP6_ICMP_HEAD *) (IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
1152 Checksum = &Icmp6Head->Checksum;
1153 *Checksum = 0;
1154 break;
1155 }
1156 PacketChecksum = NetblockChecksum (
1157 IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen,
1158 NTOHS(((EFI_IP6_HEADER *)IpPayload)->PayloadLength) - OptionLen
1159 );
1160 PseudoChecksum = NetIp6PseudoHeadChecksum (
1161 &((EFI_IP6_HEADER *)IpPayload)->SourceAddress,
1162 &((EFI_IP6_HEADER *)IpPayload)->DestinationAddress,
1163 *LastHead,
1164 0
1165 );
1166
1167 if (Checksum != NULL) {
1168 *Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
1169 *Checksum = (UINT16) ~(NetAddChecksum (
1170 *Checksum,
1171 HTONS ((UINT16)((NTOHS (((EFI_IP6_HEADER *)(IpPayload))->PayloadLength)) - OptionLen))
1172 ));
1173 }
1174 }
1175 }
1176
1177 /**
1178 The actual entry to create inner header for tunnel mode inbound traffic.
1179
1180 This function is the subfunction of IpSecEspOutboundPacket(). It create
1181 the sending packet by encrypting its payload and inserting ESP header in the orginal
1182 IP header, then return the IpHeader and IPsec protected Fragmentable.
1183
1184 @param[in, out] IpHead Points to IP header containing the orginal IP header
1185 to be processed on input, and inserted ESP header
1186 on return.
1187 @param[in] IpVersion The version of IP.
1188 @param[in] SadData The related SAD data.
1189 @param[in, out] LastHead The Last Header in IP header.
1190 @param[in] OptionsBuffer Pointer to the options buffer.
1191 @param[in] OptionsLength Length of the options buffer.
1192 @param[in, out] FragmentTable Pointer to a list of fragments to be protected by
1193 IPsec on input, and with IPsec protected
1194 on return.
1195 @param[in] FragmentCount The number of fragments.
1196
1197 @retval EFI_SUCCESS The operation was successful.
1198 @retval EFI_OUT_OF_RESOURCES The required system resources can't be allocated.
1199
1200 **/
1201 UINT8 *
1202 IpSecTunnelOutboundPacket (
1203 IN OUT UINT8 *IpHead,
1204 IN UINT8 IpVersion,
1205 IN IPSEC_SAD_DATA *SadData,
1206 IN OUT UINT8 *LastHead,
1207 IN VOID **OptionsBuffer,
1208 IN UINT32 *OptionsLength,
1209 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
1210 IN UINT32 *FragmentCount
1211 )
1212 {
1213 UINT8 *InnerHead;
1214 NET_BUF *Packet;
1215 UINT16 PacketChecksum;
1216 UINT16 *Checksum;
1217 UINT16 PseudoChecksum;
1218 IP6_ICMP_HEAD *IcmpHead;
1219
1220 Checksum = NULL;
1221 if (OptionsLength == NULL) {
1222 return NULL;
1223 }
1224
1225 if (IpVersion == IP_VERSION_4) {
1226 InnerHead = AllocateZeroPool (sizeof (IP4_HEAD) + *OptionsLength);
1227 ASSERT (InnerHead != NULL);
1228 CopyMem (
1229 InnerHead,
1230 IpHead,
1231 sizeof (IP4_HEAD)
1232 );
1233 CopyMem (
1234 InnerHead + sizeof (IP4_HEAD),
1235 *OptionsBuffer,
1236 *OptionsLength
1237 );
1238 } else {
1239 InnerHead = AllocateZeroPool (sizeof (EFI_IP6_HEADER) + *OptionsLength);
1240 CopyMem (
1241 InnerHead,
1242 IpHead,
1243 sizeof (EFI_IP6_HEADER)
1244 );
1245 CopyMem (
1246 InnerHead + sizeof (EFI_IP6_HEADER),
1247 *OptionsBuffer,
1248 *OptionsLength
1249 );
1250 }
1251 if (OptionsBuffer != NULL) {
1252 if (*OptionsLength != 0) {
1253
1254 *OptionsBuffer = NULL;
1255 *OptionsLength = 0;
1256 }
1257 }
1258
1259 //
1260 // 2. Reassamlbe Fragment into Packet
1261 //
1262 Packet = NetbufFromExt (
1263 (NET_FRAGMENT *)(*FragmentTable),
1264 *FragmentCount,
1265 0,
1266 0,
1267 IpSecOnRecyclePacket,
1268 NULL
1269 );
1270 ASSERT (Packet != NULL);
1271 //
1272 // 3. Check the Last Header, if it is TCP, UDP or ICMP recalcualate its pesudo
1273 // CheckSum.
