]> git.proxmox.com Git - mirror_edk2.git/blob - OvmfPkg/Library/QemuNewBootOrderLib/QemuBootOrderLib.c
OvmfPkg: Duplicate QemuBootOrderLib to QemuNewBootOrderLib
[mirror_edk2.git] / OvmfPkg / Library / QemuNewBootOrderLib / QemuBootOrderLib.c
1 /** @file
2 Rewrite the BootOrder NvVar based on QEMU's "bootorder" fw_cfg file.
3
4 Copyright (C) 2012 - 2014, Red Hat, Inc.
5 Copyright (c) 2013, Intel Corporation. All rights reserved.<BR>
6
7 This program and the accompanying materials are licensed and made available
8 under the terms and conditions of the BSD License which accompanies this
9 distribution. The full text of the license may be found at
10 http://opensource.org/licenses/bsd-license.php
11
12 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT
13 WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
14 **/
15
16 #include <Library/QemuFwCfgLib.h>
17 #include <Library/DebugLib.h>
18 #include <Library/MemoryAllocationLib.h>
19 #include <Library/GenericBdsLib.h>
20 #include <Library/UefiBootServicesTableLib.h>
21 #include <Library/UefiRuntimeServicesTableLib.h>
22 #include <Library/BaseLib.h>
23 #include <Library/PrintLib.h>
24 #include <Library/DevicePathLib.h>
25 #include <Library/QemuBootOrderLib.h>
26 #include <Library/BaseMemoryLib.h>
27 #include <Guid/GlobalVariable.h>
28 #include <Guid/VirtioMmioTransport.h>
29
30 #include "ExtraRootBusMap.h"
31
32 /**
33 OpenFirmware to UEFI device path translation output buffer size in CHAR16's.
34 **/
35 #define TRANSLATION_OUTPUT_SIZE 0x100
36
37 /**
38 Output buffer size for OpenFirmware to UEFI device path fragment translation,
39 in CHAR16's, for a sequence of PCI bridges.
40 **/
41 #define BRIDGE_TRANSLATION_OUTPUT_SIZE 0x40
42
43 /**
44 Numbers of nodes in OpenFirmware device paths that are required and examined.
45 **/
46 #define REQUIRED_PCI_OFW_NODES 2
47 #define REQUIRED_MMIO_OFW_NODES 1
48 #define EXAMINED_OFW_NODES 6
49
50
51 /**
52 Simple character classification routines, corresponding to POSIX class names
53 and ASCII encoding.
54 **/
55 STATIC
56 BOOLEAN
57 IsAlnum (
58 IN CHAR8 Chr
59 )
60 {
61 return (('0' <= Chr && Chr <= '9') ||
62 ('A' <= Chr && Chr <= 'Z') ||
63 ('a' <= Chr && Chr <= 'z')
64 );
65 }
66
67
68 STATIC
69 BOOLEAN
70 IsDriverNamePunct (
71 IN CHAR8 Chr
72 )
73 {
74 return (Chr == ',' || Chr == '.' || Chr == '_' ||
75 Chr == '+' || Chr == '-'
76 );
77 }
78
79
80 STATIC
81 BOOLEAN
82 IsPrintNotDelim (
83 IN CHAR8 Chr
84 )
85 {
86 return (32 <= Chr && Chr <= 126 &&
87 Chr != '/' && Chr != '@' && Chr != ':');
88 }
89
90
91 /**
92 Utility types and functions.
93 **/
94 typedef struct {
95 CONST CHAR8 *Ptr; // not necessarily NUL-terminated
96 UINTN Len; // number of non-NUL characters
97 } SUBSTRING;
98
99
100 /**
101
102 Check if Substring and String have identical contents.
103
104 The function relies on the restriction that a SUBSTRING cannot have embedded
105 NULs either.
106
107 @param[in] Substring The SUBSTRING input to the comparison.
108
109 @param[in] String The ASCII string input to the comparison.
110
111
112 @return Whether the inputs have identical contents.
113
114 **/
115 STATIC
116 BOOLEAN
117 SubstringEq (
118 IN SUBSTRING Substring,
119 IN CONST CHAR8 *String
120 )
121 {
122 UINTN Pos;
123 CONST CHAR8 *Chr;
124
125 Pos = 0;
126 Chr = String;
127
128 while (Pos < Substring.Len && Substring.Ptr[Pos] == *Chr) {
129 ++Pos;
130 ++Chr;
131 }
132
133 return (BOOLEAN)(Pos == Substring.Len && *Chr == '\0');
134 }
135
136
137 /**
138
139 Parse a comma-separated list of hexadecimal integers into the elements of an
140 UINT64 array.
141
142 Whitespace, "0x" prefixes, leading or trailing commas, sequences of commas,
143 or an empty string are not allowed; they are rejected.
144
145 The function relies on ASCII encoding.
146
147 @param[in] UnitAddress The substring to parse.
148
149 @param[out] Result The array, allocated by the caller, to receive
150 the parsed values. This parameter may be NULL if
151 NumResults is zero on input.
152
153 @param[in out] NumResults On input, the number of elements allocated for
154 Result. On output, the number of elements it has
155 taken (or would have taken) to parse the string
156 fully.
157
158
159 @retval RETURN_SUCCESS UnitAddress has been fully parsed.
160 NumResults is set to the number of parsed
161 values; the corresponding elements have
162 been set in Result. The rest of Result's
163 elements are unchanged.
164
165 @retval RETURN_BUFFER_TOO_SMALL UnitAddress has been fully parsed.
166 NumResults is set to the number of parsed
167 values, but elements have been stored only
168 up to the input value of NumResults, which
169 is less than what has been parsed.
170
171 @retval RETURN_INVALID_PARAMETER Parse error. The contents of Results is
172 indeterminate. NumResults has not been
173 changed.
174
175 **/
176 STATIC
177 RETURN_STATUS
178 ParseUnitAddressHexList (
179 IN SUBSTRING UnitAddress,
180 OUT UINT64 *Result,
181 IN OUT UINTN *NumResults
182 )
183 {
184 UINTN Entry; // number of entry currently being parsed
185 UINT64 EntryVal; // value being constructed for current entry
186 CHAR8 PrevChr; // UnitAddress character previously checked
187 UINTN Pos; // current position within UnitAddress
188 RETURN_STATUS Status;
189
190 Entry = 0;
191 EntryVal = 0;
192 PrevChr = ',';
193
194 for (Pos = 0; Pos < UnitAddress.Len; ++Pos) {
195 CHAR8 Chr;
196 INT8 Val;
197
198 Chr = UnitAddress.Ptr[Pos];
199 Val = ('a' <= Chr && Chr <= 'f') ? (Chr - 'a' + 10) :
200 ('A' <= Chr && Chr <= 'F') ? (Chr - 'A' + 10) :
201 ('0' <= Chr && Chr <= '9') ? (Chr - '0' ) :
202 -1;
203
204 if (Val >= 0) {
205 if (EntryVal > 0xFFFFFFFFFFFFFFFull) {
206 return RETURN_INVALID_PARAMETER;
207 }
208 EntryVal = LShiftU64 (EntryVal, 4) | Val;
209 } else if (Chr == ',') {
210 if (PrevChr == ',') {
211 return RETURN_INVALID_PARAMETER;
212 }
213 if (Entry < *NumResults) {
214 Result[Entry] = EntryVal;
215 }
216 ++Entry;
217 EntryVal = 0;
218 } else {
219 return RETURN_INVALID_PARAMETER;
220 }
221
222 PrevChr = Chr;
223 }
224
225 if (PrevChr == ',') {
226 return RETURN_INVALID_PARAMETER;
227 }
228 if (Entry < *NumResults) {
229 Result[Entry] = EntryVal;
230 Status = RETURN_SUCCESS;
231 } else {
232 Status = RETURN_BUFFER_TOO_SMALL;
233 }
234 ++Entry;
235
236 *NumResults = Entry;
237 return Status;
238 }
239
240
241 /**
242 A simple array of Boot Option ID's.
243 **/
244 typedef struct {
245 UINT16 *Data;
246 UINTN Allocated;
247 UINTN Produced;
248 } BOOT_ORDER;
249
250
251 /**
252 Array element tracking an enumerated boot option that has the
253 LOAD_OPTION_ACTIVE attribute.
254 **/
255 typedef struct {
256 CONST BDS_COMMON_OPTION *BootOption; // reference only, no ownership
257 BOOLEAN Appended; // has been added to a BOOT_ORDER?
258 } ACTIVE_OPTION;
259
260
261 /**
262
263 Append an active boot option to BootOrder, reallocating the latter if needed.
264
265 @param[in out] BootOrder The structure pointing to the array and holding
266 allocation and usage counters.
