9068e0686c5fedd6e3ef3206be573e80edd15b46
[mirror_edk2.git] / NetworkPkg / UefiPxeBcDxe / PxeBcImpl.c
1 /** @file
2 This implementation of EFI_PXE_BASE_CODE_PROTOCOL and EFI_LOAD_FILE_PROTOCOL.
3
4 Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.<BR>
5
6 This program and the accompanying materials
7 are licensed and made available under the terms and conditions of the BSD License
8 which accompanies this distribution. The full text of the license may be found at
9 http://opensource.org/licenses/bsd-license.php.
10
11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13
14 **/
15
16 #include "PxeBcImpl.h"
17
18
19 /**
20 Enables the use of the PXE Base Code Protocol functions.
21
22 This function enables the use of the PXE Base Code Protocol functions. If the
23 Started field of the EFI_PXE_BASE_CODE_MODE structure is already TRUE, then
24 EFI_ALREADY_STARTED will be returned. If UseIpv6 is TRUE, then IPv6 formatted
25 addresses will be used in this session. If UseIpv6 is FALSE, then IPv4 formatted
26 addresses will be used in this session. If UseIpv6 is TRUE, and the Ipv6Supported
27 field of the EFI_PXE_BASE_CODE_MODE structure is FALSE, then EFI_UNSUPPORTED will
28 be returned. If there is not enough memory or other resources to start the PXE
29 Base Code Protocol, then EFI_OUT_OF_RESOURCES will be returned. Otherwise, the
30 PXE Base Code Protocol will be started.
31
32 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
33 @param[in] UseIpv6 Specifies the type of IP addresses that are to be
34 used during the session that is being started.
35 Set to TRUE for IPv6, and FALSE for IPv4.
36
37 @retval EFI_SUCCESS The PXE Base Code Protocol was started.
38 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
39 @retval EFI_UNSUPPORTED UseIpv6 is TRUE, but the Ipv6Supported field of the
40 EFI_PXE_BASE_CODE_MODE structure is FALSE.
41 @retval EFI_ALREADY_STARTED The PXE Base Code Protocol is already in the started state.
42 @retval EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid
43 EFI_PXE_BASE_CODE_PROTOCOL structure.
44 @retval EFI_OUT_OF_RESOURCES Could not allocate enough memory or other resources to start the
45 PXE Base Code Protocol.
46
47 **/
48 EFI_STATUS
49 EFIAPI
50 EfiPxeBcStart (
51 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
52 IN BOOLEAN UseIpv6
53 )
54 {
55 PXEBC_PRIVATE_DATA *Private;
56 EFI_PXE_BASE_CODE_MODE *Mode;
57 UINTN Index;
58 EFI_STATUS Status;
59
60 if (This == NULL) {
61 return EFI_INVALID_PARAMETER;
62 }
63
64 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
65 Mode = Private->PxeBc.Mode;
66
67 if (Mode->Started) {
68 return EFI_ALREADY_STARTED;
69 }
70
71 //
72 // Detect whether using IPv6 or not, and set it into mode data.
73 //
74 if (UseIpv6 && Mode->Ipv6Available && Mode->Ipv6Supported && Private->Ip6Nic != NULL) {
75 Mode->UsingIpv6 = TRUE;
76 } else if (!UseIpv6 && Private->Ip4Nic != NULL) {
77 Mode->UsingIpv6 = FALSE;
78 } else {
79 return EFI_UNSUPPORTED;
80 }
81
82 if (Mode->UsingIpv6) {
83 AsciiPrint ("\n>>Start PXE over IPv6");
84 //
85 // Configure udp6 instance to receive data.
86 //
87 Status = Private->Udp6Read->Configure (
88 Private->Udp6Read,
89 &Private->Udp6CfgData
90 );
91 if (EFI_ERROR (Status)) {
92 goto ON_ERROR;
93 }
94
95 //
96 // Configure block size for TFTP as a default value to handle all link layers.
97 //
98 Private->BlockSize = Private->Ip6MaxPacketSize -
99 PXEBC_DEFAULT_UDP_OVERHEAD_SIZE - PXEBC_DEFAULT_TFTP_OVERHEAD_SIZE;
100
101 //
102 // PXE over IPv6 starts here, initialize the fields and list header.
103 //
104 Private->Ip6Policy = PXEBC_IP6_POLICY_MAX;
105 Private->ProxyOffer.Dhcp6.Packet.Offer.Size = PXEBC_CACHED_DHCP6_PACKET_MAX_SIZE;
106 Private->DhcpAck.Dhcp6.Packet.Ack.Size = PXEBC_CACHED_DHCP6_PACKET_MAX_SIZE;
107 Private->PxeReply.Dhcp6.Packet.Ack.Size = PXEBC_CACHED_DHCP6_PACKET_MAX_SIZE;
108
109 for (Index = 0; Index < PXEBC_OFFER_MAX_NUM; Index++) {
110 Private->OfferBuffer[Index].Dhcp6.Packet.Offer.Size = PXEBC_CACHED_DHCP6_PACKET_MAX_SIZE;
111 }
112
113 //
114 // Create event and set status for token to capture ICMP6 error message.
115 //
116 Private->Icmp6Token.Status = EFI_NOT_READY;
117 Status = gBS->CreateEvent (
118 EVT_NOTIFY_SIGNAL,
119 TPL_NOTIFY,
120 PxeBcIcmp6ErrorUpdate,
121 Private,
122 &Private->Icmp6Token.Event
123 );
124 if (EFI_ERROR (Status)) {
125 goto ON_ERROR;
126 }
127
128 //
129 // Set Ip6 policy to Automatic to start the IP6 router discovery.
130 //
131 Status = PxeBcSetIp6Policy (Private);
132 if (EFI_ERROR (Status)) {
133 goto ON_ERROR;
134 }
135 } else {
136 AsciiPrint ("\n>>Start PXE over IPv4");
137 //
138 // Configure udp4 instance to receive data.
139 //
140 Status = Private->Udp4Read->Configure (
141 Private->Udp4Read,
142 &Private->Udp4CfgData
143 );
144 if (EFI_ERROR (Status)) {
145 goto ON_ERROR;
146 }
147
148 //
149 // Configure block size for TFTP as a default value to handle all link layers.
150 //
151 Private->BlockSize = Private->Ip4MaxPacketSize -
152 PXEBC_DEFAULT_UDP_OVERHEAD_SIZE - PXEBC_DEFAULT_TFTP_OVERHEAD_SIZE;
153
154 //
155 // PXE over IPv4 starts here, initialize the fields.
156 //
157 Private->ProxyOffer.Dhcp4.Packet.Offer.Size = PXEBC_CACHED_DHCP4_PACKET_MAX_SIZE;
158 Private->DhcpAck.Dhcp4.Packet.Ack.Size = PXEBC_CACHED_DHCP4_PACKET_MAX_SIZE;
159 Private->PxeReply.Dhcp4.Packet.Ack.Size = PXEBC_CACHED_DHCP4_PACKET_MAX_SIZE;
160
161 for (Index = 0; Index < PXEBC_OFFER_MAX_NUM; Index++) {
162 Private->OfferBuffer[Index].Dhcp4.Packet.Offer.Size = PXEBC_CACHED_DHCP4_PACKET_MAX_SIZE;
163 }
164
165 PxeBcSeedDhcp4Packet (&Private->SeedPacket, Private->Udp4Read);
166
167 //
168 // Create the event for Arp cache update.
169 //
170 Status = gBS->CreateEvent (
171 EVT_TIMER | EVT_NOTIFY_SIGNAL,
172 TPL_CALLBACK,
173 PxeBcArpCacheUpdate,
174 Private,
175 &Private->ArpUpdateEvent
176 );
177 if (EFI_ERROR (Status)) {
178 goto ON_ERROR;
179 }
180
181 //
182 // Start a periodic timer by second to update Arp cache.
183 //
184 Status = gBS->SetTimer (
185 Private->ArpUpdateEvent,
186 TimerPeriodic,
187 TICKS_PER_SECOND
188 );
189 if (EFI_ERROR (Status)) {
190 goto ON_ERROR;
191 }
192
193 //
194 // Create event and set status for token to capture ICMP error message.
195 //
196 Private->Icmp6Token.Status = EFI_NOT_READY;
197 Status = gBS->CreateEvent (
198 EVT_NOTIFY_SIGNAL,
199 TPL_NOTIFY,
200 PxeBcIcmpErrorUpdate,
201 Private,
202 &Private->IcmpToken.Event
203 );
204 if (EFI_ERROR (Status)) {
205 goto ON_ERROR;
206 }
207
208 //
209 //DHCP4 service allows only one of its children to be configured in
210 //the active state, If the DHCP4 D.O.R.A started by IP4 auto
211 //configuration and has not been completed, the Dhcp4 state machine
212 //will not be in the right state for the PXE to start a new round D.O.R.A.
213 //so we need to switch it's policy to static.
214 //
215 Status = PxeBcSetIp4Policy (Private);
216 if (EFI_ERROR (Status)) {
217 goto ON_ERROR;
218 }
219 }
220
221 //
222 // If PcdTftpBlockSize is set to non-zero, override the default value.
223 //
224 if (PcdGet64 (PcdTftpBlockSize) != 0) {
225 Private->BlockSize = (UINTN) PcdGet64 (PcdTftpBlockSize);
226 }
227
228 //
229 // Create event for UdpRead/UdpWrite timeout since they are both blocking API.
230 //
231 Status = gBS->CreateEvent (
232 EVT_TIMER,
233 TPL_CALLBACK,
234 NULL,
235 NULL,
236 &Private->UdpTimeOutEvent
237 );
238 if (EFI_ERROR (Status)) {
239 goto ON_ERROR;
240 }
241
242 Private->IsAddressOk = FALSE;
243 Mode->Started = TRUE;
244
245 return EFI_SUCCESS;
246
247 ON_ERROR:
248 if (Mode->UsingIpv6) {
249 if (Private->Icmp6Token.Event != NULL) {
250 gBS->CloseEvent (Private->Icmp6Token.Event);
251 Private->Icmp6Token.Event = NULL;
252 }
253 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
254 Private->Ip6->Configure (Private->Ip6, NULL);
255 } else {
256 if (Private->ArpUpdateEvent != NULL) {
257 gBS->CloseEvent (Private->ArpUpdateEvent);
258 Private->ArpUpdateEvent = NULL;
259 }
260 if (Private->IcmpToken.Event != NULL) {
261 gBS->CloseEvent (Private->IcmpToken.Event);
262 Private->IcmpToken.Event = NULL;
263 }
264 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
265 Private->Ip4->Configure (Private->Ip4, NULL);
266 }
267 return Status;
268 }
269
270
271 /**
272 Disable the use of the PXE Base Code Protocol functions.
273
274 This function stops all activity on the network device. All the resources allocated
275 in Start() are released, the Started field of the EFI_PXE_BASE_CODE_MODE structure is
276 set to FALSE, and EFI_SUCCESS is returned. If the Started field of the EFI_PXE_BASE_CODE_MODE
277 structure is already FALSE, then EFI_NOT_STARTED will be returned.
278
279 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
280
281 @retval EFI_SUCCESS The PXE Base Code Protocol was stopped.
282 @retval EFI_NOT_STARTED The PXE Base Code Protocol is already in the stopped state.
283 @retval EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid
284 EFI_PXE_BASE_CODE_PROTOCOL structure.
285 @retval Others
286
287 **/
288 EFI_STATUS
289 EFIAPI
290 EfiPxeBcStop (
291 IN EFI_PXE_BASE_CODE_PROTOCOL *This
292 )
293 {
294 PXEBC_PRIVATE_DATA *Private;
295 EFI_PXE_BASE_CODE_MODE *Mode;
296 BOOLEAN Ipv6Supported;
297 BOOLEAN Ipv6Available;
298
299 if (This == NULL) {
300 return EFI_INVALID_PARAMETER;
301 }
302
303 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
304 Mode = Private->PxeBc.Mode;
305 Ipv6Supported = Mode->Ipv6Supported;
306 Ipv6Available = Mode->Ipv6Available;
307
308 if (!Mode->Started) {
309 return EFI_NOT_STARTED;
310 }
311
312 if (Mode->UsingIpv6) {
313 //
314 // Configure all the instances for IPv6 as NULL.
