Modify GenFvImage tool to record the largest alignment of all the FFS files in the...
[mirror_edk2.git] / Tools / CCode / Source / GenFvImage / GenFvImageLib.c
1 /*++
2 i
3
4 Copyright (c) 2004, Intel Corporation
5 All rights reserved. This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 Module Name:
14
15 GenFvImageLib.c
16
17 Abstract:
18
19 This file contains functions required to generate a Firmware Volume.
20
21 --*/
22
23 //
24 // Include files
25 //
26 #ifdef __GNUC__
27 #include <uuid/uuid.h>
28 #include <sys/stat.h>
29 #endif
30 #include <string.h>
31 #ifndef __GNUC__
32 #include <io.h>
33 #endif
34 #include <assert.h>
35
36 #include <Common/UefiBaseTypes.h>
37 #include <Common/FirmwareVolumeImageFormat.h>
38 #include <Common/Variable.h>
39 #include <Common/WorkingBlockHeader.h>
40 #include <Guid/FirmwareFileSystem.h>
41
42 #include "GenFvImageLib.h"
43 #include "GenFvImageLibInternal.h"
44 #include "CommonLib.h"
45 #include "Crc32.h"
46 #include "EfiUtilityMsgs.h"
47 #include "FvLib.h"
48 #include "EfiCompress.h"
49 #include "WinNtInclude.h"
50
51 static UINT32 MaxFfsAlignment = 0;
52 //
53 // Local function prototypes
54 //
55 EFI_STATUS
56 GetPe32Info (
57 IN UINT8 *Pe32,
58 OUT UINT32 *EntryPoint,
59 OUT UINT32 *BaseOfCode,
60 OUT UINT16 *MachineType
61 );
62
63 //
64 // Local function implementations.
65 //
66 EFI_GUID FfsGuid = EFI_FIRMWARE_FILE_SYSTEM_GUID;
67 EFI_GUID DefaultFvPadFileNameGuid = { 0x78f54d4, 0xcc22, 0x4048, 0x9e, 0x94, 0x87, 0x9c, 0x21, 0x4d, 0x56, 0x2f };
68
69 //
70 // This data array will be located at the base of the Firmware Volume Header (FVH)
71 // in the boot block. It must not exceed 14 bytes of code. The last 2 bytes
72 // will be used to keep the FVH checksum consistent.
73 // This code will be run in response to a starutp IPI for HT-enabled systems.
74 //
75 #define SIZEOF_STARTUP_DATA_ARRAY 0x10
76
77 UINT8 m128kRecoveryStartupApDataArray[SIZEOF_STARTUP_DATA_ARRAY] = {
78 //
79 // EA D0 FF 00 F0 ; far jmp F000:FFD0
80 // 0, 0, 0, 0, 0, 0, 0, 0, 0, ; Reserved bytes
81 // 0, 0 ; Checksum Padding
82 //
83 0xEA,
84 0xD0,
85 0xFF,
86 0x0,
87 0xF0,
88 0x00,
89 0x00,
90 0x00,
91 0x00,
92 0x00,
93 0x00,
94 0x00,
95 0x00,
96 0x00,
97 0x00,
98 0x00
99 };
100
101 UINT8 m64kRecoveryStartupApDataArray[SIZEOF_STARTUP_DATA_ARRAY] = {
102 //
103 // EB CE ; jmp short ($-0x30)
104 // ; (from offset 0x0 to offset 0xFFD0)
105 // 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ; Reserved bytes
106 // 0, 0 ; Checksum Padding
107 //
108 0xEB,
109 0xCE,
110 0x00,
111 0x00,
112 0x00,
113 0x00,
114 0x00,
115 0x00,
116 0x00,
117 0x00,
118 0x00,
119 0x00,
120 0x00,
121 0x00,
122 0x00,
123 0x00
124 };
125
126 EFI_STATUS
127 ParseFvInf (
128 IN MEMORY_FILE *InfFile,
129 IN FV_INFO *FvInfo
130 )
131 /*++
132
133 Routine Description:
134
135 This function parses a FV.INF file and copies info into a FV_INFO structure.
136
137 Arguments:
138
139 InfFile Memory file image.
140 FvInfo Information read from INF file.
141
142 Returns:
143
144 EFI_SUCCESS INF file information successfully retrieved.
145 EFI_ABORTED INF file has an invalid format.
146 EFI_NOT_FOUND A required string was not found in the INF file.
147 --*/
148 {
149 CHAR8 Value[_MAX_PATH];
150 UINT64 Value64;
151 UINTN Index;
152 EFI_STATUS Status;
153
154 //
155 // Initialize FV info
156 //
157 memset (FvInfo, 0, sizeof (FV_INFO));
158
159 //
160 // Read the FV base address
161 //
162 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_FV_BASE_ADDRESS_STRING, 0, Value);
163
164 if (Status == EFI_SUCCESS) {
165 //
166 // Get the base address
167 //
168 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
169 if (EFI_ERROR (Status)) {
170 Error (NULL, 0, 0, EFI_FV_BASE_ADDRESS_STRING, "invalid value");
171 return EFI_ABORTED;
172 }
173
174 FvInfo->BaseAddress = Value64;
175 } else {
176 Error (NULL, 0, 0, EFI_FV_BASE_ADDRESS_STRING, "could not find value");
177 return EFI_ABORTED;
178 }
179 //
180 // Read the FV Guid
181 //
182 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_FV_GUID_STRING, 0, Value);
183
184 if (Status == EFI_SUCCESS) {
185 //
186 // Get the guid value
187 //
188 Status = StringToGuid (Value, &FvInfo->FvGuid);
189 if (EFI_ERROR (Status)) {
190 memcpy (&FvInfo->FvGuid, &FfsGuid, sizeof (EFI_GUID));
191 }
192 } else {
193 memcpy (&FvInfo->FvGuid, &FfsGuid, sizeof (EFI_GUID));
194 }
195 //
196 // Read the FV file name
197 //
198 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_FV_FILE_NAME_STRING, 0, Value);
199
200 if (Status == EFI_SUCCESS) {
201 //
202 // copy the file name
203 //
204 strcpy (FvInfo->FvName, Value);
205 } else {
206 Error (NULL, 0, 0, EFI_FV_FILE_NAME_STRING, "value not specified");
207 return EFI_ABORTED;
208 }
209 //
210 // Read the Sym file name
211 //
212 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_SYM_FILE_NAME_STRING, 0, Value);
213
214 if (Status == EFI_SUCCESS) {
215 //
216 // copy the file name
217 //
218 strcpy (FvInfo->SymName, Value);
219 } else {
220 //
221 // Symbols not required, so init to NULL.
222 //
223 strcpy (FvInfo->SymName, "");
224 }
225 //
226 // Read the read disabled capability attribute
227 //
228 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_READ_DISABLED_CAP_STRING, 0, Value);
229
230 if (Status == EFI_SUCCESS) {
231 //
232 // Update the read disabled flag
233 //
234 if (strcmp (Value, TRUE_STRING) == 0) {
235 FvInfo->FvAttributes |= EFI_FVB_READ_DISABLED_CAP;
236 } else if (strcmp (Value, FALSE_STRING) != 0) {
237 Error (NULL, 0, 0, EFI_FVB_READ_DISABLED_CAP_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
238 return EFI_ABORTED;
239 }
240 } else {
241 Error (NULL, 0, 0, EFI_FVB_READ_DISABLED_CAP_STRING, "value not specified");
242 return Status;
243 }
244 //
245 // Read the read enabled capability attribute
246 //
247 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_READ_ENABLED_CAP_STRING, 0, Value);
248
249 if (Status == EFI_SUCCESS) {
250 //
251 // Update the read disabled flag
252 //
253 if (strcmp (Value, TRUE_STRING) == 0) {
254 FvInfo->FvAttributes |= EFI_FVB_READ_ENABLED_CAP;
255 } else if (strcmp (Value, FALSE_STRING) != 0) {
256 Error (NULL, 0, 0, EFI_FVB_READ_ENABLED_CAP_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
257 return EFI_ABORTED;
258 }
259 } else {
260 Error (NULL, 0, 0, EFI_FVB_READ_ENABLED_CAP_STRING, "value not specified");
261 return Status;
262 }
263 //
264 // Read the read status attribute
265 //
266 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_READ_STATUS_STRING, 0, Value);
267
268 if (Status == EFI_SUCCESS) {
269 //
270 // Update the read disabled flag
271 //
272 if (strcmp (Value, TRUE_STRING) == 0) {
273 FvInfo->FvAttributes |= EFI_FVB_READ_STATUS;
274 } else if (strcmp (Value, FALSE_STRING) != 0) {
275 Error (NULL, 0, 0, EFI_FVB_READ_STATUS_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
276 return EFI_ABORTED;
277 }
278 } else {
279 Error (NULL, 0, 0, EFI_FVB_READ_STATUS_STRING, "value not specified");
280 return Status;
281 }
282 //
283 // Read the write disabled capability attribute
284 //
285 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_WRITE_DISABLED_CAP_STRING, 0, Value);
286
287 if (Status == EFI_SUCCESS) {
288 //
289 // Update the write disabled flag
290 //
291 if (strcmp (Value, TRUE_STRING) == 0) {
292 FvInfo->FvAttributes |= EFI_FVB_WRITE_DISABLED_CAP;
293 } else if (strcmp (Value, FALSE_STRING) != 0) {
294 Error (NULL, 0, 0, EFI_FVB_WRITE_DISABLED_CAP_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
295 return EFI_ABORTED;
296 }
297 } else {
298 Error (NULL, 0, 0, EFI_FVB_WRITE_DISABLED_CAP_STRING, "value not specified");
299 return Status;
300 }
301 //
302 // Read the write enabled capability attribute
303 //
304 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_WRITE_ENABLED_CAP_STRING, 0, Value);
305
306 if (Status == EFI_SUCCESS) {
307 //
308 // Update the write disabled flag
309 //
310 if (strcmp (Value, TRUE_STRING) == 0) {
311 FvInfo->FvAttributes |= EFI_FVB_WRITE_ENABLED_CAP;
312 } else if (strcmp (Value, FALSE_STRING) != 0) {
313 Error (NULL, 0, 0, EFI_FVB_WRITE_ENABLED_CAP_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
314 return EFI_ABORTED;
315 }
316 } else {
317 Error (NULL, 0, 0, EFI_FVB_WRITE_ENABLED_CAP_STRING, "value not specified");
318 return Status;
319 }
320 //
321 // Read the write status attribute
322 //
323 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_WRITE_STATUS_STRING, 0, Value);
324
325 if (Status == EFI_SUCCESS) {
326 //
327 // Update the write disabled flag
328 //
329 if (strcmp (Value, TRUE_STRING) == 0) {
330 FvInfo->FvAttributes |= EFI_FVB_WRITE_STATUS;
331 } else if (strcmp (Value, FALSE_STRING) != 0) {
332 Error (NULL, 0, 0, EFI_FVB_WRITE_STATUS_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
333 return EFI_ABORTED;
334 }
335 } else {
336 Error (NULL, 0, 0, EFI_FVB_WRITE_STATUS_STRING, "value not specified");
337 return Status;
338 }
339 //
340 // Read the lock capability attribute
341 //
342 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_LOCK_CAP_STRING, 0, Value);
343
344 if (Status == EFI_SUCCESS) {
345 //
346 // Update the attribute flag
347 //
348 if (strcmp (Value, TRUE_STRING) == 0) {
349 FvInfo->FvAttributes |= EFI_FVB_LOCK_CAP;
350 } else if (strcmp (Value, FALSE_STRING) != 0) {
351 Error (NULL, 0, 0, EFI_FVB_LOCK_CAP_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
352 return EFI_ABORTED;
353 }
354 } else {
355 Error (NULL, 0, 0, EFI_FVB_LOCK_CAP_STRING, "value not specified");
356 return Status;
357 }
358 //
359 // Read the lock status attribute
360 //
361 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_LOCK_STATUS_STRING, 0, Value);
362
363 if (Status == EFI_SUCCESS) {
364 //
365 // Update the attribute flag
366 //
367 if (strcmp (Value, TRUE_STRING) == 0) {
368 FvInfo->FvAttributes |= EFI_FVB_LOCK_STATUS;
369 } else if (strcmp (Value, FALSE_STRING) != 0) {
370 Error (NULL, 0, 0, EFI_FVB_LOCK_STATUS_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
371 return EFI_ABORTED;
372 }
373 } else {
374 Error (NULL, 0, 0, EFI_FVB_LOCK_STATUS_STRING, "value not specified");
375 return Status;
376 }
377 //
378 // Read the sticky write attribute
379 //
380 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_STICKY_WRITE_STRING, 0, Value);
381
382 if (Status == EFI_SUCCESS) {
383 //
384 // Update the attribute flag
385 //
386 if (strcmp (Value, TRUE_STRING) == 0) {
387 FvInfo->FvAttributes |= EFI_FVB_STICKY_WRITE;
388 } else if (strcmp (Value, FALSE_STRING) != 0) {
389 Error (NULL, 0, 0, EFI_FVB_STICKY_WRITE_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
390 return EFI_ABORTED;
391 }
392 } else {
393 Error (NULL, 0, 0, EFI_FVB_STICKY_WRITE_STRING, "value not specified");
394 return Status;
395 }
396 //
397 // Read the memory mapped attribute
398 //
399 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_MEMORY_MAPPED_STRING, 0, Value);
400
401 if (Status == EFI_SUCCESS) {
402 //
403 // Update the attribute flag
404 //
405 if (strcmp (Value, TRUE_STRING) == 0) {
406 FvInfo->FvAttributes |= EFI_FVB_MEMORY_MAPPED;
407 } else if (strcmp (Value, FALSE_STRING) != 0) {
408 Error (NULL, 0, 0, EFI_FVB_MEMORY_MAPPED_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
409 return EFI_ABORTED;
410 }
411 } else {
412 Error (NULL, 0, 0, EFI_FVB_MEMORY_MAPPED_STRING, "value not specified");
413 return Status;
414 }
415 //
416 // Read the erase polarity attribute
417 //
418 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ERASE_POLARITY_STRING, 0, Value);
419
420 if (Status == EFI_SUCCESS) {
421 //
422 // Update the attribute flag
423 //
424 if (strcmp (Value, ONE_STRING) == 0) {
425 FvInfo->FvAttributes |= EFI_FVB_ERASE_POLARITY;
426 } else if (strcmp (Value, ZERO_STRING) != 0) {
427 Error (NULL, 0, 0, EFI_FVB_ERASE_POLARITY_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
428 return EFI_ABORTED;
429 }
430 } else {
431 Error (NULL, 0, 0, EFI_FVB_ERASE_POLARITY_STRING, "value not specified");
432 return Status;
433 }
434 //
435 // Read the alignment capabilities attribute
436 //
437 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_CAP_STRING, 0, Value);
438
439 if (Status == EFI_SUCCESS) {
440 //
441 // Update attribute
442 //
443 if (strcmp (Value, TRUE_STRING) == 0) {
444 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_CAP;
445 } else if (strcmp (Value, FALSE_STRING) != 0) {
446 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_CAP_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
447 return EFI_ABORTED;
448 }
449 } else {
450 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_CAP_STRING, "value not specified");
451 return Status;