1274 //
1275 switch (*LastHead) {
1276 case EFI_IP_PROTO_UDP:
1277 Packet->Udp = (EFI_UDP_HEADER *) NetbufGetByte (Packet, 0, 0);
1278 ASSERT (Packet->Udp != NULL);
1279 Checksum = &Packet->Udp->Checksum;
1280 *Checksum = 0;
1281 break;
1282
1283 case EFI_IP_PROTO_TCP:
1284 Packet->Tcp = (TCP_HEAD *) NetbufGetByte (Packet, 0, 0);
1285 ASSERT (Packet->Tcp != NULL);
1286 Checksum = &Packet->Tcp->Checksum;
1287 *Checksum = 0;
1288 break;
1289
1290 case IP6_ICMP:
1291 IcmpHead = (IP6_ICMP_HEAD *) NetbufGetByte (Packet, 0, NULL);
1292 ASSERT (IcmpHead != NULL);
1293 Checksum = &IcmpHead->Checksum;
1294 *Checksum = 0;
1295 break;
1296
1297 default:
1298 break;
1299 }
1300
1301 PacketChecksum = NetbufChecksum (Packet);
1302
1303 if (IpVersion == IP_VERSION_4) {
1304 //
1305 // Replace the source address of Inner Header.
1306 //
1307 CopyMem (
1308 &((IP4_HEAD *)InnerHead)->Src,
1309 &SadData->SpdSelector->LocalAddress[0].Address.v4,
1310 sizeof (EFI_IPv4_ADDRESS)
1311 );
1312
1313 PacketChecksum = NetbufChecksum (Packet);
1314 PseudoChecksum = NetPseudoHeadChecksum (
1315 ((IP4_HEAD *)InnerHead)->Src,
1316 ((IP4_HEAD *)InnerHead)->Dst,
1317 *LastHead,
1318 0
1319 );
1320
1321 } else {
1322 //
1323 // Replace the source address of Inner Header.
1324 //
1325 CopyMem (
1326 &((EFI_IP6_HEADER *)InnerHead)->SourceAddress,
1327 &(SadData->SpdSelector->LocalAddress[0].Address.v6),
1328 sizeof (EFI_IPv6_ADDRESS)
1329 );
1330 PacketChecksum = NetbufChecksum (Packet);
1331 PseudoChecksum = NetIp6PseudoHeadChecksum (
1332 &((EFI_IP6_HEADER *)InnerHead)->SourceAddress,
1333 &((EFI_IP6_HEADER *)InnerHead)->DestinationAddress,
1334 *LastHead,
1335 0
1336 );
1337
1338 }
1339 if (Checksum != NULL) {
1340 *Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
1341 *Checksum = (UINT16) ~(NetAddChecksum ((UINT16)*Checksum, HTONS ((UINT16) Packet->TotalSize)));
1342 }
1343
1344 if (Packet != NULL) {
1345 NetbufFree (Packet);
1346 }
1347 return InnerHead;
1348 }
1349
1350 /**
1351 The actual entry to relative function processes the inbound traffic of ESP header.
1352
1353 This function is the subfunction of IpSecProtectInboundPacket(). It checks the
1354 received packet security property and trim the ESP header and then returns without
1355 an IPsec protected IP Header and FramgmentTable.
1356
1357 @param[in] IpVersion The version of IP.
1358 @param[in, out] IpHead Points to the IP header containing the ESP header
1359 to be trimed on input, and without ESP header
1360 on return.
1361 @param[out] LastHead The Last Header in IP header on return.
1362 @param[in, out] OptionsBuffer Pointer to the options buffer.
1363 @param[in, out] OptionsLength Length of the options buffer.
1364 @param[in, out] FragmentTable Pointer to a list of fragments in the form of IPsec
1365 protected on input, and without IPsec protected
1366 on return.
1367 @param[in, out] FragmentCount The number of fragments.
1368 @param[out] SpdSelector Pointer to contain the address of SPD selector on return.
1369 @param[out] RecycleEvent The event for recycling of resources.
1370
1371 @retval EFI_SUCCESS The operation was successful.
1372 @retval EFI_ACCESS_DENIED One or more following conditions is TRUE:
1373 - ESP header was not found or mal-format.
1374 - The related SAD entry was not found.
1375 - The related SAD entry does not support the ESP protocol.
1376 @retval EFI_OUT_OF_RESOURCES The required system resource can't be allocated.
1377
1378 **/
1379 EFI_STATUS
1380 IpSecEspInboundPacket (
1381 IN UINT8 IpVersion,
1382 IN OUT VOID *IpHead,
1383 OUT UINT8 *LastHead,
1384 IN OUT VOID **OptionsBuffer,
1385 IN OUT UINT32 *OptionsLength,
1386 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
1387 IN OUT UINT32 *FragmentCount,
1388 OUT EFI_IPSEC_SPD_SELECTOR **SpdSelector,
1389 OUT EFI_EVENT *RecycleEvent
1390 )
1391 {
1392 EFI_STATUS Status;
1393 NET_BUF *Payload;
1394 UINTN EspSize;
1395 UINTN IvSize;
1396 UINTN BlockSize;
1397 UINTN MiscSize;
1398 UINTN PlainPayloadSize;
1399 UINTN PaddingSize;
1400 UINTN IcvSize;
1401 UINT8 *ProcessBuffer;
1402 EFI_ESP_HEADER *EspHeader;
1403 EFI_ESP_TAIL *EspTail;
1404 EFI_IPSEC_SA_ID *SaId;
1405 IPSEC_SAD_DATA *SadData;
1406 IPSEC_SAD_ENTRY *SadEntry;
1407 IPSEC_RECYCLE_CONTEXT *RecycleContext;
1408 UINT8 NextHeader;
1409 UINT16 IpSecHeadSize;
1410 UINT8 *InnerHead;
1411
1412 Status = EFI_SUCCESS;
1413 Payload = NULL;
1414 ProcessBuffer = NULL;
1415 RecycleContext = NULL;
1416 *RecycleEvent = NULL;
1417 PlainPayloadSize = 0;
1418 NextHeader = 0;
1419
1420 //
1421 // Build netbuf from fragment table first.