315 //
316 ZeroMem (&Private->Udp6CfgData.StationAddress, sizeof (EFI_IPv6_ADDRESS));
317 ZeroMem (&Private->Ip6CfgData.StationAddress, sizeof (EFI_IPv6_ADDRESS));
318 Private->Dhcp6->Stop (Private->Dhcp6);
319 Private->Dhcp6->Configure (Private->Dhcp6, NULL);
320 Private->Udp6Write->Configure (Private->Udp6Write, NULL);
321 Private->Udp6Read->Groups (Private->Udp6Read, FALSE, NULL);
322 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
323 Private->Ip6->Cancel (Private->Ip6, &Private->Icmp6Token);
324 Private->Ip6->Configure (Private->Ip6, NULL);
325 PxeBcUnregisterIp6Address (Private);
326 if (Private->Icmp6Token.Event != NULL) {
327 gBS->CloseEvent (Private->Icmp6Token.Event);
328 Private->Icmp6Token.Event = NULL;
329 }
330 if (Private->Dhcp6Request != NULL) {
331 FreePool (Private->Dhcp6Request);
332 Private->Dhcp6Request = NULL;
333 }
334 if (Private->BootFileName != NULL) {
335 FreePool (Private->BootFileName);
336 Private->BootFileName = NULL;
337 }
338 } else {
339 //
340 // Configure all the instances for IPv4 as NULL.
341 //
342 ZeroMem (&Private->Udp4CfgData.StationAddress, sizeof (EFI_IPv4_ADDRESS));
343 ZeroMem (&Private->Udp4CfgData.SubnetMask, sizeof (EFI_IPv4_ADDRESS));
344 ZeroMem (&Private->Ip4CfgData.StationAddress, sizeof (EFI_IPv4_ADDRESS));
345 ZeroMem (&Private->Ip4CfgData.SubnetMask, sizeof (EFI_IPv4_ADDRESS));
346 Private->Dhcp4->Stop (Private->Dhcp4);
347 Private->Dhcp4->Configure (Private->Dhcp4, NULL);
348 Private->Udp4Write->Configure (Private->Udp4Write, NULL);
349 Private->Udp4Read->Groups (Private->Udp4Read, FALSE, NULL);
350 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
351 Private->Ip4->Cancel (Private->Ip4, &Private->IcmpToken);
352 Private->Ip4->Configure (Private->Ip4, NULL);
353 if (Private->ArpUpdateEvent != NULL) {
354 gBS->CloseEvent (Private->ArpUpdateEvent);
355 Private->ArpUpdateEvent = NULL;
356 }
357 if (Private->IcmpToken.Event != NULL) {
358 gBS->CloseEvent (Private->IcmpToken.Event);
359 Private->IcmpToken.Event = NULL;
360 }
361 Private->BootFileName = NULL;
362 }
363
364 gBS->CloseEvent (Private->UdpTimeOutEvent);
365 Private->CurSrcPort = 0;
366 Private->BootFileSize = 0;
367 Private->SolicitTimes = 0;
368 Private->ElapsedTime = 0;
369 ZeroMem (&Private->StationIp, sizeof (EFI_IP_ADDRESS));
370 ZeroMem (&Private->SubnetMask, sizeof (EFI_IP_ADDRESS));
371 ZeroMem (&Private->GatewayIp, sizeof (EFI_IP_ADDRESS));
372 ZeroMem (&Private->ServerIp, sizeof (EFI_IP_ADDRESS));
373
374 //
375 // Reset the mode data.
376 //
377 ZeroMem (Mode, sizeof (EFI_PXE_BASE_CODE_MODE));
378 Mode->Ipv6Available = Ipv6Available;
379 Mode->Ipv6Supported = Ipv6Supported;
380 Mode->AutoArp = TRUE;
381 Mode->TTL = DEFAULT_TTL;
382 Mode->ToS = DEFAULT_ToS;
383
384 return EFI_SUCCESS;
385 }
386
387
388 /**
389 Attempts to complete a DHCPv4 D.O.R.A. (discover / offer / request / acknowledge) or DHCPv6
390 S.A.R.R (solicit / advertise / request / reply) sequence.
391
392 If SortOffers is TRUE, then the cached DHCP offer packets will be sorted before
393 they are tried. If SortOffers is FALSE, then the cached DHCP offer packets will
394 be tried in the order in which they are received. Please see the Preboot Execution
395 Environment (PXE) Specification and Unified Extensible Firmware Interface (UEFI)
396 Specification for additional details on the implementation of DHCP.
397 If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
398 then the DHCP sequence will be stopped and EFI_ABORTED will be returned.
399
400 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
401 @param[in] SortOffers TRUE if the offers received should be sorted. Set to FALSE to
402 try the offers in the order that they are received.
403
404 @retval EFI_SUCCESS Valid DHCP has completed.
405 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
406 @retval EFI_INVALID_PARAMETER The This parameter is NULL or does not point to a valid
407 EFI_PXE_BASE_CODE_PROTOCOL structure.
408 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
409 @retval EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete the DHCP Protocol.
410 @retval EFI_ABORTED The callback function aborted the DHCP Protocol.
411 @retval EFI_TIMEOUT The DHCP Protocol timed out.
412 @retval EFI_ICMP_ERROR An ICMP error packet was received during the DHCP session.
413 @retval EFI_NO_RESPONSE Valid PXE offer was not received.
414
415 **/
416 EFI_STATUS
417 EFIAPI
418 EfiPxeBcDhcp (
419 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
420 IN BOOLEAN SortOffers
421 )
422 {
423 PXEBC_PRIVATE_DATA *Private;
424 EFI_PXE_BASE_CODE_MODE *Mode;
425 EFI_STATUS Status;
426 EFI_PXE_BASE_CODE_IP_FILTER IpFilter;
427
428 if (This == NULL) {
429 return EFI_INVALID_PARAMETER;
430 }
431
432 Status = EFI_SUCCESS;
433 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
434 Mode = Private->PxeBc.Mode;
435 Mode->IcmpErrorReceived = FALSE;
436 Private->Function = EFI_PXE_BASE_CODE_FUNCTION_DHCP;
437 Private->IsOfferSorted = SortOffers;
438 Private->SolicitTimes = 0;
439 Private->ElapsedTime = 0;
440
441 if (!Mode->Started) {
442 return EFI_NOT_STARTED;
443 }
444
445 if (Mode->UsingIpv6) {
446
447 //
448 // Stop Udp6Read instance
449 //
450 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
451
452 //
453 // Start S.A.R.R. process to get a IPv6 address and other boot information.
454 //
455 Status = PxeBcDhcp6Sarr (Private, Private->Dhcp6);
456 } else {
457
458 //
459 // Stop Udp4Read instance
460 //
461 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
462
463 //
464 // Start D.O.R.A. process to get a IPv4 address and other boot information.
465 //
466 Status = PxeBcDhcp4Dora (Private, Private->Dhcp4);
467 }
468
469 //
470 // Reconfigure the UDP instance with the default configuration.
471 //
472 if (Mode->UsingIpv6) {
473 Private->Udp6Read->Configure (Private->Udp6Read, &Private->Udp6CfgData);
474 } else {
475 Private->Udp4Read->Configure (Private->Udp4Read, &Private->Udp4CfgData);
476 }
477 //
478 // Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP
479 // receive filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP.
480 //
481 ZeroMem(&IpFilter, sizeof (EFI_PXE_BASE_CODE_IP_FILTER));
482 IpFilter.Filters = EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP;
483 This->SetIpFilter (This, &IpFilter);
484
485 return Status;
486 }
487
488
489 /**
490 Attempts to complete the PXE Boot Server and/or boot image discovery sequence.
491
492 This function attempts to complete the PXE Boot Server and/or boot image discovery
493 sequence. If this sequence is completed, then EFI_SUCCESS is returned, and the
494 PxeDiscoverValid, PxeDiscover, PxeReplyReceived, and PxeReply fields of the
495 EFI_PXE_BASE_CODE_MODE structure are filled in. If UseBis is TRUE, then the
496 PxeBisReplyReceived and PxeBisReply fields of the EFI_PXE_BASE_CODE_MODE structure
497 will also be filled in. If UseBis is FALSE, then PxeBisReplyValid will be set to FALSE.
498 In the structure referenced by parameter Info, the PXE Boot Server list, SrvList[],
499 has two uses: It is the Boot Server IP address list used for unicast discovery
500 (if the UseUCast field is TRUE), and it is the list used for Boot Server verification
501 (if the MustUseList field is TRUE). Also, if the MustUseList field in that structure
502 is TRUE and the AcceptAnyResponse field in the SrvList[] array is TRUE, any Boot
503 Server reply of that type will be accepted. If the AcceptAnyResponse field is
504 FALSE, only responses from Boot Servers with matching IP addresses will be accepted.
505 This function can take at least 10 seconds to timeout and return control to the
506 caller. If the Discovery sequence does not complete, then EFI_TIMEOUT will be
507 returned. Please see the Preboot Execution Environment (PXE) Specification for
508 additional details on the implementation of the Discovery sequence.
509 If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
510 then the Discovery sequence is stopped and EFI_ABORTED will be returned.
511
512 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
513 @param[in] Type The type of bootstrap to perform.
514 @param[in] Layer Pointer to the boot server layer number to discover, which must be
515 PXE_BOOT_LAYER_INITIAL when a new server type is being
516 discovered.
517 @param[in] UseBis TRUE if Boot Integrity Services are to be used. FALSE otherwise.
518 @param[in] Info Pointer to a data structure that contains additional information
519 on the type of discovery operation that is to be performed.
520 It is optional.
521
522 @retval EFI_SUCCESS The Discovery sequence has been completed.
523 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
524 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
525 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
526 @retval EFI_OUT_OF_RESOURCES Could not allocate enough memory to complete Discovery.
527 @retval EFI_ABORTED The callback function aborted the Discovery sequence.
528 @retval EFI_TIMEOUT The Discovery sequence timed out.
529 @retval EFI_ICMP_ERROR An ICMP error packet was received during the PXE discovery
530 session.
531
532 **/
533 EFI_STATUS
534 EFIAPI
535 EfiPxeBcDiscover (
536 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
537 IN UINT16 Type,
538 IN UINT16 *Layer,
539 IN BOOLEAN UseBis,
540 IN EFI_PXE_BASE_CODE_DISCOVER_INFO *Info OPTIONAL
541 )
542 {
543 PXEBC_PRIVATE_DATA *Private;
544 EFI_PXE_BASE_CODE_MODE *Mode;
545 EFI_PXE_BASE_CODE_DISCOVER_INFO DefaultInfo;
546 EFI_PXE_BASE_CODE_SRVLIST *SrvList;
547 PXEBC_BOOT_SVR_ENTRY *BootSvrEntry;
548 UINT16 Index;
549 EFI_STATUS Status;
550 EFI_PXE_BASE_CODE_IP_FILTER IpFilter;
551 EFI_PXE_BASE_CODE_DISCOVER_INFO *NewCreatedInfo;
552
553 if (This == NULL) {
554 return EFI_INVALID_PARAMETER;
555 }
556
557 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
558 Mode = Private->PxeBc.Mode;
559 Mode->IcmpErrorReceived = FALSE;
560 BootSvrEntry = NULL;
561 SrvList = NULL;
562 Status = EFI_DEVICE_ERROR;
563 Private->Function = EFI_PXE_BASE_CODE_FUNCTION_DISCOVER;
564 NewCreatedInfo = NULL;
565
566 if (!Mode->Started) {
567 return EFI_NOT_STARTED;
568 }
569
570 //
571 // Station address should be ready before do discover.
572 //
573 if (!Private->IsAddressOk) {
574 return EFI_INVALID_PARAMETER;
575 }
576
577 if (Mode->UsingIpv6) {
578
579 //
580 // Stop Udp6Read instance
581 //
582 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
583 } else {
584
585 //
586 // Stop Udp4Read instance
587 //
588 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
589 }
590
591 //
592 // There are 3 methods to get the information for discover.
593 //
594 ZeroMem (&DefaultInfo, sizeof (EFI_PXE_BASE_CODE_DISCOVER_INFO));
595 if (*Layer != EFI_PXE_BASE_CODE_BOOT_LAYER_INITIAL) {
596 //
597 // 1. Take the previous setting as the discover info.
598 //
599 if (!Mode->PxeDiscoverValid ||
600 !Mode->PxeReplyReceived ||
601 (!Mode->PxeBisReplyReceived && UseBis)) {
602 Status = EFI_INVALID_PARAMETER;
603 goto ON_EXIT;
604 }
605
606 Info = &DefaultInfo;
607 Info->IpCnt = 1;
608 Info->UseUCast = TRUE;
609 SrvList = Info->SrvList;
610 SrvList[0].Type = Type;
611 SrvList[0].AcceptAnyResponse = FALSE;
612
613 CopyMem (&SrvList->IpAddr, &Private->ServerIp, sizeof (EFI_IP_ADDRESS));
614
615 } else if (Info == NULL) {
616 //
617 // 2. Extract the discover information from the cached packets if unspecified.
618 //
619 NewCreatedInfo = &DefaultInfo;
620 Status = PxeBcExtractDiscoverInfo (Private, Type, &NewCreatedInfo, &BootSvrEntry, &SrvList);
621 if (EFI_ERROR (Status)) {
622 goto ON_EXIT;
623 }
624 ASSERT (NewCreatedInfo != NULL);
625 Info = NewCreatedInfo;
626 } else {
627 //
628 // 3. Take the pass-in information as the discover info, and validate the server list.
