]> git.proxmox.com Git - mirror_edk2.git/blob - PerformancePkg/Library/DxeTscTimerLib/DxeTscTimerLib.c
TscTimerLib in PerformancePkg is a BASE type library, which should be used by any...
[mirror_edk2.git] / PerformancePkg / Library / DxeTscTimerLib / DxeTscTimerLib.c
1 /** @file
2 A Dxe Timer Library implementation which uses the Time Stamp Counter in the processor.
3
4 For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and higher]);
5 for Intel Core Solo and Intel Core Duo processors (family [06H], model [0EH]);
6 for the Intel Xeon processor 5100 series and Intel Core 2 Duo processors (family [06H], model [0FH]);
7 for Intel Core 2 and Intel Xeon processors (family [06H], display_model [17H]);
8 for Intel Atom processors (family [06H], display_model [1CH]):
9 the time-stamp counter increments at a constant rate.
10 That rate may be set by the maximum core-clock to bus-clock ratio of the processor or may be set by
11 the maximum resolved frequency at which the processor is booted. The maximum resolved frequency may
12 differ from the maximum qualified frequency of the processor.
13
14 The specific processor configuration determines the behavior. Constant TSC behavior ensures that the
15 duration of each clock tick is uniform and supports the use of the TSC as a wall clock timer even if
16 the processor core changes frequency. This is the architectural behavior moving forward.
17
18 A Processor's support for invariant TSC is indicated by CPUID.0x80000007.EDX[8].
19
20 Copyright (c) 2009 - 2011, Intel Corporation. All rights reserved.<BR>
21 This program and the accompanying materials
22 are licensed and made available under the terms and conditions of the BSD License
23 which accompanies this distribution. The full text of the license may be found at
24 http://opensource.org/licenses/bsd-license.php
25
26 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
27 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
28
29 **/
30
31 #include <PiDxe.h>
32 #include <Ich/GenericIch.h>
33
34 #include <Library/TimerLib.h>
35 #include <Library/BaseLib.h>
36 #include <Library/IoLib.h>
37 #include <Library/PciLib.h>
38 #include <Library/PcdLib.h>
39 #include <Library/HobLib.h>
40
41 #include <Guid/TscFrequency.h>
42
43 UINT64 mTscFrequency;
44
45 /** The constructor function determines the actual TSC frequency.
46
47 First, Get TSC frequency from TSC frequency GUID HOB,
48 If the HOB is not found, calculate it.
49
50 The TSC counting frequency is determined by comparing how far it counts
51 during a 1ms period as determined by the ACPI timer. The ACPI timer is
52 used because it counts at a known frequency.
53 If ACPI I/O space not enabled, this function will enable it. Then the
54 TSC is sampled, followed by waiting for 3579 clocks of the ACPI timer, or 1ms.
55 The TSC is then sampled again. The difference multiplied by 1000 is the TSC
56 frequency. There will be a small error because of the overhead of reading
57 the ACPI timer. An attempt is made to determine and compensate for this error.
58 This function will always return EFI_SUCCESS.
59
60 @retval EFI_SUCCESS The constructor always returns EFI_SUCCESS.
61
62 **/
63 EFI_STATUS
64 EFIAPI
65 DxeTscTimerLibConstructor (
66 IN EFI_HANDLE ImageHandle,
67 IN EFI_SYSTEM_TABLE *SystemTable
68 )
69 {
70 EFI_HOB_GUID_TYPE *GuidHob;
71 VOID *DataInHob;
72 UINT64 StartTSC;
73 UINT64 EndTSC;
74 UINT32 TimerAddr;
75 UINT32 Ticks;
76
77 //
78 // Get TSC frequency from TSC frequency GUID HOB.
79 //
80 GuidHob = GetFirstGuidHob (&gEfiTscFrequencyGuid);
81 if (GuidHob != NULL) {
82 DataInHob = GET_GUID_HOB_DATA (GuidHob);
83 mTscFrequency = * (UINT64 *) DataInHob;
84 return EFI_SUCCESS;
85 }
86
87 //
88 // TSC frequency GUID HOB is not found, calculate it.
89 //
90
91 //
92 // If ACPI I/O space is not enabled yet, program ACPI I/O base address and enable it.
93 //
94 if ((PciRead8 (PCI_ICH_LPC_ADDRESS (R_ICH_LPC_ACPI_CNT)) & B_ICH_LPC_ACPI_CNT_ACPI_EN) == 0) {
95 PciWrite16 (PCI_ICH_LPC_ADDRESS (R_ICH_LPC_ACPI_BASE), PcdGet16 (PcdPerfPkgAcpiIoPortBaseAddress));
96 PciOr8 (PCI_ICH_LPC_ADDRESS (R_ICH_LPC_ACPI_CNT), B_ICH_LPC_ACPI_CNT_ACPI_EN);
97 }
98
99 //
100 // ACPI I/O space should be enabled now, locate the ACPI Timer.
101 // ACPI I/O base address maybe have be initialized by other driver with different value,
102 // So get it from PCI space directly.