452 }
453 //
454 // Read the word alignment capability attribute
455 //
456 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_2_STRING, 0, Value);
457
458 if (Status == EFI_SUCCESS) {
459 //
460 // Update attribute
461 //
462 if (strcmp (Value, TRUE_STRING) == 0) {
463 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_2;
464 } else if (strcmp (Value, FALSE_STRING) != 0) {
465 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_2_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
466 return EFI_ABORTED;
467 }
468 } else {
469 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_2_STRING, "value not specified");
470 return Status;
471 }
472 //
473 // Read the dword alignment capability attribute
474 //
475 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_4_STRING, 0, Value);
476
477 if (Status == EFI_SUCCESS) {
478 //
479 // Update attribute
480 //
481 if (strcmp (Value, TRUE_STRING) == 0) {
482 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_4;
483 } else if (strcmp (Value, FALSE_STRING) != 0) {
484 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_4_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
485 return EFI_ABORTED;
486 }
487 } else {
488 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_4_STRING, "value not specified");
489 return Status;
490 }
491 //
492 // Read the word alignment capability attribute
493 //
494 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_8_STRING, 0, Value);
495
496 if (Status == EFI_SUCCESS) {
497 //
498 // Update attribute
499 //
500 if (strcmp (Value, TRUE_STRING) == 0) {
501 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_8;
502 } else if (strcmp (Value, FALSE_STRING) != 0) {
503 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_8_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
504 return EFI_ABORTED;
505 }
506 } else {
507 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_8_STRING, "value not specified");
508 return Status;
509 }
510 //
511 // Read the qword alignment capability attribute
512 //
513 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_16_STRING, 0, Value);
514
515 if (Status == EFI_SUCCESS) {
516 //
517 // Update attribute
518 //
519 if (strcmp (Value, TRUE_STRING) == 0) {
520 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_16;
521 } else if (strcmp (Value, FALSE_STRING) != 0) {
522 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_16_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
523 return EFI_ABORTED;
524 }
525 } else {
526 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_16_STRING, "value not specified");
527 return Status;
528 }
529 //
530 // Read the 32 byte alignment capability attribute
531 //
532 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_32_STRING, 0, Value);
533
534 if (Status == EFI_SUCCESS) {
535 //
536 // Update attribute
537 //
538 if (strcmp (Value, TRUE_STRING) == 0) {
539 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_32;
540 } else if (strcmp (Value, FALSE_STRING) != 0) {
541 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_32_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
542 return EFI_ABORTED;
543 }
544 } else {
545 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_32_STRING, "value not specified");
546 return Status;
547 }
548 //
549 // Read the 64 byte alignment capability attribute
550 //
551 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_64_STRING, 0, Value);
552
553 if (Status == EFI_SUCCESS) {
554 //
555 // Update attribute
556 //
557 if (strcmp (Value, TRUE_STRING) == 0) {
558 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_64;
559 } else if (strcmp (Value, FALSE_STRING) != 0) {
560 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_64_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
561 return EFI_ABORTED;
562 }
563 } else {
564 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_64_STRING, "value not specified");
565 return Status;
566 }
567 //
568 // Read the 128 byte alignment capability attribute
569 //
570 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_128_STRING, 0, Value);
571
572 if (Status == EFI_SUCCESS) {
573 //
574 // Update attribute
575 //
576 if (strcmp (Value, TRUE_STRING) == 0) {
577 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_128;
578 } else if (strcmp (Value, FALSE_STRING) != 0) {
579 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_128_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
580 return EFI_ABORTED;
581 }
582 } else {
583 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_128_STRING, "value not specified");
584 return Status;
585 }
586 //
587 // Read the 256 byte alignment capability attribute
588 //
589 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_256_STRING, 0, Value);
590
591 if (Status == EFI_SUCCESS) {
592 //
593 // Update attribute
594 //
595 if (strcmp (Value, TRUE_STRING) == 0) {
596 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_256;
597 } else if (strcmp (Value, FALSE_STRING) != 0) {
598 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_256_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
599 return EFI_ABORTED;
600 }
601 } else {
602 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_256_STRING, "value not specified");
603 return Status;
604 }
605 //
606 // Read the 512 byte alignment capability attribute
607 //
608 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_512_STRING, 0, Value);
609
610 if (Status == EFI_SUCCESS) {
611 //
612 // Update attribute
613 //
614 if (strcmp (Value, TRUE_STRING) == 0) {
615 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_512;
616 } else if (strcmp (Value, FALSE_STRING) != 0) {
617 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_512_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
618 return EFI_ABORTED;
619 }
620 } else {
621 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_512_STRING, "value not specified");
622 return Status;
623 }
624 //
625 // Read the 1K byte alignment capability attribute
626 //
627 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_1K_STRING, 0, Value);
628
629 if (Status == EFI_SUCCESS) {
630 //
631 // Update attribute
632 //
633 if (strcmp (Value, TRUE_STRING) == 0) {
634 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_1K;
635 } else if (strcmp (Value, FALSE_STRING) != 0) {
636 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_1K_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
637 return EFI_ABORTED;
638 }
639 } else {
640 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_1K_STRING, "value not specified");
641 return Status;
642 }
643 //
644 // Read the 2K byte alignment capability attribute
645 //
646 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_2K_STRING, 0, Value);
647
648 if (Status == EFI_SUCCESS) {
649 //
650 // Update attribute
651 //
652 if (strcmp (Value, TRUE_STRING) == 0) {
653 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_2K;
654 } else if (strcmp (Value, FALSE_STRING) != 0) {
655 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_2K_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
656 return EFI_ABORTED;
657 }
658 } else {
659 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_2K_STRING, "value not specified");
660 return Status;
661 }
662 //
663 // Read the 4K byte alignment capability attribute
664 //
665 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_4K_STRING, 0, Value);
666
667 if (Status == EFI_SUCCESS) {
668 //
669 // Update attribute
670 //
671 if (strcmp (Value, TRUE_STRING) == 0) {
672 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_4K;
673 } else if (strcmp (Value, FALSE_STRING) != 0) {
674 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_4K_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
675 return EFI_ABORTED;
676 }
677 } else {
678 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_4K_STRING, "value not specified");
679 return Status;
680 }
681 //
682 // Read the 8K byte alignment capability attribute
683 //
684 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_8K_STRING, 0, Value);
685
686 if (Status == EFI_SUCCESS) {
687 //
688 // Update attribute
689 //
690 if (strcmp (Value, TRUE_STRING) == 0) {
691 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_8K;
692 } else if (strcmp (Value, FALSE_STRING) != 0) {
693 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_8K_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
694 return EFI_ABORTED;
695 }
696 } else {
697 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_8K_STRING, "value not specified");
698 return Status;
699 }
700 //
701 // Read the 16K byte alignment capability attribute
702 //
703 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_16K_STRING, 0, Value);
704
705 if (Status == EFI_SUCCESS) {
706 //
707 // Update attribute
708 //
709 if (strcmp (Value, TRUE_STRING) == 0) {
710 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_16K;
711 } else if (strcmp (Value, FALSE_STRING) != 0) {
712 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_16K_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
713 return EFI_ABORTED;
714 }
715 } else {
716 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_16K_STRING, "value not specified");
717 return Status;
718 }
719 //
720 // Read the 32K byte alignment capability attribute
721 //
722 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_32K_STRING, 0, Value);
723
724 if (Status == EFI_SUCCESS) {
725 //
726 // Update attribute
727 //
728 if (strcmp (Value, TRUE_STRING) == 0) {
729 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_32K;
730 } else if (strcmp (Value, FALSE_STRING) != 0) {
731 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_32K_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
732 return EFI_ABORTED;
733 }
734 } else {
735 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_32K_STRING, "value not specified");
736 return Status;
737 }
738 //
739 // Read the 64K byte alignment capability attribute
740 //
741 Status = FindToken (InfFile, ATTRIBUTES_SECTION_STRING, EFI_FVB_ALIGNMENT_64K_STRING, 0, Value);
742
743 if (Status == EFI_SUCCESS) {
744 //
745 // Update attribute
746 //
747 if (strcmp (Value, TRUE_STRING) == 0) {
748 FvInfo->FvAttributes |= EFI_FVB_ALIGNMENT_64K;
749 } else if (strcmp (Value, FALSE_STRING) != 0) {
750 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_64K_STRING, "expected %s | %s", TRUE_STRING, FALSE_STRING);
751 return EFI_ABORTED;
752 }
753 } else {
754 Error (NULL, 0, 0, EFI_FVB_ALIGNMENT_64K_STRING, "value not specified");
755 return Status;
756 }
757
758 if (!(FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_CAP) &&
759 (
760 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_2) ||
761 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_4) ||
762 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_8) ||
763 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_16) ||
764 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_32) ||
765 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_64) ||
766 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_128) ||
767 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_256) ||
768 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_512) ||
769 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_1K) ||
770 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_2K) ||
771 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_4K) ||
772 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_8K) ||
773 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_16K) ||
774 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_32K) ||
775 (FvInfo->FvAttributes & EFI_FVB_ALIGNMENT_64K)
776 )
777 ) {
778 Error (
779 NULL,
780 0,
781 0,
782 "illegal combination of alignment attributes",
783 "if %s is not %s, no individual alignments can be %s",
784 EFI_FVB_ALIGNMENT_CAP_STRING,
785 TRUE_STRING,
786 TRUE_STRING
787 );
788 return EFI_ABORTED;
789 }
790 //
791 // Read block maps
792 //
793 for (Index = 0; Index < MAX_NUMBER_OF_FV_BLOCKS; Index++) {
794 //
795 // Read the number of blocks
796 //
797 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_NUM_BLOCKS_STRING, Index, Value);
798
799 if (Status == EFI_SUCCESS) {
800 //
801 // Update the number of blocks
802 //
803 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
804 if (EFI_ERROR (Status)) {
805 Error (NULL, 0, 0, Value, "invalid value for %s", EFI_NUM_BLOCKS_STRING);
806 return EFI_ABORTED;
807 }
808
809 FvInfo->FvBlocks[Index].NumBlocks = (UINT32) Value64;
810 } else {
811 //
812 // If there is no number of blocks, but there is a size, then we have a mismatched pair
813 // and should return an error.
