]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg/MpInitLib: Avoid calling PEI services from AP
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
1 /** @file
2 CPU MP Initialize Library common functions.
3
4 Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "MpLib.h"
16
17 EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;
18
19 /**
20 The function will check if BSP Execute Disable is enabled.
21
22 DxeIpl may have enabled Execute Disable for BSP, APs need to
23 get the status and sync up the settings.
24 If BSP's CR0.Paging is not set, BSP execute Disble feature is
25 not working actually.
26
27 @retval TRUE BSP Execute Disable is enabled.
28 @retval FALSE BSP Execute Disable is not enabled.
29 **/
30 BOOLEAN
31 IsBspExecuteDisableEnabled (
32 VOID
33 )
34 {
35 UINT32 Eax;
36 CPUID_EXTENDED_CPU_SIG_EDX Edx;
37 MSR_IA32_EFER_REGISTER EferMsr;
38 BOOLEAN Enabled;
39 IA32_CR0 Cr0;
40
41 Enabled = FALSE;
42 Cr0.UintN = AsmReadCr0 ();
43 if (Cr0.Bits.PG != 0) {
44 //
45 // If CR0 Paging bit is set
46 //
47 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);
48 if (Eax >= CPUID_EXTENDED_CPU_SIG) {
49 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);
50 //
51 // CPUID 0x80000001
52 // Bit 20: Execute Disable Bit available.
53 //
54 if (Edx.Bits.NX != 0) {
55 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);
56 //
57 // MSR 0xC0000080
58 // Bit 11: Execute Disable Bit enable.
59 //
60 if (EferMsr.Bits.NXE != 0) {
61 Enabled = TRUE;
62 }
63 }
64 }
65 }
66
67 return Enabled;
68 }
69
70 /**
71 Worker function for SwitchBSP().
72
73 Worker function for SwitchBSP(), assigned to the AP which is intended
74 to become BSP.
75
76 @param[in] Buffer Pointer to CPU MP Data
77 **/
78 VOID
79 EFIAPI
80 FutureBSPProc (
81 IN VOID *Buffer
82 )
83 {
84 CPU_MP_DATA *DataInHob;
85
86 DataInHob = (CPU_MP_DATA *) Buffer;
87 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);
88 }
89
90 /**
91 Get the Application Processors state.
92
93 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
94
95 @return The AP status
96 **/
97 CPU_STATE
98 GetApState (
99 IN CPU_AP_DATA *CpuData
100 )
101 {
102 return CpuData->State;
103 }
104
105 /**
106 Set the Application Processors state.
107
108 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
109 @param[in] State The AP status
110 **/
111 VOID
112 SetApState (
113 IN CPU_AP_DATA *CpuData,
114 IN CPU_STATE State
115 )
116 {
117 AcquireSpinLock (&CpuData->ApLock);
118 CpuData->State = State;
119 ReleaseSpinLock (&CpuData->ApLock);
120 }
121
122 /**
123 Save BSP's local APIC timer setting.
124
125 @param[in] CpuMpData Pointer to CPU MP Data
126 **/
127 VOID
128 SaveLocalApicTimerSetting (
129 IN CPU_MP_DATA *CpuMpData
130 )
131 {
132 //
133 // Record the current local APIC timer setting of BSP
134 //
135 GetApicTimerState (
136 &CpuMpData->DivideValue,
137 &CpuMpData->PeriodicMode,
138 &CpuMpData->Vector
139 );
140 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();
141 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();
142 }
143
144 /**
145 Sync local APIC timer setting from BSP to AP.
146
147 @param[in] CpuMpData Pointer to CPU MP Data
148 **/
149 VOID
150 SyncLocalApicTimerSetting (
151 IN CPU_MP_DATA *CpuMpData
152 )
153 {
154 //
155 // Sync local APIC timer setting from BSP to AP
156 //
157 InitializeApicTimer (
158 CpuMpData->DivideValue,
159 CpuMpData->CurrentTimerCount,
160 CpuMpData->PeriodicMode,
161 CpuMpData->Vector
162 );
163 //
164 // Disable AP's local APIC timer interrupt
165 //
166 DisableApicTimerInterrupt ();
167 }
168
169 /**
170 Save the volatile registers required to be restored following INIT IPI.
171
172 @param[out] VolatileRegisters Returns buffer saved the volatile resisters
173 **/
174 VOID
175 SaveVolatileRegisters (
176 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters
177 )