1422 //
1423 Payload = NetbufFromExt (
1424 (NET_FRAGMENT *) *FragmentTable,
1425 *FragmentCount,
1426 0,
1427 sizeof (EFI_ESP_HEADER),
1428 IpSecOnRecyclePacket,
1429 NULL
1430 );
1431 if (Payload == NULL) {
1432 Status = EFI_OUT_OF_RESOURCES;
1433 goto ON_EXIT;
1434 }
1435
1436 //
1437 // Get the esp size and esp header from netbuf.
1438 //
1439 EspSize = Payload->TotalSize;
1440 EspHeader = (EFI_ESP_HEADER *) NetbufGetByte (Payload, 0, NULL);
1441
1442 if (EspHeader == NULL) {
1443 Status = EFI_ACCESS_DENIED;
1444 goto ON_EXIT;
1445 }
1446
1447 //
1448 // Parse destination address from ip header and found the related SAD Entry.
1449 //
1450 SadEntry = IpSecFoundSadFromInboundPacket (
1451 IpHead,
1452 IpVersion,
1453 NTOHL (EspHeader->Spi)
1454 );
1455
1456 if (SadEntry == NULL) {
1457 Status = EFI_ACCESS_DENIED;
1458 goto ON_EXIT;
1459 }
1460
1461 SaId = SadEntry->Id;
1462 SadData = SadEntry->Data;
1463
1464 //
1465 // Only support esp protocol currently.
1466 //
1467 if (SaId->Proto != EfiIPsecESP) {
1468 Status = EFI_ACCESS_DENIED;
1469 goto ON_EXIT;
1470 }
1471
1472 if (!SadData->ManualSet) {
1473 //
1474 // TODO: Check SA lifetime and sequence number
1475 //
1476 }
1477
1478 //
1479 // Allocate buffer for decryption and authentication.
1480 //
1481 ProcessBuffer = AllocateZeroPool (EspSize);
1482 if (ProcessBuffer == NULL) {
1483 Status = EFI_OUT_OF_RESOURCES;
1484 goto ON_EXIT;
1485 }
1486
1487 NetbufCopy (Payload, 0, (UINT32) EspSize, ProcessBuffer);
1488
1489 //
1490 // Get the IcvSize for authentication and BlockSize/IvSize for Decryption.
1491 //
1492 IcvSize = IpSecGetIcvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId);
1493 IvSize = IpSecGetEncryptIvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
1494 BlockSize = IpSecGetEncryptBlockSize (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
1495
1496 //
1497 // Make sure the ESP packet is not mal-formt.
1498 // 1. Check whether the Espsize is larger than ESP header + IvSize + EspTail + IcvSize.
1499 // 2. Check whether the left payload size is multiple of IvSize.
1500 //
1501 MiscSize = sizeof (EFI_ESP_HEADER) + IvSize + IcvSize;
1502 if (EspSize <= (MiscSize + sizeof (EFI_ESP_TAIL))) {
1503 Status = EFI_ACCESS_DENIED;
1504 goto ON_EXIT;
1505 }
1506 if ((EspSize - MiscSize) % BlockSize != 0) {
1507 Status = EFI_ACCESS_DENIED;
1508 goto ON_EXIT;
1509 }
1510
1511 //
1512 // Authenticate the ESP packet.
1513 //
1514 if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
1515 Status = IpSecEspAuthVerifyPayload (
1516 ProcessBuffer,
1517 EspSize,
1518 SadEntry,
1519 IcvSize
1520 );
1521 if (EFI_ERROR (Status)) {
1522 goto ON_EXIT;
1523 }
1524 }
1525 //
1526 // Decrypt the payload by the SAD entry if it has decrypt key.
1527 //
1528 if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
1529 Status = IpSecCryptoIoDecrypt (
1530 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId,
1531 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKey,
1532 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKeyLength << 3,
1533 ProcessBuffer + sizeof (EFI_ESP_HEADER),
1534 ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize,
1535 EspSize - sizeof (EFI_ESP_HEADER) - IvSize - IcvSize,
1536 ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize
1537 );
1538 if (EFI_ERROR (Status)) {
1539 goto ON_EXIT;
1540 }
1541 }
1542
1543 //
1544 // Parse EspTail and compute the plain payload size.