629 //
630 SrvList = Info->SrvList;
631
632 if (!SrvList[0].AcceptAnyResponse) {
633 for (Index = 1; Index < Info->IpCnt; Index++) {
634 if (SrvList[Index].AcceptAnyResponse) {
635 break;
636 }
637 }
638 if (Index != Info->IpCnt) {
639 //
640 // It's invalid if the first server doesn't accecpt any response
641 // but any of the other servers does accept any response.
642 //
643 Status = EFI_INVALID_PARAMETER;
644 goto ON_EXIT;
645 }
646 }
647 }
648
649 //
650 // Info and BootSvrEntry/SrvList are all ready by now, so execute discover by UniCast/BroadCast/MultiCast.
651 //
652 if ((!Info->UseUCast && !Info->UseBCast && !Info->UseMCast) ||
653 (Info->MustUseList && Info->IpCnt == 0)) {
654 Status = EFI_INVALID_PARAMETER;
655 goto ON_EXIT;
656 }
657
658 Private->IsDoDiscover = TRUE;
659
660 if (Info->UseMCast) {
661 //
662 // Do discover by multicast.
663 //
664 Status = PxeBcDiscoverBootServer (
665 Private,
666 Type,
667 Layer,
668 UseBis,
669 &Info->ServerMCastIp,
670 Info->IpCnt,
671 SrvList
672 );
673
674 } else if (Info->UseBCast) {
675 //
676 // Do discover by broadcast, but only valid for IPv4.
677 //
678 ASSERT (!Mode->UsingIpv6);
679 Status = PxeBcDiscoverBootServer (
680 Private,
681 Type,
682 Layer,
683 UseBis,
684 NULL,
685 Info->IpCnt,
686 SrvList
687 );
688
689 } else if (Info->UseUCast) {
690 //
691 // Do discover by unicast.
692 //
693 for (Index = 0; Index < Info->IpCnt; Index++) {
694 if (BootSvrEntry == NULL) {
695 CopyMem (&Private->ServerIp, &SrvList[Index].IpAddr, sizeof (EFI_IP_ADDRESS));
696 } else {
697 ASSERT (!Mode->UsingIpv6);
698 ZeroMem (&Private->ServerIp, sizeof (EFI_IP_ADDRESS));
699 CopyMem (&Private->ServerIp, &BootSvrEntry->IpAddr[Index], sizeof (EFI_IPv4_ADDRESS));
700 }
701
702 Status = PxeBcDiscoverBootServer (
703 Private,
704 Type,
705 Layer,
706 UseBis,
707 &Private->ServerIp,
708 Info->IpCnt,
709 SrvList
710 );
711 }
712 }
713
714 if (!EFI_ERROR (Status)) {
715 //
716 // Parse the cached PXE reply packet, and store it into mode data if valid.
717 //
718 if (Mode->UsingIpv6) {
719 Status = PxeBcParseDhcp6Packet (&Private->PxeReply.Dhcp6);
720 if (!EFI_ERROR (Status)) {
721 CopyMem (
722 &Mode->PxeReply.Dhcpv6,
723 &Private->PxeReply.Dhcp6.Packet.Ack.Dhcp6,
724 Private->PxeReply.Dhcp6.Packet.Ack.Length
725 );
726 Mode->PxeReplyReceived = TRUE;
727 Mode->PxeDiscoverValid = TRUE;
728 }
729 } else {
730 Status = PxeBcParseDhcp4Packet (&Private->PxeReply.Dhcp4);
731 if (!EFI_ERROR (Status)) {
732 CopyMem (
733 &Mode->PxeReply.Dhcpv4,
734 &Private->PxeReply.Dhcp4.Packet.Ack.Dhcp4,
735 Private->PxeReply.Dhcp4.Packet.Ack.Length
736 );
737 Mode->PxeReplyReceived = TRUE;
738 Mode->PxeDiscoverValid = TRUE;
739 }
740 }
741 }
742
743 ON_EXIT:
744
745 if (NewCreatedInfo != NULL && NewCreatedInfo != &DefaultInfo) {
746 FreePool (NewCreatedInfo);
747 }
748
749 if (Mode->UsingIpv6) {
750 Private->Udp6Read->Configure (Private->Udp6Read, &Private->Udp6CfgData);
751 } else {
752 Private->Udp4Read->Configure (Private->Udp4Read, &Private->Udp4CfgData);
753 }
754
755 //
756 // Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP
757 // receive filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP.
758 //
759 ZeroMem(&IpFilter, sizeof (EFI_PXE_BASE_CODE_IP_FILTER));
760 IpFilter.Filters = EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP;
761 This->SetIpFilter (This, &IpFilter);
762
763 return Status;
764 }
765
766
767 /**
768 Used to perform TFTP and MTFTP services.
769
770 This function is used to perform TFTP and MTFTP services. This includes the
771 TFTP operations to get the size of a file, read a directory, read a file, and
772 write a file. It also includes the MTFTP operations to get the size of a file,
773 read a directory, and read a file. The type of operation is specified by Operation.
774 If the callback function that is invoked during the TFTP/MTFTP operation does
775 not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED will
776 be returned.
777 For read operations, the return data will be placed in the buffer specified by
778 BufferPtr. If BufferSize is too small to contain the entire downloaded file,
779 then EFI_BUFFER_TOO_SMALL will be returned and BufferSize will be set to zero,
780 or the size of the requested file. (NOTE: the size of the requested file is only returned
781 if the TFTP server supports TFTP options). If BufferSize is large enough for the
782 read operation, then BufferSize will be set to the size of the downloaded file,
783 and EFI_SUCCESS will be returned. Applications using the PxeBc.Mtftp() services
784 should use the get-file-size operations to determine the size of the downloaded
785 file prior to using the read-file operations-especially when downloading large
786 (greater than 64 MB) files-instead of making two calls to the read-file operation.
787 Following this recommendation will save time if the file is larger than expected
788 and the TFTP server does not support TFTP option extensions. Without TFTP option
789 extension support, the client must download the entire file, counting and discarding
790 the received packets, to determine the file size.
791 For write operations, the data to be sent is in the buffer specified by BufferPtr.
792 BufferSize specifies the number of bytes to send. If the write operation completes
793 successfully, then EFI_SUCCESS will be returned.
794 For TFTP "get file size" operations, the size of the requested file or directory
795 is returned in BufferSize, and EFI_SUCCESS will be returned. If the TFTP server
796 does not support options, the file will be downloaded into a bit bucket and the
797 length of the downloaded file will be returned. For MTFTP "get file size" operations,
798 if the MTFTP server does not support the "get file size" option, EFI_UNSUPPORTED
799 will be returned.
800 This function can take up to 10 seconds to timeout and return control to the caller.
801 If the TFTP sequence does not complete, EFI_TIMEOUT will be returned.
802 If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
803 then the TFTP sequence is stopped and EFI_ABORTED will be returned.
804
805 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
806 @param[in] Operation The type of operation to perform.
807 @param[in, out] BufferPtr A pointer to the data buffer.
808 @param[in] Overwrite Only used on write file operations. TRUE if a file on a remote
809 server can be overwritten.
810 @param[in, out] BufferSize For get-file-size operations, *BufferSize returns the size of the
811 requested file.
812 @param[in] BlockSize The requested block size to be used during a TFTP transfer.
813 @param[in] ServerIp The TFTP / MTFTP server IP address.
814 @param[in] Filename A Null-terminated ASCII string that specifies a directory name
815 or a file name.
816 @param[in] Info Pointer to the MTFTP information.
817 @param[in] DontUseBuffer Set to FALSE for normal TFTP and MTFTP read file operation.
818
819 @retval EFI_SUCCESS The TFTP/MTFTP operation was completed.
820 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
821 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
822 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
823 @retval EFI_BUFFER_TOO_SMALL The buffer is not large enough to complete the read operation.
824 @retval EFI_ABORTED The callback function aborted the TFTP/MTFTP operation.
825 @retval EFI_TIMEOUT The TFTP/MTFTP operation timed out.
826 @retval EFI_ICMP_ERROR An ICMP error packet was received during the MTFTP session.
827 @retval EFI_TFTP_ERROR A TFTP error packet was received during the MTFTP session.
828
829 **/
830 EFI_STATUS
831 EFIAPI
832 EfiPxeBcMtftp (
833 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
834 IN EFI_PXE_BASE_CODE_TFTP_OPCODE Operation,
835 IN OUT VOID *BufferPtr OPTIONAL,
836 IN BOOLEAN Overwrite,
837 IN OUT UINT64 *BufferSize,
838 IN UINTN *BlockSize OPTIONAL,
839 IN EFI_IP_ADDRESS *ServerIp,
840 IN UINT8 *Filename,
841 IN EFI_PXE_BASE_CODE_MTFTP_INFO *Info OPTIONAL,
842 IN BOOLEAN DontUseBuffer
843 )
844 {
845 PXEBC_PRIVATE_DATA *Private;
846 EFI_PXE_BASE_CODE_MODE *Mode;
847 EFI_MTFTP4_CONFIG_DATA Mtftp4Config;
848 EFI_MTFTP6_CONFIG_DATA Mtftp6Config;
849 VOID *Config;
850 EFI_STATUS Status;
851 EFI_PXE_BASE_CODE_IP_FILTER IpFilter;
852
853
854 if ((This == NULL) ||
855 (Filename == NULL) ||
856 (BufferSize == NULL) ||
857 (ServerIp == NULL) ||
858 ((BlockSize != NULL) && (*BlockSize < PXE_MTFTP_DEFAULT_BLOCK_SIZE))) {
859 return EFI_INVALID_PARAMETER;
860 }
861
862 if (Operation == EFI_PXE_BASE_CODE_TFTP_READ_FILE ||
863 Operation == EFI_PXE_BASE_CODE_TFTP_READ_DIRECTORY ||
864 Operation == EFI_PXE_BASE_CODE_MTFTP_READ_FILE ||
865 Operation == EFI_PXE_BASE_CODE_MTFTP_READ_DIRECTORY) {
866 if (BufferPtr == NULL && !DontUseBuffer) {
867 return EFI_INVALID_PARAMETER;
868 }
869 }
870
871 Config = NULL;
872 Status = EFI_DEVICE_ERROR;
873 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
874 Mode = Private->PxeBc.Mode;
875
876 if (Mode->UsingIpv6) {
877 if (!NetIp6IsValidUnicast (&ServerIp->v6)) {
878 return EFI_INVALID_PARAMETER;
879 }
880 } else {
881 if (IP4_IS_UNSPECIFIED (NTOHL (ServerIp->Addr[0])) || IP4_IS_LOCAL_BROADCAST (NTOHL (ServerIp->Addr[0]))) {
882 return EFI_INVALID_PARAMETER;
883 }
884 }
885
886 if (Mode->UsingIpv6) {
887 //
888 // Set configuration data for Mtftp6 instance.
889 //
890 ZeroMem (&Mtftp6Config, sizeof (EFI_MTFTP6_CONFIG_DATA));
891 Config = &Mtftp6Config;
892 Mtftp6Config.TimeoutValue = PXEBC_MTFTP_TIMEOUT;
893 Mtftp6Config.TryCount = PXEBC_MTFTP_RETRIES;
894 CopyMem (&Mtftp6Config.StationIp, &Private->StationIp.v6, sizeof (EFI_IPv6_ADDRESS));
895 CopyMem (&Mtftp6Config.ServerIp, &ServerIp->v6, sizeof (EFI_IPv6_ADDRESS));
896 //
897 // Stop Udp6Read instance
898 //
899 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
900 } else {
901 //
902 // Set configuration data for Mtftp4 instance.
903 //
904 ZeroMem (&Mtftp4Config, sizeof (EFI_MTFTP4_CONFIG_DATA));
905 Config = &Mtftp4Config;
906 Mtftp4Config.UseDefaultSetting = FALSE;
907 Mtftp4Config.TimeoutValue = PXEBC_MTFTP_TIMEOUT;
908 Mtftp4Config.TryCount = PXEBC_MTFTP_RETRIES;
909 CopyMem (&Mtftp4Config.StationIp, &Private->StationIp.v4, sizeof (EFI_IPv4_ADDRESS));
910 CopyMem (&Mtftp4Config.SubnetMask, &Private->SubnetMask.v4, sizeof (EFI_IPv4_ADDRESS));
911 CopyMem (&Mtftp4Config.GatewayIp, &Private->GatewayIp.v4, sizeof (EFI_IPv4_ADDRESS));
912 CopyMem (&Mtftp4Config.ServerIp, &ServerIp->v4, sizeof (EFI_IPv4_ADDRESS));
913 //
914 // Stop Udp4Read instance
915 //
916 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
917 }
918
919 Mode->TftpErrorReceived = FALSE;
920 Mode->IcmpErrorReceived = FALSE;
921
922 switch (Operation) {
923
924 case EFI_PXE_BASE_CODE_TFTP_GET_FILE_SIZE:
925 //
926 // Send TFTP request to get file size.