178 {
179 CPUID_VERSION_INFO_EDX VersionInfoEdx;
180
181 VolatileRegisters->Cr0 = AsmReadCr0 ();
182 VolatileRegisters->Cr3 = AsmReadCr3 ();
183 VolatileRegisters->Cr4 = AsmReadCr4 ();
184
185 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
186 if (VersionInfoEdx.Bits.DE != 0) {
187 //
188 // If processor supports Debugging Extensions feature
189 // by CPUID.[EAX=01H]:EDX.BIT2
190 //
191 VolatileRegisters->Dr0 = AsmReadDr0 ();
192 VolatileRegisters->Dr1 = AsmReadDr1 ();
193 VolatileRegisters->Dr2 = AsmReadDr2 ();
194 VolatileRegisters->Dr3 = AsmReadDr3 ();
195 VolatileRegisters->Dr6 = AsmReadDr6 ();
196 VolatileRegisters->Dr7 = AsmReadDr7 ();
197 }
198
199 AsmReadGdtr (&VolatileRegisters->Gdtr);
200 AsmReadIdtr (&VolatileRegisters->Idtr);
201 VolatileRegisters->Tr = AsmReadTr ();
202 }
203
204 /**
205 Restore the volatile registers following INIT IPI.
206
207 @param[in] VolatileRegisters Pointer to volatile resisters
208 @param[in] IsRestoreDr TRUE: Restore DRx if supported
209 FALSE: Do not restore DRx
210 **/
211 VOID
212 RestoreVolatileRegisters (
213 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,
214 IN BOOLEAN IsRestoreDr
215 )
216 {
217 CPUID_VERSION_INFO_EDX VersionInfoEdx;
218 IA32_TSS_DESCRIPTOR *Tss;
219
220 AsmWriteCr0 (VolatileRegisters->Cr0);
221 AsmWriteCr3 (VolatileRegisters->Cr3);
222 AsmWriteCr4 (VolatileRegisters->Cr4);
223
224 if (IsRestoreDr) {
225 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
226 if (VersionInfoEdx.Bits.DE != 0) {
227 //
228 // If processor supports Debugging Extensions feature
229 // by CPUID.[EAX=01H]:EDX.BIT2
230 //
231 AsmWriteDr0 (VolatileRegisters->Dr0);
232 AsmWriteDr1 (VolatileRegisters->Dr1);
233 AsmWriteDr2 (VolatileRegisters->Dr2);
234 AsmWriteDr3 (VolatileRegisters->Dr3);
235 AsmWriteDr6 (VolatileRegisters->Dr6);
236 AsmWriteDr7 (VolatileRegisters->Dr7);
237 }
238 }
239
240 AsmWriteGdtr (&VolatileRegisters->Gdtr);
241 AsmWriteIdtr (&VolatileRegisters->Idtr);
242 if (VolatileRegisters->Tr != 0 &&
243 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {
244 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +
245 VolatileRegisters->Tr);
246 if (Tss->Bits.P == 1) {
247 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case
248 AsmWriteTr (VolatileRegisters->Tr);
249 }
250 }
251 }
252
253 /**
254 Detect whether Mwait-monitor feature is supported.
255
256 @retval TRUE Mwait-monitor feature is supported.
257 @retval FALSE Mwait-monitor feature is not supported.
258 **/
259 BOOLEAN
260 IsMwaitSupport (
261 VOID
262 )
263 {
264 CPUID_VERSION_INFO_ECX VersionInfoEcx;
265
266 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);
267 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;
268 }
269
270 /**
271 Get AP loop mode.
272
273 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.
274
275 @return The AP loop mode.
276 **/
277 UINT8
278 GetApLoopMode (
279 OUT UINT32 *MonitorFilterSize
280 )
281 {
282 UINT8 ApLoopMode;
283 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;
284
285 ASSERT (MonitorFilterSize != NULL);
286
287 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
288 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);
289 if (ApLoopMode == ApInMwaitLoop) {
290 if (!IsMwaitSupport ()) {
291 //
292 // If processor does not support MONITOR/MWAIT feature,
293 // force AP in Hlt-loop mode
294 //
295 ApLoopMode = ApInHltLoop;
296 }
297 }
298
299 if (ApLoopMode != ApInMwaitLoop) {
300 *MonitorFilterSize = sizeof (UINT32);
301 } else {
302 //
303 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes
304 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT
305 //
306 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);
307 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;
308 }
309
310 return ApLoopMode;
311 }
312
313 /**
314 Sort the APIC ID of all processors.
315
316 This function sorts the APIC ID of all processors so that processor number is
317 assigned in the ascending order of APIC ID which eases MP debugging.
318
319 @param[in] CpuMpData Pointer to PEI CPU MP Data
320 **/
321 VOID
322 SortApicId (
323 IN CPU_MP_DATA *CpuMpData
324 )
325 {
326 UINTN Index1;
327 UINTN Index2;
328 UINTN Index3;
329 UINT32 ApicId;
330 CPU_INFO_IN_HOB CpuInfo;
331 UINT32 ApCount;
332 CPU_INFO_IN_HOB *CpuInfoInHob;
333 volatile UINT32 *StartupApSignal;
334
335 ApCount = CpuMpData->CpuCount - 1;
336 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
337 if (ApCount != 0) {
338 for (Index1 = 0; Index1 < ApCount; Index1++) {
339 Index3 = Index1;
340 //
341 // Sort key is the hardware default APIC ID
342 //
343 ApicId = CpuInfoInHob[Index1].ApicId;
344 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {
345 if (ApicId > CpuInfoInHob[Index2].ApicId) {
346 Index3 = Index2;
347 ApicId = CpuInfoInHob[Index2].ApicId;
348 }
349 }
350 if (Index3 != Index1) {
351 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));
352 CopyMem (
353 &CpuInfoInHob[Index3],
354 &CpuInfoInHob[Index1],
355 sizeof (CPU_INFO_IN_HOB)
356 );
357 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));
358
359 //
360 // Also exchange the StartupApSignal.
361 //
362 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;
363 CpuMpData->CpuData[Index3].StartupApSignal =
364 CpuMpData->CpuData[Index1].StartupApSignal;
365 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;
366 }
367 }
368
369 //
370 // Get the processor number for the BSP
371 //
372 ApicId = GetInitialApicId ();
373 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
374 if (CpuInfoInHob[Index1].ApicId == ApicId) {
375 CpuMpData->BspNumber = (UINT32) Index1;
376 break;
377 }
378 }
379 }
380 }
381
382 /**
383 Enable x2APIC mode on APs.
384
385 @param[in, out] Buffer Pointer to private data buffer.
386 **/
387 VOID
388 EFIAPI
389 ApFuncEnableX2Apic (
390 IN OUT VOID *Buffer
391 )
392 {
393 SetApicMode (LOCAL_APIC_MODE_X2APIC);
394 }
395
396 /**
397 Do sync on APs.
398
399 @param[in, out] Buffer Pointer to private data buffer.