267
268 @param[in] ActiveOption The active boot option whose ID should be
269 appended to the array.
270
271
272 @retval RETURN_SUCCESS ID of ActiveOption appended.
273
274 @retval RETURN_OUT_OF_RESOURCES Memory reallocation failed.
275
276 **/
277 STATIC
278 RETURN_STATUS
279 BootOrderAppend (
280 IN OUT BOOT_ORDER *BootOrder,
281 IN OUT ACTIVE_OPTION *ActiveOption
282 )
283 {
284 if (BootOrder->Produced == BootOrder->Allocated) {
285 UINTN AllocatedNew;
286 UINT16 *DataNew;
287
288 ASSERT (BootOrder->Allocated > 0);
289 AllocatedNew = BootOrder->Allocated * 2;
290 DataNew = ReallocatePool (
291 BootOrder->Allocated * sizeof (*BootOrder->Data),
292 AllocatedNew * sizeof (*DataNew),
293 BootOrder->Data
294 );
295 if (DataNew == NULL) {
296 return RETURN_OUT_OF_RESOURCES;
297 }
298 BootOrder->Allocated = AllocatedNew;
299 BootOrder->Data = DataNew;
300 }
301
302 BootOrder->Data[BootOrder->Produced++] =
303 ActiveOption->BootOption->BootCurrent;
304 ActiveOption->Appended = TRUE;
305 return RETURN_SUCCESS;
306 }
307
308
309 /**
310
311 Create an array of ACTIVE_OPTION elements for a boot option list.
312
313 @param[in] BootOptionList A boot option list, created with
314 BdsLibEnumerateAllBootOption().
315
316 @param[out] ActiveOption Pointer to the first element in the new array.
317 The caller is responsible for freeing the array
318 with FreePool() after use.
319
320 @param[out] Count Number of elements in the new array.
321
322
323 @retval RETURN_SUCCESS The ActiveOption array has been created.
324
325 @retval RETURN_NOT_FOUND No active entry has been found in
326 BootOptionList.
327
328 @retval RETURN_OUT_OF_RESOURCES Memory allocation failed.
329
330 **/
331 STATIC
332 RETURN_STATUS
333 CollectActiveOptions (
334 IN CONST LIST_ENTRY *BootOptionList,
335 OUT ACTIVE_OPTION **ActiveOption,
336 OUT UINTN *Count
337 )
338 {
339 UINTN ScanMode;
340
341 *ActiveOption = NULL;
342
343 //
344 // Scan the list twice:
345 // - count active entries,
346 // - store links to active entries.
347 //
348 for (ScanMode = 0; ScanMode < 2; ++ScanMode) {
349 CONST LIST_ENTRY *Link;
350
351 Link = BootOptionList->ForwardLink;
352 *Count = 0;
353 while (Link != BootOptionList) {
354 CONST BDS_COMMON_OPTION *Current;
355
356 Current = CR (Link, BDS_COMMON_OPTION, Link, BDS_LOAD_OPTION_SIGNATURE);
357 if (IS_LOAD_OPTION_TYPE (Current->Attribute, LOAD_OPTION_ACTIVE)) {
358 if (ScanMode == 1) {
359 (*ActiveOption)[*Count].BootOption = Current;
360 (*ActiveOption)[*Count].Appended = FALSE;
361 }
362 ++*Count;
363 }
364 Link = Link->ForwardLink;
365 }
366
367 if (ScanMode == 0) {
368 if (*Count == 0) {
369 return RETURN_NOT_FOUND;
370 }
371 *ActiveOption = AllocatePool (*Count * sizeof **ActiveOption);
372 if (*ActiveOption == NULL) {
373 return RETURN_OUT_OF_RESOURCES;
374 }
375 }
376 }
377 return RETURN_SUCCESS;
378 }
379
380
381 /**
382 OpenFirmware device path node
383 **/
384 typedef struct {
385 SUBSTRING DriverName;
386 SUBSTRING UnitAddress;
387 SUBSTRING DeviceArguments;
388 } OFW_NODE;
389
390
391 /**
392
393 Parse an OpenFirmware device path node into the caller-allocated OFW_NODE
394 structure, and advance in the input string.
395
396 The node format is mostly parsed after IEEE 1275-1994, 3.2.1.1 "Node names"
397 (a leading slash is expected and not returned):
398
399 /driver-name@unit-address[:device-arguments][<LF>]
400
401 A single trailing <LF> character is consumed but not returned. A trailing
402 <LF> or NUL character terminates the device path.
403
404 The function relies on ASCII encoding.
405
406 @param[in out] Ptr Address of the pointer pointing to the start of the
407 node string. After successful parsing *Ptr is set to
408 the byte immediately following the consumed
409 characters. On error it points to the byte that
410 caused the error. The input string is never modified.
411
412 @param[out] OfwNode The members of this structure point into the input
413 string, designating components of the node.
414 Separators are never included. If "device-arguments"
415 is missing, then DeviceArguments.Ptr is set to NULL.
416 All components that are present have nonzero length.
417
418 If the call doesn't succeed, the contents of this
419 structure is indeterminate.
420
421 @param[out] IsFinal In case of successul parsing, this parameter signals
422 whether the node just parsed is the final node in the
423 device path. The call after a final node will attempt
424 to start parsing the next path. If the call doesn't
425 succeed, then this parameter is not changed.
426
427
428 @retval RETURN_SUCCESS Parsing successful.
429
430 @retval RETURN_NOT_FOUND Parsing terminated. *Ptr was (and is)
431 pointing to an empty string.
432
433 @retval RETURN_INVALID_PARAMETER Parse error.
434
435 **/
436 STATIC
437 RETURN_STATUS
438 ParseOfwNode (
439 IN OUT CONST CHAR8 **Ptr,
440 OUT OFW_NODE *OfwNode,
441 OUT BOOLEAN *IsFinal
442 )
443 {
444 //
445 // A leading slash is expected. End of string is tolerated.
446 //
447 switch (**Ptr) {
448 case '\0':
449 return RETURN_NOT_FOUND;
450
451 case '/':
452 ++*Ptr;
453 break;
454
455 default:
456 return RETURN_INVALID_PARAMETER;
457 }
458
459 //
460 // driver-name
461 //
462 OfwNode->DriverName.Ptr = *Ptr;
463 OfwNode->DriverName.Len = 0;
464 while (OfwNode->DriverName.Len < 32 &&
465 (IsAlnum (**Ptr) || IsDriverNamePunct (**Ptr))
466 ) {
467 ++*Ptr;
468 ++OfwNode->DriverName.Len;
469 }
470
471 if (OfwNode->DriverName.Len == 0 || OfwNode->DriverName.Len == 32) {
472 return RETURN_INVALID_PARAMETER;
473 }
474
475
476 //
477 // unit-address
478 //
479 if (**Ptr != '@') {
480 return RETURN_INVALID_PARAMETER;
481 }
482 ++*Ptr;
483
484 OfwNode->UnitAddress.Ptr = *Ptr;
485 OfwNode->UnitAddress.Len = 0;
486 while (IsPrintNotDelim (**Ptr)) {
487 ++*Ptr;
488 ++OfwNode->UnitAddress.Len;
489 }
490
491 if (OfwNode->UnitAddress.Len == 0) {
492 return RETURN_INVALID_PARAMETER;
493 }
494
495
496 //
497 // device-arguments, may be omitted
498 //
499 OfwNode->DeviceArguments.Len = 0;
500 if (**Ptr == ':') {
501 ++*Ptr;
502 OfwNode->DeviceArguments.Ptr = *Ptr;
503
504 while (IsPrintNotDelim (**Ptr)) {
505 ++*Ptr;
506 ++OfwNode->DeviceArguments.Len;
507 }
508
509 if (OfwNode->DeviceArguments.Len == 0) {
510 return RETURN_INVALID_PARAMETER;
511 }
512 }
513 else {
514 OfwNode->DeviceArguments.Ptr = NULL;
515 }
516
517 switch (**Ptr) {
518 case '\n':
519 ++*Ptr;
520 //
521 // fall through
522 //
523
524 case '\0':
525 *IsFinal = TRUE;
526 break;
527
528 case '/':
529 *IsFinal = FALSE;
530 break;
531
532 default:
533 return RETURN_INVALID_PARAMETER;
534 }
535
536 DEBUG ((
537 DEBUG_VERBOSE,
538 "%a: DriverName=\"%.*a\" UnitAddress=\"%.*a\" DeviceArguments=\"%.*a\"\n",
539 __FUNCTION__,
540 OfwNode->DriverName.Len, OfwNode->DriverName.Ptr,
541 OfwNode->UnitAddress.Len, OfwNode->UnitAddress.Ptr,
542 OfwNode->DeviceArguments.Len,
543 OfwNode->DeviceArguments.Ptr == NULL ? "" : OfwNode->DeviceArguments.Ptr
544 ));
545 return RETURN_SUCCESS;
546 }
547
548
549 /**
550
551 Translate a PCI-like array of OpenFirmware device nodes to a UEFI device path
552 fragment.