1545 //
1546 EspTail = (EFI_ESP_TAIL *) (ProcessBuffer + EspSize - IcvSize - sizeof (EFI_ESP_TAIL));
1547 PaddingSize = EspTail->PaddingLength;
1548 NextHeader = EspTail->NextHeader;
1549
1550 if (EspSize <= (MiscSize + sizeof (EFI_ESP_TAIL) + PaddingSize)) {
1551 Status = EFI_ACCESS_DENIED;
1552 goto ON_EXIT;
1553 }
1554 PlainPayloadSize = EspSize - MiscSize - sizeof (EFI_ESP_TAIL) - PaddingSize;
1555
1556 //
1557 // TODO: handle anti-replay window
1558 //
1559 //
1560 // Decryption and authentication with esp has been done, so it's time to
1561 // reload the new packet, create recycle event and fixup ip header.
1562 //
1563 RecycleContext = AllocateZeroPool (sizeof (IPSEC_RECYCLE_CONTEXT));
1564 if (RecycleContext == NULL) {
1565 Status = EFI_OUT_OF_RESOURCES;
1566 goto ON_EXIT;
1567 }
1568
1569 Status = gBS->CreateEvent (
1570 EVT_NOTIFY_SIGNAL,
1571 TPL_NOTIFY,
1572 IpSecRecycleCallback,
1573 RecycleContext,
1574 RecycleEvent
1575 );
1576 if (EFI_ERROR (Status)) {
1577 goto ON_EXIT;
1578 }
1579
1580 //
1581 // The caller will take responsible to handle the original fragment table
1582 //
1583 *FragmentTable = AllocateZeroPool (sizeof (EFI_IPSEC_FRAGMENT_DATA));
1584 if (*FragmentTable == NULL) {
1585 Status = EFI_OUT_OF_RESOURCES;
1586 goto ON_EXIT;
1587 }
1588
1589 RecycleContext->PayloadBuffer = ProcessBuffer;
1590 RecycleContext->FragmentTable = *FragmentTable;
1591
1592 //
1593 // If Tunnel, recalculate upper-layyer PesudoCheckSum and trim the out
1594 //
1595 if (SadData->Mode == EfiIPsecTunnel) {
1596 InnerHead = ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize;
1597 IpSecTunnelInboundPacket (
1598 IpHead,
1599 InnerHead,
1600 IpVersion,
1601 SadData,
1602 LastHead
1603 );
1604
1605 if (IpVersion == IP_VERSION_4) {
1606 (*FragmentTable)[0].FragmentBuffer = InnerHead ;
1607 (*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
1608
1609 }else {
1610 (*FragmentTable)[0].FragmentBuffer = InnerHead;
1611 (*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
1612 }
1613 } else {
1614 (*FragmentTable)[0].FragmentBuffer = ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize;
1615 (*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
1616 }
1617
1618 *FragmentCount = 1;
1619
1620 //
1621 // Update the total length field in ip header since processed by esp.
1622 //
1623 if (!SadData->Mode == EfiIPsecTunnel) {
1624 if (IpVersion == IP_VERSION_4) {
1625 ((IP4_HEAD *) IpHead)->TotalLen = HTONS ((UINT16) ((((IP4_HEAD *) IpHead)->HeadLen << 2) + PlainPayloadSize));
1626 } else {
1627 IpSecHeadSize = IpSecGetPlainExtHeadSize (IpHead, LastHead);
1628 ((EFI_IP6_HEADER *) IpHead)->PayloadLength = HTONS ((UINT16)(IpSecHeadSize + PlainPayloadSize));
1629 }
1630 //
1631 // Update the next layer field in ip header since esp header inserted.
1632 //
1633 *LastHead = NextHeader;
1634 }
1635
1636
1637 //
1638 // Update the SPD association of the SAD entry.
1639 //
1640 *SpdSelector = SadData->SpdSelector;
1641
1642 ON_EXIT:
1643 if (Payload != NULL) {
1644 NetbufFree (Payload);
1645 }
1646
1647 if (EFI_ERROR (Status)) {
1648 if (ProcessBuffer != NULL) {
1649 FreePool (ProcessBuffer);
1650 }
1651
1652 if (RecycleContext != NULL) {
1653 FreePool (RecycleContext);
1654 }
1655
1656 if (*RecycleEvent != NULL) {
1657 gBS->CloseEvent (*RecycleEvent);
1658 }
1659 }
1660
1661 return Status;
1662 }
1663
1664 /**
1665 The actual entry to the relative function processes the output traffic using the ESP protocol.
1666
1667 This function is the subfunction of IpSecProtectOutboundPacket(). It protected
1668 the sending packet by encrypting its payload and inserting ESP header in the orginal
1669 IP header, then return the IpHeader and IPsec protected Fragmentable.
1670
1671 @param[in] IpVersion The version of IP.
1672 @param[in, out] IpHead Points to IP header containing the orginal IP header
1673 to be processed on input, and inserted ESP header
1674 on return.