400 **/
401 VOID
402 EFIAPI
403 ApInitializeSync (
404 IN OUT VOID *Buffer
405 )
406 {
407 CPU_MP_DATA *CpuMpData;
408
409 CpuMpData = (CPU_MP_DATA *) Buffer;
410 //
411 // Load microcode on AP
412 //
413 MicrocodeDetect (CpuMpData);
414 //
415 // Sync BSP's MTRR table to AP
416 //
417 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);
418 }
419
420 /**
421 Find the current Processor number by APIC ID.
422
423 @param[in] CpuMpData Pointer to PEI CPU MP Data
424 @param[out] ProcessorNumber Return the pocessor number found
425
426 @retval EFI_SUCCESS ProcessorNumber is found and returned.
427 @retval EFI_NOT_FOUND ProcessorNumber is not found.
428 **/
429 EFI_STATUS
430 GetProcessorNumber (
431 IN CPU_MP_DATA *CpuMpData,
432 OUT UINTN *ProcessorNumber
433 )
434 {
435 UINTN TotalProcessorNumber;
436 UINTN Index;
437 CPU_INFO_IN_HOB *CpuInfoInHob;
438
439 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
440
441 TotalProcessorNumber = CpuMpData->CpuCount;
442 for (Index = 0; Index < TotalProcessorNumber; Index ++) {
443 if (CpuInfoInHob[Index].ApicId == GetApicId ()) {
444 *ProcessorNumber = Index;
445 return EFI_SUCCESS;
446 }
447 }
448 return EFI_NOT_FOUND;
449 }
450
451 /**
452 This function will get CPU count in the system.
453
454 @param[in] CpuMpData Pointer to PEI CPU MP Data
455
456 @return CPU count detected
457 **/
458 UINTN
459 CollectProcessorCount (
460 IN CPU_MP_DATA *CpuMpData
461 )
462 {
463 UINTN Index;
464
465 //
466 // Send 1st broadcast IPI to APs to wakeup APs
467 //
468 CpuMpData->InitFlag = ApInitConfig;
469 CpuMpData->X2ApicEnable = FALSE;
470 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL);
471 CpuMpData->InitFlag = ApInitDone;
472 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
473 //
474 // Wait for all APs finished the initialization
475 //
476 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
477 CpuPause ();
478 }
479
480 if (CpuMpData->CpuCount > 255) {
481 //
482 // If there are more than 255 processor found, force to enable X2APIC
483 //
484 CpuMpData->X2ApicEnable = TRUE;
485 }
486 if (CpuMpData->X2ApicEnable) {
487 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));
488 //
489 // Wakeup all APs to enable x2APIC mode
490 //
491 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL);
492 //
493 // Wait for all known APs finished
494 //
495 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
496 CpuPause ();
497 }
498 //
499 // Enable x2APIC on BSP
500 //
501 SetApicMode (LOCAL_APIC_MODE_X2APIC);
502 //
503 // Set BSP/Aps state to IDLE
504 //
505 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
506 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
507 }
508 }
509 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));
510 //
511 // Sort BSP/Aps by CPU APIC ID in ascending order
512 //
513 SortApicId (CpuMpData);
514
515 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));
516
517 return CpuMpData->CpuCount;
518 }
519
520 /**
521 Initialize CPU AP Data when AP is wakeup at the first time.
522
523 @param[in, out] CpuMpData Pointer to PEI CPU MP Data
524 @param[in] ProcessorNumber The handle number of processor
525 @param[in] BistData Processor BIST data
526 @param[in] ApTopOfStack Top of AP stack
527
528 **/
529 VOID
530 InitializeApData (
531 IN OUT CPU_MP_DATA *CpuMpData,
532 IN UINTN ProcessorNumber,
533 IN UINT32 BistData,
534 IN UINT64 ApTopOfStack
535 )
536 {
537 CPU_INFO_IN_HOB *CpuInfoInHob;
538
539 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
540 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
541 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
542 CpuInfoInHob[ProcessorNumber].Health = BistData;
543 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;
544
545 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
546 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;
547 if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {
548 //
549 // Set x2APIC mode if there are any logical processor reporting
550 // an Initial APIC ID of 255 or greater.
551 //
552 AcquireSpinLock(&CpuMpData->MpLock);
553 CpuMpData->X2ApicEnable = TRUE;
554 ReleaseSpinLock(&CpuMpData->MpLock);
555 }
556
557 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);
558 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
559 }
560
561 /**
562 This function will be called from AP reset code if BSP uses WakeUpAP.
563
564 @param[in] ExchangeInfo Pointer to the MP exchange info buffer
565 @param[in] ApIndex Number of current executing AP
566 **/
567 VOID
568 EFIAPI
569 ApWakeupFunction (
570 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,
571 IN UINTN ApIndex
572 )
573 {
574 CPU_MP_DATA *CpuMpData;
575 UINTN ProcessorNumber;
576 EFI_AP_PROCEDURE Procedure;
577 VOID *Parameter;
578 UINT32 BistData;
579 volatile UINT32 *ApStartupSignalBuffer;
580 CPU_INFO_IN_HOB *CpuInfoInHob;
581 UINT64 ApTopOfStack;
582 UINTN CurrentApicMode;
583
584 //
585 // AP finished assembly code and begin to execute C code
586 //
587 CpuMpData = ExchangeInfo->CpuMpData;
588
589 //
590 // AP's local APIC settings will be lost after received INIT IPI
591 // We need to re-initialize them at here
592 //
593 ProgramVirtualWireMode ();
594 //
595 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.
596 //
597 DisableLvtInterrupts ();
598 SyncLocalApicTimerSetting (CpuMpData);
599
600 CurrentApicMode = GetApicMode ();
601 while (TRUE) {
602 if (CpuMpData->InitFlag == ApInitConfig) {
603 //
604 // Add CPU number
605 //
606 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);
607 ProcessorNumber = ApIndex;
608 //
609 // This is first time AP wakeup, get BIST information from AP stack
610 //
611 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;
612 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));
613 //
614 // Do some AP initialize sync
615 //
616 ApInitializeSync (CpuMpData);
617 //
618 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,
619 // to initialize AP in InitConfig path.