553
554 @param[in] OfwNode Array of OpenFirmware device nodes to
555 translate, constituting the beginning of an
556 OpenFirmware device path.
557
558 @param[in] NumNodes Number of elements in OfwNode.
559
560 @param[in] ExtraPciRoots An EXTRA_ROOT_BUS_MAP object created with
561 CreateExtraRootBusMap(), to be used for
562 translating positions of extra root buses to
563 bus numbers.
564
565 @param[out] Translated Destination array receiving the UEFI path
566 fragment, allocated by the caller. If the
567 return value differs from RETURN_SUCCESS, its
568 contents is indeterminate.
569
570 @param[in out] TranslatedSize On input, the number of CHAR16's in
571 Translated. On RETURN_SUCCESS this parameter
572 is assigned the number of non-NUL CHAR16's
573 written to Translated. In case of other return
574 values, TranslatedSize is indeterminate.
575
576
577 @retval RETURN_SUCCESS Translation successful.
578
579 @retval RETURN_BUFFER_TOO_SMALL The translation does not fit into the number
580 of bytes provided.
581
582 @retval RETURN_UNSUPPORTED The array of OpenFirmware device nodes can't
583 be translated in the current implementation.
584
585 @retval RETURN_PROTOCOL_ERROR The initial OpenFirmware node refers to an
586 extra PCI root bus (by serial number) that
587 is invalid according to ExtraPciRoots.
588
589 **/
590 STATIC
591 RETURN_STATUS
592 TranslatePciOfwNodes (
593 IN CONST OFW_NODE *OfwNode,
594 IN UINTN NumNodes,
595 IN CONST EXTRA_ROOT_BUS_MAP *ExtraPciRoots,
596 OUT CHAR16 *Translated,
597 IN OUT UINTN *TranslatedSize
598 )
599 {
600 UINT32 PciRoot;
601 CHAR8 *Comma;
602 UINTN FirstNonBridge;
603 CHAR16 Bridges[BRIDGE_TRANSLATION_OUTPUT_SIZE];
604 UINTN BridgesLen;
605 UINT64 PciDevFun[2];
606 UINTN NumEntries;
607 UINTN Written;
608
609 //
610 // Resolve the PCI root bus number.
611 //
612 // The initial OFW node for the main root bus (ie. bus number 0) is:
613 //
614 // /pci@i0cf8
615 //
616 // For extra root buses, the initial OFW node is
617 //
618 // /pci@i0cf8,4
619 // ^
620 // root bus serial number (not PCI bus number)
621 //
622 if (NumNodes < REQUIRED_PCI_OFW_NODES ||
623 !SubstringEq (OfwNode[0].DriverName, "pci")
624 ) {
625 return RETURN_UNSUPPORTED;
626 }
627
628 PciRoot = 0;
629 Comma = ScanMem8 (OfwNode[0].UnitAddress.Ptr, OfwNode[0].UnitAddress.Len,
630 ',');
631 if (Comma != NULL) {
632 SUBSTRING PciRootSerialSubString;
633 UINT64 PciRootSerial;
634
635 //
636 // Parse the root bus serial number from the unit address after the comma.
637 //
638 PciRootSerialSubString.Ptr = Comma + 1;
639 PciRootSerialSubString.Len = OfwNode[0].UnitAddress.Len -
640 (PciRootSerialSubString.Ptr -
641 OfwNode[0].UnitAddress.Ptr);
642 NumEntries = 1;
643 if (RETURN_ERROR (ParseUnitAddressHexList (PciRootSerialSubString,
644 &PciRootSerial, &NumEntries))) {
645 return RETURN_UNSUPPORTED;
646 }
647
648 //
649 // Map the extra root bus's serial number to its actual bus number.
650 //
651 if (EFI_ERROR (MapRootBusPosToBusNr (ExtraPciRoots, PciRootSerial,
652 &PciRoot))) {
653 return RETURN_PROTOCOL_ERROR;
654 }
655 }
656
657 //
658 // Translate a sequence of PCI bridges. For each bridge, the OFW node is:
659 //
660 // pci-bridge@1e[,0]
661 // ^ ^
662 // PCI slot & function on the parent, holding the bridge
663 //
664 // and the UEFI device path node is:
665 //
666 // Pci(0x1E,0x0)
667 //
668 FirstNonBridge = 1;
669 Bridges[0] = L'\0';
670 BridgesLen = 0;
671 do {
672 UINT64 BridgeDevFun[2];
673 UINTN BridgesFreeBytes;
674
675 if (!SubstringEq (OfwNode[FirstNonBridge].DriverName, "pci-bridge")) {
676 break;
677 }
678
679 BridgeDevFun[1] = 0;
680 NumEntries = sizeof BridgeDevFun / sizeof BridgeDevFun[0];
681 if (ParseUnitAddressHexList (OfwNode[FirstNonBridge].UnitAddress,
682 BridgeDevFun, &NumEntries) != RETURN_SUCCESS) {
683 return RETURN_UNSUPPORTED;
684 }
685
686 BridgesFreeBytes = sizeof Bridges - BridgesLen * sizeof Bridges[0];
687 Written = UnicodeSPrintAsciiFormat (Bridges + BridgesLen, BridgesFreeBytes,
688 "/Pci(0x%Lx,0x%Lx)", BridgeDevFun[0], BridgeDevFun[1]);
689 BridgesLen += Written;
690
691 //
692 // There's no way to differentiate between "completely used up without
693 // truncation" and "truncated", so treat the former as the latter.
694 //
695 if (BridgesLen + 1 == BRIDGE_TRANSLATION_OUTPUT_SIZE) {
696 return RETURN_UNSUPPORTED;
697 }
698
699 ++FirstNonBridge;
700 } while (FirstNonBridge < NumNodes);
701
702 if (FirstNonBridge == NumNodes) {
703 return RETURN_UNSUPPORTED;
704 }
705
706 //
707 // Parse the OFW nodes starting with the first non-bridge node.