1675 @param[in, out] LastHead The Last Header in IP header.
1676 @param[in, out] OptionsBuffer Pointer to the options buffer.
1677 @param[in, out] OptionsLength Length of the options buffer.
1678 @param[in, out] FragmentTable Pointer to a list of fragments to be protected by
1679 IPsec on input, and with IPsec protected
1680 on return.
1681 @param[in, out] FragmentCount The number of fragments.
1682 @param[in] SadEntry The related SAD entry.
1683 @param[out] RecycleEvent The event for recycling of resources.
1684
1685 @retval EFI_SUCCESS The operation was successful.
1686 @retval EFI_OUT_OF_RESOURCES The required system resources can't be allocated.
1687
1688 **/
1689 EFI_STATUS
1690 IpSecEspOutboundPacket (
1691 IN UINT8 IpVersion,
1692 IN OUT VOID *IpHead,
1693 IN OUT UINT8 *LastHead,
1694 IN OUT VOID **OptionsBuffer,
1695 IN OUT UINT32 *OptionsLength,
1696 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
1697 IN OUT UINT32 *FragmentCount,
1698 IN IPSEC_SAD_ENTRY *SadEntry,
1699 OUT EFI_EVENT *RecycleEvent
1700 )
1701 {
1702 EFI_STATUS Status;
1703 UINTN Index;
1704 EFI_IPSEC_SA_ID *SaId;
1705 IPSEC_SAD_DATA *SadData;
1706 IPSEC_RECYCLE_CONTEXT *RecycleContext;
1707 UINT8 *ProcessBuffer;
1708 UINTN BytesCopied;
1709 INTN EncryptBlockSize;// Size of encryption block, 4 bytes aligned and >= 4
1710 UINTN EspSize; // Total size of esp wrapped ip payload
1711 UINTN IvSize; // Size of IV, optional, might be 0
1712 UINTN PlainPayloadSize;// Original IP payload size
1713 UINTN PaddingSize; // Size of padding
1714 UINTN EncryptSize; // Size of data to be encrypted, start after IV and
1715 // stop before ICV
1716 UINTN IcvSize; // Size of ICV, optional, might be 0
1717 UINT8 *RestOfPayload; // Start of Payload after IV
1718 UINT8 *Padding; // Start address of padding
1719 EFI_ESP_HEADER *EspHeader; // Start address of ESP frame
1720 EFI_ESP_TAIL *EspTail; // Address behind padding
1721 UINT8 *InnerHead;
1722 HASH_DATA_FRAGMENT HashFragment[1];
1723
1724 Status = EFI_ACCESS_DENIED;
1725 SaId = SadEntry->Id;
1726 SadData = SadEntry->Data;
1727 ProcessBuffer = NULL;
1728 RecycleContext = NULL;
1729 *RecycleEvent = NULL;
1730 InnerHead = NULL;
1731
1732 if (!SadData->ManualSet &&
1733 SadData->AlgoInfo.EspAlgoInfo.EncKey == NULL &&
1734 SadData->AlgoInfo.EspAlgoInfo.AuthKey == NULL
1735 ) {
1736 //
1737 // Invalid manual SAD entry configuration.
1738 //
1739 goto ON_EXIT;
1740 }
1741
1742 //
1743 // Create OutHeader according to Inner Header
1744 //
1745 if (SadData->Mode == EfiIPsecTunnel) {
1746 InnerHead = IpSecTunnelOutboundPacket (
1747 IpHead,
1748 IpVersion,
1749 SadData,
1750 LastHead,
1751 OptionsBuffer,
1752 OptionsLength,
1753 FragmentTable,
1754 FragmentCount
1755 );
1756
1757 if (InnerHead == NULL) {
1758 return EFI_INVALID_PARAMETER;
1759 }
1760
1761 }
1762
1763 //
1764 // Calculate enctrypt block size, need iv by default and 4 bytes alignment.
1765 //
1766 EncryptBlockSize = 4;
1767
1768 if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
1769 EncryptBlockSize = IpSecGetEncryptBlockSize (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
1770
1771 if (EncryptBlockSize < 0 || (EncryptBlockSize != 1 && EncryptBlockSize % 4 != 0)) {
1772 goto ON_EXIT;
1773 }
1774 }
1775
1776 //
1777 // Calculate the plain payload size accroding to the fragment table.
1778 //
1779 PlainPayloadSize = 0;
1780 for (Index = 0; Index < *FragmentCount; Index++) {
1781 PlainPayloadSize += (*FragmentTable)[Index].FragmentLength;
1782 }
1783
1784 //
1785 // Add IPHeader size for Tunnel Mode
1786 //
1787 if (SadData->Mode == EfiIPsecTunnel) {
1788 if (IpVersion == IP_VERSION_4) {
1789 PlainPayloadSize += sizeof (IP4_HEAD);
1790 } else {
1791 PlainPayloadSize += sizeof (EFI_IP6_HEADER);
1792 }
1793 //
1794 // OPtions should be encryption into it
1795 //
1796 PlainPayloadSize += *OptionsLength;
1797 }
1798
1799
1800 //
1801 // Calculate icv size, optional by default and 4 bytes alignment.