814 //
815 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_BLOCK_SIZE_STRING, Index, Value);
816 if (!EFI_ERROR (Status)) {
817 Error (NULL, 0, 0, "must specify both", "%s and %s", EFI_NUM_BLOCKS_STRING, EFI_BLOCK_SIZE_STRING);
818 return EFI_ABORTED;
819 } else {
820 //
821 // We are done
822 //
823 break;
824 }
825 }
826 //
827 // Read the size of blocks
828 //
829 Status = FindToken (InfFile, OPTIONS_SECTION_STRING, EFI_BLOCK_SIZE_STRING, Index, Value);
830
831 if (Status == EFI_SUCCESS) {
832 //
833 // Update the number of blocks
834 //
835 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
836 if (EFI_ERROR (Status)) {
837 Error (NULL, 0, 0, Value, "invalid value specified for %s", EFI_BLOCK_SIZE_STRING);
838 return EFI_ABORTED;
839 }
840
841 FvInfo->FvBlocks[Index].BlockLength = (UINT32) Value64;
842 } else {
843 //
844 // There is a number of blocks, but there is no size, so we have a mismatched pair
845 // and should return an error.
846 //
847 Error (NULL, 0, 0, "must specify both", "%s and %s", EFI_NUM_BLOCKS_STRING, EFI_BLOCK_SIZE_STRING);
848 return EFI_ABORTED;
849 }
850 }
851 //
852 // Read files
853 //
854 for (Index = 0; Index < MAX_NUMBER_OF_FILES_IN_FV; Index++) {
855 //
856 // Read the number of blocks
857 //
858 Status = FindToken (InfFile, FILES_SECTION_STRING, EFI_FILE_NAME_STRING, Index, Value);
859
860 if (Status == EFI_SUCCESS) {
861 //
862 // Add the file
863 //
864 strcpy (FvInfo->FvFiles[Index], Value);
865 } else {
866 break;
867 }
868 }
869
870 if (FindSection (InfFile, COMPONENT_SECTION_STRING)) {
871 Index = 0;
872 //
873 // Read component FV_VARIABLE
874 //
875 Status = FindToken (InfFile, COMPONENT_SECTION_STRING, EFI_NV_VARIABLE_STRING, 0, Value);
876
877 if (Status == EFI_SUCCESS) {
878 //
879 // Add the component
880 //
881 strcpy (FvInfo->FvComponents[Index].ComponentName, EFI_NV_VARIABLE_STRING);
882 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
883 if (EFI_ERROR (Status)) {
884 printf ("ERROR: %s is not a valid integer.\n", EFI_NV_VARIABLE_STRING);
885 return EFI_ABORTED;
886 }
887
888 FvInfo->FvComponents[Index].Size = (UINTN) Value64;
889 } else {
890 printf ("WARNING: Could not read %s.\n", EFI_NV_VARIABLE_STRING);
891 }
892
893 Index++;
894 //
895 // Read component FV_EVENT_LOG
896 //
897 Status = FindToken (InfFile, COMPONENT_SECTION_STRING, EFI_NV_EVENT_LOG_STRING, 0, Value);
898
899 if (Status == EFI_SUCCESS) {
900 //
901 // Add the component
902 //
903 strcpy (FvInfo->FvComponents[Index].ComponentName, EFI_NV_EVENT_LOG_STRING);
904 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
905 if (EFI_ERROR (Status)) {
906 printf ("ERROR: %s is not a valid integer.\n", EFI_NV_EVENT_LOG_STRING);
907 return EFI_ABORTED;
908 }
909
910 FvInfo->FvComponents[Index].Size = (UINTN) Value64;
911 } else {
912 printf ("WARNING: Could not read %s.\n", EFI_NV_EVENT_LOG_STRING);
913 }
914
915 Index++;
916 //
917 // Read component FV_FTW_WORKING
918 //
919 Status = FindToken (InfFile, COMPONENT_SECTION_STRING, EFI_NV_FTW_WORKING_STRING, 0, Value);
920
921 if (Status == EFI_SUCCESS) {
922 //
923 // Add the component
924 //
925 strcpy (FvInfo->FvComponents[Index].ComponentName, EFI_NV_FTW_WORKING_STRING);
926 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
927 if (EFI_ERROR (Status)) {
928 printf ("ERROR: %s is not a valid integer.\n", EFI_NV_FTW_WORKING_STRING);
929 return EFI_ABORTED;
930 }
931
932 FvInfo->FvComponents[Index].Size = (UINTN) Value64;
933 } else {
934 printf ("WARNING: Could not read %s.\n", EFI_NV_FTW_WORKING_STRING);
935 }
936
937 Index++;
938 //
939 // Read component FV_FTW_SPARE
940 //
941 Status = FindToken (InfFile, COMPONENT_SECTION_STRING, EFI_NV_FTW_SPARE_STRING, 0, Value);
942
943 if (Status == EFI_SUCCESS) {
944 //
945 // Add the component
946 //
947 strcpy (FvInfo->FvComponents[Index].ComponentName, EFI_NV_FTW_SPARE_STRING);
948 Status = AsciiStringToUint64 (Value, FALSE, &Value64);
949 if (EFI_ERROR (Status)) {
950 printf ("ERROR: %s is not a valid integer.\n", EFI_NV_FTW_SPARE_STRING);
951 return EFI_ABORTED;
952 }
953
954 FvInfo->FvComponents[Index].Size = (UINTN) Value64;
955 } else {
956 printf ("WARNING: Could not read %s.\n", EFI_NV_FTW_SPARE_STRING);
957 }
958 }
959 //
960 // Compute size for easy access later
961 //
962 FvInfo->Size = 0;
963 for (Index = 0; FvInfo->FvBlocks[Index].NumBlocks; Index++) {
964 FvInfo->Size += FvInfo->FvBlocks[Index].NumBlocks * FvInfo->FvBlocks[Index].BlockLength;
965 }
966
967 return EFI_SUCCESS;
968 }
969
970 VOID
971 UpdateFfsFileState (
972 IN EFI_FFS_FILE_HEADER *FfsFile,
973 IN EFI_FIRMWARE_VOLUME_HEADER *FvHeader
974 )
975 /*++
976
977 Routine Description:
978
979 This function changes the FFS file attributes based on the erase polarity
980 of the FV.
981
982 Arguments:
983
984 FfsFile File header.
985 FvHeader FV header.
986
987 Returns:
988
989 None
990
991 --*/
992 {
993 if (FvHeader->Attributes & EFI_FVB_ERASE_POLARITY) {
994 FfsFile->State = (UINT8)~(FfsFile->State);
995 }
996 }
997
998 EFI_STATUS
999 ReadFfsAlignment (
1000 IN EFI_FFS_FILE_HEADER *FfsFile,
1001 IN OUT UINT32 *Alignment
1002 )
1003 /*++
1004
1005 Routine Description:
1006
1007 This function determines the alignment of the FFS input file from the file
1008 attributes.
1009
1010 Arguments:
1011
1012 FfsFile FFS file to parse
1013 Alignment The minimum required alignment of the FFS file, in bytes
1014
1015 Returns:
1016
1017 EFI_SUCCESS The function completed successfully.
1018 EFI_INVALID_PARAMETER One of the input parameters was invalid.
1019 EFI_ABORTED An error occurred.
1020
1021 --*/
1022 {
1023 //
1024 // Verify input parameters.
1025 //
1026 if (FfsFile == NULL || Alignment == NULL) {
1027 return EFI_INVALID_PARAMETER;
1028 }
1029
1030 switch ((FfsFile->Attributes >> 3) & 0x07) {
1031
1032 case 0:
1033 //
1034 // 8 byte alignment, mini alignment requirement for FFS file.
1035 //
1036 *Alignment = (1 << 3);
1037 break;
1038
1039 case 1:
1040 //
1041 // 16 byte alignment
1042 //
1043 *Alignment = (1 << 4);
1044 break;
1045
1046 case 2:
1047 //
1048 // 128 byte alignment
1049 //
1050 *Alignment = (1 << 7);
1051 break;
1052
1053 case 3:
1054 //
1055 // 512 byte alignment
1056 //
1057 *Alignment = (1 << 9);
1058 break;
1059
1060 case 4:
1061 //
1062 // 1K byte alignment
1063 //
1064 *Alignment = (1 << 10);
1065 break;
1066
1067 case 5:
1068 //
1069 // 4K byte alignment
1070 //
1071 *Alignment = (1 << 12);
1072 break;
1073
1074 case 6:
1075 //
1076 // 32K byte alignment
1077 //
1078 *Alignment = (1 << 15);
1079 break;
1080
1081 case 7:
1082 //
1083 // 64K byte alignment
1084 //
1085 *Alignment = (1 << 16);
1086 break;
1087
1088 default:
1089 Error (NULL, 0, 0, "nvalid file attribute calculated, this is most likely a utility error", NULL);
1090 return EFI_ABORTED;
1091 }
1092
1093 return EFI_SUCCESS;
1094 }
1095
1096 EFI_STATUS
1097 AddPadFile (
1098 IN OUT MEMORY_FILE *FvImage,
1099 IN UINT32 DataAlignment
1100 )
1101 /*++
1102
1103 Routine Description:
1104
1105 This function adds a pad file to the FV image if it required to align the
1106 data of the next file.
1107
1108 Arguments:
1109
1110 FvImage The memory image of the FV to add it to. The current offset
1111 must be valid.
1112 DataAlignment The data alignment of the next FFS file.
1113
1114 Returns:
1115
1116 EFI_SUCCESS The function completed successfully.
1117 EFI_INVALID_PARAMETER One of the input parameters was invalid.
1118 EFI_OUT_OF_RESOURCES Insufficient resources exist in the FV to complete
1119 the pad file add.
1120
1121 --*/
1122 {
1123 EFI_FFS_FILE_HEADER *PadFile;
1124 EFI_GUID PadFileGuid;
1125 UINTN PadFileSize;
1126
1127 //
1128 // Verify input parameters.
1129 //
1130 if (FvImage == NULL) {
1131 return EFI_INVALID_PARAMETER;
1132 }
1133 //
1134 // Basic assumption is we start from an 8 byte aligned address
1135 // and our file header is a multiple of 8 bytes
1136 //
1137 assert ((UINTN) FvImage->CurrentFilePointer % 8 == 0);
1138 assert (sizeof (EFI_FFS_FILE_HEADER) % 8 == 0);
1139
1140 //
1141 // Check if a pad file is necessary
1142 //
1143 if (((UINTN) FvImage->CurrentFilePointer - (UINTN) FvImage->FileImage + sizeof (EFI_FFS_FILE_HEADER)) % DataAlignment == 0) {
1144 return EFI_SUCCESS;
1145 }
1146 //
1147 // Write pad file header
1148 //
1149 PadFile = (EFI_FFS_FILE_HEADER *) FvImage->CurrentFilePointer;
1150
1151 //
1152 // Verify that we have enough space for the file header
1153 //
1154 if ((UINTN) (PadFile + sizeof (EFI_FFS_FILE_HEADER)) >= (UINTN) FvImage->Eof) {
1155 return EFI_OUT_OF_RESOURCES;
1156 }
1157
1158 #ifdef __GNUC__
1159 {
1160 uuid_t tmp_id;
1161 uuid_generate (tmp_id);
1162 memcpy (&PadFileGuid, tmp_id, sizeof (EFI_GUID));
1163 }
1164 #else
1165 UuidCreate (&PadFileGuid);
1166 #endif
1167 memset (PadFile, 0, sizeof (EFI_FFS_FILE_HEADER));
1168 memcpy (&PadFile->Name, &PadFileGuid, sizeof (EFI_GUID));
1169 PadFile->Type = EFI_FV_FILETYPE_FFS_PAD;
1170 PadFile->Attributes = 0;
1171
1172 //
1173 // Calculate the pad file size
1174 //
1175 //
1176 // This is the earliest possible valid offset (current plus pad file header
1177 // plus the next file header)
1178 //
1179 PadFileSize = (UINTN) FvImage->CurrentFilePointer - (UINTN) FvImage->FileImage + (sizeof (EFI_FFS_FILE_HEADER) * 2);
1180
1181 //
1182 // Add whatever it takes to get to the next aligned address
1183 //
1184 while ((PadFileSize % DataAlignment) != 0) {
1185 PadFileSize++;
1186 }
1187 //
1188 // Subtract the next file header size
1189 //
1190 PadFileSize -= sizeof (EFI_FFS_FILE_HEADER);
1191
1192 //
1193 // Subtract the starting offset to get size
1194 //
1195 PadFileSize -= (UINTN) FvImage->CurrentFilePointer - (UINTN) FvImage->FileImage;
1196
1197 //
1198 // Write pad file size (calculated size minus next file header size)
1199 //
1200 PadFile->Size[0] = (UINT8) (PadFileSize & 0xFF);
1201 PadFile->Size[1] = (UINT8) ((PadFileSize >> 8) & 0xFF);
1202 PadFile->Size[2] = (UINT8) ((PadFileSize >> 16) & 0xFF);
1203
1204 //
1205 // Fill in checksums and state, they must be 0 for checksumming.