708 //
709 PciDevFun[1] = 0;
710 NumEntries = sizeof (PciDevFun) / sizeof (PciDevFun[0]);
711 if (ParseUnitAddressHexList (
712 OfwNode[FirstNonBridge].UnitAddress,
713 PciDevFun,
714 &NumEntries
715 ) != RETURN_SUCCESS
716 ) {
717 return RETURN_UNSUPPORTED;
718 }
719
720 if (NumNodes >= FirstNonBridge + 3 &&
721 SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "ide") &&
722 SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "drive") &&
723 SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "disk")
724 ) {
725 //
726 // OpenFirmware device path (IDE disk, IDE CD-ROM):
727 //
728 // /pci@i0cf8/ide@1,1/drive@0/disk@0
729 // ^ ^ ^ ^ ^
730 // | | | | master or slave
731 // | | | primary or secondary
732 // | PCI slot & function holding IDE controller
733 // PCI root at system bus port, PIO
734 //
735 // UEFI device path:
736 //
737 // PciRoot(0x0)/Pci(0x1,0x1)/Ata(Primary,Master,0x0)
738 // ^
739 // fixed LUN
740 //
741 UINT64 Secondary;
742 UINT64 Slave;
743
744 NumEntries = 1;
745 if (ParseUnitAddressHexList (
746 OfwNode[FirstNonBridge + 1].UnitAddress,
747 &Secondary,
748 &NumEntries
749 ) != RETURN_SUCCESS ||
750 Secondary > 1 ||
751 ParseUnitAddressHexList (
752 OfwNode[FirstNonBridge + 2].UnitAddress,
753 &Slave,
754 &NumEntries // reuse after previous single-element call
755 ) != RETURN_SUCCESS ||
756 Slave > 1
757 ) {
758 return RETURN_UNSUPPORTED;
759 }
760
761 Written = UnicodeSPrintAsciiFormat (
762 Translated,
763 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
764 "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Ata(%a,%a,0x0)",
765 PciRoot,
766 Bridges,
767 PciDevFun[0],
768 PciDevFun[1],
769 Secondary ? "Secondary" : "Primary",
770 Slave ? "Slave" : "Master"
771 );
772 } else if (NumNodes >= FirstNonBridge + 3 &&
773 SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "pci8086,2922") &&
774 SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "drive") &&
775 SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "disk")
776 ) {
777 //
778 // OpenFirmware device path (Q35 SATA disk and CD-ROM):
779 //
780 // /pci@i0cf8/pci8086,2922@1f,2/drive@1/disk@0
781 // ^ ^ ^ ^ ^
782 // | | | | device number (fixed 0)
783 // | | | channel (port) number
784 // | PCI slot & function holding SATA HBA
785 // PCI root at system bus port, PIO
786 //
787 // UEFI device path:
788 //
789 // PciRoot(0x0)/Pci(0x1F,0x2)/Sata(0x1,0x0,0x0)
790 // ^ ^ ^
791 // | | LUN (always 0 on Q35)
792 // | port multiplier port number,
793 // | always 0 on Q35
794 // channel (port) number
795 //
796 UINT64 Channel;
797
798 NumEntries = 1;
799 if (RETURN_ERROR (ParseUnitAddressHexList (
800 OfwNode[FirstNonBridge + 1].UnitAddress, &Channel,
801 &NumEntries))) {
802 return RETURN_UNSUPPORTED;
803 }
804
805 Written = UnicodeSPrintAsciiFormat (
806 Translated,
807 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
808 "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Sata(0x%Lx,0x0,0x0)",
809 PciRoot,
810 Bridges,
811 PciDevFun[0],
812 PciDevFun[1],
813 Channel
814 );
815 } else if (NumNodes >= FirstNonBridge + 3 &&
816 SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "isa") &&
817 SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "fdc") &&
818 SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "floppy")
819 ) {
820 //
821 // OpenFirmware device path (floppy disk):
822 //
823 // /pci@i0cf8/isa@1/fdc@03f0/floppy@0
824 // ^ ^ ^ ^
825 // | | | A: or B:
826 // | | ISA controller io-port (hex)
827 // | PCI slot holding ISA controller
828 // PCI root at system bus port, PIO
829 //
830 // UEFI device path:
831 //
832 // PciRoot(0x0)/Pci(0x1,0x0)/Floppy(0x0)
833 // ^
834 // ACPI UID
835 //
836 UINT64 AcpiUid;
837
838 NumEntries = 1;
839 if (ParseUnitAddressHexList (
840 OfwNode[FirstNonBridge + 2].UnitAddress,
841 &AcpiUid,
842 &NumEntries
843 ) != RETURN_SUCCESS ||
844 AcpiUid > 1
845 ) {
846 return RETURN_UNSUPPORTED;
847 }
848
849 Written = UnicodeSPrintAsciiFormat (
850 Translated,
851 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
852 "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Floppy(0x%Lx)",
853 PciRoot,
854 Bridges,
855 PciDevFun[0],
856 PciDevFun[1],
857 AcpiUid
858 );
859 } else if (NumNodes >= FirstNonBridge + 2 &&
860 SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "scsi") &&
861 SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "disk")
862 ) {
863 //
864 // OpenFirmware device path (virtio-blk disk):
865 //
866 // /pci@i0cf8/scsi@6[,3]/disk@0,0
867 // ^ ^ ^ ^ ^
868 // | | | fixed
869 // | | PCI function corresponding to disk (optional)
870 // | PCI slot holding disk
871 // PCI root at system bus port, PIO
872 //
873 // UEFI device path prefix:
874 //
875 // PciRoot(0x0)/Pci(0x6,0x0)/HD( -- if PCI function is 0 or absent
876 // PciRoot(0x0)/Pci(0x6,0x3)/HD( -- if PCI function is present and nonzero
877 //
878 Written = UnicodeSPrintAsciiFormat (
879 Translated,
880 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
881 "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/HD(",
882 PciRoot,
883 Bridges,
884 PciDevFun[0],
885 PciDevFun[1]
886 );
887 } else if (NumNodes >= FirstNonBridge + 3 &&
888 SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "scsi") &&
889 SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "channel") &&
890 SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "disk")
891 ) {
892 //
893 // OpenFirmware device path (virtio-scsi disk):
894 //
895 // /pci@i0cf8/scsi@7[,3]/channel@0/disk@2,3
896 // ^ ^ ^ ^ ^
897 // | | | | LUN
898 // | | | target
899 // | | channel (unused, fixed 0)
900 // | PCI slot[, function] holding SCSI controller
901 // PCI root at system bus port, PIO
902 //
903 // UEFI device path prefix:
904 //
905 // PciRoot(0x0)/Pci(0x7,0x0)/Scsi(0x2,0x3)
906 // -- if PCI function is 0 or absent
907 // PciRoot(0x0)/Pci(0x7,0x3)/Scsi(0x2,0x3)
908 // -- if PCI function is present and nonzero
909 //
910 UINT64 TargetLun[2];
911
912 TargetLun[1] = 0;
913 NumEntries = sizeof (TargetLun) / sizeof (TargetLun[0]);
914 if (ParseUnitAddressHexList (
915 OfwNode[FirstNonBridge + 2].UnitAddress,
916 TargetLun,
917 &NumEntries
918 ) != RETURN_SUCCESS
919 ) {
920 return RETURN_UNSUPPORTED;
921 }
922
923 Written = UnicodeSPrintAsciiFormat (
924 Translated,
925 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
926 "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Scsi(0x%Lx,0x%Lx)",
927 PciRoot,
928 Bridges,
929 PciDevFun[0],
930 PciDevFun[1],
931 TargetLun[0],
932 TargetLun[1]
933 );
934 } else if (NumNodes >= FirstNonBridge + 2 &&
935 SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "pci8086,5845") &&
936 SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "namespace")
937 ) {
938 //
939 // OpenFirmware device path (NVMe device):
940 //
941 // /pci@i0cf8/pci8086,5845@6[,1]/namespace@1,0
942 // ^ ^ ^ ^ ^
943 // | | | | Extended Unique Identifier
944 // | | | | (EUI-64), big endian interp.
945 // | | | namespace ID
946 // | PCI slot & function holding NVMe controller
947 // PCI root at system bus port, PIO
948 //
949 // UEFI device path:
950 //
951 // PciRoot(0x0)/Pci(0x6,0x1)/NVMe(0x1,00-00-00-00-00-00-00-00)
952 // ^ ^
953 // | octets of the EUI-64
954 // | in address order
955 // namespace ID
956 //
957 UINT64 Namespace[2];
958 UINTN RequiredEntries;
959 UINT8 *Eui64;
960
961 RequiredEntries = sizeof (Namespace) / sizeof (Namespace[0]);
962 NumEntries = RequiredEntries;
963 if (ParseUnitAddressHexList (
964 OfwNode[FirstNonBridge + 1].UnitAddress,
965 Namespace,
966 &NumEntries
967 ) != RETURN_SUCCESS ||
968 NumEntries != RequiredEntries ||
969 Namespace[0] == 0 ||
970 Namespace[0] >= MAX_UINT32
971 ) {
972 return RETURN_UNSUPPORTED;
973 }
974
975 Eui64 = (UINT8 *)&Namespace[1];
976 Written = UnicodeSPrintAsciiFormat (
977 Translated,
978 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
979 "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/"
980 "NVMe(0x%Lx,%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x)",
981 PciRoot,
982 Bridges,
983 PciDevFun[0],
984 PciDevFun[1],
985 Namespace[0],
986 Eui64[7], Eui64[6], Eui64[5], Eui64[4],
987 Eui64[3], Eui64[2], Eui64[1], Eui64[0]
988 );
989 } else {
990 //
991 // Generic OpenFirmware device path for PCI devices:
992 //
993 // /pci@i0cf8/ethernet@3[,2]
994 // ^ ^
995 // | PCI slot[, function] holding Ethernet card
996 // PCI root at system bus port, PIO
997 //
998 // UEFI device path prefix (dependent on presence of nonzero PCI function):
999 //
1000 // PciRoot(0x0)/Pci(0x3,0x0)
1001 // PciRoot(0x0)/Pci(0x3,0x2)
1002 //
1003 Written = UnicodeSPrintAsciiFormat (
1004 Translated,
1005 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
1006 "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)",
1007 PciRoot,
1008 Bridges,
1009 PciDevFun[0],
1010 PciDevFun[1]
1011 );
1012 }
1013
1014 //
1015 // There's no way to differentiate between "completely used up without
1016 // truncation" and "truncated", so treat the former as the latter, and return
1017 // success only for "some room left unused".