1802 //
1803 IcvSize = 0;
1804 if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
1805 IcvSize = IpSecGetIcvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId);
1806 if (IcvSize % 4 != 0) {
1807 goto ON_EXIT;
1808 }
1809 }
1810
1811 //
1812 // Calcuate the total size of esp wrapped ip payload.
1813 //
1814 IvSize = IpSecGetEncryptIvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
1815 EncryptSize = (PlainPayloadSize + sizeof (EFI_ESP_TAIL) + EncryptBlockSize - 1) / EncryptBlockSize * EncryptBlockSize;
1816 PaddingSize = EncryptSize - PlainPayloadSize - sizeof (EFI_ESP_TAIL);
1817 EspSize = sizeof (EFI_ESP_HEADER) + IvSize + EncryptSize + IcvSize;
1818
1819 ProcessBuffer = AllocateZeroPool (EspSize);
1820 if (ProcessBuffer == NULL) {
1821 Status = EFI_OUT_OF_RESOURCES;
1822 goto ON_EXIT;
1823 }
1824
1825 //
1826 // Calculate esp header and esp tail including header, payload and padding.
1827 //
1828 EspHeader = (EFI_ESP_HEADER *) ProcessBuffer;
1829 RestOfPayload = (UINT8 *) (EspHeader + 1) + IvSize;
1830 Padding = RestOfPayload + PlainPayloadSize;
1831 EspTail = (EFI_ESP_TAIL *) (Padding + PaddingSize);
1832
1833 //
1834 // Fill the sn and spi fields in esp header.
1835 //
1836 EspHeader->SequenceNumber = HTONL ((UINT32) SadData->SequenceNumber + 1);
1837 //EspHeader->SequenceNumber = HTONL ((UINT32) SadData->SequenceNumber);
1838 EspHeader->Spi = HTONL (SaId->Spi);
1839
1840 //
1841 // Copy the rest of payload (after iv) from the original fragment buffer.
1842 //
1843 BytesCopied = 0;
1844
1845 //
1846 // For Tunnel Mode
1847 //
1848 if (SadData->Mode == EfiIPsecTunnel) {
1849 if (IpVersion == IP_VERSION_4) {
1850 //
1851 // HeadLen, Total Length
1852 //
1853 ((IP4_HEAD *)InnerHead)->HeadLen = (UINT8) ((sizeof (IP4_HEAD) + *OptionsLength) >> 2);
1854 ((IP4_HEAD *)InnerHead)->TotalLen = HTONS ((UINT16) PlainPayloadSize);
1855 ((IP4_HEAD *)InnerHead)->Checksum = 0;
1856 ((IP4_HEAD *)InnerHead)->Checksum = (UINT16) (~NetblockChecksum (
1857 (UINT8 *)InnerHead,
1858 sizeof(IP4_HEAD)
1859 ));
1860 CopyMem (
1861 RestOfPayload + BytesCopied,
1862 InnerHead,
1863 sizeof (IP4_HEAD) + *OptionsLength
1864 );
1865 BytesCopied += sizeof (IP4_HEAD) + *OptionsLength;
1866
1867 } else {
1868 ((EFI_IP6_HEADER *)InnerHead)->PayloadLength = HTONS ((UINT16) (PlainPayloadSize - sizeof (EFI_IP6_HEADER)));
1869 CopyMem (
1870 RestOfPayload + BytesCopied,
1871 InnerHead,
1872 sizeof (EFI_IP6_HEADER) + *OptionsLength
1873 );
1874 BytesCopied += sizeof (EFI_IP6_HEADER) + *OptionsLength;
1875 }
1876 }
1877
1878 for (Index = 0; Index < *FragmentCount; Index++) {
1879 CopyMem (
1880 (RestOfPayload + BytesCopied),
1881 (*FragmentTable)[Index].FragmentBuffer,
1882 (*FragmentTable)[Index].FragmentLength
1883 );
1884 BytesCopied += (*FragmentTable)[Index].FragmentLength;
1885 }
1886 //
1887 // Fill the padding buffer by natural number sequence.
1888 //
1889 for (Index = 0; Index < PaddingSize; Index++) {
1890 Padding[Index] = (UINT8) (Index + 1);
1891 }
1892 //
1893 // Fill the padding length and next header fields in esp tail.
1894 //
1895 EspTail->PaddingLength = (UINT8) PaddingSize;
1896 EspTail->NextHeader = *LastHead;
1897
1898 //
1899 // Fill the next header for Tunnel mode.
1900 //
1901 if (SadData->Mode == EfiIPsecTunnel) {
1902 if (IpVersion == IP_VERSION_4) {
1903 EspTail->NextHeader = 4;
1904 } else {
1905 EspTail->NextHeader = 41;
1906 }
1907 }
1908
1909 //
1910 // Generate iv at random by crypt library.