927 //
928 Status = PxeBcTftpGetFileSize (
929 Private,
930 Config,
931 Filename,
932 BlockSize,
933 BufferSize
934 );
935
936 break;
937
938 case EFI_PXE_BASE_CODE_TFTP_READ_FILE:
939 //
940 // Send TFTP request to read file.
941 //
942 Status = PxeBcTftpReadFile (
943 Private,
944 Config,
945 Filename,
946 BlockSize,
947 BufferPtr,
948 BufferSize,
949 DontUseBuffer
950 );
951
952 break;
953
954 case EFI_PXE_BASE_CODE_TFTP_WRITE_FILE:
955 //
956 // Send TFTP request to write file.
957 //
958 Status = PxeBcTftpWriteFile (
959 Private,
960 Config,
961 Filename,
962 Overwrite,
963 BlockSize,
964 BufferPtr,
965 BufferSize
966 );
967
968 break;
969
970 case EFI_PXE_BASE_CODE_TFTP_READ_DIRECTORY:
971 //
972 // Send TFTP request to read directory.
973 //
974 Status = PxeBcTftpReadDirectory (
975 Private,
976 Config,
977 Filename,
978 BlockSize,
979 BufferPtr,
980 BufferSize,
981 DontUseBuffer
982 );
983
984 break;
985
986 case EFI_PXE_BASE_CODE_MTFTP_GET_FILE_SIZE:
987 case EFI_PXE_BASE_CODE_MTFTP_READ_FILE:
988 case EFI_PXE_BASE_CODE_MTFTP_READ_DIRECTORY:
989 Status = EFI_UNSUPPORTED;
990
991 break;
992
993 default:
994 Status = EFI_INVALID_PARAMETER;
995
996 break;
997 }
998
999 if (Status == EFI_ICMP_ERROR) {
1000 Mode->IcmpErrorReceived = TRUE;
1001 }
1002
1003 //
1004 // Reconfigure the UDP instance with the default configuration.
1005 //
1006 if (Mode->UsingIpv6) {
1007 Private->Udp6Read->Configure (Private->Udp6Read, &Private->Udp6CfgData);
1008 } else {
1009 Private->Udp4Read->Configure (Private->Udp4Read, &Private->Udp4CfgData);
1010 }
1011 //
1012 // Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP
1013 // receive filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP.
1014 //
1015 ZeroMem(&IpFilter, sizeof (EFI_PXE_BASE_CODE_IP_FILTER));
1016 IpFilter.Filters = EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP;
1017 This->SetIpFilter (This, &IpFilter);
1018
1019 return Status;
1020 }
1021
1022
1023 /**
1024 Writes a UDP packet to the network interface.
1025
1026 This function writes a UDP packet specified by the (optional HeaderPtr and)
1027 BufferPtr parameters to the network interface. The UDP header is automatically
1028 built by this routine. It uses the parameters OpFlags, DestIp, DestPort, GatewayIp,
1029 SrcIp, and SrcPort to build this header. If the packet is successfully built and
1030 transmitted through the network interface, then EFI_SUCCESS will be returned.
1031 If a timeout occurs during the transmission of the packet, then EFI_TIMEOUT will
1032 be returned. If an ICMP error occurs during the transmission of the packet, then
1033 the IcmpErrorReceived field is set to TRUE, the IcmpError field is filled in and
1034 EFI_ICMP_ERROR will be returned. If the Callback Protocol does not return
1035 EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE, then EFI_ABORTED will be returned.
1036
1037 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1038 @param[in] OpFlags The UDP operation flags.
1039 @param[in] DestIp The destination IP address.
1040 @param[in] DestPort The destination UDP port number.
1041 @param[in] GatewayIp The gateway IP address.
1042 @param[in] SrcIp The source IP address.
1043 @param[in, out] SrcPort The source UDP port number.
1044 @param[in] HeaderSize An optional field which may be set to the length of a header
1045 at HeaderPtr to be prefixed to the data at BufferPtr.
1046 @param[in] HeaderPtr If HeaderSize is not NULL, a pointer to a header to be
1047 prefixed to the data at BufferPtr.
1048 @param[in] BufferSize A pointer to the size of the data at BufferPtr.
1049 @param[in] BufferPtr A pointer to the data to be written.
1050
1051 @retval EFI_SUCCESS The UDP Write operation completed.
1052 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1053 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1054 @retval EFI_BAD_BUFFER_SIZE The buffer is too long to be transmitted.
1055 @retval EFI_ABORTED The callback function aborted the UDP Write operation.
1056 @retval EFI_TIMEOUT The UDP Write operation timed out.
1057 @retval EFI_ICMP_ERROR An ICMP error packet was received during the UDP write session.
1058
1059 **/
1060 EFI_STATUS
1061 EFIAPI
1062 EfiPxeBcUdpWrite (
1063 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1064 IN UINT16 OpFlags,
1065 IN EFI_IP_ADDRESS *DestIp,
1066 IN EFI_PXE_BASE_CODE_UDP_PORT *DestPort,
1067 IN EFI_IP_ADDRESS *GatewayIp OPTIONAL,
1068 IN EFI_IP_ADDRESS *SrcIp OPTIONAL,
1069 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort OPTIONAL,
1070 IN UINTN *HeaderSize OPTIONAL,
1071 IN VOID *HeaderPtr OPTIONAL,
1072 IN UINTN *BufferSize,
1073 IN VOID *BufferPtr
1074 )
1075 {
1076 PXEBC_PRIVATE_DATA *Private;
1077 EFI_PXE_BASE_CODE_MODE *Mode;
1078 EFI_UDP4_SESSION_DATA Udp4Session;
1079 EFI_UDP6_SESSION_DATA Udp6Session;
1080 EFI_STATUS Status;
1081 BOOLEAN DoNotFragment;
1082
1083 if (This == NULL || DestIp == NULL || DestPort == NULL) {
1084 return EFI_INVALID_PARAMETER;
1085 }
1086
1087 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
1088 Mode = Private->PxeBc.Mode;
1089
1090 if ((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_MAY_FRAGMENT) != 0) {
1091 DoNotFragment = FALSE;
1092 } else {
1093 DoNotFragment = TRUE;
1094 }
1095
1096 if (!Mode->UsingIpv6 && GatewayIp != NULL && Mode->SubnetMask.Addr[0] != 0 &&
1097 !NetIp4IsUnicast (NTOHL (GatewayIp->Addr[0]), EFI_NTOHL(Mode->SubnetMask))) {
1098 //
1099 // Gateway is provided but it's not a unicast IPv4 address, while it will be ignored for IPv6.
1100 //
1101 return EFI_INVALID_PARAMETER;
1102 }
1103
1104 if (HeaderSize != NULL && (*HeaderSize == 0 || HeaderPtr == NULL)) {
1105 return EFI_INVALID_PARAMETER;
1106 }
1107
1108 if (BufferSize == NULL || (*BufferSize != 0 && BufferPtr == NULL)) {
1109 return EFI_INVALID_PARAMETER;
1110 }
1111
1112 if (!Mode->Started) {
1113 return EFI_NOT_STARTED;
1114 }
1115
1116 if (!Private->IsAddressOk && SrcIp == NULL) {
1117 return EFI_INVALID_PARAMETER;
1118 }
1119
1120 if (Private->CurSrcPort == 0 ||
1121 (SrcPort != NULL && *SrcPort != Private->CurSrcPort)) {
1122 //
1123 // Reconfigure UDPv4/UDPv6 for UdpWrite if the source port changed.
1124 //
1125 if (SrcPort != NULL) {
1126 Private->CurSrcPort = *SrcPort;
1127 }
1128 }
1129
1130 if (Mode->UsingIpv6) {
1131 Status = PxeBcConfigUdp6Write (
1132 Private->Udp6Write,
1133 &Private->StationIp.v6,
1134 &Private->CurSrcPort
1135 );
1136 } else {
1137 //
1138 // Configure the UDPv4 instance with gateway information from DHCP server as default.
1139 //
1140 Status = PxeBcConfigUdp4Write (
1141 Private->Udp4Write,
1142 &Private->StationIp.v4,
1143 &Private->SubnetMask.v4,
1144 &Private->GatewayIp.v4,
1145 &Private->CurSrcPort,
1146 DoNotFragment,
1147 Private->Mode.TTL,
1148 Private->Mode.ToS
1149 );
1150 }
1151
1152 if (EFI_ERROR (Status)) {
1153 Private->CurSrcPort = 0;
1154 return EFI_INVALID_PARAMETER;
1155 } else if (SrcPort != NULL) {
1156 *SrcPort = Private->CurSrcPort;
1157 }
1158
1159 //
1160 // Start a timer as timeout event for this blocking API.
1161 //
1162 gBS->SetTimer (Private->UdpTimeOutEvent, TimerRelative, PXEBC_UDP_TIMEOUT);
1163
1164 if (Mode->UsingIpv6) {
1165 //
1166 // Construct UDPv6 session data.
1167 //
1168 ZeroMem (&Udp6Session, sizeof (EFI_UDP6_SESSION_DATA));
1169 CopyMem (&Udp6Session.DestinationAddress, DestIp, sizeof (EFI_IPv6_ADDRESS));
1170 Udp6Session.DestinationPort = *DestPort;
1171 if (SrcIp != NULL) {
1172 CopyMem (&Udp6Session.SourceAddress, SrcIp, sizeof (EFI_IPv6_ADDRESS));
1173 }
1174 if (SrcPort != NULL) {
1175 Udp6Session.SourcePort = *SrcPort;
1176 }
1177
1178 Status = PxeBcUdp6Write (
1179 Private->Udp6Write,
1180 &Udp6Session,
1181 Private->UdpTimeOutEvent,
1182 HeaderSize,
1183 HeaderPtr,
1184 BufferSize,
1185 BufferPtr
1186 );
1187 } else {
1188 //
1189 // Construct UDPv4 session data.
1190 //
1191 ZeroMem (&Udp4Session, sizeof (EFI_UDP4_SESSION_DATA));
1192 CopyMem (&Udp4Session.DestinationAddress, DestIp, sizeof (EFI_IPv4_ADDRESS));
1193 Udp4Session.DestinationPort = *DestPort;
1194 if (SrcIp != NULL) {
1195 CopyMem (&Udp4Session.SourceAddress, SrcIp, sizeof (EFI_IPv4_ADDRESS));
1196 }
1197 if (SrcPort != NULL) {
1198 Udp4Session.SourcePort = *SrcPort;
1199 }
1200 //
1201 // Override the gateway information if user specified.
1202 //
1203 Status = PxeBcUdp4Write (
1204 Private->Udp4Write,
1205 &Udp4Session,
1206 Private->UdpTimeOutEvent,
1207 (EFI_IPv4_ADDRESS *) GatewayIp,
1208 HeaderSize,
1209 HeaderPtr,
1210 BufferSize,
1211 BufferPtr
1212 );
1213 }
1214
1215 gBS->SetTimer (Private->UdpTimeOutEvent, TimerCancel, 0);
1216
1217
1218 //
1219 // Reset the UdpWrite instance.
1220 //
1221 if (Mode->UsingIpv6) {
1222 Private->Udp6Write->Configure (Private->Udp6Write, NULL);
1223 } else {
1224 Private->Udp4Write->Configure (Private->Udp4Write, NULL);
1225 }
1226
1227 return Status;
1228 }
1229
1230
1231 /**
1232 Reads a UDP packet from the network interface.
1233 +
1234 This function reads a UDP packet from a network interface. The data contents
1235 are returned in (the optional HeaderPtr and) BufferPtr, and the size of the
1236 buffer received is returned in BufferSize . If the input BufferSize is smaller
1237 than the UDP packet received (less optional HeaderSize), it will be set to the
1238 required size, and EFI_BUFFER_TOO_SMALL will be returned. In this case, the
1239 contents of BufferPtr are undefined, and the packet is lost. If a UDP packet is
1240 successfully received, then EFI_SUCCESS will be returned, and the information
1241 from the UDP header will be returned in DestIp, DestPort, SrcIp, and SrcPort if
1242 they are not NULL. Depending on the values of OpFlags and the DestIp, DestPort,
1243 SrcIp, and SrcPort input values, different types of UDP packet receive filtering
1244 will be performed. The following tables summarize these receive filter operations.
1245
1246 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1247 @param[in] OpFlags The UDP operation flags.
1248 @param[in, out] DestIp The destination IP address.
1249 @param[in, out] DestPort The destination UDP port number.
1250 @param[in, out] SrcIp The source IP address.
1251 @param[in, out] SrcPort The source UDP port number.
1252 @param[in] HeaderSize An optional field which may be set to the length of a
1253 header at HeaderPtr to be prefixed to the data at BufferPtr.