1018 //
1019 if (Written + 1 < *TranslatedSize) {
1020 *TranslatedSize = Written;
1021 return RETURN_SUCCESS;
1022 }
1023
1024 return RETURN_BUFFER_TOO_SMALL;
1025 }
1026
1027
1028 //
1029 // A type providing easy raw access to the base address of a virtio-mmio
1030 // transport.
1031 //
1032 typedef union {
1033 UINT64 Uint64;
1034 UINT8 Raw[8];
1035 } VIRTIO_MMIO_BASE_ADDRESS;
1036
1037
1038 /**
1039
1040 Translate an MMIO-like array of OpenFirmware device nodes to a UEFI device
1041 path fragment.
1042
1043 @param[in] OfwNode Array of OpenFirmware device nodes to
1044 translate, constituting the beginning of an
1045 OpenFirmware device path.
1046
1047 @param[in] NumNodes Number of elements in OfwNode.
1048
1049 @param[out] Translated Destination array receiving the UEFI path
1050 fragment, allocated by the caller. If the
1051 return value differs from RETURN_SUCCESS, its
1052 contents is indeterminate.
1053
1054 @param[in out] TranslatedSize On input, the number of CHAR16's in
1055 Translated. On RETURN_SUCCESS this parameter
1056 is assigned the number of non-NUL CHAR16's
1057 written to Translated. In case of other return
1058 values, TranslatedSize is indeterminate.
1059
1060
1061 @retval RETURN_SUCCESS Translation successful.
1062
1063 @retval RETURN_BUFFER_TOO_SMALL The translation does not fit into the number
1064 of bytes provided.
1065
1066 @retval RETURN_UNSUPPORTED The array of OpenFirmware device nodes can't
1067 be translated in the current implementation.
1068
1069 **/
1070 STATIC
1071 RETURN_STATUS
1072 TranslateMmioOfwNodes (
1073 IN CONST OFW_NODE *OfwNode,
1074 IN UINTN NumNodes,
1075 OUT CHAR16 *Translated,
1076 IN OUT UINTN *TranslatedSize
1077 )
1078 {
1079 VIRTIO_MMIO_BASE_ADDRESS VirtioMmioBase;
1080 CHAR16 VenHwString[60 + 1];
1081 UINTN NumEntries;
1082 UINTN Written;
1083
1084 //
1085 // Get the base address of the virtio-mmio transport.
1086 //
1087 if (NumNodes < REQUIRED_MMIO_OFW_NODES ||
1088 !SubstringEq (OfwNode[0].DriverName, "virtio-mmio")
1089 ) {
1090 return RETURN_UNSUPPORTED;
1091 }
1092 NumEntries = 1;
1093 if (ParseUnitAddressHexList (
1094 OfwNode[0].UnitAddress,
1095 &VirtioMmioBase.Uint64,
1096 &NumEntries
1097 ) != RETURN_SUCCESS
1098 ) {
1099 return RETURN_UNSUPPORTED;
1100 }
1101
1102 UnicodeSPrintAsciiFormat (VenHwString, sizeof VenHwString,
1103 "VenHw(%g,%02X%02X%02X%02X%02X%02X%02X%02X)", &gVirtioMmioTransportGuid,
1104 VirtioMmioBase.Raw[0], VirtioMmioBase.Raw[1], VirtioMmioBase.Raw[2],
1105 VirtioMmioBase.Raw[3], VirtioMmioBase.Raw[4], VirtioMmioBase.Raw[5],
1106 VirtioMmioBase.Raw[6], VirtioMmioBase.Raw[7]);
1107
1108 if (NumNodes >= 2 &&
1109 SubstringEq (OfwNode[1].DriverName, "disk")) {
1110 //
1111 // OpenFirmware device path (virtio-blk disk):
1112 //
1113 // /virtio-mmio@000000000a003c00/disk@0,0
1114 // ^ ^ ^
1115 // | fixed
1116 // base address of virtio-mmio register block
1117 //
1118 // UEFI device path prefix:
1119 //
1120 // <VenHwString>/HD(
1121 //
1122 Written = UnicodeSPrintAsciiFormat (
1123 Translated,
1124 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
1125 "%s/HD(",
1126 VenHwString
1127 );
1128 } else if (NumNodes >= 3 &&
1129 SubstringEq (OfwNode[1].DriverName, "channel") &&
1130 SubstringEq (OfwNode[2].DriverName, "disk")) {
1131 //
1132 // OpenFirmware device path (virtio-scsi disk):
1133 //
1134 // /virtio-mmio@000000000a003a00/channel@0/disk@2,3
1135 // ^ ^ ^ ^
1136 // | | | LUN
1137 // | | target
1138 // | channel (unused, fixed 0)
1139 // base address of virtio-mmio register block
1140 //
1141 // UEFI device path prefix:
1142 //
1143 // <VenHwString>/Scsi(0x2,0x3)
1144 //
1145 UINT64 TargetLun[2];
1146
1147 TargetLun[1] = 0;
1148 NumEntries = sizeof (TargetLun) / sizeof (TargetLun[0]);
1149 if (ParseUnitAddressHexList (
1150 OfwNode[2].UnitAddress,
1151 TargetLun,
1152 &NumEntries
1153 ) != RETURN_SUCCESS
1154 ) {
1155 return RETURN_UNSUPPORTED;
1156 }
1157
1158 Written = UnicodeSPrintAsciiFormat (
1159 Translated,
1160 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
1161 "%s/Scsi(0x%Lx,0x%Lx)",
1162 VenHwString,
1163 TargetLun[0],
1164 TargetLun[1]
1165 );
1166 } else if (NumNodes >= 2 &&
1167 SubstringEq (OfwNode[1].DriverName, "ethernet-phy")) {
1168 //
1169 // OpenFirmware device path (virtio-net NIC):
1170 //
1171 // /virtio-mmio@000000000a003e00/ethernet-phy@0
1172 // ^ ^
1173 // | fixed
1174 // base address of virtio-mmio register block
1175 //
1176 // UEFI device path prefix (dependent on presence of nonzero PCI function):
1177 //
1178 // <VenHwString>/MAC(
1179 //
1180 Written = UnicodeSPrintAsciiFormat (
1181 Translated,
1182 *TranslatedSize * sizeof (*Translated), // BufferSize in bytes
1183 "%s/MAC(",
1184 VenHwString
1185 );
1186 } else {
1187 return RETURN_UNSUPPORTED;
1188 }
1189
1190 //
1191 // There's no way to differentiate between "completely used up without
1192 // truncation" and "truncated", so treat the former as the latter, and return
1193 // success only for "some room left unused".
1194 //
1195 if (Written + 1 < *TranslatedSize) {
1196 *TranslatedSize = Written;
1197 return RETURN_SUCCESS;
1198 }
1199
1200 return RETURN_BUFFER_TOO_SMALL;
1201 }
1202
1203
1204 /**
1205
1206 Translate an array of OpenFirmware device nodes to a UEFI device path
1207 fragment.
1208
1209 @param[in] OfwNode Array of OpenFirmware device nodes to
1210 translate, constituting the beginning of an
1211 OpenFirmware device path.
1212
1213 @param[in] NumNodes Number of elements in OfwNode.
1214
1215 @param[in] ExtraPciRoots An EXTRA_ROOT_BUS_MAP object created with
1216 CreateExtraRootBusMap(), to be used for
1217 translating positions of extra root buses to
1218 bus numbers.
1219
1220 @param[out] Translated Destination array receiving the UEFI path
1221 fragment, allocated by the caller. If the
1222 return value differs from RETURN_SUCCESS, its
1223 contents is indeterminate.
1224
1225 @param[in out] TranslatedSize On input, the number of CHAR16's in
1226 Translated. On RETURN_SUCCESS this parameter
1227 is assigned the number of non-NUL CHAR16's
1228 written to Translated. In case of other return
1229 values, TranslatedSize is indeterminate.
1230
1231
1232 @retval RETURN_SUCCESS Translation successful.
1233
1234 @retval RETURN_BUFFER_TOO_SMALL The translation does not fit into the number
1235 of bytes provided.
1236
1237 @retval RETURN_UNSUPPORTED The array of OpenFirmware device nodes can't
1238 be translated in the current implementation.
1239
1240 @retval RETURN_PROTOCOL_ERROR The array of OpenFirmware device nodes has
1241 been (partially) recognized, but it contains
1242 a logic error / doesn't match system state.