1206 //
1207 PadFile->IntegrityCheck.Checksum.Header = 0;
1208 PadFile->IntegrityCheck.Checksum.File = 0;
1209 PadFile->State = 0;
1210 PadFile->IntegrityCheck.Checksum.Header = CalculateChecksum8 ((UINT8 *) PadFile, sizeof (EFI_FFS_FILE_HEADER));
1211 if (PadFile->Attributes & FFS_ATTRIB_CHECKSUM) {
1212 PadFile->IntegrityCheck.Checksum.File = CalculateChecksum8 ((UINT8 *) PadFile, PadFileSize);
1213 } else {
1214 PadFile->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
1215 }
1216
1217 PadFile->State = EFI_FILE_HEADER_CONSTRUCTION | EFI_FILE_HEADER_VALID | EFI_FILE_DATA_VALID;
1218 UpdateFfsFileState (
1219 (EFI_FFS_FILE_HEADER *) PadFile,
1220 (EFI_FIRMWARE_VOLUME_HEADER *) FvImage->FileImage
1221 );
1222
1223 //
1224 // Verify that we have enough space (including the padding
1225 //
1226 if ((UINTN) (PadFile + sizeof (EFI_FFS_FILE_HEADER)) >= (UINTN) FvImage->Eof) {
1227 return EFI_OUT_OF_RESOURCES;
1228 }
1229 //
1230 // Update the current FV pointer
1231 //
1232 FvImage->CurrentFilePointer += PadFileSize;
1233
1234 return EFI_SUCCESS;
1235 }
1236
1237 BOOLEAN
1238 IsVtfFile (
1239 IN EFI_FFS_FILE_HEADER *FileBuffer
1240 )
1241 /*++
1242
1243 Routine Description:
1244
1245 This function checks the header to validate if it is a VTF file
1246
1247 Arguments:
1248
1249 FileBuffer Buffer in which content of a file has been read.
1250
1251 Returns:
1252
1253 TRUE If this is a VTF file
1254 FALSE If this is not a VTF file
1255
1256 --*/
1257 {
1258 EFI_GUID VtfGuid = EFI_FFS_VOLUME_TOP_FILE_GUID;
1259 if (!memcmp (&FileBuffer->Name, &VtfGuid, sizeof (EFI_GUID))) {
1260 return TRUE;
1261 } else {
1262 return FALSE;
1263 }
1264 }
1265
1266 EFI_STATUS
1267 FfsRebaseImageRead (
1268 IN VOID *FileHandle,
1269 IN UINTN FileOffset,
1270 IN OUT UINT32 *ReadSize,
1271 OUT VOID *Buffer
1272 )
1273 /*++
1274
1275 Routine Description:
1276
1277 Support routine for the PE/COFF Loader that reads a buffer from a PE/COFF file
1278
1279 Arguments:
1280
1281 FileHandle - The handle to the PE/COFF file
1282
1283 FileOffset - The offset, in bytes, into the file to read
1284
1285 ReadSize - The number of bytes to read from the file starting at FileOffset
1286
1287 Buffer - A pointer to the buffer to read the data into.
1288
1289 Returns:
1290
1291 EFI_SUCCESS - ReadSize bytes of data were read into Buffer from the PE/COFF file starting at FileOffset
1292
1293 --*/
1294 {
1295 CHAR8 *Destination8;
1296 CHAR8 *Source8;
1297 UINT32 Length;
1298
1299 Destination8 = Buffer;
1300 Source8 = (CHAR8 *) ((UINTN) FileHandle + FileOffset);
1301 Length = *ReadSize;
1302 while (Length--) {
1303 *(Destination8++) = *(Source8++);
1304 }
1305
1306 return EFI_SUCCESS;
1307 }
1308
1309
1310 EFI_STATUS
1311 AddSymFile (
1312 IN UINT64 BaseAddress,
1313 IN EFI_FFS_FILE_HEADER *FfsFile,
1314 IN OUT MEMORY_FILE *SymImage,
1315 IN CHAR8 *SourceFileName
1316 )
1317 /*++
1318
1319 Routine Description:
1320
1321 This function adds the SYM tokens in the source file to the destination file.
1322 The SYM tokens are updated to reflect the base address.
1323
1324 Arguments:
1325
1326 BaseAddress The base address for the new SYM tokens.
1327 FfsFile Pointer to the beginning of the FFS file in question.
1328 SymImage The memory file to update with symbol information.
1329 SourceFileName The source file.
1330
1331 Returns:
1332
1333 EFI_SUCCESS The function completed successfully.
1334 EFI_INVALID_PARAMETER One of the input parameters was invalid.
1335 EFI_ABORTED An error occurred.
1336
1337 --*/
1338 {
1339 FILE *SourceFile;
1340
1341 CHAR8 Buffer[_MAX_PATH];
1342 CHAR8 Type[_MAX_PATH];
1343 CHAR8 Address[_MAX_PATH];
1344 CHAR8 Section[_MAX_PATH];
1345 CHAR8 Token[_MAX_PATH];
1346 CHAR8 SymFileName[_MAX_PATH];
1347 CHAR8 CodeModuleName[_MAX_PATH];
1348 CHAR8 *Ptr;
1349
1350 UINT64 TokenAddress;
1351
1352 EFI_STATUS Status;
1353 EFI_FILE_SECTION_POINTER Pe32Section;
1354 UINT32 EntryPoint;
1355 UINT32 BaseOfCode;
1356 UINT16 MachineType;
1357
1358 //
1359 // Verify input parameters.
1360 //
1361 if (BaseAddress == 0 || FfsFile == NULL || SymImage == NULL || SourceFileName == NULL) {
1362 Error (NULL, 0, 0, "invalid parameter passed to AddSymFile()", NULL);
1363 return EFI_INVALID_PARAMETER;
1364 }
1365 //
1366 // Check if we want to add this file
1367 //
1368 //
1369 // Get the file name
1370 //
1371 strcpy (Buffer, SourceFileName);
1372
1373 //
1374 // Copy the file name for the path of the sym file and truncate the name portion.
1375 //
1376 strcpy (SymFileName, Buffer);
1377 Ptr = strrchr (SymFileName, '\\');
1378 assert (Ptr);
1379 Ptr[0] = 0;
1380
1381 //
1382 // Find the file extension and make it lower case
1383 //
1384 Ptr = strrchr (SymFileName, '.');
1385 if (Ptr != NULL) {
1386 strlwr (Ptr);
1387 }
1388 //
1389 // Check if it is PEI file
1390 //
1391 if (strstr (Buffer, ".pei") != NULL) {
1392 //
1393 // Find the human readable portion
1394 //
1395 if (!strtok (Buffer, "-") ||
1396 !strtok (NULL, "-") ||
1397 !strtok (NULL, "-") ||
1398 !strtok (NULL, "-") ||
1399 !strtok (NULL, "-") ||
1400 !strcpy (Buffer, strtok (NULL, "."))
1401 ) {
1402 Error (NULL, 0, 0, "failed to find human readable portion of the file name in AddSymFile()", NULL);
1403 return EFI_ABORTED;
1404 }
1405 //
1406 // Save code module name
1407 //
1408 strcpy (CodeModuleName, Buffer);
1409
1410 //
1411 // Add the symbol file name and extension to the file path.
1412 //
1413 strcat (Buffer, ".sym");
1414 strcat (SymFileName, "\\");
1415 strcat (SymFileName, Buffer);
1416 } else {
1417 //
1418 // Only handle PEIM files.
1419 //
1420 return EFI_SUCCESS;
1421 }
1422 //
1423 // Find PE32 section
1424 //
1425 Status = GetSectionByType (FfsFile, EFI_SECTION_PE32, 1, &Pe32Section);
1426
1427 //
1428 // BUGBUG: Assume if no PE32 section it is PIC and hardcode base address
1429 //
1430 if (Status == EFI_NOT_FOUND) {
1431 Status = GetSectionByType (FfsFile, EFI_SECTION_TE, 1, &Pe32Section);
1432 }
1433
1434 if (Status == EFI_SUCCESS) {
1435 Status = GetPe32Info (
1436 (VOID *) ((UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32)),
1437 &EntryPoint,
1438 &BaseOfCode,
1439 &MachineType
1440 );
1441 } else if (Status == EFI_NOT_FOUND) {
1442 //
1443 // For PIC, hardcode.
1444 //
1445 BaseOfCode = 0x60;
1446 Status = EFI_SUCCESS;
1447 } else {
1448 Error (NULL, 0, 0, "could not parse a PE32 section from the PEI file", NULL);
1449 return Status;
1450 }
1451
1452 if (EFI_ERROR (Status)) {
1453 Error (NULL, 0, 0, "GetPe32Info() could not get PE32 entry point for PEI file", NULL);
1454 return Status;
1455 }
1456
1457 //
1458 // Open the source file
1459 //
1460 SourceFile = fopen (SymFileName, "r");
1461 if (SourceFile == NULL) {
1462 //
1463 // SYM files are not required.
1464 //
1465 return EFI_SUCCESS;
1466 }
1467 //
1468 // Read the first line
1469 //
1470 if (fgets (Buffer, _MAX_PATH, SourceFile) == NULL) {
1471 Buffer[0] = 0;
1472 }
1473 //
1474 // Make sure it matches the expected sym format
1475 //
1476 if (strcmp (Buffer, "TEXTSYM format | V1.0\n")) {
1477 fclose (SourceFile);
1478 Error (NULL, 0, 0, "AddSymFile() found unexpected sym format in input file", NULL);
1479 return EFI_ABORTED;
1480 }
1481 //
1482 // Read in the file
1483 //
1484 while (feof (SourceFile) == 0) {
1485 //
1486 // Read a line
1487 //
1488 if (fscanf (
1489 SourceFile,
1490 "%s | %s | %s | %s\n",
1491 Type,
1492 Address,
1493 Section,
1494 Token
1495 ) == 4) {
1496 //
1497 // If the token starts with "??" ignore it
1498 //
1499 if (Token[0] == '?' && Token[1] == '?') {
1500 continue;
1501 }
1502 //
1503 // Get the token address
1504 //
1505 AsciiStringToUint64 (Address, TRUE, &TokenAddress);
1506
1507 //
1508 // Add the base address
1509 //
1510 TokenAddress += BaseAddress;
1511
1512 //
1513 // If PE32 or TE section then find the start of code. For PIC it is hardcoded.
1514 //
1515 if (Pe32Section.Pe32Section) {
1516 //
1517 // Add the offset of the PE32 section
1518 //
1519 TokenAddress += (UINTN) Pe32Section.Pe32Section - (UINTN) FfsFile;
1520
1521 //
1522 // Add the size of the PE32 section header
1523 //
1524 TokenAddress += sizeof (EFI_PE32_SECTION);
1525 } else {
1526 //
1527 // For PIC hardcoded.