620 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.
621 //
622 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
623 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);
624 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
625 } else {
626 //
627 // Execute AP function if AP is ready
628 //
629 GetProcessorNumber (CpuMpData, &ProcessorNumber);
630 //
631 // Clear AP start-up signal when AP waken up
632 //
633 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
634 InterlockedCompareExchange32 (
635 (UINT32 *) ApStartupSignalBuffer,
636 WAKEUP_AP_SIGNAL,
637 0
638 );
639 if (CpuMpData->ApLoopMode == ApInHltLoop) {
640 //
641 // Restore AP's volatile registers saved
642 //
643 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);
644 } else {
645 //
646 // The CPU driver might not flush TLB for APs on spot after updating
647 // page attributes. AP in mwait loop mode needs to take care of it when
648 // woken up.
649 //
650 CpuFlushTlb ();
651 }
652
653 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {
654 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;
655 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;
656 if (Procedure != NULL) {
657 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);
658 //
659 // Enable source debugging on AP function
660 //
661 EnableDebugAgent ();
662 //
663 // Invoke AP function here
664 //
665 Procedure (Parameter);
666 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
667 if (CpuMpData->SwitchBspFlag) {
668 //
669 // Re-get the processor number due to BSP/AP maybe exchange in AP function
670 //
671 GetProcessorNumber (CpuMpData, &ProcessorNumber);
672 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;
673 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;
674 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
675 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;
676 } else {
677 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||
678 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {
679 if (CurrentApicMode != GetApicMode ()) {
680 //
681 // If APIC mode change happened during AP function execution,
682 // we do not support APIC ID value changed.
683 //
684 ASSERT (FALSE);
685 CpuDeadLoop ();
686 } else {
687 //
688 // Re-get the CPU APICID and Initial APICID if they are changed
689 //
690 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
691 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
692 }
693 }
694 }
695 }
696 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);
697 }
698 }
699
700 //
701 // AP finished executing C code
702 //
703 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);
704 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);
705
706 //
707 // Place AP is specified loop mode
708 //
709 if (CpuMpData->ApLoopMode == ApInHltLoop) {
710 //
711 // Save AP volatile registers
712 //
713 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);
714 //
715 // Place AP in HLT-loop
716 //
717 while (TRUE) {
718 DisableInterrupts ();
719 CpuSleep ();
720 CpuPause ();
721 }
722 }
723 while (TRUE) {
724 DisableInterrupts ();
725 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
726 //
727 // Place AP in MWAIT-loop
728 //
729 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);
730 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {
731 //
732 // Check AP start-up signal again.
733 // If AP start-up signal is not set, place AP into
734 // the specified C-state
735 //
736 AsmMwait (CpuMpData->ApTargetCState << 4, 0);
737 }
738 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {
739 //
740 // Place AP in Run-loop
741 //
742 CpuPause ();
743 } else {
744 ASSERT (FALSE);
745 }
746
747 //
748 // If AP start-up signal is written, AP is waken up
749 // otherwise place AP in loop again
750 //
751 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {
752 break;
753 }
754 }
755 }
756 }
757
758 /**
759 Wait for AP wakeup and write AP start-up signal till AP is waken up.
760
761 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal
762 **/
763 VOID
764 WaitApWakeup (
765 IN volatile UINT32 *ApStartupSignalBuffer
766 )
767 {
768 //
769 // If AP is waken up, StartupApSignal should be cleared.
770 // Otherwise, write StartupApSignal again till AP waken up.
771 //
772 while (InterlockedCompareExchange32 (
773 (UINT32 *) ApStartupSignalBuffer,
774 WAKEUP_AP_SIGNAL,
775 WAKEUP_AP_SIGNAL
776 ) != 0) {
777 CpuPause ();
778 }
779 }
780
781 /**
782 This function will fill the exchange info structure.
783
784 @param[in] CpuMpData Pointer to CPU MP Data
785
786 **/
787 VOID
788 FillExchangeInfoData (
789 IN CPU_MP_DATA *CpuMpData
790 )
791 {
792 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
793 UINTN Size;
794 IA32_SEGMENT_DESCRIPTOR *Selector;
795
796 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
797 ExchangeInfo->Lock = 0;
798 ExchangeInfo->StackStart = CpuMpData->Buffer;
799 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;
800 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;
801 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;
802
803 ExchangeInfo->CodeSegment = AsmReadCs ();
804 ExchangeInfo->DataSegment = AsmReadDs ();
805
806 ExchangeInfo->Cr3 = AsmReadCr3 ();
807
808 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;
809 ExchangeInfo->ApIndex = 0;
810 ExchangeInfo->NumApsExecuting = 0;
811 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;
812 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
813 ExchangeInfo->CpuMpData = CpuMpData;
814
815 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();
816
817 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;
818
819 //
820 // Get the BSP's data of GDT and IDT
821 //
822 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);
823 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);
824
825 //
826 // Find a 32-bit code segment
827 //
828 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;
829 Size = ExchangeInfo->GdtrProfile.Limit + 1;
830 while (Size > 0) {
831 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {
832 ExchangeInfo->ModeTransitionSegment =
833 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);
834 break;
835 }
836 Selector += 1;
837 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);
838 }
839
840 //
841 // Copy all 32-bit code and 64-bit code into memory with type of
842 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.