1911 //
1912 Status = IpSecGenerateIv (
1913 (UINT8 *) (EspHeader + 1),
1914 IvSize
1915 );
1916
1917
1918 if (EFI_ERROR (Status)) {
1919 goto ON_EXIT;
1920 }
1921
1922 //
1923 // Encryption the payload (after iv) by the SAD entry if has encrypt key.
1924 //
1925 if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
1926 Status = IpSecCryptoIoEncrypt (
1927 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId,
1928 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKey,
1929 SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKeyLength << 3,
1930 (UINT8 *)(EspHeader + 1),
1931 RestOfPayload,
1932 EncryptSize,
1933 RestOfPayload
1934 );
1935
1936 if (EFI_ERROR (Status)) {
1937 goto ON_EXIT;
1938 }
1939 }
1940
1941 //
1942 // Authenticate the esp wrapped buffer by the SAD entry if it has auth key.
1943 //
1944 if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
1945
1946 HashFragment[0].Data = ProcessBuffer;
1947 HashFragment[0].DataSize = EspSize - IcvSize;
1948 Status = IpSecCryptoIoHmac (
1949 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId,
1950 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKey,
1951 SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKeyLength,
1952 HashFragment,
1953 1,
1954 ProcessBuffer + EspSize - IcvSize,
1955 IcvSize
1956 );
1957 if (EFI_ERROR (Status)) {
1958 goto ON_EXIT;
1959 }
1960 }
1961
1962 //
1963 // Encryption and authentication with esp has been done, so it's time to
1964 // reload the new packet, create recycle event and fixup ip header.
1965 //
1966 RecycleContext = AllocateZeroPool (sizeof (IPSEC_RECYCLE_CONTEXT));
1967 if (RecycleContext == NULL) {
1968 Status = EFI_OUT_OF_RESOURCES;
1969 goto ON_EXIT;
1970 }
1971
1972 Status = gBS->CreateEvent (
1973 EVT_NOTIFY_SIGNAL,
1974 TPL_NOTIFY,
1975 IpSecRecycleCallback,
1976 RecycleContext,
1977 RecycleEvent
1978 );
1979 if (EFI_ERROR (Status)) {
1980 goto ON_EXIT;
1981 }
1982 //
1983 // Caller take responsible to handle the original fragment table.
1984 //
1985 *FragmentTable = AllocateZeroPool (sizeof (EFI_IPSEC_FRAGMENT_DATA));
1986 if (*FragmentTable == NULL) {
1987 Status = EFI_OUT_OF_RESOURCES;
1988 goto ON_EXIT;
1989 }
1990
1991 RecycleContext->FragmentTable = *FragmentTable;
1992 RecycleContext->PayloadBuffer = ProcessBuffer;
1993 (*FragmentTable)[0].FragmentBuffer = ProcessBuffer;
1994 (*FragmentTable)[0].FragmentLength = (UINT32) EspSize;
1995 *FragmentCount = 1;
1996
1997 //
1998 // Update the total length field in ip header since processed by esp.
1999 //
2000 if (IpVersion == IP_VERSION_4) {
2001 ((IP4_HEAD *) IpHead)->TotalLen = HTONS ((UINT16) ((((IP4_HEAD *) IpHead)->HeadLen << 2) + EspSize));
2002 } else {
2003 ((EFI_IP6_HEADER *) IpHead)->PayloadLength = (UINT16) (IpSecGetPlainExtHeadSize (IpHead, LastHead) + EspSize);
2004 }
2005
2006 //
2007 // If tunnel mode, it should change the outer Ip header with tunnel source address
2008 // and destination tunnel address.
2009 //
2010 if (SadData->Mode == EfiIPsecTunnel) {
2011 if (IpVersion == IP_VERSION_4) {
2012 CopyMem (
2013 &((IP4_HEAD *) IpHead)->Src,
2014 &SadData->TunnelSourceAddress.v4,
2015 sizeof (EFI_IPv4_ADDRESS)
2016 );
2017 CopyMem (
2018 &((IP4_HEAD *) IpHead)->Dst,
2019 &SadData->TunnelDestAddress.v4,
2020 sizeof (EFI_IPv4_ADDRESS)
2021 );
2022 } else {
2023 CopyMem (
2024 &((EFI_IP6_HEADER *) IpHead)->SourceAddress,
2025 &SadData->TunnelSourceAddress.v6,
2026 sizeof (EFI_IPv6_ADDRESS)
2027 );
2028 CopyMem (
2029 &((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
2030 &SadData->TunnelDestAddress.v6,
2031 sizeof (EFI_IPv6_ADDRESS)
2032 );
2033 }
2034 }
2035
2036 //
2037 // Update the next layer field in ip header since esp header inserted.
2038 //
2039 *LastHead = IPSEC_ESP_PROTOCOL;
2040
2041 //
2042 // Increase the sn number in SAD entry according to rfc4303.