1528 //
1529 TokenAddress += 0x28;
1530 }
1531
1532 //
1533 // Add the beginning of the code
1534 //
1535 TokenAddress += BaseOfCode;
1536
1537 sprintf (
1538 Buffer,
1539 "%s | %016I64X | %s | _%s%s\n",
1540 Type,
1541 TokenAddress,
1542 Section,
1543 CodeModuleName,
1544 Token
1545 );
1546 memcpy (SymImage->CurrentFilePointer, Buffer, strlen (Buffer) + 1);
1547 SymImage->CurrentFilePointer = (UINT8 *) (((UINTN) SymImage->CurrentFilePointer) + strlen (Buffer) + 1);
1548 }
1549 }
1550
1551 fclose (SourceFile);
1552 return EFI_SUCCESS;
1553 }
1554
1555 EFI_STATUS
1556 AddFile (
1557 IN OUT MEMORY_FILE *FvImage,
1558 IN FV_INFO *FvInfo,
1559 IN UINTN Index,
1560 IN OUT EFI_FFS_FILE_HEADER **VtfFileImage,
1561 IN OUT MEMORY_FILE *SymImage
1562 )
1563 /*++
1564
1565 Routine Description:
1566
1567 This function adds a file to the FV image. The file will pad to the
1568 appropriate alignment if required.
1569
1570 Arguments:
1571
1572 FvImage The memory image of the FV to add it to. The current offset
1573 must be valid.
1574 FvInfo Pointer to information about the FV.
1575 Index The file in the FvInfo file list to add.
1576 VtfFileImage A pointer to the VTF file within the FvImage. If this is equal
1577 to the end of the FvImage then no VTF previously found.
1578 SymImage The memory image of the Sym file to update if symbols are present.
1579 The current offset must be valid.
1580
1581 Returns:
1582
1583 EFI_SUCCESS The function completed successfully.
1584 EFI_INVALID_PARAMETER One of the input parameters was invalid.
1585 EFI_ABORTED An error occurred.
1586 EFI_OUT_OF_RESOURCES Insufficient resources exist to complete the add.
1587
1588 --*/
1589 {
1590 FILE *NewFile;
1591 UINTN FileSize;
1592 UINT8 *FileBuffer;
1593 UINTN NumBytesRead;
1594 UINT32 CurrentFileAlignment;
1595 EFI_STATUS Status;
1596 EFI_PHYSICAL_ADDRESS CurrentFileBaseAddress;
1597 UINT8 VtfHeaderChecksum;
1598 UINT8 VtfFileChecksum;
1599 UINT8 FileState;
1600 EFI_FFS_FILE_TAIL TailValue;
1601 UINT32 TailSize;
1602 //
1603 // Verify input parameters.
1604 //
1605 if (FvImage == NULL || FvInfo == NULL || FvInfo->FvFiles[Index][0] == 0 || VtfFileImage == NULL || SymImage == NULL) {
1606 return EFI_INVALID_PARAMETER;
1607 }
1608 //
1609 // Read the file to add
1610 //
1611 NewFile = fopen (FvInfo->FvFiles[Index], "rb");
1612
1613 if (NewFile == NULL) {
1614 Error (NULL, 0, 0, FvInfo->FvFiles[Index], "failed to open file for reading");
1615 return EFI_ABORTED;
1616 }
1617 //
1618 // Get the file size
1619 //
1620 FileSize = _filelength (fileno (NewFile));
1621
1622 //
1623 // Read the file into a buffer
1624 //
1625 FileBuffer = malloc (FileSize);
1626 if (FileBuffer == NULL) {
1627 Error (NULL, 0, 0, "memory allocation failure", NULL);
1628 return EFI_OUT_OF_RESOURCES;
1629 }
1630
1631 NumBytesRead = fread (FileBuffer, sizeof (UINT8), FileSize, NewFile);
1632
1633 //
1634 // Done with the file, from this point on we will just use the buffer read.
1635 //
1636 fclose (NewFile);
1637
1638 //
1639 // Verify read successful
1640 //
1641 if (NumBytesRead != sizeof (UINT8) * FileSize) {
1642 free (FileBuffer);
1643 Error (NULL, 0, 0, FvInfo->FvFiles[Index], "failed to read input file contents");
1644 return EFI_ABORTED;
1645 }
1646 //
1647 // Verify space exists to add the file
1648 //
1649 if (FileSize > (UINTN) ((UINTN) *VtfFileImage - (UINTN) FvImage->CurrentFilePointer)) {
1650 Error (NULL, 0, 0, FvInfo->FvFiles[Index], "insufficient space remains to add the file");
1651 return EFI_OUT_OF_RESOURCES;
1652 }
1653 //
1654 // Update the file state based on polarity of the FV.
1655 //
1656 UpdateFfsFileState (
1657 (EFI_FFS_FILE_HEADER *) FileBuffer,
1658 (EFI_FIRMWARE_VOLUME_HEADER *) FvImage->FileImage
1659 );
1660
1661 //
1662 // If we have a VTF file, add it at the top.
1663 //
1664 if (IsVtfFile ((EFI_FFS_FILE_HEADER *) FileBuffer)) {
1665 if ((UINTN) *VtfFileImage == (UINTN) FvImage->Eof) {
1666 //
1667 // No previous VTF, add this one.
1668 //
1669 *VtfFileImage = (EFI_FFS_FILE_HEADER *) (UINTN) ((UINTN) FvImage->FileImage + FvInfo->Size - FileSize);
1670 //
1671 // Sanity check. The file MUST align appropriately
1672 //
1673 if ((((UINTN) *VtfFileImage) & 0x07) != 0) {
1674 Error (NULL, 0, 0, "VTF file does not align on 8-byte boundary", NULL);
1675 }
1676 //
1677 // copy VTF File Header
1678 //
1679 memcpy (*VtfFileImage, FileBuffer, sizeof (EFI_FFS_FILE_HEADER));
1680
1681 //
1682 // Copy VTF body
1683 //
1684 memcpy (
1685 (UINT8 *) *VtfFileImage + sizeof (EFI_FFS_FILE_HEADER),
1686 FileBuffer + sizeof (EFI_FFS_FILE_HEADER),
1687 FileSize - sizeof (EFI_FFS_FILE_HEADER)
1688 );
1689
1690 //
1691 // re-calculate the VTF File Header
1692 //
1693 FileState = (*VtfFileImage)->State;
1694 (*VtfFileImage)->State = 0;
1695 *(UINT32 *) ((*VtfFileImage)->Size) = FileSize;
1696 (*VtfFileImage)->IntegrityCheck.Checksum.Header = 0;
1697 (*VtfFileImage)->IntegrityCheck.Checksum.File = 0;
1698
1699 VtfHeaderChecksum = CalculateChecksum8 ((UINT8 *) *VtfFileImage, sizeof (EFI_FFS_FILE_HEADER));
1700 (*VtfFileImage)->IntegrityCheck.Checksum.Header = VtfHeaderChecksum;
1701 //
1702 // Determine if it has a tail
1703 //
1704 if ((*VtfFileImage)->Attributes & FFS_ATTRIB_TAIL_PRESENT) {
1705 TailSize = sizeof (EFI_FFS_FILE_TAIL);
1706 } else {
1707 TailSize = 0;
1708 }
1709
1710 if ((*VtfFileImage)->Attributes & FFS_ATTRIB_CHECKSUM) {
1711 VtfFileChecksum = CalculateChecksum8 ((UINT8 *) *VtfFileImage, FileSize - TailSize);
1712 (*VtfFileImage)->IntegrityCheck.Checksum.File = VtfFileChecksum;
1713 } else {
1714 (*VtfFileImage)->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
1715 }
1716 //
1717 // If it has a file tail, update it
1718 //
1719 if ((*VtfFileImage)->Attributes & FFS_ATTRIB_TAIL_PRESENT) {
1720 TailValue = (EFI_FFS_FILE_TAIL) (~((*VtfFileImage)->IntegrityCheck.TailReference));
1721 *(EFI_FFS_FILE_TAIL *) (((UINTN) (*VtfFileImage) + GetLength ((*VtfFileImage)->Size) - sizeof (EFI_FFS_FILE_TAIL))) = TailValue;
1722 }
1723 (*VtfFileImage)->State = FileState;
1724 free (FileBuffer);
1725 return EFI_SUCCESS;
1726 } else {
1727 //
1728 // Already found a VTF file.
1729 //
1730 Error (NULL, 0, 0, "multiple VTF files are illegal in a single FV", NULL);
1731 free (FileBuffer);
1732 return EFI_ABORTED;
1733 }
1734 }
1735 //
1736 // Check if alignment is required
1737 //
1738 Status = ReadFfsAlignment ((EFI_FFS_FILE_HEADER *) FileBuffer, &CurrentFileAlignment);
1739 if (EFI_ERROR (Status)) {
1740 printf ("ERROR: Could not determine alignment of file %s.\n", FvInfo->FvFiles[Index]);
1741 free (FileBuffer);
1742 return EFI_ABORTED;
1743 }
1744
1745 //
1746 // Find the largest alignment of all the FFS files in the FV
1747 //
1748 if (CurrentFileAlignment > MaxFfsAlignment) {
1749 MaxFfsAlignment = CurrentFileAlignment;
1750 }
1751 //
1752 // Add pad file if necessary
1753 //
1754 Status = AddPadFile (FvImage, CurrentFileAlignment);
1755 if (EFI_ERROR (Status)) {
1756 printf ("ERROR: Could not align the file data properly.\n");
1757 free (FileBuffer);
1758 return EFI_ABORTED;
1759 }
1760 //
1761 // Add file
1762 //
1763 if ((FvImage->CurrentFilePointer + FileSize) < FvImage->Eof) {
1764 //
1765 // Copy the file
1766 //
1767 memcpy (FvImage->CurrentFilePointer, FileBuffer, FileSize);
1768
1769 //
1770 // If the file is XIP, rebase
1771 //
1772 CurrentFileBaseAddress = FvInfo->BaseAddress + ((UINTN) FvImage->CurrentFilePointer - (UINTN) FvImage->FileImage);
1773 //
1774 // Status = RebaseFfsFile ((EFI_FFS_FILE_HEADER*) FvImage->CurrentFilePointer, CurrentFileBaseAddress);
1775 // if (EFI_ERROR(Status)) {
1776 // printf ("ERROR: Could not rebase the file %s.\n", FvInfo->FvFiles[Index]);
1777 // return EFI_ABORTED;
1778 // }
1779 //
1780 // Update Symbol file
1781 //
1782 Status = AddSymFile (
1783 CurrentFileBaseAddress,
1784 (EFI_FFS_FILE_HEADER *) FvImage->CurrentFilePointer,
1785 SymImage,
1786 FvInfo->FvFiles[Index]
1787 );
1788 assert (!EFI_ERROR (Status));
1789
1790 //
1791 // Update the current pointer in the FV image
1792 //
1793 FvImage->CurrentFilePointer += FileSize;
1794 } else {
1795 printf ("ERROR: The firmware volume is out of space, could not add file %s.\n", FvInfo->FvFiles[Index]);
1796 return EFI_ABORTED;
1797 }
1798 //
1799 // Make next file start at QWord Boundry
1800 //
1801 while (((UINTN) FvImage->CurrentFilePointer & 0x07) != 0) {
1802 FvImage->CurrentFilePointer++;
1803 }
1804 //
1805 // Free allocated memory.
1806 //
1807 free (FileBuffer);
1808
1809 return EFI_SUCCESS;
1810 }
1811
1812 EFI_STATUS
1813 AddVariableBlock (
1814 IN UINT8 *FvImage,
1815 IN UINTN Size,
1816 IN FV_INFO *FvInfo
1817 )
1818 {
1819 EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
1820 VARIABLE_STORE_HEADER *VarStoreHeader;
1821 //
1822 // Variable block should exclude FvHeader. Since the length of
1823 // FvHeader depends on the block map, which is variable length,
1824 // we could only decide the actual variable block length here.