843 //
844 if (CpuMpData->WakeupBufferHigh != 0) {
845 Size = CpuMpData->AddressMap.RendezvousFunnelSize -
846 CpuMpData->AddressMap.ModeTransitionOffset;
847 CopyMem (
848 (VOID *)CpuMpData->WakeupBufferHigh,
849 CpuMpData->AddressMap.RendezvousFunnelAddress +
850 CpuMpData->AddressMap.ModeTransitionOffset,
851 Size
852 );
853
854 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;
855 } else {
856 ExchangeInfo->ModeTransitionMemory = (UINT32)
857 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);
858 }
859
860 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +
861 (UINT32)ExchangeInfo->ModeOffset -
862 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;
863 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;
864 }
865
866 /**
867 Helper function that waits until the finished AP count reaches the specified
868 limit, or the specified timeout elapses (whichever comes first).
869
870 @param[in] CpuMpData Pointer to CPU MP Data.
871 @param[in] FinishedApLimit The number of finished APs to wait for.
872 @param[in] TimeLimit The number of microseconds to wait for.
873 **/
874 VOID
875 TimedWaitForApFinish (
876 IN CPU_MP_DATA *CpuMpData,
877 IN UINT32 FinishedApLimit,
878 IN UINT32 TimeLimit
879 );
880
881 /**
882 Get available system memory below 1MB by specified size.
883
884 @param[in] CpuMpData The pointer to CPU MP Data structure.
885 **/
886 VOID
887 BackupAndPrepareWakeupBuffer(
888 IN CPU_MP_DATA *CpuMpData
889 )
890 {
891 CopyMem (
892 (VOID *) CpuMpData->BackupBuffer,
893 (VOID *) CpuMpData->WakeupBuffer,
894 CpuMpData->BackupBufferSize
895 );
896 CopyMem (
897 (VOID *) CpuMpData->WakeupBuffer,
898 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,
899 CpuMpData->AddressMap.RendezvousFunnelSize
900 );
901 }
902
903 /**
904 Restore wakeup buffer data.
905
906 @param[in] CpuMpData The pointer to CPU MP Data structure.
907 **/
908 VOID
909 RestoreWakeupBuffer(
910 IN CPU_MP_DATA *CpuMpData
911 )
912 {
913 CopyMem (
914 (VOID *) CpuMpData->WakeupBuffer,
915 (VOID *) CpuMpData->BackupBuffer,
916 CpuMpData->BackupBufferSize
917 );
918 }
919
920 /**
921 Allocate reset vector buffer.
922
923 @param[in, out] CpuMpData The pointer to CPU MP Data structure.
924 **/
925 VOID
926 AllocateResetVector (
927 IN OUT CPU_MP_DATA *CpuMpData
928 )
929 {
930 UINTN ApResetVectorSize;
931
932 if (CpuMpData->WakeupBuffer == (UINTN) -1) {
933 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +
934 sizeof (MP_CPU_EXCHANGE_INFO);
935
936 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);
937 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)
938 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);
939 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (
940 CpuMpData->AddressMap.RendezvousFunnelSize -
941 CpuMpData->AddressMap.ModeTransitionOffset
942 );
943 }
944 BackupAndPrepareWakeupBuffer (CpuMpData);
945 }
946
947 /**
948 Free AP reset vector buffer.
949
950 @param[in] CpuMpData The pointer to CPU MP Data structure.
951 **/
952 VOID
953 FreeResetVector (
954 IN CPU_MP_DATA *CpuMpData
955 )
956 {
957 RestoreWakeupBuffer (CpuMpData);
958 }
959
960 /**
961 This function will be called by BSP to wakeup AP.
962
963 @param[in] CpuMpData Pointer to CPU MP Data
964 @param[in] Broadcast TRUE: Send broadcast IPI to all APs
965 FALSE: Send IPI to AP by ApicId
966 @param[in] ProcessorNumber The handle number of specified processor
967 @param[in] Procedure The function to be invoked by AP
968 @param[in] ProcedureArgument The argument to be passed into AP function
969 **/
970 VOID
971 WakeUpAP (
972 IN CPU_MP_DATA *CpuMpData,
973 IN BOOLEAN Broadcast,
974 IN UINTN ProcessorNumber,
975 IN EFI_AP_PROCEDURE Procedure, OPTIONAL
976 IN VOID *ProcedureArgument OPTIONAL
977 )
978 {
979 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
980 UINTN Index;
981 CPU_AP_DATA *CpuData;
982 BOOLEAN ResetVectorRequired;
983 CPU_INFO_IN_HOB *CpuInfoInHob;
984
985 CpuMpData->FinishedCount = 0;
986 ResetVectorRequired = FALSE;
987
988 if (CpuMpData->ApLoopMode == ApInHltLoop ||
989 CpuMpData->InitFlag != ApInitDone) {
990 ResetVectorRequired = TRUE;
991 AllocateResetVector (CpuMpData);
992 FillExchangeInfoData (CpuMpData);
993 SaveLocalApicTimerSetting (CpuMpData);
994 } else if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
995 //
996 // Get AP target C-state each time when waking up AP,
997 // for it maybe updated by platform again
998 //
999 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);
1000 }
1001
1002 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
1003
1004 if (Broadcast) {
1005 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1006 if (Index != CpuMpData->BspNumber) {
1007 CpuData = &CpuMpData->CpuData[Index];
1008 CpuData->ApFunction = (UINTN) Procedure;
1009 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
1010 SetApState (CpuData, CpuStateReady);
1011 if (CpuMpData->InitFlag != ApInitConfig) {
1012 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
1013 }
1014 }
1015 }
1016 if (ResetVectorRequired) {
1017 //
1018 // Wakeup all APs
1019 //
1020 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);
1021 }
1022 if (CpuMpData->InitFlag == ApInitConfig) {
1023 //
1024 // Here support two methods to collect AP count through adjust
1025 // PcdCpuApInitTimeOutInMicroSeconds values.
1026 //
1027 // one way is set a value to just let the first AP to start the
1028 // initialization, then through the later while loop to wait all Aps
1029 // finsh the initialization.
1030 // The other way is set a value to let all APs finished the initialzation.
1031 // In this case, the later while loop is useless.