1243
1244 **/
1245 STATIC
1246 RETURN_STATUS
1247 TranslateOfwNodes (
1248 IN CONST OFW_NODE *OfwNode,
1249 IN UINTN NumNodes,
1250 IN CONST EXTRA_ROOT_BUS_MAP *ExtraPciRoots,
1251 OUT CHAR16 *Translated,
1252 IN OUT UINTN *TranslatedSize
1253 )
1254 {
1255 RETURN_STATUS Status;
1256
1257 Status = RETURN_UNSUPPORTED;
1258
1259 if (FeaturePcdGet (PcdQemuBootOrderPciTranslation)) {
1260 Status = TranslatePciOfwNodes (OfwNode, NumNodes, ExtraPciRoots,
1261 Translated, TranslatedSize);
1262 }
1263 if (Status == RETURN_UNSUPPORTED &&
1264 FeaturePcdGet (PcdQemuBootOrderMmioTranslation)) {
1265 Status = TranslateMmioOfwNodes (OfwNode, NumNodes, Translated,
1266 TranslatedSize);
1267 }
1268 return Status;
1269 }
1270
1271 /**
1272
1273 Translate an OpenFirmware device path fragment to a UEFI device path
1274 fragment, and advance in the input string.
1275
1276 @param[in out] Ptr Address of the pointer pointing to the start
1277 of the path string. After successful
1278 translation (RETURN_SUCCESS) or at least
1279 successful parsing (RETURN_UNSUPPORTED,
1280 RETURN_BUFFER_TOO_SMALL), *Ptr is set to the
1281 byte immediately following the consumed
1282 characters. In other error cases, it points to
1283 the byte that caused the error.
1284
1285 @param[in] ExtraPciRoots An EXTRA_ROOT_BUS_MAP object created with
1286 CreateExtraRootBusMap(), to be used for
1287 translating positions of extra root buses to
1288 bus numbers.
1289
1290 @param[out] Translated Destination array receiving the UEFI path
1291 fragment, allocated by the caller. If the
1292 return value differs from RETURN_SUCCESS, its
1293 contents is indeterminate.
1294
1295 @param[in out] TranslatedSize On input, the number of CHAR16's in
1296 Translated. On RETURN_SUCCESS this parameter
1297 is assigned the number of non-NUL CHAR16's
1298 written to Translated. In case of other return
1299 values, TranslatedSize is indeterminate.
1300
1301
1302 @retval RETURN_SUCCESS Translation successful.
1303
1304 @retval RETURN_BUFFER_TOO_SMALL The OpenFirmware device path was parsed
1305 successfully, but its translation did not
1306 fit into the number of bytes provided.
1307 Further calls to this function are
1308 possible.
1309
1310 @retval RETURN_UNSUPPORTED The OpenFirmware device path was parsed
1311 successfully, but it can't be translated in
1312 the current implementation. Further calls
1313 to this function are possible.
1314
1315 @retval RETURN_PROTOCOL_ERROR The OpenFirmware device path has been
1316 (partially) recognized, but it contains a
1317 logic error / doesn't match system state.
1318 Further calls to this function are
1319 possible.
1320
1321 @retval RETURN_NOT_FOUND Translation terminated. On input, *Ptr was
1322 pointing to the empty string or "HALT". On
1323 output, *Ptr points to the empty string
1324 (ie. "HALT" is consumed transparently when
1325 present).
1326
1327 @retval RETURN_INVALID_PARAMETER Parse error. This is a permanent error.
1328
1329 **/
1330 STATIC
1331 RETURN_STATUS
1332 TranslateOfwPath (
1333 IN OUT CONST CHAR8 **Ptr,
1334 IN CONST EXTRA_ROOT_BUS_MAP *ExtraPciRoots,
1335 OUT CHAR16 *Translated,
1336 IN OUT UINTN *TranslatedSize
1337 )
1338 {
1339 UINTN NumNodes;
1340 RETURN_STATUS Status;
1341 OFW_NODE Node[EXAMINED_OFW_NODES];
1342 BOOLEAN IsFinal;
1343 OFW_NODE Skip;
1344
1345 IsFinal = FALSE;
1346 NumNodes = 0;
1347 if (AsciiStrCmp (*Ptr, "HALT") == 0) {
1348 *Ptr += 4;
1349 Status = RETURN_NOT_FOUND;
1350 } else {
1351 Status = ParseOfwNode (Ptr, &Node[NumNodes], &IsFinal);
1352 }
1353
1354 if (Status == RETURN_NOT_FOUND) {
1355 DEBUG ((DEBUG_VERBOSE, "%a: no more nodes\n", __FUNCTION__));
1356 return RETURN_NOT_FOUND;
1357 }
1358
1359 while (Status == RETURN_SUCCESS && !IsFinal) {
1360 ++NumNodes;
1361 Status = ParseOfwNode (
1362 Ptr,
1363 (NumNodes < EXAMINED_OFW_NODES) ? &Node[NumNodes] : &Skip,
1364 &IsFinal
1365 );
1366 }
1367
1368 switch (Status) {
1369 case RETURN_SUCCESS:
1370 ++NumNodes;
1371 break;
1372
1373 case RETURN_INVALID_PARAMETER:
1374 DEBUG ((DEBUG_VERBOSE, "%a: parse error\n", __FUNCTION__));
1375 return RETURN_INVALID_PARAMETER;
1376
1377 default:
1378 ASSERT (0);
1379 }
1380
1381 Status = TranslateOfwNodes (
1382 Node,
1383 NumNodes < EXAMINED_OFW_NODES ? NumNodes : EXAMINED_OFW_NODES,
1384 ExtraPciRoots,
1385 Translated,
1386 TranslatedSize);
1387 switch (Status) {
1388 case RETURN_SUCCESS:
1389 DEBUG ((DEBUG_VERBOSE, "%a: success: \"%s\"\n", __FUNCTION__, Translated));
1390 break;
1391
1392 case RETURN_BUFFER_TOO_SMALL:
1393 DEBUG ((DEBUG_VERBOSE, "%a: buffer too small\n", __FUNCTION__));
1394 break;
1395
1396 case RETURN_UNSUPPORTED:
1397 DEBUG ((DEBUG_VERBOSE, "%a: unsupported\n", __FUNCTION__));
1398 break;
1399
1400 case RETURN_PROTOCOL_ERROR:
1401 DEBUG ((DEBUG_VERBOSE, "%a: logic error / system state mismatch\n",
1402 __FUNCTION__));
1403 break;
1404
1405 default:
1406 ASSERT (0);
1407 }
1408 return Status;
1409 }
1410
1411
1412 /**
1413
1414 Convert the UEFI DevicePath to full text representation with DevPathToText,
1415 then match the UEFI device path fragment in Translated against it.
1416
1417 @param[in] Translated UEFI device path fragment, translated from
1418 OpenFirmware format, to search for.
1419
1420 @param[in] TranslatedLength The length of Translated in CHAR16's.
1421
1422 @param[in] DevicePath Boot option device path whose textual rendering
1423 to search in.
1424
1425 @param[in] DevPathToText Binary-to-text conversion protocol for DevicePath.
1426
1427
1428 @retval TRUE If Translated was found at the beginning of DevicePath after
1429 converting the latter to text.
1430
1431 @retval FALSE If DevicePath was NULL, or it could not be converted, or there
1432 was no match.
1433
1434 **/
1435 STATIC
1436 BOOLEAN
1437 Match (
1438 IN CONST CHAR16 *Translated,
1439 IN UINTN TranslatedLength,
1440 IN CONST EFI_DEVICE_PATH_PROTOCOL *DevicePath
1441 )
1442 {
1443 CHAR16 *Converted;
1444 BOOLEAN Result;
1445
1446 Converted = ConvertDevicePathToText (
1447 DevicePath,
1448 FALSE, // DisplayOnly
1449 FALSE // AllowShortcuts
1450 );
1451 if (Converted == NULL) {
1452 return FALSE;
1453 }
1454
1455 //
1456 // Attempt to expand any relative UEFI device path starting with HD() to an
1457 // absolute device path first. The logic imitates BdsLibBootViaBootOption().
1458 // We don't have to free the absolute device path,
1459 // BdsExpandPartitionPartialDevicePathToFull() has internal caching.