1825 //
1826 FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) FvImage;
1827 FvImage = FvImage + FvHeader->HeaderLength;
1828
1829 VarStoreHeader = (VARIABLE_STORE_HEADER *) FvImage;
1830
1831 VarStoreHeader->Signature = VARIABLE_STORE_SIGNATURE;
1832 VarStoreHeader->Size = Size - FvHeader->HeaderLength;
1833 VarStoreHeader->Format = VARIABLE_STORE_FORMATTED;
1834 VarStoreHeader->State = VARIABLE_STORE_HEALTHY;
1835 VarStoreHeader->Reserved = 0;
1836 VarStoreHeader->Reserved1 = 0;
1837
1838 return EFI_SUCCESS;
1839 }
1840
1841 EFI_STATUS
1842 AddEventLogBlock (
1843 IN UINT8 *FvImage,
1844 IN UINTN Size,
1845 IN FV_INFO *FvInfo
1846 )
1847 {
1848 return EFI_SUCCESS;
1849 }
1850
1851 EFI_STATUS
1852 AddFTWWorkingBlock (
1853 IN UINT8 *FvImage,
1854 IN UINTN Size,
1855 IN FV_INFO *FvInfo
1856 )
1857 {
1858 EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER *FTWHeader;
1859 UINT32 Crc32;
1860
1861 Crc32 = 0;
1862 FTWHeader = (EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER *) FvImage;
1863 memcpy (&FTWHeader->Signature, &(FvInfo->FvGuid), sizeof (EFI_GUID));
1864 FTWHeader->WriteQueueSize = Size - sizeof (EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER);
1865 CalculateCrc32 (FvImage, sizeof (EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER), &Crc32);
1866 FTWHeader->Crc = Crc32;
1867 if (FvInfo->FvAttributes & EFI_FVB_ERASE_POLARITY) {
1868 FTWHeader->WorkingBlockValid = 0;
1869 FTWHeader->WorkingBlockInvalid = 1;
1870 } else {
1871 FTWHeader->WorkingBlockValid = 1;
1872 FTWHeader->WorkingBlockInvalid = 0;
1873 }
1874
1875 return EFI_SUCCESS;
1876 }
1877
1878 EFI_STATUS
1879 AddFTWSpareBlock (
1880 IN UINT8 *FvImage,
1881 IN UINTN Size,
1882 IN FV_INFO *FvInfo
1883 )
1884 {
1885 return EFI_SUCCESS;
1886 }
1887
1888 EFI_STATUS
1889 GenNonFFSFv (
1890 IN UINT8 *FvImage,
1891 IN FV_INFO *FvInfo
1892 )
1893 /*++
1894
1895 Routine Description:
1896
1897 This function generate the non FFS FV image, such as the working block
1898 and spare block. How each component of the FV is built is component
1899 specific.
1900
1901 Arguments:
1902
1903 FvImage The memory image of the FV to add it to. The current offset
1904 must be valid.
1905 FvInfo Pointer to information about the FV.
1906
1907 Returns:
1908
1909 EFI_SUCCESS The function completed successfully.
1910 EFI_INVALID_PARAMETER One of the input parameters was invalid.
1911 EFI_ABORTED An error occurred.
1912 EFI_OUT_OF_RESOURCES Insufficient resources exist to complete the add.
1913
1914 --*/
1915 {
1916 UINTN Index;
1917 EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
1918 UINT64 TotalSize;
1919
1920 FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) FvImage;
1921 TotalSize = 0;
1922
1923 for (Index = 0; FvInfo->FvComponents[Index].Size != 0; Index++) {
1924 if (stricmp (FvInfo->FvComponents[Index].ComponentName, EFI_NV_VARIABLE_STRING) == 0) {
1925 AddVariableBlock (FvImage, FvInfo->FvComponents[Index].Size, FvInfo);
1926 } else if (stricmp (FvInfo->FvComponents[Index].ComponentName, EFI_NV_EVENT_LOG_STRING) == 0) {
1927 AddEventLogBlock (FvImage, FvInfo->FvComponents[Index].Size, FvInfo);
1928 } else if (stricmp (FvInfo->FvComponents[Index].ComponentName, EFI_NV_FTW_WORKING_STRING) == 0) {
1929 AddFTWWorkingBlock (FvImage, FvInfo->FvComponents[Index].Size, FvInfo);
1930 } else if (stricmp (FvInfo->FvComponents[Index].ComponentName, EFI_NV_FTW_SPARE_STRING) == 0) {
1931 AddFTWSpareBlock (FvImage, FvInfo->FvComponents[Index].Size, FvInfo);
1932 } else {
1933 printf ("Error. Unknown Non-FFS block %s \n", FvInfo->FvComponents[Index].ComponentName);
1934 return EFI_ABORTED;
1935 }
1936
1937 FvImage = FvImage + FvInfo->FvComponents[Index].Size;
1938 TotalSize = TotalSize + FvInfo->FvComponents[Index].Size;
1939 }
1940 //
1941 // Index and TotalSize is zero mean there's no component, so this is an empty fv
1942 //
1943 if ((Index != 0 || TotalSize != 0) && TotalSize != FvInfo->Size) {
1944 printf ("Error. Component size does not sum up to FV size.\n");
1945 return EFI_ABORTED;
1946 }
1947
1948 return EFI_SUCCESS;
1949 }
1950
1951 EFI_STATUS
1952 PadFvImage (
1953 IN MEMORY_FILE *FvImage,
1954 IN EFI_FFS_FILE_HEADER *VtfFileImage
1955 )
1956 /*++
1957
1958 Routine Description:
1959
1960 This function places a pad file between the last file in the FV and the VTF
1961 file if the VTF file exists.
1962
1963 Arguments:
1964
1965 FvImage Memory file for the FV memory image
1966 VtfFileImage The address of the VTF file. If this is the end of the FV
1967 image, no VTF exists and no pad file is needed.
1968
1969 Returns:
1970
1971 EFI_SUCCESS Completed successfully.
1972 EFI_INVALID_PARAMETER One of the input parameters was NULL.
1973
1974 --*/
1975 {
1976 EFI_FFS_FILE_HEADER *PadFile;
1977 UINTN FileSize;
1978
1979 //
1980 // If there is no VTF or the VTF naturally follows the previous file without a
1981 // pad file, then there's nothing to do
1982 //
1983 if ((UINTN) VtfFileImage == (UINTN) FvImage->Eof || (void *) FvImage->CurrentFilePointer == (void *) VtfFileImage) {
1984 return EFI_SUCCESS;
1985 }
1986 //
1987 // Pad file starts at beginning of free space
1988 //
1989 PadFile = (EFI_FFS_FILE_HEADER *) FvImage->CurrentFilePointer;
1990
1991 //
1992 // write header
1993 //
1994 memset (PadFile, 0, sizeof (EFI_FFS_FILE_HEADER));
1995 memcpy (&PadFile->Name, &DefaultFvPadFileNameGuid, sizeof (EFI_GUID));
1996 PadFile->Type = EFI_FV_FILETYPE_FFS_PAD;
1997 PadFile->Attributes = 0;
1998
1999 //
2000 // FileSize includes the EFI_FFS_FILE_HEADER
2001 //
2002 FileSize = (UINTN) VtfFileImage - (UINTN) FvImage->CurrentFilePointer;
2003 PadFile->Size[0] = (UINT8) (FileSize & 0x000000FF);
2004 PadFile->Size[1] = (UINT8) ((FileSize & 0x0000FF00) >> 8);
2005 PadFile->Size[2] = (UINT8) ((FileSize & 0x00FF0000) >> 16);
2006
2007 //
2008 // Fill in checksums and state, must be zero during checksum calculation.
2009 //
2010 PadFile->IntegrityCheck.Checksum.Header = 0;
2011 PadFile->IntegrityCheck.Checksum.File = 0;
2012 PadFile->State = 0;
2013 PadFile->IntegrityCheck.Checksum.Header = CalculateChecksum8 ((UINT8 *) PadFile, sizeof (EFI_FFS_FILE_HEADER));
2014 if (PadFile->Attributes & FFS_ATTRIB_CHECKSUM) {
2015 PadFile->IntegrityCheck.Checksum.File = CalculateChecksum8 ((UINT8 *) PadFile, FileSize);
2016 } else {
2017 PadFile->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
2018 }
2019
2020 PadFile->State = EFI_FILE_HEADER_CONSTRUCTION | EFI_FILE_HEADER_VALID | EFI_FILE_DATA_VALID;
2021
2022 UpdateFfsFileState (
2023 (EFI_FFS_FILE_HEADER *) PadFile,
2024 (EFI_FIRMWARE_VOLUME_HEADER *) FvImage->FileImage
2025 );
2026 //
2027 // Update the current FV pointer
2028 //
2029 FvImage->CurrentFilePointer = FvImage->Eof;
2030
2031 return EFI_SUCCESS;
2032 }
2033
2034 EFI_STATUS
2035 UpdateResetVector (
2036 IN MEMORY_FILE *FvImage,
2037 IN FV_INFO *FvInfo,
2038 IN EFI_FFS_FILE_HEADER *VtfFile
2039 )
2040 /*++
2041
2042 Routine Description:
2043
2044 This parses the FV looking for the PEI core and then plugs the address into
2045 the SALE_ENTRY point of the BSF/VTF for IPF and does BUGBUG TBD action to
2046 complete an IA32 Bootstrap FV.