2043 //
2044 SadData->SequenceNumber++;
2045
2046 ON_EXIT:
2047 if (EFI_ERROR (Status)) {
2048 if (ProcessBuffer != NULL) {
2049 FreePool (ProcessBuffer);
2050 }
2051
2052 if (RecycleContext != NULL) {
2053 FreePool (RecycleContext);
2054 }
2055
2056 if (*RecycleEvent != NULL) {
2057 gBS->CloseEvent (*RecycleEvent);
2058 }
2059 }
2060
2061 return Status;
2062 }
2063
2064 /**
2065 This function processes the inbound traffic with IPsec.
2066
2067 It checks the received packet security property, trims the ESP/AH header, and then
2068 returns without an IPsec protected IP Header and FragmentTable.
2069
2070 @param[in] IpVersion The version of IP.
2071 @param[in, out] IpHead Points to IP header containing the ESP/AH header
2072 to be trimed on input, and without ESP/AH header
2073 on return.
2074 @param[in, out] LastHead The Last Header in IP header on return.
2075 @param[in, out] OptionsBuffer Pointer to the options buffer.
2076 @param[in, out] OptionsLength Length of the options buffer.
2077 @param[in, out] FragmentTable Pointer to a list of fragments in form of IPsec
2078 protected on input, and without IPsec protected
2079 on return.
2080 @param[in, out] FragmentCount The number of fragments.
2081 @param[out] SpdEntry Pointer to contain the address of SPD entry on return.
2082 @param[out] RecycleEvent The event for recycling of resources.
2083
2084 @retval EFI_SUCCESS The operation was successful.
2085 @retval EFI_UNSUPPORTED The IPSEC protocol is not supported.
2086
2087 **/
2088 EFI_STATUS
2089 IpSecProtectInboundPacket (
2090 IN UINT8 IpVersion,
2091 IN OUT VOID *IpHead,
2092 IN OUT UINT8 *LastHead,
2093 IN OUT VOID **OptionsBuffer,
2094 IN OUT UINT32 *OptionsLength,
2095 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
2096 IN OUT UINT32 *FragmentCount,
2097 OUT EFI_IPSEC_SPD_SELECTOR **SpdEntry,
2098 OUT EFI_EVENT *RecycleEvent
2099 )
2100 {
2101 if (*LastHead == IPSEC_ESP_PROTOCOL) {
2102 //
2103 // Process the esp ipsec header of the inbound traffic.
2104 //
2105 return IpSecEspInboundPacket (
2106 IpVersion,
2107 IpHead,
2108 LastHead,
2109 OptionsBuffer,
2110 OptionsLength,
2111 FragmentTable,
2112 FragmentCount,
2113 SpdEntry,
2114 RecycleEvent
2115 );
2116 }
2117 //
2118 // The other protocols are not supported.
2119 //
2120 return EFI_UNSUPPORTED;
2121 }
2122
2123 /**
2124 This fucntion processes the output traffic with IPsec.
2125
2126 It protected the sending packet by encrypting it payload and inserting ESP/AH header
2127 in the orginal IP header, then return the IpHeader and IPsec protected Fragmentable.
2128
2129 @param[in] IpVersion The version of IP.
2130 @param[in, out] IpHead Point to IP header containing the orginal IP header
2131 to be processed on input, and inserted ESP/AH header
2132 on return.
2133 @param[in, out] LastHead The Last Header in IP header.
2134 @param[in, out] OptionsBuffer Pointer to the options buffer.
2135 @param[in, out] OptionsLength Length of the options buffer.
2136 @param[in, out] FragmentTable Pointer to a list of fragments to be protected by
2137 IPsec on input, and with IPsec protected
2138 on return.
2139 @param[in, out] FragmentCount Number of fragments.
2140 @param[in] SadEntry Related SAD entry.
2141 @param[out] RecycleEvent Event for recycling of resources.
2142
2143 @retval EFI_SUCCESS The operation is successful.
2144 @retval EFI_UNSUPPORTED If the IPSEC protocol is not supported.
2145
2146 **/
2147 EFI_STATUS
2148 IpSecProtectOutboundPacket (
2149 IN UINT8 IpVersion,
2150 IN OUT VOID *IpHead,
2151 IN OUT UINT8 *LastHead,
2152 IN OUT VOID **OptionsBuffer,
2153 IN OUT UINT32 *OptionsLength,
2154 IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
2155 IN OUT UINT32 *FragmentCount,
2156 IN IPSEC_SAD_ENTRY *SadEntry,
2157 OUT EFI_EVENT *RecycleEvent
2158 )
2159 {
2160 if (SadEntry->Id->Proto == EfiIPsecESP) {
2161 //
2162 // Process the esp ipsec header of the outbound traffic.
2163 //
2164 return IpSecEspOutboundPacket (
2165 IpVersion,
2166 IpHead,
2167 LastHead,
2168 OptionsBuffer,
2169 OptionsLength,
2170 FragmentTable,
2171 FragmentCount,
2172 SadEntry,
2173 RecycleEvent
2174 );
2175 }
2176 //
2177 // The other protocols are not supported.
2178 //
2179 return EFI_UNSUPPORTED;
2180 }