1460 //
1461 Result = FALSE;
1462 if (DevicePathType (DevicePath) == MEDIA_DEVICE_PATH &&
1463 DevicePathSubType (DevicePath) == MEDIA_HARDDRIVE_DP) {
1464 EFI_DEVICE_PATH_PROTOCOL *AbsDevicePath;
1465 CHAR16 *AbsConverted;
1466
1467 AbsDevicePath = BdsExpandPartitionPartialDevicePathToFull (
1468 (HARDDRIVE_DEVICE_PATH *) DevicePath);
1469 if (AbsDevicePath == NULL) {
1470 goto Exit;
1471 }
1472 AbsConverted = ConvertDevicePathToText (AbsDevicePath, FALSE, FALSE);
1473 if (AbsConverted == NULL) {
1474 goto Exit;
1475 }
1476 DEBUG ((DEBUG_VERBOSE,
1477 "%a: expanded relative device path \"%s\" for prefix matching\n",
1478 __FUNCTION__, Converted));
1479 FreePool (Converted);
1480 Converted = AbsConverted;
1481 }
1482
1483 //
1484 // Is Translated a prefix of Converted?
1485 //
1486 Result = (BOOLEAN)(StrnCmp (Converted, Translated, TranslatedLength) == 0);
1487 DEBUG ((
1488 DEBUG_VERBOSE,
1489 "%a: against \"%s\": %a\n",
1490 __FUNCTION__,
1491 Converted,
1492 Result ? "match" : "no match"
1493 ));
1494 Exit:
1495 FreePool (Converted);
1496 return Result;
1497 }
1498
1499
1500 /**
1501 Append some of the unselected active boot options to the boot order.
1502
1503 This function should accommodate any further policy changes in "boot option
1504 survival". Currently we're adding back everything that starts with neither
1505 PciRoot() nor HD() nor a virtio-mmio VenHw() node.
1506
1507 @param[in,out] BootOrder The structure holding the boot order to
1508 complete. The caller is responsible for
1509 initializing (and potentially populating) it
1510 before calling this function.
1511
1512 @param[in,out] ActiveOption The array of active boot options to scan.
1513 Entries marked as Appended will be skipped.
1514 Those of the rest that satisfy the survival
1515 policy will be added to BootOrder with
1516 BootOrderAppend().
1517
1518 @param[in] ActiveCount Number of elements in ActiveOption.
1519
1520
1521 @retval RETURN_SUCCESS BootOrder has been extended with any eligible boot
1522 options.
1523
1524 @return Error codes returned by BootOrderAppend().
1525 **/
1526 STATIC
1527 RETURN_STATUS
1528 BootOrderComplete (
1529 IN OUT BOOT_ORDER *BootOrder,
1530 IN OUT ACTIVE_OPTION *ActiveOption,
1531 IN UINTN ActiveCount
1532 )
1533 {
1534 RETURN_STATUS Status;
1535 UINTN Idx;
1536
1537 Status = RETURN_SUCCESS;
1538 Idx = 0;
1539 while (!RETURN_ERROR (Status) && Idx < ActiveCount) {
1540 if (!ActiveOption[Idx].Appended) {
1541 CONST BDS_COMMON_OPTION *Current;
1542 CONST EFI_DEVICE_PATH_PROTOCOL *FirstNode;
1543
1544 Current = ActiveOption[Idx].BootOption;
1545 FirstNode = Current->DevicePath;
1546 if (FirstNode != NULL) {
1547 CHAR16 *Converted;
1548 STATIC CHAR16 ConvFallBack[] = L"<unable to convert>";
1549 BOOLEAN Keep;
1550
1551 Converted = ConvertDevicePathToText (FirstNode, FALSE, FALSE);
1552 if (Converted == NULL) {
1553 Converted = ConvFallBack;
1554 }
1555
1556 Keep = TRUE;
1557 if (DevicePathType(FirstNode) == MEDIA_DEVICE_PATH &&
1558 DevicePathSubType(FirstNode) == MEDIA_HARDDRIVE_DP) {
1559 //
1560 // drop HD()
1561 //
1562 Keep = FALSE;
1563 } else if (DevicePathType(FirstNode) == ACPI_DEVICE_PATH &&
1564 DevicePathSubType(FirstNode) == ACPI_DP) {
1565 ACPI_HID_DEVICE_PATH *Acpi;
1566
1567 Acpi = (ACPI_HID_DEVICE_PATH *) FirstNode;
1568 if ((Acpi->HID & PNP_EISA_ID_MASK) == PNP_EISA_ID_CONST &&
1569 EISA_ID_TO_NUM (Acpi->HID) == 0x0a03) {
1570 //
1571 // drop PciRoot() if we enabled the user to select PCI-like boot
1572 // options, by providing translation for such OFW device path
1573 // fragments
1574 //
1575 Keep = !FeaturePcdGet (PcdQemuBootOrderPciTranslation);
1576 }
1577 } else if (DevicePathType(FirstNode) == HARDWARE_DEVICE_PATH &&
1578 DevicePathSubType(FirstNode) == HW_VENDOR_DP) {
1579 VENDOR_DEVICE_PATH *VenHw;
1580
1581 VenHw = (VENDOR_DEVICE_PATH *)FirstNode;
1582 if (CompareGuid (&VenHw->Guid, &gVirtioMmioTransportGuid)) {
1583 //
1584 // drop virtio-mmio if we enabled the user to select boot options
1585 // referencing such device paths
1586 //
1587 Keep = !FeaturePcdGet (PcdQemuBootOrderMmioTranslation);
1588 }
1589 }
1590
1591 if (Keep) {
1592 Status = BootOrderAppend (BootOrder, &ActiveOption[Idx]);
1593 if (!RETURN_ERROR (Status)) {
1594 DEBUG ((DEBUG_VERBOSE, "%a: keeping \"%s\"\n", __FUNCTION__,
1595 Converted));
1596 }
1597 } else {
1598 DEBUG ((DEBUG_VERBOSE, "%a: dropping \"%s\"\n", __FUNCTION__,
1599 Converted));
1600 }
1601
1602 if (Converted != ConvFallBack) {
1603 FreePool (Converted);
1604 }
1605 }
1606 }
1607 ++Idx;
1608 }
1609 return Status;
1610 }
1611
1612
1613 /**
1614 Delete Boot#### variables that stand for such active boot options that have
1615 been dropped (ie. have not been selected by either matching or "survival
1616 policy").
1617
1618 @param[in] ActiveOption The array of active boot options to scan. Each
1619 entry not marked as appended will trigger the
1620 deletion of the matching Boot#### variable.
1621
1622 @param[in] ActiveCount Number of elements in ActiveOption.
1623 **/
1624 STATIC
1625 VOID
1626 PruneBootVariables (
1627 IN CONST ACTIVE_OPTION *ActiveOption,
1628 IN UINTN ActiveCount
1629 )
1630 {
1631 UINTN Idx;
1632
1633 for (Idx = 0; Idx < ActiveCount; ++Idx) {
1634 if (!ActiveOption[Idx].Appended) {
1635 CHAR16 VariableName[9];
1636
1637 UnicodeSPrintAsciiFormat (VariableName, sizeof VariableName, "Boot%04x",
1638 ActiveOption[Idx].BootOption->BootCurrent);
1639
1640 //
1641 // "The space consumed by the deleted variable may not be available until
1642 // the next power cycle", but that's good enough.
1643 //
1644 gRT->SetVariable (VariableName, &gEfiGlobalVariableGuid,
1645 0, // Attributes, 0 means deletion
1646 0, // DataSize, 0 means deletion
1647 NULL // Data
1648 );
1649 }
1650 }
1651 }
1652
1653
1654 /**
1655
1656 Set the boot order based on configuration retrieved from QEMU.
1657
1658 Attempt to retrieve the "bootorder" fw_cfg file from QEMU. Translate the
1659 OpenFirmware device paths therein to UEFI device path fragments. Match the
1660 translated fragments against BootOptionList, and rewrite the BootOrder NvVar
1661 so that it corresponds to the order described in fw_cfg.
1662
1663 @param[in] BootOptionList A boot option list, created with
1664 BdsLibEnumerateAllBootOption ().
1665
1666
1667 @retval RETURN_SUCCESS BootOrder NvVar rewritten.
1668
1669 @retval RETURN_UNSUPPORTED QEMU's fw_cfg is not supported.
1670
1671 @retval RETURN_NOT_FOUND Empty or nonexistent "bootorder" fw_cfg
1672 file, or no match found between the
1673 "bootorder" fw_cfg file and BootOptionList.
1674
1675 @retval RETURN_INVALID_PARAMETER Parse error in the "bootorder" fw_cfg file.
1676
1677 @retval RETURN_OUT_OF_RESOURCES Memory allocation failed.
1678
1679 @return Values returned by gBS->LocateProtocol ()
1680 or gRT->SetVariable ().