1254 @param[in] HeaderPtr If HeaderSize is not NULL, a pointer to a header to be
1255 prefixed to the data at BufferPtr.
1256 @param[in, out] BufferSize A pointer to the size of the data at BufferPtr.
1257 @param[in] BufferPtr A pointer to the data to be read.
1258
1259 @retval EFI_SUCCESS The UDP Read operation was completed.
1260 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1261 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1262 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
1263 @retval EFI_BUFFER_TOO_SMALL The packet is larger than Buffer can hold.
1264 @retval EFI_ABORTED The callback function aborted the UDP Read operation.
1265 @retval EFI_TIMEOUT The UDP Read operation timed out.
1266
1267 **/
1268 EFI_STATUS
1269 EFIAPI
1270 EfiPxeBcUdpRead (
1271 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1272 IN UINT16 OpFlags,
1273 IN OUT EFI_IP_ADDRESS *DestIp OPTIONAL,
1274 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *DestPort OPTIONAL,
1275 IN OUT EFI_IP_ADDRESS *SrcIp OPTIONAL,
1276 IN OUT EFI_PXE_BASE_CODE_UDP_PORT *SrcPort OPTIONAL,
1277 IN UINTN *HeaderSize OPTIONAL,
1278 IN VOID *HeaderPtr OPTIONAL,
1279 IN OUT UINTN *BufferSize,
1280 IN VOID *BufferPtr
1281 )
1282 {
1283 PXEBC_PRIVATE_DATA *Private;
1284 EFI_PXE_BASE_CODE_MODE *Mode;
1285 EFI_UDP4_COMPLETION_TOKEN Udp4Token;
1286 EFI_UDP6_COMPLETION_TOKEN Udp6Token;
1287 EFI_UDP4_RECEIVE_DATA *Udp4Rx;
1288 EFI_UDP6_RECEIVE_DATA *Udp6Rx;
1289 EFI_STATUS Status;
1290 BOOLEAN IsDone;
1291 BOOLEAN IsMatched;
1292 UINTN CopiedLen;
1293 UINTN HeaderLen;
1294 UINTN HeaderCopiedLen;
1295 UINTN BufferCopiedLen;
1296 UINT32 FragmentLength;
1297 UINTN FragmentIndex;
1298 UINT8 *FragmentBuffer;
1299
1300 if (This == NULL) {
1301 return EFI_INVALID_PARAMETER;
1302 }
1303
1304 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
1305 Mode = Private->PxeBc.Mode;
1306 IsDone = FALSE;
1307 IsMatched = FALSE;
1308 Udp4Rx = NULL;
1309 Udp6Rx = NULL;
1310
1311 if (((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_DEST_PORT) == 0 && DestPort == NULL) ||
1312 ((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_IP) == 0 && SrcIp == NULL) ||
1313 ((OpFlags & EFI_PXE_BASE_CODE_UDP_OPFLAGS_ANY_SRC_PORT) == 0 && SrcPort == NULL)) {
1314 return EFI_INVALID_PARAMETER;
1315 }
1316
1317 if ((HeaderSize != NULL && *HeaderSize == 0) || (HeaderSize != NULL && HeaderPtr == NULL)) {
1318 return EFI_INVALID_PARAMETER;
1319 }
1320
1321 if ((BufferSize == NULL) || (BufferPtr == NULL)) {
1322 return EFI_INVALID_PARAMETER;
1323 }
1324
1325 if (!Mode->Started) {
1326 return EFI_NOT_STARTED;
1327 }
1328
1329 ZeroMem (&Udp6Token, sizeof (EFI_UDP6_COMPLETION_TOKEN));
1330 ZeroMem (&Udp4Token, sizeof (EFI_UDP4_COMPLETION_TOKEN));
1331
1332 if (Mode->UsingIpv6) {
1333 Status = gBS->CreateEvent (
1334 EVT_NOTIFY_SIGNAL,
1335 TPL_NOTIFY,
1336 PxeBcCommonNotify,
1337 &IsDone,
1338 &Udp6Token.Event
1339 );
1340 if (EFI_ERROR (Status)) {
1341 return EFI_OUT_OF_RESOURCES;
1342 }
1343 } else {
1344 Status = gBS->CreateEvent (
1345 EVT_NOTIFY_SIGNAL,
1346 TPL_NOTIFY,
1347 PxeBcCommonNotify,
1348 &IsDone,
1349 &Udp4Token.Event
1350 );
1351 if (EFI_ERROR (Status)) {
1352 return EFI_OUT_OF_RESOURCES;
1353 }
1354 }
1355
1356 //
1357 // Start a timer as timeout event for this blocking API.
1358 //
1359 gBS->SetTimer (Private->UdpTimeOutEvent, TimerRelative, PXEBC_UDP_TIMEOUT);
1360 Mode->IcmpErrorReceived = FALSE;
1361
1362 //
1363 // Read packet by Udp4Read/Udp6Read until matched or timeout.
1364 //
1365 while (!IsMatched && !EFI_ERROR (Status)) {
1366 if (Mode->UsingIpv6) {
1367 Status = PxeBcUdp6Read (
1368 Private->Udp6Read,
1369 &Udp6Token,
1370 Mode,
1371 Private->UdpTimeOutEvent,
1372 OpFlags,
1373 &IsDone,
1374 &IsMatched,
1375 DestIp,
1376 DestPort,
1377 SrcIp,
1378 SrcPort
1379 );
1380 } else {
1381 Status = PxeBcUdp4Read (
1382 Private->Udp4Read,
1383 &Udp4Token,
1384 Mode,
1385 Private->UdpTimeOutEvent,
1386 OpFlags,
1387 &IsDone,
1388 &IsMatched,
1389 DestIp,
1390 DestPort,
1391 SrcIp,
1392 SrcPort
1393 );
1394 }
1395 }
1396
1397 if (Status == EFI_ICMP_ERROR ||
1398 Status == EFI_NETWORK_UNREACHABLE ||
1399 Status == EFI_HOST_UNREACHABLE ||
1400 Status == EFI_PROTOCOL_UNREACHABLE ||
1401 Status == EFI_PORT_UNREACHABLE) {
1402 //
1403 // Get different return status for icmp error from Udp, refers to UEFI spec.
1404 //
1405 Mode->IcmpErrorReceived = TRUE;
1406 }
1407 gBS->SetTimer (Private->UdpTimeOutEvent, TimerCancel, 0);
1408
1409 if (IsMatched) {
1410 //
1411 // Copy the rececived packet to user if matched by filter.
1412 //
1413 if (Mode->UsingIpv6) {
1414 Udp6Rx = Udp6Token.Packet.RxData;
1415 ASSERT (Udp6Rx != NULL);
1416
1417 HeaderLen = 0;
1418 if (HeaderSize != NULL) {
1419 HeaderLen = MIN (*HeaderSize, Udp6Rx->DataLength);
1420 }
1421
1422 if (Udp6Rx->DataLength - HeaderLen > *BufferSize) {
1423 Status = EFI_BUFFER_TOO_SMALL;
1424 } else {
1425 if (HeaderSize != NULL) {
1426 *HeaderSize = HeaderLen;
1427 }
1428 *BufferSize = Udp6Rx->DataLength - HeaderLen;
1429
1430 HeaderCopiedLen = 0;
1431 BufferCopiedLen = 0;
1432 for (FragmentIndex = 0; FragmentIndex < Udp6Rx->FragmentCount; FragmentIndex++) {
1433 FragmentLength = Udp6Rx->FragmentTable[FragmentIndex].FragmentLength;
1434 FragmentBuffer = Udp6Rx->FragmentTable[FragmentIndex].FragmentBuffer;
1435 if (HeaderCopiedLen + FragmentLength < HeaderLen) {
1436 //
1437 // Copy the header part of received data.
1438 //
1439 CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, FragmentLength);
1440 HeaderCopiedLen += FragmentLength;
1441 } else if (HeaderCopiedLen < HeaderLen) {
1442 //
1443 // Copy the header part of received data.
1444 //
1445 CopiedLen = HeaderLen - HeaderCopiedLen;
1446 CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, CopiedLen);
1447 HeaderCopiedLen += CopiedLen;
1448
1449 //
1450 // Copy the other part of received data.
1451 //
1452 CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer + CopiedLen, FragmentLength - CopiedLen);
1453 BufferCopiedLen += (FragmentLength - CopiedLen);
1454 } else {
1455 //
1456 // Copy the other part of received data.
1457 //
1458 CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer, FragmentLength);
1459 BufferCopiedLen += FragmentLength;
1460 }
1461 }
1462 }
1463 //
1464 // Recycle the receiving buffer after copy to user.
1465 //
1466 gBS->SignalEvent (Udp6Rx->RecycleSignal);
1467 } else {
1468 Udp4Rx = Udp4Token.Packet.RxData;
1469 ASSERT (Udp4Rx != NULL);
1470
1471 HeaderLen = 0;
1472 if (HeaderSize != NULL) {
1473 HeaderLen = MIN (*HeaderSize, Udp4Rx->DataLength);
1474 }
1475
1476 if (Udp4Rx->DataLength - HeaderLen > *BufferSize) {
1477 Status = EFI_BUFFER_TOO_SMALL;
1478 } else {
1479 if (HeaderSize != NULL) {
1480 *HeaderSize = HeaderLen;
1481 }
1482 *BufferSize = Udp4Rx->DataLength - HeaderLen;
1483
1484 HeaderCopiedLen = 0;
1485 BufferCopiedLen = 0;
1486 for (FragmentIndex = 0; FragmentIndex < Udp4Rx->FragmentCount; FragmentIndex++) {
1487 FragmentLength = Udp4Rx->FragmentTable[FragmentIndex].FragmentLength;
1488 FragmentBuffer = Udp4Rx->FragmentTable[FragmentIndex].FragmentBuffer;
1489 if (HeaderCopiedLen + FragmentLength < HeaderLen) {
1490 //
1491 // Copy the header part of received data.
1492 //
1493 CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, FragmentLength);
1494 HeaderCopiedLen += FragmentLength;
1495 } else if (HeaderCopiedLen < HeaderLen) {
1496 //
1497 // Copy the header part of received data.
1498 //
1499 CopiedLen = HeaderLen - HeaderCopiedLen;
1500 CopyMem ((UINT8 *) HeaderPtr + HeaderCopiedLen, FragmentBuffer, CopiedLen);
1501 HeaderCopiedLen += CopiedLen;
1502
1503 //
1504 // Copy the other part of received data.
1505 //
1506 CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer + CopiedLen, FragmentLength - CopiedLen);
1507 BufferCopiedLen += (FragmentLength - CopiedLen);
1508 } else {
1509 //
1510 // Copy the other part of received data.
1511 //
1512 CopyMem ((UINT8 *) BufferPtr + BufferCopiedLen, FragmentBuffer, FragmentLength);
1513 BufferCopiedLen += FragmentLength;
1514 }
1515 }
1516 }
1517 //
1518 // Recycle the receiving buffer after copy to user.
1519 //
1520 gBS->SignalEvent (Udp4Rx->RecycleSignal);
1521 }
1522 }
1523
1524 if (Mode->UsingIpv6) {
1525 Private->Udp6Read->Cancel (Private->Udp6Read, &Udp6Token);
1526 gBS->CloseEvent (Udp6Token.Event);
1527 } else {
1528 Private->Udp4Read->Cancel (Private->Udp4Read, &Udp4Token);
1529 gBS->CloseEvent (Udp4Token.Event);
1530 }
1531
1532 return Status;
1533 }
1534
1535
1536 /**
1537 Updates the IP receive filters of a network device and enables software filtering.
1538
1539 The NewFilter field is used to modify the network device's current IP receive
1540 filter settings and to enable a software filter. This function updates the IpFilter
1541 field of the EFI_PXE_BASE_CODE_MODE structure with the contents of NewIpFilter.
1542 The software filter is used when the USE_FILTER in OpFlags is set to UdpRead().
1543 The current hardware filter remains in effect no matter what the settings of OpFlags.
1544 This is so that the meaning of ANY_DEST_IP set in OpFlags to UdpRead() is from those
1545 packets whose reception is enabled in hardware-physical NIC address (unicast),
1546 broadcast address, logical address or addresses (multicast), or all (promiscuous).
1547 UdpRead() does not modify the IP filter settings.
1548 Dhcp(), Discover(), and Mtftp() set the IP filter, and return with the IP receive
1549 filter list emptied and the filter set to EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP.
1550 If an application or driver wishes to preserve the IP receive filter settings,
1551 it will have to preserve the IP receive filter settings before these calls, and
1552 use SetIpFilter() to restore them after the calls. If incompatible filtering is
1553 requested (for example, PROMISCUOUS with anything else), or if the device does not
1554 support a requested filter setting and it cannot be accommodated in software
1555 (for example, PROMISCUOUS not supported), EFI_INVALID_PARAMETER will be returned.