2047
2048 Arguments:
2049
2050 FvImage Memory file for the FV memory image
2051 FvInfo Information read from INF file.
2052 VtfFile Pointer to the VTF file in the FV image.
2053
2054 Returns:
2055
2056 EFI_SUCCESS Function Completed successfully.
2057 EFI_ABORTED Error encountered.
2058 EFI_INVALID_PARAMETER A required parameter was NULL.
2059 EFI_NOT_FOUND PEI Core file not found.
2060
2061 --*/
2062 {
2063 EFI_FFS_FILE_HEADER *PeiCoreFile;
2064 EFI_FFS_FILE_HEADER *SecCoreFile;
2065 EFI_STATUS Status;
2066 EFI_FILE_SECTION_POINTER Pe32Section;
2067 UINT32 EntryPoint;
2068 UINT32 BaseOfCode;
2069 UINT16 MachineType;
2070 EFI_PHYSICAL_ADDRESS PeiCorePhysicalAddress;
2071 EFI_PHYSICAL_ADDRESS SecCorePhysicalAddress;
2072 EFI_PHYSICAL_ADDRESS *SecCoreEntryAddressPtr;
2073 UINT32 *Ia32ResetAddressPtr;
2074 UINT8 *BytePointer;
2075 UINT8 *BytePointer2;
2076 UINT16 *WordPointer;
2077 UINT16 CheckSum;
2078 UINTN Index;
2079 EFI_FFS_FILE_STATE SavedState;
2080 EFI_FFS_FILE_TAIL TailValue;
2081 UINT32 TailSize;
2082 UINT64 FitAddress;
2083 FIT_TABLE *FitTablePtr;
2084
2085 //
2086 // Verify input parameters
2087 //
2088 if (FvImage == NULL || FvInfo == NULL || VtfFile == NULL) {
2089 return EFI_INVALID_PARAMETER;
2090 }
2091 //
2092 // Initialize FV library
2093 //
2094 InitializeFvLib (FvImage->FileImage, (UINTN) FvImage->Eof - (UINTN) FvImage->FileImage);
2095
2096 //
2097 // Verify VTF file
2098 //
2099 Status = VerifyFfsFile (VtfFile);
2100 if (EFI_ERROR (Status)) {
2101 return EFI_INVALID_PARAMETER;
2102 }
2103 //
2104 // Find the PEI Core
2105 //
2106 Status = GetFileByType (EFI_FV_FILETYPE_PEI_CORE, 1, &PeiCoreFile);
2107 if (EFI_ERROR (Status) || PeiCoreFile == NULL) {
2108 Error (NULL, 0, 0, "could not find the PEI core in the FV", NULL);
2109 return EFI_ABORTED;
2110 }
2111
2112 //
2113 // PEI Core found, now find PE32 or TE section
2114 //
2115 Status = GetSectionByType (PeiCoreFile, EFI_SECTION_PE32, 1, &Pe32Section);
2116 if (Status == EFI_NOT_FOUND) {
2117 Status = GetSectionByType (PeiCoreFile, EFI_SECTION_TE, 1, &Pe32Section);
2118 }
2119
2120 if (EFI_ERROR (Status)) {
2121 Error (NULL, 0, 0, "could not find PE32 or TE section in PEI core file", NULL);
2122 return EFI_ABORTED;
2123 }
2124
2125 Status = GetPe32Info (
2126 (VOID *) ((UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32)),
2127 &EntryPoint,
2128 &BaseOfCode,
2129 &MachineType
2130 );
2131
2132 if (EFI_ERROR (Status)) {
2133 Error (NULL, 0, 0, "could not get PE32 entry point for PEI core", NULL);
2134 return EFI_ABORTED;
2135 }
2136 //
2137 // Physical address is FV base + offset of PE32 + offset of the entry point
2138 //
2139 PeiCorePhysicalAddress = FvInfo->BaseAddress;
2140 PeiCorePhysicalAddress += (UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32) - (UINTN) FvImage->FileImage;
2141 PeiCorePhysicalAddress += EntryPoint;
2142
2143 if (MachineType == EFI_IMAGE_MACHINE_IA64) {
2144 //
2145 // Update PEI_CORE address
2146 //
2147 //
2148 // Set the uncached attribute bit in the physical address
2149 //
2150 PeiCorePhysicalAddress |= 0x8000000000000000ULL;
2151
2152 //
2153 // Check if address is aligned on a 16 byte boundary
2154 //
2155 if (PeiCorePhysicalAddress & 0xF) {
2156 printf (
2157 "ERROR: PEI_CORE entry point is not aligned on a 16 byte boundary, address specified is %Xh.\n",
2158 PeiCorePhysicalAddress
2159 );
2160 return EFI_ABORTED;
2161 }
2162 //
2163 // First Get the FIT table address
2164 //
2165 FitAddress = (*(UINT64 *) (FvImage->Eof - IPF_FIT_ADDRESS_OFFSET)) & 0xFFFFFFFF;
2166
2167 FitTablePtr = (FIT_TABLE *) (FvImage->FileImage + (FitAddress - FvInfo->BaseAddress));
2168
2169 Status = UpdatePeiCoreEntryInFit (FitTablePtr, PeiCorePhysicalAddress);
2170
2171 if (!EFI_ERROR (Status)) {
2172 UpdateFitCheckSum (FitTablePtr);
2173 }
2174 //
2175 // Find the Sec Core
2176 //
2177 Status = GetFileByType (EFI_FV_FILETYPE_SECURITY_CORE, 1, &SecCoreFile);
2178 if (EFI_ERROR (Status) || SecCoreFile == NULL) {
2179 Error (NULL, 0, 0, "could not find the Sec core in the FV", NULL);
2180 return EFI_ABORTED;
2181 }
2182 //
2183 // Sec Core found, now find PE32 section
2184 //
2185 Status = GetSectionByType (SecCoreFile, EFI_SECTION_PE32, 1, &Pe32Section);
2186 if (EFI_ERROR (Status)) {
2187 Error (NULL, 0, 0, "could not find PE32 section in SEC core file", NULL);
2188 return EFI_ABORTED;
2189 }
2190
2191 Status = GetPe32Info (
2192 (VOID *) ((UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32)),
2193 &EntryPoint,
2194 &BaseOfCode,
2195 &MachineType
2196 );
2197 if (EFI_ERROR (Status)) {
2198 Error (NULL, 0, 0, "could not get PE32 entry point for SEC core", NULL);
2199 return EFI_ABORTED;
2200 }
2201 //
2202 // Physical address is FV base + offset of PE32 + offset of the entry point
2203 //
2204 SecCorePhysicalAddress = FvInfo->BaseAddress;
2205 SecCorePhysicalAddress += (UINTN) Pe32Section.Pe32Section + sizeof (EFI_SECTION_PE32) - (UINTN) FvImage->FileImage;
2206 SecCorePhysicalAddress += EntryPoint;
2207
2208 //
2209 // Update SEC_CORE address
2210 //
2211 //
2212 // Set the uncached attribute bit in the physical address
2213 //
2214 SecCorePhysicalAddress |= 0x8000000000000000ULL;
2215
2216 //
2217 // Update the address
2218 //
2219 SecCoreEntryAddressPtr = (EFI_PHYSICAL_ADDRESS *) ((UINTN) FvImage->Eof - IPF_SALE_ENTRY_ADDRESS_OFFSET);
2220 *SecCoreEntryAddressPtr = SecCorePhysicalAddress;
2221
2222 //
2223 // Check if address is aligned on a 16 byte boundary
2224 //
2225 if (SecCorePhysicalAddress & 0xF) {
2226 printf (
2227 "ERROR: SALE_ENTRY entry point is not aligned on a 16 byte boundary, address specified is %Xh.\n",
2228 SecCorePhysicalAddress
2229 );
2230 return EFI_ABORTED;
2231 }
2232 } else if (MachineType == EFI_IMAGE_MACHINE_IA32) {
2233 //
2234 // Get the location to update
2235 //
2236 Ia32ResetAddressPtr = (UINT32 *) ((UINTN) FvImage->Eof - IA32_PEI_CORE_ENTRY_OFFSET);
2237
2238 //
2239 // Write lower 32 bits of physical address
2240 //
2241 *Ia32ResetAddressPtr = (UINT32) PeiCorePhysicalAddress;
2242
2243 //
2244 // Update the BFV base address
2245 //
2246 Ia32ResetAddressPtr = (UINT32 *) ((UINTN) FvImage->Eof - 4);
2247 *Ia32ResetAddressPtr = (UINT32) (FvInfo->BaseAddress);
2248
2249 CheckSum = 0x0000;
2250
2251 //
2252 // Update the Startup AP in the FVH header block ZeroVector region.
2253 //
2254 BytePointer = (UINT8 *) ((UINTN) FvImage->FileImage);
2255 BytePointer2 = (FvInfo->Size == 0x10000) ? m64kRecoveryStartupApDataArray : m128kRecoveryStartupApDataArray;
2256 for (Index = 0; Index < SIZEOF_STARTUP_DATA_ARRAY; Index++) {
2257 *BytePointer++ = *BytePointer2++;
2258 }
2259 //
2260 // Calculate the checksum
2261 //
2262 WordPointer = (UINT16 *) ((UINTN) FvImage->FileImage);
2263 for (Index = 0; Index < SIZEOF_STARTUP_DATA_ARRAY / 2; Index++) {
2264 CheckSum = (UINT16) (CheckSum + ((UINT16) *WordPointer));
2265 WordPointer++;
2266 }
2267 //
2268 // Update the checksum field
2269 //
2270 BytePointer = (UINT8 *) ((UINTN) FvImage->FileImage);
2271 BytePointer += (SIZEOF_STARTUP_DATA_ARRAY - 2);
2272 WordPointer = (UINT16 *) BytePointer;
2273 *WordPointer = (UINT16) (0x10000 - (UINT32) CheckSum);
2274 } else {
2275 Error (NULL, 0, 0, "invalid machine type in PEI core", "machine type=0x%X", (UINT32) MachineType);
2276 return EFI_ABORTED;
2277 }
2278 //
2279 // Determine if it has an FFS file tail.
2280 //
2281 if (VtfFile->Attributes & FFS_ATTRIB_TAIL_PRESENT) {
2282 TailSize = sizeof (EFI_FFS_FILE_TAIL);
2283 } else {
2284 TailSize = 0;
2285 }
2286 //
2287 // Now update file checksum
2288 //
2289 SavedState = VtfFile->State;
2290 VtfFile->IntegrityCheck.Checksum.File = 0;
2291 VtfFile->State = 0;
2292 if (VtfFile->Attributes & FFS_ATTRIB_CHECKSUM) {
2293 VtfFile->IntegrityCheck.Checksum.File = CalculateChecksum8 (
2294 (UINT8 *) VtfFile,
2295 GetLength (VtfFile->Size) - TailSize
2296 );
2297 } else {
2298 VtfFile->IntegrityCheck.Checksum.File = FFS_FIXED_CHECKSUM;
2299 }
2300
2301 VtfFile->State = SavedState;
2302
2303 //
2304 // Update tail if present
2305 //
2306 if (VtfFile->Attributes & FFS_ATTRIB_TAIL_PRESENT) {
2307 TailValue = (EFI_FFS_FILE_TAIL) (~(VtfFile->IntegrityCheck.TailReference));
2308 *(EFI_FFS_FILE_TAIL *) (((UINTN) (VtfFile) + GetLength (VtfFile->Size) - sizeof (EFI_FFS_FILE_TAIL))) = TailValue;
2309 }
2310
2311 return EFI_SUCCESS;
2312 }
2313
2314 EFI_STATUS
2315 GetPe32Info (
2316 IN UINT8 *Pe32,
2317 OUT UINT32 *EntryPoint,
2318 OUT UINT32 *BaseOfCode,
2319 OUT UINT16 *MachineType
2320 )
2321 /*++
2322
2323 Routine Description:
2324
2325 Retrieves the PE32 entry point offset and machine type from PE image or TeImage.
2326 See EfiImage.h for machine types. The entry point offset is from the beginning
2327 of the PE32 buffer passed in.
2328
2329 Arguments:
2330
2331 Pe32 Beginning of the PE32.
2332 EntryPoint Offset from the beginning of the PE32 to the image entry point.
2333 BaseOfCode Base address of code.
2334 MachineType Magic number for the machine type.
2335
2336 Returns:
2337
2338 EFI_SUCCESS Function completed successfully.
2339 EFI_ABORTED Error encountered.
2340 EFI_INVALID_PARAMETER A required parameter was NULL.
2341 EFI_UNSUPPORTED The operation is unsupported.
2342
2343 --*/
2344 {
2345 EFI_IMAGE_DOS_HEADER *DosHeader;
2346 EFI_IMAGE_NT_HEADERS *NtHeader;
2347 EFI_TE_IMAGE_HEADER *TeHeader;
2348
2349 //
2350 // Verify input parameters
2351 //
2352 if (Pe32 == NULL) {
2353 return EFI_INVALID_PARAMETER;
2354 }
2355
2356 //
2357 // First check whether it is one TE Image.
2358 //
2359 TeHeader = (EFI_TE_IMAGE_HEADER *) Pe32;
2360 if (TeHeader->Signature == EFI_TE_IMAGE_HEADER_SIGNATURE) {
2361 //
2362 // By TeImage Header to get output
2363 //
2364 *EntryPoint = TeHeader->AddressOfEntryPoint + sizeof (EFI_TE_IMAGE_HEADER) - TeHeader->StrippedSize;
2365 *BaseOfCode = TeHeader->BaseOfCode + sizeof (EFI_TE_IMAGE_HEADER) - TeHeader->StrippedSize;
2366 *MachineType = TeHeader->Machine;
2367 } else {
2368
2369 //
2370 // Then check whether
2371 // First is the DOS header
2372 //
2373 DosHeader = (EFI_IMAGE_DOS_HEADER *) Pe32;
2374
2375 //
2376 // Verify DOS header is expected
2377 //
2378 if (DosHeader->e_magic != EFI_IMAGE_DOS_SIGNATURE) {
2379 printf ("ERROR: Unknown magic number in the DOS header, 0x%04X.\n", DosHeader->e_magic);
2380 return EFI_UNSUPPORTED;
2381 }
2382 //
2383 // Immediately following is the NT header.
2384 //
2385 NtHeader = (EFI_IMAGE_NT_HEADERS *) ((UINTN) Pe32 + DosHeader->e_lfanew);
2386
2387 //
2388 // Verify NT header is expected
2389 //
2390 if (NtHeader->Signature != EFI_IMAGE_NT_SIGNATURE) {
2391 printf ("ERROR: Unrecognized image signature 0x%08X.\n", NtHeader->Signature);
2392 return EFI_UNSUPPORTED;
2393 }
2394 //
2395 // Get output
2396 //
2397 *EntryPoint = NtHeader->OptionalHeader.AddressOfEntryPoint;
2398 *BaseOfCode = NtHeader->OptionalHeader.BaseOfCode;
2399 *MachineType = NtHeader->FileHeader.Machine;
2400 }
2401
2402 //
2403 // Verify machine type is supported
2404 //
2405 if (*MachineType != EFI_IMAGE_MACHINE_IA32 && *MachineType != EFI_IMAGE_MACHINE_IA64 && *MachineType != EFI_IMAGE_MACHINE_X64 && *MachineType != EFI_IMAGE_MACHINE_EBC) {
2406 printf ("ERROR: Unrecognized machine type in the PE32 file.\n");
2407 return EFI_UNSUPPORTED;
2408 }
2409
2410 return EFI_SUCCESS;
2411 }
2412 //
2413 // Exposed function implementations (prototypes are defined in GenFvImageLib.h)
2414 //
2415 EFI_STATUS
2416 GenerateFvImage (
2417 IN CHAR8 *InfFileImage,
2418 IN UINTN InfFileSize,
2419 OUT UINT8 **FvImage,
2420 OUT UINTN *FvImageSize,
2421 OUT CHAR8 **FvFileName,
2422 OUT UINT8 **SymImage,
2423 OUT UINTN *SymImageSize,
2424 OUT CHAR8 **SymFileName
2425 )