1032 //
1033 TimedWaitForApFinish (
1034 CpuMpData,
1035 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,
1036 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)
1037 );
1038
1039 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {
1040 CpuPause();
1041 }
1042 } else {
1043 //
1044 // Wait all APs waken up if this is not the 1st broadcast of SIPI
1045 //
1046 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1047 CpuData = &CpuMpData->CpuData[Index];
1048 if (Index != CpuMpData->BspNumber) {
1049 WaitApWakeup (CpuData->StartupApSignal);
1050 }
1051 }
1052 }
1053 } else {
1054 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1055 CpuData->ApFunction = (UINTN) Procedure;
1056 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
1057 SetApState (CpuData, CpuStateReady);
1058 //
1059 // Wakeup specified AP
1060 //
1061 ASSERT (CpuMpData->InitFlag != ApInitConfig);
1062 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
1063 if (ResetVectorRequired) {
1064 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1065 SendInitSipiSipi (
1066 CpuInfoInHob[ProcessorNumber].ApicId,
1067 (UINT32) ExchangeInfo->BufferStart
1068 );
1069 }
1070 //
1071 // Wait specified AP waken up
1072 //
1073 WaitApWakeup (CpuData->StartupApSignal);
1074 }
1075
1076 if (ResetVectorRequired) {
1077 FreeResetVector (CpuMpData);
1078 }
1079 }
1080
1081 /**
1082 Calculate timeout value and return the current performance counter value.
1083
1084 Calculate the number of performance counter ticks required for a timeout.
1085 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1086 as infinity.
1087
1088 @param[in] TimeoutInMicroseconds Timeout value in microseconds.
1089 @param[out] CurrentTime Returns the current value of the performance counter.
1090
1091 @return Expected time stamp counter for timeout.
1092 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1093 as infinity.
1094
1095 **/
1096 UINT64
1097 CalculateTimeout (
1098 IN UINTN TimeoutInMicroseconds,
1099 OUT UINT64 *CurrentTime
1100 )
1101 {
1102 UINT64 TimeoutInSeconds;
1103 UINT64 TimestampCounterFreq;
1104
1105 //
1106 // Read the current value of the performance counter
1107 //
1108 *CurrentTime = GetPerformanceCounter ();
1109
1110 //
1111 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1112 // as infinity.
1113 //
1114 if (TimeoutInMicroseconds == 0) {
1115 return 0;
1116 }
1117
1118 //
1119 // GetPerformanceCounterProperties () returns the timestamp counter's frequency
1120 // in Hz.
1121 //
1122 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);
1123
1124 //
1125 // Check the potential overflow before calculate the number of ticks for the timeout value.
1126 //
1127 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {
1128 //
1129 // Convert microseconds into seconds if direct multiplication overflows
1130 //
1131 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);
1132 //
1133 // Assertion if the final tick count exceeds MAX_UINT64
1134 //
1135 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);
1136 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);
1137 } else {
1138 //
1139 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide
1140 // it by 1,000,000, to get the number of ticks for the timeout value.
1141 //
1142 return DivU64x32 (
1143 MultU64x64 (
1144 TimestampCounterFreq,
1145 TimeoutInMicroseconds
1146 ),
1147 1000000
1148 );
1149 }
1150 }
1151
1152 /**
1153 Checks whether timeout expires.
1154
1155 Check whether the number of elapsed performance counter ticks required for
1156 a timeout condition has been reached.
1157 If Timeout is zero, which means infinity, return value is always FALSE.
1158
1159 @param[in, out] PreviousTime On input, the value of the performance counter
1160 when it was last read.
1161 On output, the current value of the performance
1162 counter
1163 @param[in] TotalTime The total amount of elapsed time in performance
1164 counter ticks.
1165 @param[in] Timeout The number of performance counter ticks required
1166 to reach a timeout condition.
1167
1168 @retval TRUE A timeout condition has been reached.
1169 @retval FALSE A timeout condition has not been reached.
1170
1171 **/
1172 BOOLEAN
1173 CheckTimeout (
1174 IN OUT UINT64 *PreviousTime,
1175 IN UINT64 *TotalTime,
1176 IN UINT64 Timeout
1177 )
1178 {
1179 UINT64 Start;
1180 UINT64 End;
1181 UINT64 CurrentTime;
1182 INT64 Delta;
1183 INT64 Cycle;
1184
1185 if (Timeout == 0) {
1186 return FALSE;
1187 }
1188 GetPerformanceCounterProperties (&Start, &End);
1189 Cycle = End - Start;
1190 if (Cycle < 0) {
1191 Cycle = -Cycle;
1192 }
1193 Cycle++;
1194 CurrentTime = GetPerformanceCounter();
1195 Delta = (INT64) (CurrentTime - *PreviousTime);
1196 if (Start > End) {
1197 Delta = -Delta;
1198 }
1199 if (Delta < 0) {
1200 Delta += Cycle;
1201 }
1202 *TotalTime += Delta;
1203 *PreviousTime = CurrentTime;
1204 if (*TotalTime > Timeout) {
1205 return TRUE;
1206 }
1207 return FALSE;
1208 }
1209
1210 /**
1211 Helper function that waits until the finished AP count reaches the specified
1212 limit, or the specified timeout elapses (whichever comes first).
1213
1214 @param[in] CpuMpData Pointer to CPU MP Data.
1215 @param[in] FinishedApLimit The number of finished APs to wait for.
1216 @param[in] TimeLimit The number of microseconds to wait for.
1217 **/
1218 VOID
1219 TimedWaitForApFinish (
1220 IN CPU_MP_DATA *CpuMpData,
1221 IN UINT32 FinishedApLimit,
1222 IN UINT32 TimeLimit
1223 )
1224 {
1225 //
1226 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0
1227 // "infinity", so check for (TimeLimit == 0) explicitly.