1556 The IPlist field is used to enable IPs other than the StationIP. They may be
1557 multicast or unicast. If IPcnt is set as well as EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP,
1558 then both the StationIP and the IPs from the IPlist will be used.
1559
1560 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1561 @param[in] NewFilter Pointer to the new set of IP receive filters.
1562
1563 @retval EFI_SUCCESS The IP receive filter settings were updated.
1564 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1565 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1566
1567 **/
1568 EFI_STATUS
1569 EFIAPI
1570 EfiPxeBcSetIpFilter (
1571 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1572 IN EFI_PXE_BASE_CODE_IP_FILTER *NewFilter
1573 )
1574 {
1575 EFI_STATUS Status;
1576 PXEBC_PRIVATE_DATA *Private;
1577 EFI_PXE_BASE_CODE_MODE *Mode;
1578 EFI_UDP4_CONFIG_DATA *Udp4Cfg;
1579 EFI_UDP6_CONFIG_DATA *Udp6Cfg;
1580 UINTN Index;
1581 BOOLEAN NeedPromiscuous;
1582 BOOLEAN AcceptPromiscuous;
1583 BOOLEAN AcceptBroadcast;
1584 BOOLEAN MultiCastUpdate;
1585
1586 if (This == NULL || NewFilter == NULL) {
1587 return EFI_INVALID_PARAMETER;
1588 }
1589
1590 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
1591 Mode = Private->PxeBc.Mode;
1592 Status = EFI_SUCCESS;
1593 NeedPromiscuous = FALSE;
1594
1595 if (!Mode->Started) {
1596 return EFI_NOT_STARTED;
1597 }
1598
1599 for (Index = 0; Index < NewFilter->IpCnt; Index++) {
1600 ASSERT (Index < EFI_PXE_BASE_CODE_MAX_IPCNT);
1601 if (!Mode->UsingIpv6 &&
1602 IP4_IS_LOCAL_BROADCAST (EFI_IP4 (NewFilter->IpList[Index].v4))) {
1603 //
1604 // IPv4 broadcast address should not be in IP filter.
1605 //
1606 return EFI_INVALID_PARAMETER;
1607 }
1608 if (Mode->UsingIpv6) {
1609 if ((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP) != 0 &&
1610 NetIp6IsValidUnicast (&NewFilter->IpList[Index].v6)) {
1611 NeedPromiscuous = TRUE;
1612 }
1613 } else if ((EFI_NTOHL(Mode->StationIp) != 0) &&
1614 (EFI_NTOHL(Mode->SubnetMask) != 0) &&
1615 IP4_NET_EQUAL(EFI_NTOHL(Mode->StationIp), EFI_NTOHL(NewFilter->IpList[Index].v4), EFI_NTOHL(Mode->SubnetMask.v4)) &&
1616 NetIp4IsUnicast (EFI_IP4 (NewFilter->IpList[Index].v4), EFI_NTOHL(Mode->SubnetMask)) &&
1617 ((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP) != 0)) {
1618 NeedPromiscuous = TRUE;
1619 }
1620 }
1621
1622 AcceptPromiscuous = FALSE;
1623 AcceptBroadcast = FALSE;
1624 MultiCastUpdate = FALSE;
1625
1626 if (NeedPromiscuous ||
1627 (NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS) != 0 ||
1628 (NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_PROMISCUOUS_MULTICAST) != 0) {
1629 //
1630 // Configure UDPv4/UDPv6 as promiscuous mode to receive all packets.
1631 //
1632 AcceptPromiscuous = TRUE;
1633 } else if ((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_BROADCAST) != 0) {
1634 //
1635 // Configure UDPv4 to receive all broadcast packets.
1636 //
1637 AcceptBroadcast = TRUE;
1638 }
1639
1640 //
1641 // In multicast condition when Promiscuous FALSE and IpCnt no-zero.
1642 // Here check if there is any update of the multicast ip address. If yes,
1643 // we need leave the old multicast group (by Config UDP instance to NULL),
1644 // and join the new multicast group.
1645 //
1646 if (!AcceptPromiscuous) {
1647 if ((NewFilter->Filters & EFI_PXE_BASE_CODE_IP_FILTER_STATION_IP) != 0) {
1648 if (Mode->IpFilter.IpCnt != NewFilter->IpCnt) {
1649 MultiCastUpdate = TRUE;
1650 } else if (CompareMem (Mode->IpFilter.IpList, NewFilter->IpList, NewFilter->IpCnt * sizeof (EFI_IP_ADDRESS)) != 0 ) {
1651 MultiCastUpdate = TRUE;
1652 }
1653 }
1654 }
1655
1656 if (!Mode->UsingIpv6) {
1657 //
1658 // Check whether we need reconfigure the UDP4 instance.
1659 //
1660 Udp4Cfg = &Private->Udp4CfgData;
1661 if ((AcceptPromiscuous != Udp4Cfg->AcceptPromiscuous) ||
1662 (AcceptBroadcast != Udp4Cfg->AcceptBroadcast) || MultiCastUpdate) {
1663 //
1664 // Clear the UDP4 instance configuration, all joined groups will be left
1665 // during the operation.
1666 //
1667 Private->Udp4Read->Configure (Private->Udp4Read, NULL);
1668
1669 //
1670 // Configure the UDP instance with the new configuration.
1671 //
1672 Udp4Cfg->AcceptPromiscuous = AcceptPromiscuous;
1673 Udp4Cfg->AcceptBroadcast = AcceptBroadcast;
1674 Status = Private->Udp4Read->Configure (Private->Udp4Read, Udp4Cfg);
1675 if (EFI_ERROR (Status)) {
1676 return Status;
1677 }
1678
1679 //
1680 // In not Promiscuous mode, need to join the new multicast group.
1681 //
1682 if (!AcceptPromiscuous) {
1683 for (Index = 0; Index < NewFilter->IpCnt; ++Index) {
1684 if (IP4_IS_MULTICAST (EFI_NTOHL (NewFilter->IpList[Index].v4))) {
1685 //
1686 // Join the mutilcast group.
1687 //
1688 Status = Private->Udp4Read->Groups (Private->Udp4Read, TRUE, &NewFilter->IpList[Index].v4);
1689 if (EFI_ERROR (Status)) {
1690 return Status;
1691 }
1692 }
1693 }
1694 }
1695 }
1696 } else {
1697 //
1698 // Check whether we need reconfigure the UDP6 instance.
1699 //
1700 Udp6Cfg = &Private->Udp6CfgData;
1701 if ((AcceptPromiscuous != Udp6Cfg->AcceptPromiscuous) || MultiCastUpdate) {
1702 //
1703 // Clear the UDP6 instance configuration, all joined groups will be left
1704 // during the operation.
1705 //
1706 Private->Udp6Read->Configure (Private->Udp6Read, NULL);
1707
1708 //
1709 // Configure the UDP instance with the new configuration.
1710 //
1711 Udp6Cfg->AcceptPromiscuous = AcceptPromiscuous;
1712 Status = Private->Udp6Read->Configure (Private->Udp6Read, Udp6Cfg);
1713 if (EFI_ERROR (Status)) {
1714 return Status;
1715 }
1716
1717 //
1718 // In not Promiscuous mode, need to join the new multicast group.
1719 //
1720 if (!AcceptPromiscuous) {
1721 for (Index = 0; Index < NewFilter->IpCnt; ++Index) {
1722 if (IP6_IS_MULTICAST (&NewFilter->IpList[Index].v6)) {
1723 //
1724 // Join the mutilcast group.
1725 //
1726 Status = Private->Udp6Read->Groups (Private->Udp6Read, TRUE, &NewFilter->IpList[Index].v6);
1727 if (EFI_ERROR (Status)) {
1728 return Status;
1729 }
1730 }
1731 }
1732 }
1733 }
1734 }
1735
1736 //
1737 // Save the new IP filter into mode data.
1738 //
1739 CopyMem (&Mode->IpFilter, NewFilter, sizeof (Mode->IpFilter));
1740
1741 return Status;
1742 }
1743
1744
1745 /**
1746 Uses the ARP protocol to resolve a MAC address. It is not supported for IPv6.
1747
1748 This function uses the ARP protocol to resolve a MAC address. The IP address specified
1749 by IpAddr is used to resolve a MAC address. If the ARP protocol succeeds in resolving
1750 the specified address, then the ArpCacheEntries and ArpCache fields of the mode data
1751 are updated, and EFI_SUCCESS is returned. If MacAddr is not NULL, the resolved
1752 MAC address is placed there as well. If the PXE Base Code protocol is in the
1753 stopped state, then EFI_NOT_STARTED is returned. If the ARP protocol encounters
1754 a timeout condition while attempting to resolve an address, then EFI_TIMEOUT is
1755 returned. If the Callback Protocol does not return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE,
1756 then EFI_ABORTED is returned.
1757
1758 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1759 @param[in] IpAddr Pointer to the IP address that is used to resolve a MAC address.
1760 @param[in] MacAddr If not NULL, a pointer to the MAC address that was resolved with the
1761 ARP protocol.
1762
1763 @retval EFI_SUCCESS The IP or MAC address was resolved.
1764 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1765 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1766 @retval EFI_DEVICE_ERROR The network device encountered an error during this operation.
1767 @retval EFI_ICMP_ERROR An error occur with the ICMP packet message.
1768
1769 **/
1770 EFI_STATUS
1771 EFIAPI
1772 EfiPxeBcArp (
1773 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1774 IN EFI_IP_ADDRESS *IpAddr,
1775 IN EFI_MAC_ADDRESS *MacAddr OPTIONAL
1776 )
1777 {
1778 PXEBC_PRIVATE_DATA *Private;
1779 EFI_PXE_BASE_CODE_MODE *Mode;
1780 EFI_EVENT ResolvedEvent;
1781 EFI_STATUS Status;
1782 EFI_MAC_ADDRESS TempMac;
1783 EFI_MAC_ADDRESS ZeroMac;
1784 BOOLEAN IsResolved;
1785
1786 if (This == NULL || IpAddr == NULL) {
1787 return EFI_INVALID_PARAMETER;
1788 }
1789
1790 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
1791 Mode = Private->PxeBc.Mode;
1792 ResolvedEvent = NULL;
1793 Status = EFI_SUCCESS;
1794 IsResolved = FALSE;
1795
1796 if (!Mode->Started) {
1797 return EFI_NOT_STARTED;
1798 }
1799
1800 if (Mode->UsingIpv6) {
1801 return EFI_UNSUPPORTED;
1802 }
1803
1804 //
1805 // Station address should be ready before do arp.
1806 //
1807 if (!Private->IsAddressOk) {
1808 return EFI_INVALID_PARAMETER;
1809 }
1810
1811 Mode->IcmpErrorReceived = FALSE;
1812 ZeroMem (&TempMac, sizeof (EFI_MAC_ADDRESS));
1813 ZeroMem (&ZeroMac, sizeof (EFI_MAC_ADDRESS));
1814
1815 if (!Mode->AutoArp) {
1816 //
1817 // If AutoArp is FALSE, only search in the current Arp cache.
1818 //
1819 PxeBcArpCacheUpdate (NULL, Private);
1820 if (!PxeBcCheckArpCache (Mode, &IpAddr->v4, &TempMac)) {
1821 Status = EFI_DEVICE_ERROR;
1822 goto ON_EXIT;
1823 }
1824 } else {
1825 Status = gBS->CreateEvent (
1826 EVT_NOTIFY_SIGNAL,
1827 TPL_NOTIFY,
1828 PxeBcCommonNotify,
1829 &IsResolved,
1830 &ResolvedEvent
1831 );
1832 if (EFI_ERROR (Status)) {
1833 goto ON_EXIT;
1834 }
1835
1836 //
1837 // If AutoArp is TRUE, try to send Arp request on initiative.
1838 //
1839 Status = Private->Arp->Request (Private->Arp, &IpAddr->v4, ResolvedEvent, &TempMac);
1840 if (EFI_ERROR (Status) && Status != EFI_NOT_READY) {
1841 goto ON_EXIT;
1842 }
1843
1844 while (!IsResolved) {
1845 if (CompareMem (&TempMac, &ZeroMac, sizeof (EFI_MAC_ADDRESS)) != 0) {
1846 break;
1847 }
1848 }
1849 if (CompareMem (&TempMac, &ZeroMac, sizeof (EFI_MAC_ADDRESS)) != 0) {
1850 Status = EFI_SUCCESS;
1851 } else {
1852 Status = EFI_TIMEOUT;
1853 }
1854 }
1855
1856 //
1857 // Copy the Mac address to user if needed.