2426 /*++
2427
2428 Routine Description:
2429
2430 This is the main function which will be called from application.
2431
2432 Arguments:
2433
2434 InfFileImage Buffer containing the INF file contents.
2435 InfFileSize Size of the contents of the InfFileImage buffer.
2436 FvImage Pointer to the FV image created.
2437 FvImageSize Size of the FV image created and pointed to by FvImage.
2438 FvFileName Requested name for the FV file.
2439 SymImage Pointer to the Sym image created.
2440 SymImageSize Size of the Sym image created and pointed to by SymImage.
2441 SymFileName Requested name for the Sym file.
2442
2443 Returns:
2444
2445 EFI_SUCCESS Function completed successfully.
2446 EFI_OUT_OF_RESOURCES Could not allocate required resources.
2447 EFI_ABORTED Error encountered.
2448 EFI_INVALID_PARAMETER A required parameter was NULL.
2449
2450 --*/
2451 {
2452 EFI_STATUS Status;
2453 MEMORY_FILE InfMemoryFile;
2454 MEMORY_FILE FvImageMemoryFile;
2455 MEMORY_FILE SymImageMemoryFile;
2456 FV_INFO FvInfo;
2457 UINTN Index;
2458 EFI_FIRMWARE_VOLUME_HEADER *FvHeader;
2459 EFI_FFS_FILE_HEADER *VtfFileImage;
2460
2461 //
2462 // Check for invalid parameter
2463 //
2464 if (InfFileImage == NULL || FvImage == NULL || FvImageSize == NULL || FvFileName == NULL) {
2465 return EFI_INVALID_PARAMETER;
2466 }
2467 //
2468 // Initialize file structures
2469 //
2470 InfMemoryFile.FileImage = InfFileImage;
2471 InfMemoryFile.CurrentFilePointer = InfFileImage;
2472 InfMemoryFile.Eof = InfFileImage + InfFileSize;
2473
2474 //
2475 // Parse the FV inf file for header information
2476 //
2477 Status = ParseFvInf (&InfMemoryFile, &FvInfo);
2478 if (EFI_ERROR (Status)) {
2479 printf ("ERROR: Could not parse the input INF file.\n");
2480 return EFI_ABORTED;
2481 }
2482 //
2483 // Update the file name return values
2484 //
2485 strcpy (*FvFileName, FvInfo.FvName);
2486 strcpy (*SymFileName, FvInfo.SymName);
2487
2488 //
2489 // Calculate the FV size
2490 //
2491 *FvImageSize = FvInfo.Size;
2492
2493 //
2494 // Allocate the FV
2495 //
2496 *FvImage = malloc (*FvImageSize);
2497 if (*FvImage == NULL) {
2498 return EFI_OUT_OF_RESOURCES;
2499 }
2500 //
2501 // Allocate space for symbol file storage
2502 //
2503 *SymImage = malloc (SYMBOL_FILE_SIZE);
2504 if (*SymImage == NULL) {
2505 return EFI_OUT_OF_RESOURCES;
2506 }
2507 //
2508 // Initialize the FV to the erase polarity
2509 //
2510 if (FvInfo.FvAttributes & EFI_FVB_ERASE_POLARITY) {
2511 memset (*FvImage, -1, *FvImageSize);
2512 } else {
2513 memset (*FvImage, 0, *FvImageSize);
2514 }
2515 //
2516 // Initialize FV header
2517 //
2518 FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) *FvImage;
2519
2520 //
2521 // Initialize the zero vector to all zeros.
2522 //
2523 memset (FvHeader->ZeroVector, 0, 16);
2524
2525 //
2526 // Copy the FFS GUID
2527 //
2528 memcpy (&FvHeader->FileSystemGuid, &FvInfo.FvGuid, sizeof (EFI_GUID));
2529
2530 FvHeader->FvLength = *FvImageSize;
2531 FvHeader->Signature = EFI_FVH_SIGNATURE;
2532 FvHeader->Attributes = FvInfo.FvAttributes;
2533 FvHeader->Revision = EFI_FVH_REVISION;
2534 FvHeader->Reserved[0] = 0;
2535 FvHeader->Reserved[1] = 0;
2536 FvHeader->Reserved[2] = 0;
2537
2538 //
2539 // Copy firmware block map
2540 //
2541 for (Index = 0; FvInfo.FvBlocks[Index].NumBlocks != 0; Index++) {
2542 FvHeader->FvBlockMap[Index].NumBlocks = FvInfo.FvBlocks[Index].NumBlocks;
2543 FvHeader->FvBlockMap[Index].BlockLength = FvInfo.FvBlocks[Index].BlockLength;
2544 }
2545 //
2546 // Add block map terminator
2547 //
2548 FvHeader->FvBlockMap[Index].NumBlocks = 0;
2549 FvHeader->FvBlockMap[Index].BlockLength = 0;
2550
2551 //
2552 // Complete the header
2553 //
2554 FvHeader->HeaderLength = (UINT16) (((UINTN) &(FvHeader->FvBlockMap[Index + 1])) - (UINTN) *FvImage);
2555 FvHeader->Checksum = 0;
2556 FvHeader->Checksum = CalculateChecksum16 ((UINT16 *) FvHeader, FvHeader->HeaderLength / sizeof (UINT16));
2557
2558 //
2559 // If there is no FFS file, find and generate each components of the FV
2560 //
2561 if (FvInfo.FvFiles[0][0] == 0) {
2562 Status = GenNonFFSFv (*FvImage, &FvInfo);
2563 if (EFI_ERROR (Status)) {
2564 printf ("ERROR: Could not generate NonFFS FV.\n");
2565 free (*FvImage);
2566 return EFI_ABORTED;
2567 }
2568
2569 return EFI_SUCCESS;
2570 }
2571 //
2572 // Initialize our "file" view of the buffer
2573 //
2574 FvImageMemoryFile.FileImage = *FvImage;
2575 FvImageMemoryFile.CurrentFilePointer = *FvImage + FvHeader->HeaderLength;
2576 FvImageMemoryFile.Eof = *FvImage +*FvImageSize;
2577
2578 //
2579 // Initialize our "file" view of the symbol file.
2580 //
2581 SymImageMemoryFile.FileImage = *SymImage;
2582 SymImageMemoryFile.CurrentFilePointer = *SymImage;
2583 SymImageMemoryFile.Eof = *FvImage + SYMBOL_FILE_SIZE;
2584
2585 //
2586 // Initialize the FV library.
2587 //
2588 InitializeFvLib (FvImageMemoryFile.FileImage, FvInfo.Size);
2589
2590 //
2591 // Files start on 8 byte alignments, so move to the next 8 byte aligned
2592 // address. For now, just assert if it isn't. Currently FV header is
2593 // always a multiple of 8 bytes.
2594 // BUGBUG: Handle this better
2595 //
2596 assert ((((UINTN) FvImageMemoryFile.CurrentFilePointer) % 8) == 0);
2597
2598 //
2599 // Initialize the VTF file address.
2600 //
2601 VtfFileImage = (EFI_FFS_FILE_HEADER *) FvImageMemoryFile.Eof;
2602
2603 //
2604 // Add files to FV
2605 //
2606 for (Index = 0; FvInfo.FvFiles[Index][0] != 0; Index++) {
2607 //
2608 // Add the file
2609 //
2610 Status = AddFile (&FvImageMemoryFile, &FvInfo, Index, &VtfFileImage, &SymImageMemoryFile);
2611
2612 //
2613 // Exit if error detected while adding the file
2614 //
2615 if (EFI_ERROR (Status)) {
2616 printf ("ERROR: Could not add file %s.\n", FvInfo.FvFiles[Index]);
2617 free (*FvImage);
2618 return EFI_ABORTED;
2619 }
2620 }
2621 //
2622 // If there is a VTF file, some special actions need to occur.
2623 //
2624 if ((UINTN) VtfFileImage != (UINTN) FvImageMemoryFile.Eof) {
2625 //
2626 // Pad from the end of the last file to the beginning of the VTF file.
2627 //
2628 Status = PadFvImage (&FvImageMemoryFile, VtfFileImage);
2629 if (EFI_ERROR (Status)) {
2630 printf ("ERROR: Could not create the pad file between the last file and the VTF file.\n");
2631 free (*FvImage);
2632 return EFI_ABORTED;
2633 }
2634 //
2635 // Update reset vector (SALE_ENTRY for IPF)
2636 // Now for IA32 and IA64 platform, the fv which has bsf file must have the
2637 // EndAddress of 0xFFFFFFFF. Thus, only this type fv needs to update the
2638 // reset vector. If the PEI Core is found, the VTF file will probably get
2639 // corrupted by updating the entry point.
2640 //
2641 if ((FvInfo.BaseAddress + FvInfo.Size) == FV_IMAGES_TOP_ADDRESS) {
2642 Status = UpdateResetVector (&FvImageMemoryFile, &FvInfo, VtfFileImage);
2643 if (EFI_ERROR(Status)) {
2644 printf ("ERROR: Could not update the reset vector.\n");
2645 free (*FvImage);
2646 return EFI_ABORTED;
2647 }
2648 }
2649 }
2650 //
2651 // Determine final Sym file size
2652 //
2653 *SymImageSize = SymImageMemoryFile.CurrentFilePointer - SymImageMemoryFile.FileImage;
2654
2655 //
2656 // Update FV Alignment attribute to the largest alignment of all the FFS files in the FV
2657 //
2658 if (FvHeader->Attributes | EFI_FVB_ALIGNMENT_CAP) {
2659 for (Index = 1; Index <= 16; Index ++) {
2660 if ((1 << Index) < MaxFfsAlignment) {
2661 //
2662 // Unset the unsupported alignment attribute.
2663 //
2664 FvHeader->Attributes = FvHeader->Attributes & ~((1 << Index) * EFI_FVB_ALIGNMENT_CAP);
2665 } else {
2666 //
2667 // Set the supported alignment attribute.
2668 //
2669 FvHeader->Attributes = FvHeader->Attributes | ((1 << Index) * EFI_FVB_ALIGNMENT_CAP);
2670 }
2671 }
2672
2673 //
2674 // Update Checksum for FvHeader
2675 //
2676 FvHeader->Checksum = 0;
2677 FvHeader->Checksum = CalculateChecksum16 ((UINT16 *) FvHeader, FvHeader->HeaderLength / sizeof (UINT16));
2678 }
2679
2680 return EFI_SUCCESS;
2681 }
2682
2683 EFI_STATUS
2684 UpdatePeiCoreEntryInFit (
2685 IN FIT_TABLE *FitTablePtr,
2686 IN UINT64 PeiCorePhysicalAddress
2687 )
2688 /*++
2689
2690 Routine Description:
2691
2692 This function is used to update the Pei Core address in FIT, this can be used by Sec core to pass control from
2693 Sec to Pei Core
2694
2695 Arguments:
2696
2697 FitTablePtr - The pointer of FIT_TABLE.
2698 PeiCorePhysicalAddress - The address of Pei Core entry.
2699
2700 Returns:
2701
2702 EFI_SUCCESS - The PEI_CORE FIT entry was updated successfully.
2703 EFI_NOT_FOUND - Not found the PEI_CORE FIT entry.
2704
2705 --*/
2706 {
2707 FIT_TABLE *TmpFitPtr;
2708 UINTN Index;
2709 UINTN NumFitComponents;
2710
2711 TmpFitPtr = FitTablePtr;
2712 NumFitComponents = TmpFitPtr->CompSize;
2713
2714 for (Index = 0; Index < NumFitComponents; Index++) {
2715 if ((TmpFitPtr->CvAndType & FIT_TYPE_MASK) == COMP_TYPE_FIT_PEICORE) {
2716 TmpFitPtr->CompAddress = PeiCorePhysicalAddress;
2717 return EFI_SUCCESS;
2718 }
2719
2720 TmpFitPtr++;
2721 }
2722
2723 return EFI_NOT_FOUND;
2724 }
2725
2726 VOID
2727 UpdateFitCheckSum (
2728 IN FIT_TABLE *FitTablePtr
2729 )
2730 /*++
2731
2732 Routine Description:
2733
2734 This function is used to update the checksum for FIT.
2735
2736
2737 Arguments:
2738
2739 FitTablePtr - The pointer of FIT_TABLE.
2740
2741 Returns:
2742
2743 None.
2744
2745 --*/
2746 {
2747 if ((FitTablePtr->CvAndType & CHECKSUM_BIT_MASK) >> 7) {
2748 FitTablePtr->CheckSum = 0;
2749 FitTablePtr->CheckSum = CalculateChecksum8 ((UINT8 *) FitTablePtr, FitTablePtr->CompSize * 16);
2750 }
2751 }