1681
1682 **/
1683 RETURN_STATUS
1684 SetBootOrderFromQemu (
1685 IN CONST LIST_ENTRY *BootOptionList
1686 )
1687 {
1688 RETURN_STATUS Status;
1689 FIRMWARE_CONFIG_ITEM FwCfgItem;
1690 UINTN FwCfgSize;
1691 CHAR8 *FwCfg;
1692 CONST CHAR8 *FwCfgPtr;
1693
1694 BOOT_ORDER BootOrder;
1695 ACTIVE_OPTION *ActiveOption;
1696 UINTN ActiveCount;
1697
1698 EXTRA_ROOT_BUS_MAP *ExtraPciRoots;
1699
1700 UINTN TranslatedSize;
1701 CHAR16 Translated[TRANSLATION_OUTPUT_SIZE];
1702
1703 Status = QemuFwCfgFindFile ("bootorder", &FwCfgItem, &FwCfgSize);
1704 if (Status != RETURN_SUCCESS) {
1705 return Status;
1706 }
1707
1708 if (FwCfgSize == 0) {
1709 return RETURN_NOT_FOUND;
1710 }
1711
1712 FwCfg = AllocatePool (FwCfgSize);
1713 if (FwCfg == NULL) {
1714 return RETURN_OUT_OF_RESOURCES;
1715 }
1716
1717 QemuFwCfgSelectItem (FwCfgItem);
1718 QemuFwCfgReadBytes (FwCfgSize, FwCfg);
1719 if (FwCfg[FwCfgSize - 1] != '\0') {
1720 Status = RETURN_INVALID_PARAMETER;
1721 goto ErrorFreeFwCfg;
1722 }
1723
1724 DEBUG ((DEBUG_VERBOSE, "%a: FwCfg:\n", __FUNCTION__));
1725 DEBUG ((DEBUG_VERBOSE, "%a\n", FwCfg));
1726 DEBUG ((DEBUG_VERBOSE, "%a: FwCfg: <end>\n", __FUNCTION__));
1727 FwCfgPtr = FwCfg;
1728
1729 BootOrder.Produced = 0;
1730 BootOrder.Allocated = 1;
1731 BootOrder.Data = AllocatePool (
1732 BootOrder.Allocated * sizeof (*BootOrder.Data)
1733 );
1734 if (BootOrder.Data == NULL) {
1735 Status = RETURN_OUT_OF_RESOURCES;
1736 goto ErrorFreeFwCfg;
1737 }
1738
1739 Status = CollectActiveOptions (BootOptionList, &ActiveOption, &ActiveCount);
1740 if (RETURN_ERROR (Status)) {
1741 goto ErrorFreeBootOrder;
1742 }
1743
1744 if (FeaturePcdGet (PcdQemuBootOrderPciTranslation)) {
1745 Status = CreateExtraRootBusMap (&ExtraPciRoots);
1746 if (EFI_ERROR (Status)) {
1747 goto ErrorFreeActiveOption;
1748 }
1749 } else {
1750 ExtraPciRoots = NULL;
1751 }
1752
1753 //
1754 // translate each OpenFirmware path
1755 //
1756 TranslatedSize = sizeof (Translated) / sizeof (Translated[0]);
1757 Status = TranslateOfwPath (&FwCfgPtr, ExtraPciRoots, Translated,
1758 &TranslatedSize);
1759 while (Status == RETURN_SUCCESS ||
1760 Status == RETURN_UNSUPPORTED ||
1761 Status == RETURN_PROTOCOL_ERROR ||
1762 Status == RETURN_BUFFER_TOO_SMALL) {
1763 if (Status == RETURN_SUCCESS) {
1764 UINTN Idx;
1765
1766 //
1767 // match translated OpenFirmware path against all active boot options
1768 //
1769 for (Idx = 0; Idx < ActiveCount; ++Idx) {
1770 if (Match (
1771 Translated,
1772 TranslatedSize, // contains length, not size, in CHAR16's here
1773 ActiveOption[Idx].BootOption->DevicePath
1774 )
1775 ) {
1776 //
1777 // match found, store ID and continue with next OpenFirmware path
1778 //
1779 Status = BootOrderAppend (&BootOrder, &ActiveOption[Idx]);
1780 if (Status != RETURN_SUCCESS) {
1781 goto ErrorFreeExtraPciRoots;
1782 }
1783 break;
1784 }
1785 } // scanned all active boot options
1786 } // translation successful
1787
1788 TranslatedSize = sizeof (Translated) / sizeof (Translated[0]);
1789 Status = TranslateOfwPath (&FwCfgPtr, ExtraPciRoots, Translated,
1790 &TranslatedSize);
1791 } // scanning of OpenFirmware paths done
1792
1793 if (Status == RETURN_NOT_FOUND && BootOrder.Produced > 0) {
1794 //
1795 // No more OpenFirmware paths, some matches found: rewrite BootOrder NvVar.
1796 // Some of the active boot options that have not been selected over fw_cfg
1797 // should be preserved at the end of the boot order.
1798 //
1799 Status = BootOrderComplete (&BootOrder, ActiveOption, ActiveCount);
1800 if (RETURN_ERROR (Status)) {
1801 goto ErrorFreeExtraPciRoots;
1802 }
1803
1804 //
1805 // See Table 10 in the UEFI Spec 2.3.1 with Errata C for the required
1806 // attributes.
1807 //
1808 Status = gRT->SetVariable (
1809 L"BootOrder",
1810 &gEfiGlobalVariableGuid,
1811 EFI_VARIABLE_NON_VOLATILE |
1812 EFI_VARIABLE_BOOTSERVICE_ACCESS |
1813 EFI_VARIABLE_RUNTIME_ACCESS,
1814 BootOrder.Produced * sizeof (*BootOrder.Data),
1815 BootOrder.Data
1816 );
1817 if (EFI_ERROR (Status)) {
1818 DEBUG ((DEBUG_ERROR, "%a: setting BootOrder: %r\n", __FUNCTION__, Status));
1819 goto ErrorFreeExtraPciRoots;
1820 }
1821
1822 DEBUG ((DEBUG_INFO, "%a: setting BootOrder: success\n", __FUNCTION__));
1823 PruneBootVariables (ActiveOption, ActiveCount);
1824 }
1825
1826 ErrorFreeExtraPciRoots:
1827 if (ExtraPciRoots != NULL) {
1828 DestroyExtraRootBusMap (ExtraPciRoots);
1829 }
1830
1831 ErrorFreeActiveOption:
1832 FreePool (ActiveOption);
1833
1834 ErrorFreeBootOrder:
1835 FreePool (BootOrder.Data);
1836
1837 ErrorFreeFwCfg:
1838 FreePool (FwCfg);
1839
1840 return Status;
1841 }
1842
1843
1844 /**
1845 Calculate the number of seconds we should be showing the FrontPage progress
1846 bar for.
1847
1848 @return The TimeoutDefault argument for PlatformBdsEnterFrontPage().
1849 **/
1850 UINT16
1851 GetFrontPageTimeoutFromQemu (
1852 VOID
1853 )
1854 {
1855 FIRMWARE_CONFIG_ITEM BootMenuWaitItem;
1856 UINTN BootMenuWaitSize;
1857
1858 QemuFwCfgSelectItem (QemuFwCfgItemBootMenu);
1859 if (QemuFwCfgRead16 () == 0) {
1860 //
1861 // The user specified "-boot menu=off", or didn't specify "-boot
1862 // menu=(on|off)" at all. Return the platform default.
1863 //
1864 return PcdGet16 (PcdPlatformBootTimeOut);
1865 }
1866
1867 if (RETURN_ERROR (QemuFwCfgFindFile ("etc/boot-menu-wait", &BootMenuWaitItem,
1868 &BootMenuWaitSize)) ||
1869 BootMenuWaitSize != sizeof (UINT16)) {
1870 //
1871 // "-boot menu=on" was specified without "splash-time=N". In this case,
1872 // return three seconds if the platform default would cause us to skip the
1873 // front page, and return the platform default otherwise.
1874 //
1875 UINT16 Timeout;
1876
1877 Timeout = PcdGet16 (PcdPlatformBootTimeOut);
1878 if (Timeout == 0) {
1879 Timeout = 3;
1880 }
1881 return Timeout;
1882 }
1883
1884 //
1885 // "-boot menu=on,splash-time=N" was specified, where N is in units of
1886 // milliseconds. The Intel BDS Front Page progress bar only supports whole
1887 // seconds, round N up.
1888 //
1889 QemuFwCfgSelectItem (BootMenuWaitItem);
1890 return (UINT16)((QemuFwCfgRead16 () + 999) / 1000);
1891 }