103 //
104 TimerAddr = ((PciRead16 (PCI_ICH_LPC_ADDRESS (R_ICH_LPC_ACPI_BASE))) & B_ICH_LPC_ACPI_BASE_BAR) + R_ACPI_PM1_TMR;
105 Ticks = IoRead32 (TimerAddr) + (3579); // Set Ticks to 1ms in the future
106 StartTSC = AsmReadTsc(); // Get base value for the TSC
107 //
108 // Wait until the ACPI timer has counted 1ms.
109 // Timer wrap-arounds are handled correctly by this function.
110 // When the current ACPI timer value is greater than 'Ticks', the while loop will exit.
111 //
112 while (((Ticks - IoRead32 (TimerAddr)) & BIT23) == 0) {
113 CpuPause();
114 }
115 EndTSC = AsmReadTsc(); // TSC value 1ms later
116
117 mTscFrequency = MultU64x32 (
118 (EndTSC - StartTSC), // Number of TSC counts in 1ms
119 1000 // Number of ms in a second
120 );
121 //
122 // mTscFrequency is now equal to the number of TSC counts per second
123 //
124 return EFI_SUCCESS;
125 }
126
127 /** Stalls the CPU for at least the given number of ticks.
128
129 Stalls the CPU for at least the given number of ticks. It's invoked by
130 MicroSecondDelay() and NanoSecondDelay().
131
132 @param[in] Delay A period of time to delay in ticks.
133
134 **/
135 VOID
136 InternalX86Delay (
137 IN UINT64 Delay
138 )
139 {
140 UINT64 Ticks;
141
142 //
143 // The target timer count is calculated here
144 //
145 Ticks = AsmReadTsc() + Delay;
146
147 //
148 // Wait until time out
149 // Timer wrap-arounds are NOT handled correctly by this function.
150 // Thus, this function must be called within 10 years of reset since
151 // Intel guarantees a minimum of 10 years before the TSC wraps.
152 //
153 while (AsmReadTsc() <= Ticks) CpuPause();
154 }
155
156 /** Stalls the CPU for at least the specified number of MicroSeconds.
157
158 @param[in] MicroSeconds The minimum number of microseconds to delay.
159
160 @return The value of MicroSeconds input.
161
162 **/
163 UINTN
164 EFIAPI
165 MicroSecondDelay (
166 IN UINTN MicroSeconds
167 )
168 {
169 InternalX86Delay (
170 DivU64x32 (
171 MultU64x64 (
172 mTscFrequency,
173 MicroSeconds
174 ),
175 1000000u
176 )
177 );
178 return MicroSeconds;
179 }
180
181 /** Stalls the CPU for at least the specified number of NanoSeconds.
182
183 @param[in] NanoSeconds The minimum number of nanoseconds to delay.
184
185 @return The value of NanoSeconds input.
186
187 **/
188 UINTN
189 EFIAPI
190 NanoSecondDelay (
191 IN UINTN NanoSeconds
192 )
193 {
194 InternalX86Delay (
195 DivU64x32 (
196 MultU64x32 (
197 mTscFrequency,
198 (UINT32)NanoSeconds
199 ),
200 1000000000u
201 )
202 );
203 return NanoSeconds;
204 }
205
206 /** Retrieves the current value of the 64-bit free running Time-Stamp counter.
207
208 The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M,
209 Pentium 4, Intel Xeon, Intel Core Solo and Intel Core Duo processors and
210 later processors) is a 64-bit counter that is set to 0 following a RESET of
211 the processor. Following a RESET, the counter increments even when the
212 processor is halted by the HLT instruction or the external STPCLK# pin. Note
213 that the assertion of the external DPSLP# pin may cause the time-stamp
214 counter to stop.
215
216 The properties of the counter can be retrieved by the
217 GetPerformanceCounterProperties() function.
218
219 @return The current value of the free running performance counter.
220
221 **/
222 UINT64
223 EFIAPI
224 GetPerformanceCounter (
225 VOID
226 )
227 {
228 return AsmReadTsc();
229 }
230
231 /** Retrieves the 64-bit frequency in Hz and the range of performance counter
232 values.
233
234 If StartValue is not NULL, then the value that the performance counter starts
235 with, 0x0, is returned in StartValue. If EndValue is not NULL, then the value
236 that the performance counter end with, 0xFFFFFFFFFFFFFFFF, is returned in
237 EndValue.
238
239 The 64-bit frequency of the performance counter, in Hz, is always returned.
240 To determine average processor clock frequency, Intel recommends the use of
241 EMON logic to count processor core clocks over the period of time for which
242 the average is required.
243
244
245 @param[out] StartValue Pointer to where the performance counter's starting value is saved, or NULL.
246 @param[out] EndValue Pointer to where the performance counter's ending value is saved, or NULL.
247
248 @return The frequency in Hz.
249
250 **/
251 UINT64
252 EFIAPI
253 GetPerformanceCounterProperties (
254 OUT UINT64 *StartValue, OPTIONAL
255 OUT UINT64 *EndValue OPTIONAL
256 )
257 {
258 if (StartValue != NULL) {
259 *StartValue = 0;
260 }
261 if (EndValue != NULL) {
262 *EndValue = 0xFFFFFFFFFFFFFFFFull;
263 }
264
265 return mTscFrequency;
266 }