1858 //
1859 if (MacAddr != NULL && !EFI_ERROR (Status)) {
1860 CopyMem (MacAddr, &TempMac, sizeof (EFI_MAC_ADDRESS));
1861 }
1862
1863 ON_EXIT:
1864 if (ResolvedEvent != NULL) {
1865 gBS->CloseEvent (ResolvedEvent);
1866 }
1867 return Status;
1868 }
1869
1870
1871 /**
1872 Updates the parameters that affect the operation of the PXE Base Code Protocol.
1873
1874 This function sets parameters that affect the operation of the PXE Base Code Protocol.
1875 The parameter specified by NewAutoArp is used to control the generation of ARP
1876 protocol packets. If NewAutoArp is TRUE, then ARP Protocol packets will be generated
1877 as required by the PXE Base Code Protocol. If NewAutoArp is FALSE, then no ARP
1878 Protocol packets will be generated. In this case, the only mappings that are
1879 available are those stored in the ArpCache of the EFI_PXE_BASE_CODE_MODE structure.
1880 If there are not enough mappings in the ArpCache to perform a PXE Base Code Protocol
1881 service, then the service will fail. This function updates the AutoArp field of
1882 the EFI_PXE_BASE_CODE_MODE structure to NewAutoArp.
1883 The SetParameters() call must be invoked after a Callback Protocol is installed
1884 to enable the use of callbacks.
1885
1886 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1887 @param[in] NewAutoArp If not NULL, a pointer to a value that specifies whether to replace the
1888 current value of AutoARP.
1889 @param[in] NewSendGUID If not NULL, a pointer to a value that specifies whether to replace the
1890 current value of SendGUID.
1891 @param[in] NewTTL If not NULL, a pointer to be used in place of the current value of TTL,
1892 the "time to live" field of the IP header.
1893 @param[in] NewToS If not NULL, a pointer to be used in place of the current value of ToS,
1894 the "type of service" field of the IP header.
1895 @param[in] NewMakeCallback If not NULL, a pointer to a value that specifies whether to replace the
1896 current value of the MakeCallback field of the Mode structure.
1897
1898 @retval EFI_SUCCESS The new parameters values were updated.
1899 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1900 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1901
1902 **/
1903 EFI_STATUS
1904 EFIAPI
1905 EfiPxeBcSetParameters (
1906 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1907 IN BOOLEAN *NewAutoArp OPTIONAL,
1908 IN BOOLEAN *NewSendGUID OPTIONAL,
1909 IN UINT8 *NewTTL OPTIONAL,
1910 IN UINT8 *NewToS OPTIONAL,
1911 IN BOOLEAN *NewMakeCallback OPTIONAL
1912 )
1913 {
1914 PXEBC_PRIVATE_DATA *Private;
1915 EFI_PXE_BASE_CODE_MODE *Mode;
1916 EFI_GUID SystemGuid;
1917 EFI_STATUS Status;
1918
1919 if (This == NULL) {
1920 return EFI_INVALID_PARAMETER;
1921 }
1922
1923 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
1924 Mode = Private->PxeBc.Mode;
1925
1926 if (!Mode->Started) {
1927 return EFI_NOT_STARTED;
1928 }
1929
1930 if (NewMakeCallback != NULL) {
1931 if (*NewMakeCallback) {
1932 //
1933 // Update the previous PxeBcCallback protocol.
1934 //
1935 Status = gBS->HandleProtocol (
1936 Mode->UsingIpv6 ? Private->Ip6Nic->Controller : Private->Ip4Nic->Controller,
1937 &gEfiPxeBaseCodeCallbackProtocolGuid,
1938 (VOID **) &Private->PxeBcCallback
1939 );
1940
1941 if (EFI_ERROR (Status) || (Private->PxeBcCallback->Callback == NULL)) {
1942 return EFI_INVALID_PARAMETER;
1943 }
1944 } else {
1945 Private->PxeBcCallback = NULL;
1946 }
1947 Mode->MakeCallbacks = *NewMakeCallback;
1948 }
1949
1950 if (NewSendGUID != NULL) {
1951 if (*NewSendGUID && EFI_ERROR (NetLibGetSystemGuid (&SystemGuid))) {
1952 return EFI_INVALID_PARAMETER;
1953 }
1954 Mode->SendGUID = *NewSendGUID;
1955 }
1956
1957 if (NewAutoArp != NULL) {
1958 Mode->AutoArp = *NewAutoArp;
1959 }
1960
1961 if (NewTTL != NULL) {
1962 Mode->TTL = *NewTTL;
1963 }
1964
1965 if (NewToS != NULL) {
1966 Mode->ToS = *NewToS;
1967 }
1968
1969 return EFI_SUCCESS;
1970 }
1971
1972
1973 /**
1974 Updates the station IP address and/or subnet mask values of a network device.
1975
1976 This function updates the station IP address and/or subnet mask values of a network
1977 device. The NewStationIp field is used to modify the network device's current IP address.
1978 If NewStationIP is NULL, then the current IP address will not be modified. Otherwise,
1979 this function updates the StationIp field of the EFI_PXE_BASE_CODE_MODE structure
1980 with NewStationIp. The NewSubnetMask field is used to modify the network device's current subnet
1981 mask. If NewSubnetMask is NULL, then the current subnet mask will not be modified.
1982 Otherwise, this function updates the SubnetMask field of the EFI_PXE_BASE_CODE_MODE
1983 structure with NewSubnetMask.
1984
1985 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
1986 @param[in] NewStationIp Pointer to the new IP address to be used by the network device.
1987 @param[in] NewSubnetMask Pointer to the new subnet mask to be used by the network device.
1988
1989 @retval EFI_SUCCESS The new station IP address and/or subnet mask were updated.
1990 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
1991 @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
1992
1993 **/
1994 EFI_STATUS
1995 EFIAPI
1996 EfiPxeBcSetStationIP (
1997 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
1998 IN EFI_IP_ADDRESS *NewStationIp OPTIONAL,
1999 IN EFI_IP_ADDRESS *NewSubnetMask OPTIONAL
2000 )
2001 {
2002 EFI_STATUS Status;
2003 PXEBC_PRIVATE_DATA *Private;
2004 EFI_PXE_BASE_CODE_MODE *Mode;
2005 EFI_ARP_CONFIG_DATA ArpConfigData;
2006
2007 if (This == NULL) {
2008 return EFI_INVALID_PARAMETER;
2009 }
2010
2011 if (NewStationIp != NULL && !NetIp6IsValidUnicast (&NewStationIp->v6)) {
2012 return EFI_INVALID_PARAMETER;
2013 }
2014
2015 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
2016 Mode = Private->PxeBc.Mode;
2017 Status = EFI_SUCCESS;
2018
2019 if (!Mode->UsingIpv6 &&
2020 NewSubnetMask != NULL &&
2021 !IP4_IS_VALID_NETMASK (NTOHL (NewSubnetMask->Addr[0]))) {
2022 return EFI_INVALID_PARAMETER;
2023 }
2024
2025 if (!Mode->UsingIpv6 && NewStationIp != NULL) {
2026 if (IP4_IS_UNSPECIFIED(NTOHL (NewStationIp->Addr[0])) ||
2027 IP4_IS_LOCAL_BROADCAST(NTOHL (NewStationIp->Addr[0])) ||
2028 (NewSubnetMask != NULL && NewSubnetMask->Addr[0] != 0 && !NetIp4IsUnicast (NTOHL (NewStationIp->Addr[0]), NTOHL (NewSubnetMask->Addr[0])))) {
2029 return EFI_INVALID_PARAMETER;
2030 }
2031 }
2032
2033 if (!Mode->Started) {
2034 return EFI_NOT_STARTED;
2035 }
2036
2037 if (Mode->UsingIpv6 && NewStationIp != NULL) {
2038 //
2039 // Set the IPv6 address by Ip6Config protocol.
2040 //
2041 Status = PxeBcRegisterIp6Address (Private, &NewStationIp->v6);
2042 if (EFI_ERROR (Status)) {
2043 goto ON_EXIT;
2044 }
2045 } else if (!Mode->UsingIpv6 && NewStationIp != NULL) {
2046 //
2047 // Configure the corresponding ARP with the IPv4 address.
2048 //
2049 ZeroMem (&ArpConfigData, sizeof (EFI_ARP_CONFIG_DATA));
2050
2051 ArpConfigData.SwAddressType = 0x0800;
2052 ArpConfigData.SwAddressLength = (UINT8) sizeof (EFI_IPv4_ADDRESS);
2053 ArpConfigData.StationAddress = &NewStationIp->v4;
2054
2055 Private->Arp->Configure (Private->Arp, NULL);
2056 Private->Arp->Configure (Private->Arp, &ArpConfigData);
2057
2058 if (NewSubnetMask != NULL) {
2059 Mode->RouteTableEntries = 1;
2060 Mode->RouteTable[0].IpAddr.Addr[0] = NewStationIp->Addr[0] & NewSubnetMask->Addr[0];
2061 Mode->RouteTable[0].SubnetMask.Addr[0] = NewSubnetMask->Addr[0];
2062 Mode->RouteTable[0].GwAddr.Addr[0] = 0;
2063 }
2064
2065 Private->IsAddressOk = TRUE;
2066 }
2067
2068 if (NewStationIp != NULL) {
2069 CopyMem (&Mode->StationIp, NewStationIp, sizeof (EFI_IP_ADDRESS));
2070 CopyMem (&Private->StationIp, NewStationIp, sizeof (EFI_IP_ADDRESS));
2071 }
2072
2073 if (!Mode->UsingIpv6 && NewSubnetMask != NULL) {
2074 CopyMem (&Mode->SubnetMask, NewSubnetMask, sizeof (EFI_IP_ADDRESS));
2075 CopyMem (&Private->SubnetMask ,NewSubnetMask, sizeof (EFI_IP_ADDRESS));
2076 }
2077
2078 Status = PxeBcFlushStationIp (Private, NewStationIp, NewSubnetMask);
2079 ON_EXIT:
2080 return Status;
2081 }
2082
2083
2084 /**
2085 Updates the contents of the cached DHCP and Discover packets.
2086
2087 The pointers to the new packets are used to update the contents of the cached
2088 packets in the EFI_PXE_BASE_CODE_MODE structure.
2089
2090 @param[in] This Pointer to the EFI_PXE_BASE_CODE_PROTOCOL instance.
2091 @param[in] NewDhcpDiscoverValid Pointer to a value that will replace the current
2092 DhcpDiscoverValid field.
2093 @param[in] NewDhcpAckReceived Pointer to a value that will replace the current
2094 DhcpAckReceived field.
2095 @param[in] NewProxyOfferReceived Pointer to a value that will replace the current
2096 ProxyOfferReceived field.
2097 @param[in] NewPxeDiscoverValid Pointer to a value that will replace the current
2098 ProxyOfferReceived field.
2099 @param[in] NewPxeReplyReceived Pointer to a value that will replace the current
2100 PxeReplyReceived field.
2101 @param[in] NewPxeBisReplyReceived Pointer to a value that will replace the current
2102 PxeBisReplyReceived field.
2103 @param[in] NewDhcpDiscover Pointer to the new cached DHCP Discover packet contents.
2104 @param[in] NewDhcpAck Pointer to the new cached DHCP Ack packet contents.
2105 @param[in] NewProxyOffer Pointer to the new cached Proxy Offer packet contents.
2106 @param[in] NewPxeDiscover Pointer to the new cached PXE Discover packet contents.
2107 @param[in] NewPxeReply Pointer to the new cached PXE Reply packet contents.
2108 @param[in] NewPxeBisReply Pointer to the new cached PXE BIS Reply packet contents.
2109
2110 @retval EFI_SUCCESS The cached packet contents were updated.
2111 @retval EFI_NOT_STARTED The PXE Base Code Protocol is in the stopped state.