1228 //
1229 if (TimeLimit == 0) {
1230 return;
1231 }
1232
1233 CpuMpData->TotalTime = 0;
1234 CpuMpData->ExpectedTime = CalculateTimeout (
1235 TimeLimit,
1236 &CpuMpData->CurrentTime
1237 );
1238 while (CpuMpData->FinishedCount < FinishedApLimit &&
1239 !CheckTimeout (
1240 &CpuMpData->CurrentTime,
1241 &CpuMpData->TotalTime,
1242 CpuMpData->ExpectedTime
1243 )) {
1244 CpuPause ();
1245 }
1246
1247 if (CpuMpData->FinishedCount >= FinishedApLimit) {
1248 DEBUG ((
1249 DEBUG_VERBOSE,
1250 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",
1251 __FUNCTION__,
1252 FinishedApLimit,
1253 DivU64x64Remainder (
1254 MultU64x32 (CpuMpData->TotalTime, 1000000),
1255 GetPerformanceCounterProperties (NULL, NULL),
1256 NULL
1257 )
1258 ));
1259 }
1260 }
1261
1262 /**
1263 Reset an AP to Idle state.
1264
1265 Any task being executed by the AP will be aborted and the AP
1266 will be waiting for a new task in Wait-For-SIPI state.
1267
1268 @param[in] ProcessorNumber The handle number of processor.
1269 **/
1270 VOID
1271 ResetProcessorToIdleState (
1272 IN UINTN ProcessorNumber
1273 )
1274 {
1275 CPU_MP_DATA *CpuMpData;
1276
1277 CpuMpData = GetCpuMpData ();
1278
1279 CpuMpData->InitFlag = ApInitReconfig;
1280 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL);
1281 while (CpuMpData->FinishedCount < 1) {
1282 CpuPause ();
1283 }
1284 CpuMpData->InitFlag = ApInitDone;
1285
1286 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
1287 }
1288
1289 /**
1290 Searches for the next waiting AP.
1291
1292 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().
1293
1294 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.
1295
1296 @retval EFI_SUCCESS The next waiting AP has been found.
1297 @retval EFI_NOT_FOUND No waiting AP exists.
1298
1299 **/
1300 EFI_STATUS
1301 GetNextWaitingProcessorNumber (
1302 OUT UINTN *NextProcessorNumber
1303 )
1304 {
1305 UINTN ProcessorNumber;
1306 CPU_MP_DATA *CpuMpData;
1307
1308 CpuMpData = GetCpuMpData ();
1309
1310 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1311 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1312 *NextProcessorNumber = ProcessorNumber;
1313 return EFI_SUCCESS;
1314 }
1315 }
1316
1317 return EFI_NOT_FOUND;
1318 }
1319
1320 /** Checks status of specified AP.
1321
1322 This function checks whether the specified AP has finished the task assigned
1323 by StartupThisAP(), and whether timeout expires.
1324
1325 @param[in] ProcessorNumber The handle number of processor.
1326
1327 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().
1328 @retval EFI_TIMEOUT The timeout expires.
1329 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.
1330 **/
1331 EFI_STATUS
1332 CheckThisAP (
1333 IN UINTN ProcessorNumber
1334 )
1335 {
1336 CPU_MP_DATA *CpuMpData;
1337 CPU_AP_DATA *CpuData;
1338
1339 CpuMpData = GetCpuMpData ();
1340 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1341
1342 //
1343 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.
1344 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1345 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.
1346 //
1347 //
1348 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.
1349 //
1350 if (GetApState(CpuData) == CpuStateFinished) {
1351 if (CpuData->Finished != NULL) {
1352 *(CpuData->Finished) = TRUE;
1353 }
1354 SetApState (CpuData, CpuStateIdle);
1355 return EFI_SUCCESS;
1356 } else {
1357 //
1358 // If timeout expires for StartupThisAP(), report timeout.
1359 //
1360 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
1361 if (CpuData->Finished != NULL) {
1362 *(CpuData->Finished) = FALSE;
1363 }
1364 //
1365 // Reset failed AP to idle state
1366 //
1367 ResetProcessorToIdleState (ProcessorNumber);
1368
1369 return EFI_TIMEOUT;
1370 }
1371 }
1372 return EFI_NOT_READY;
1373 }
1374
1375 /**
1376 Checks status of all APs.
1377
1378 This function checks whether all APs have finished task assigned by StartupAllAPs(),
1379 and whether timeout expires.
1380
1381 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().
1382 @retval EFI_TIMEOUT The timeout expires.
1383 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.
1384 **/
1385 EFI_STATUS
1386 CheckAllAPs (
1387 VOID
1388 )
1389 {
1390 UINTN ProcessorNumber;
1391 UINTN NextProcessorNumber;
1392 UINTN ListIndex;
1393 EFI_STATUS Status;
1394 CPU_MP_DATA *CpuMpData;
1395 CPU_AP_DATA *CpuData;
1396
1397 CpuMpData = GetCpuMpData ();
1398
1399 NextProcessorNumber = 0;
1400
1401 //
1402 // Go through all APs that are responsible for the StartupAllAPs().
1403 //
1404 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1405 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {
1406 continue;
1407 }
1408
1409 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1410 //
1411 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.
1412 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1413 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.
1414 //
1415 if (GetApState(CpuData) == CpuStateFinished) {
1416 CpuMpData->RunningCount ++;
1417 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1418 SetApState(CpuData, CpuStateIdle);
1419
1420 //
1421 // If in Single Thread mode, then search for the next waiting AP for execution.
1422 //
1423 if (CpuMpData->SingleThread) {
1424 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);
1425
1426 if (!EFI_ERROR (Status)) {
1427 WakeUpAP (
1428 CpuMpData,
1429 FALSE,
1430 (UINT32) NextProcessorNumber,
1431 CpuMpData->Procedure,
1432 CpuMpData->ProcArguments
1433 );
1434 }
1435 }
1436 }
1437 }
1438
1439 //
1440 // If all APs finish, return EFI_SUCCESS.