2112 @retval EFI_INVALID_PARAMETER This is NULL or does not point to a valid
2113 EFI_PXE_BASE_CODE_PROTOCOL structure.
2114
2115 **/
2116 EFI_STATUS
2117 EFIAPI
2118 EfiPxeBcSetPackets (
2119 IN EFI_PXE_BASE_CODE_PROTOCOL *This,
2120 IN BOOLEAN *NewDhcpDiscoverValid OPTIONAL,
2121 IN BOOLEAN *NewDhcpAckReceived OPTIONAL,
2122 IN BOOLEAN *NewProxyOfferReceived OPTIONAL,
2123 IN BOOLEAN *NewPxeDiscoverValid OPTIONAL,
2124 IN BOOLEAN *NewPxeReplyReceived OPTIONAL,
2125 IN BOOLEAN *NewPxeBisReplyReceived OPTIONAL,
2126 IN EFI_PXE_BASE_CODE_PACKET *NewDhcpDiscover OPTIONAL,
2127 IN EFI_PXE_BASE_CODE_PACKET *NewDhcpAck OPTIONAL,
2128 IN EFI_PXE_BASE_CODE_PACKET *NewProxyOffer OPTIONAL,
2129 IN EFI_PXE_BASE_CODE_PACKET *NewPxeDiscover OPTIONAL,
2130 IN EFI_PXE_BASE_CODE_PACKET *NewPxeReply OPTIONAL,
2131 IN EFI_PXE_BASE_CODE_PACKET *NewPxeBisReply OPTIONAL
2132 )
2133 {
2134 PXEBC_PRIVATE_DATA *Private;
2135 EFI_PXE_BASE_CODE_MODE *Mode;
2136
2137 if (This == NULL) {
2138 return EFI_INVALID_PARAMETER;
2139 }
2140
2141 Private = PXEBC_PRIVATE_DATA_FROM_PXEBC (This);
2142 Mode = Private->PxeBc.Mode;
2143
2144 if (!Mode->Started) {
2145 return EFI_NOT_STARTED;
2146 }
2147
2148 if (NewDhcpDiscoverValid != NULL) {
2149 Mode->DhcpDiscoverValid = *NewDhcpDiscoverValid;
2150 }
2151
2152 if (NewDhcpAckReceived != NULL) {
2153 Mode->DhcpAckReceived = *NewDhcpAckReceived;
2154 }
2155
2156 if (NewProxyOfferReceived != NULL) {
2157 Mode->ProxyOfferReceived = *NewProxyOfferReceived;
2158 }
2159
2160 if (NewPxeDiscoverValid != NULL) {
2161 Mode->PxeDiscoverValid = *NewPxeDiscoverValid;
2162 }
2163
2164 if (NewPxeReplyReceived != NULL) {
2165 Mode->PxeReplyReceived = *NewPxeReplyReceived;
2166 }
2167
2168 if (NewPxeBisReplyReceived != NULL) {
2169 Mode->PxeBisReplyReceived = *NewPxeBisReplyReceived;
2170 }
2171
2172 if (NewDhcpDiscover != NULL) {
2173 CopyMem (&Mode->DhcpDiscover, NewDhcpDiscover, sizeof (EFI_PXE_BASE_CODE_PACKET));
2174 }
2175
2176 if (NewDhcpAck != NULL) {
2177 CopyMem (&Mode->DhcpAck, NewDhcpAck, sizeof (EFI_PXE_BASE_CODE_PACKET));
2178 }
2179
2180 if (NewProxyOffer != NULL) {
2181 CopyMem (&Mode->ProxyOffer, NewProxyOffer, sizeof (EFI_PXE_BASE_CODE_PACKET));
2182 }
2183
2184 if (NewPxeDiscover != NULL) {
2185 CopyMem (&Mode->PxeDiscover, NewPxeDiscover, sizeof (EFI_PXE_BASE_CODE_PACKET));
2186 }
2187
2188 if (NewPxeReply != NULL) {
2189 CopyMem (&Mode->PxeReply, NewPxeReply, sizeof (EFI_PXE_BASE_CODE_PACKET));
2190 }
2191
2192 if (NewPxeBisReply != NULL) {
2193 CopyMem (&Mode->PxeBisReply, NewPxeBisReply, sizeof (EFI_PXE_BASE_CODE_PACKET));
2194 }
2195
2196 return EFI_SUCCESS;
2197 }
2198
2199 EFI_PXE_BASE_CODE_PROTOCOL gPxeBcProtocolTemplate = {
2200 EFI_PXE_BASE_CODE_PROTOCOL_REVISION,
2201 EfiPxeBcStart,
2202 EfiPxeBcStop,
2203 EfiPxeBcDhcp,
2204 EfiPxeBcDiscover,
2205 EfiPxeBcMtftp,
2206 EfiPxeBcUdpWrite,
2207 EfiPxeBcUdpRead,
2208 EfiPxeBcSetIpFilter,
2209 EfiPxeBcArp,
2210 EfiPxeBcSetParameters,
2211 EfiPxeBcSetStationIP,
2212 EfiPxeBcSetPackets,
2213 NULL
2214 };
2215
2216
2217 /**
2218 Callback function that is invoked when the PXE Base Code Protocol is about to transmit, has
2219 received, or is waiting to receive a packet.
2220
2221 This function is invoked when the PXE Base Code Protocol is about to transmit, has received,
2222 or is waiting to receive a packet. Parameters Function and Received specify the type of event.
2223 Parameters PacketLen and Packet specify the packet that generated the event. If these fields
2224 are zero and NULL respectively, then this is a status update callback. If the operation specified
2225 by Function is to continue, then CALLBACK_STATUS_CONTINUE should be returned. If the operation
2226 specified by Function should be aborted, then CALLBACK_STATUS_ABORT should be returned. Due to
2227 the polling nature of UEFI device drivers, a callback function should not execute for more than 5 ms.
2228 The SetParameters() function must be called after a Callback Protocol is installed to enable the
2229 use of callbacks.
2230
2231 @param[in] This Pointer to the EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL instance.
2232 @param[in] Function The PXE Base Code Protocol function that is waiting for an event.
2233 @param[in] Received TRUE if the callback is being invoked due to a receive event. FALSE if
2234 the callback is being invoked due to a transmit event.
2235 @param[in] PacketLength The length, in bytes, of Packet. This field will have a value of zero if
2236 this is a wait for receive event.
2237 @param[in] PacketPtr If Received is TRUE, a pointer to the packet that was just received;
2238 otherwise a pointer to the packet that is about to be transmitted.
2239
2240 @retval EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE If Function specifies a continue operation.
2241 @retval EFI_PXE_BASE_CODE_CALLBACK_STATUS_ABORT If Function specifies an abort operation.
2242
2243 **/
2244 EFI_PXE_BASE_CODE_CALLBACK_STATUS
2245 EFIAPI
2246 EfiPxeLoadFileCallback (
2247 IN EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL *This,
2248 IN EFI_PXE_BASE_CODE_FUNCTION Function,
2249 IN BOOLEAN Received,
2250 IN UINT32 PacketLength,
2251 IN EFI_PXE_BASE_CODE_PACKET *PacketPtr OPTIONAL
2252 )
2253 {
2254 EFI_INPUT_KEY Key;
2255 EFI_STATUS Status;
2256
2257 //
2258 // Catch Ctrl-C or ESC to abort.
2259 //
2260 Status = gST->ConIn->ReadKeyStroke (gST->ConIn, &Key);
2261
2262 if (!EFI_ERROR (Status)) {
2263
2264 if (Key.ScanCode == SCAN_ESC || Key.UnicodeChar == (0x1F & 'c')) {
2265
2266 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_ABORT;
2267 }
2268 }
2269 //
2270 // No print if receive packet
2271 //
2272 if (Received) {
2273 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE;
2274 }
2275 //
2276 // Print only for three functions
2277 //
2278 switch (Function) {
2279
2280 case EFI_PXE_BASE_CODE_FUNCTION_MTFTP:
2281 //
2282 // Print only for open MTFTP packets, not every MTFTP packets
2283 //
2284 if (PacketLength != 0 && PacketPtr != NULL) {
2285 if (PacketPtr->Raw[0x1C] != 0x00 || PacketPtr->Raw[0x1D] != 0x01) {
2286 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE;
2287 }
2288 }
2289 break;
2290
2291 case EFI_PXE_BASE_CODE_FUNCTION_DHCP:
2292 case EFI_PXE_BASE_CODE_FUNCTION_DISCOVER:
2293 break;
2294
2295 default:
2296 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE;
2297 }
2298
2299 if (PacketLength != 0 && PacketPtr != NULL) {
2300 //
2301 // Print '.' when transmit a packet
2302 //
2303 AsciiPrint (".");
2304 }
2305
2306 return EFI_PXE_BASE_CODE_CALLBACK_STATUS_CONTINUE;
2307 }
2308
2309 EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL gPxeBcCallBackTemplate = {
2310 EFI_PXE_BASE_CODE_CALLBACK_PROTOCOL_REVISION,
2311 EfiPxeLoadFileCallback
2312 };
2313
2314
2315 /**
2316 Causes the driver to load a specified file.
2317
2318 @param[in] This Protocol instance pointer.
2319 @param[in] FilePath The device specific path of the file to load.
2320 @param[in] BootPolicy If TRUE, indicates that the request originates from the
2321 boot manager is attempting to load FilePath as a boot
2322 selection. If FALSE, then FilePath must match an exact file
2323 to be loaded.
2324 @param[in, out] BufferSize On input the size of Buffer in bytes. On output with a return
2325 code of EFI_SUCCESS, the amount of data transferred to
2326 Buffer. On output with a return code of EFI_BUFFER_TOO_SMALL,
2327 the size of Buffer required to retrieve the requested file.
2328 @param[in] Buffer The memory buffer to transfer the file to. IF Buffer is NULL,
2329 then no the size of the requested file is returned in
2330 BufferSize.
2331
2332 @retval EFI_SUCCESS The file was loaded.
2333 @retval EFI_UNSUPPORTED The device does not support the provided BootPolicy.
2334 @retval EFI_INVALID_PARAMETER FilePath is not a valid device path, or
2335 BufferSize is NULL.
2336 @retval EFI_NO_MEDIA No medium was present to load the file.
2337 @retval EFI_DEVICE_ERROR The file was not loaded due to a device error.
2338 @retval EFI_NO_RESPONSE The remote system did not respond.
2339 @retval EFI_NOT_FOUND The file was not found.
2340 @retval EFI_ABORTED The file load process was manually cancelled.
2341
2342 **/
2343 EFI_STATUS
2344 EFIAPI
2345 EfiPxeLoadFile (
2346 IN EFI_LOAD_FILE_PROTOCOL *This,
2347 IN EFI_DEVICE_PATH_PROTOCOL *FilePath,
2348 IN BOOLEAN BootPolicy,
2349 IN OUT UINTN *BufferSize,
2350 IN VOID *Buffer OPTIONAL
2351 )
2352 {
2353 PXEBC_PRIVATE_DATA *Private;
2354 PXEBC_VIRTUAL_NIC *VirtualNic;
2355 EFI_PXE_BASE_CODE_PROTOCOL *PxeBc;
2356 BOOLEAN UsingIpv6;
2357 EFI_STATUS Status;
2358 EFI_STATUS MediaStatus;
2359
2360 if (This == NULL || BufferSize == NULL || FilePath == NULL || !IsDevicePathEnd (FilePath)) {
2361 return EFI_INVALID_PARAMETER;
2362 }
2363
2364 //
2365 // Only support BootPolicy
2366 //
2367 if (!BootPolicy) {
2368 return EFI_UNSUPPORTED;
2369 }
2370
2371 VirtualNic = PXEBC_VIRTUAL_NIC_FROM_LOADFILE (This);
2372 Private = VirtualNic->Private;
2373 PxeBc = &Private->PxeBc;
2374 UsingIpv6 = FALSE;
2375 Status = EFI_DEVICE_ERROR;
2376
2377 //
2378 // Check media status before PXE start
2379 //
2380 MediaStatus = EFI_SUCCESS;
2381 NetLibDetectMediaWaitTimeout (Private->Controller, PXEBC_CHECK_MEDIA_WAITING_TIME, &MediaStatus);
2382 if (MediaStatus != EFI_SUCCESS) {
2383 return EFI_NO_MEDIA;
2384 }
2385
2386 //
2387 // Check whether the virtual nic is using IPv6 or not.
2388 //
2389 if (VirtualNic == Private->Ip6Nic) {
2390 UsingIpv6 = TRUE;
2391 }
2392
2393 //
2394 // Start Pxe Base Code to initialize PXE boot.
2395 //
2396 Status = PxeBc->Start (PxeBc, UsingIpv6);
2397 if (Status == EFI_ALREADY_STARTED && UsingIpv6 != PxeBc->Mode->UsingIpv6) {
2398 //
2399 // PxeBc protocol has already been started but not on the required IP version, restart it.
2400 //
2401 Status = PxeBc->Stop (PxeBc);
2402 if (!EFI_ERROR (Status)) {
2403 Status = PxeBc->Start (PxeBc, UsingIpv6);
2404 }
2405 }
2406 if (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED) {
2407 Status = PxeBcLoadBootFile (Private, BufferSize, Buffer);
2408 }
2409
2410 if (Status != EFI_SUCCESS &&
2411 Status != EFI_UNSUPPORTED &&
2412 Status != EFI_BUFFER_TOO_SMALL) {
2413 //
2414 // There are three cases, which needn't stop pxebc here.
2415 // 1. success to download file.
2416 // 2. success to get file size.
2417 // 3. unsupported.
2418 //
2419 PxeBc->Stop (PxeBc);
2420 } else {
2421 //
2422 // The DHCP4 can have only one configured child instance so we need to stop
2423 // reset the DHCP4 child before we return. Otherwise these programs which
2424 // also need to use DHCP4 will be impacted.
2425 //
2426 if (!PxeBc->Mode->UsingIpv6) {
2427 Private->Dhcp4->Stop (Private->Dhcp4);
2428 Private->Dhcp4->Configure (Private->Dhcp4, NULL);
2429 }
2430 }
2431
2432 return Status;
2433 }
2434
2435 EFI_LOAD_FILE_PROTOCOL gLoadFileProtocolTemplate = { EfiPxeLoadFile };
2436