1441 //
1442 if (CpuMpData->RunningCount == CpuMpData->StartCount) {
1443 return EFI_SUCCESS;
1444 }
1445
1446 //
1447 // If timeout expires, report timeout.
1448 //
1449 if (CheckTimeout (
1450 &CpuMpData->CurrentTime,
1451 &CpuMpData->TotalTime,
1452 CpuMpData->ExpectedTime)
1453 ) {
1454 //
1455 // If FailedCpuList is not NULL, record all failed APs in it.
1456 //
1457 if (CpuMpData->FailedCpuList != NULL) {
1458 *CpuMpData->FailedCpuList =
1459 AllocatePool ((CpuMpData->StartCount - CpuMpData->FinishedCount + 1) * sizeof (UINTN));
1460 ASSERT (*CpuMpData->FailedCpuList != NULL);
1461 }
1462 ListIndex = 0;
1463
1464 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1465 //
1466 // Check whether this processor is responsible for StartupAllAPs().
1467 //
1468 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1469 //
1470 // Reset failed APs to idle state
1471 //
1472 ResetProcessorToIdleState (ProcessorNumber);
1473 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1474 if (CpuMpData->FailedCpuList != NULL) {
1475 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;
1476 }
1477 }
1478 }
1479 if (CpuMpData->FailedCpuList != NULL) {
1480 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;
1481 }
1482 return EFI_TIMEOUT;
1483 }
1484 return EFI_NOT_READY;
1485 }
1486
1487 /**
1488 MP Initialize Library initialization.
1489
1490 This service will allocate AP reset vector and wakeup all APs to do APs
1491 initialization.
1492
1493 This service must be invoked before all other MP Initialize Library
1494 service are invoked.
1495
1496 @retval EFI_SUCCESS MP initialization succeeds.
1497 @retval Others MP initialization fails.
1498
1499 **/
1500 EFI_STATUS
1501 EFIAPI
1502 MpInitLibInitialize (
1503 VOID
1504 )
1505 {
1506 CPU_MP_DATA *OldCpuMpData;
1507 CPU_INFO_IN_HOB *CpuInfoInHob;
1508 UINT32 MaxLogicalProcessorNumber;
1509 UINT32 ApStackSize;
1510 MP_ASSEMBLY_ADDRESS_MAP AddressMap;
1511 CPU_VOLATILE_REGISTERS VolatileRegisters;
1512 UINTN BufferSize;
1513 UINT32 MonitorFilterSize;
1514 VOID *MpBuffer;
1515 UINTN Buffer;
1516 CPU_MP_DATA *CpuMpData;
1517 UINT8 ApLoopMode;
1518 UINT8 *MonitorBuffer;
1519 UINTN Index;
1520 UINTN ApResetVectorSize;
1521 UINTN BackupBufferAddr;
1522 UINTN ApIdtBase;
1523
1524 OldCpuMpData = GetCpuMpDataFromGuidedHob ();
1525 if (OldCpuMpData == NULL) {
1526 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);
1527 } else {
1528 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;
1529 }
1530 ASSERT (MaxLogicalProcessorNumber != 0);
1531
1532 AsmGetAddressMap (&AddressMap);
1533 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);
1534 ApStackSize = PcdGet32(PcdCpuApStackSize);
1535 ApLoopMode = GetApLoopMode (&MonitorFilterSize);
1536
1537 //
1538 // Save BSP's Control registers for APs
1539 //
1540 SaveVolatileRegisters (&VolatileRegisters);
1541
1542 BufferSize = ApStackSize * MaxLogicalProcessorNumber;
1543 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;
1544 BufferSize += ApResetVectorSize;
1545 BufferSize = ALIGN_VALUE (BufferSize, 8);
1546 BufferSize += VolatileRegisters.Idtr.Limit + 1;
1547 BufferSize += sizeof (CPU_MP_DATA);
1548 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;
1549 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));
1550 ASSERT (MpBuffer != NULL);
1551 ZeroMem (MpBuffer, BufferSize);
1552 Buffer = (UINTN) MpBuffer;
1553
1554 //
1555 // The layout of the Buffer is as below:
1556 //
1557 // +--------------------+ <-- Buffer
1558 // AP Stacks (N)
1559 // +--------------------+ <-- MonitorBuffer
1560 // AP Monitor Filters (N)
1561 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)
1562 // Backup Buffer
1563 // +--------------------+
1564 // Padding
1565 // +--------------------+ <-- ApIdtBase (8-byte boundary)
1566 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.
1567 // +--------------------+ <-- CpuMpData
1568 // CPU_MP_DATA
1569 // +--------------------+ <-- CpuMpData->CpuData
1570 // CPU_AP_DATA (N)
1571 // +--------------------+ <-- CpuMpData->CpuInfoInHob
1572 // CPU_INFO_IN_HOB (N)
1573 // +--------------------+
1574 //
1575 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);
1576 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;
1577 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);
1578 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);
1579 CpuMpData->Buffer = Buffer;
1580 CpuMpData->CpuApStackSize = ApStackSize;
1581 CpuMpData->BackupBuffer = BackupBufferAddr;
1582 CpuMpData->BackupBufferSize = ApResetVectorSize;
1583 CpuMpData->WakeupBuffer = (UINTN) -1;
1584 CpuMpData->CpuCount = 1;
1585 CpuMpData->BspNumber = 0;
1586 CpuMpData->WaitEvent = NULL;
1587 CpuMpData->SwitchBspFlag = FALSE;
1588 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);
1589 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);
1590 CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);
1591 CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);
1592 InitializeSpinLock(&CpuMpData->MpLock);
1593
1594 //
1595 // Make sure no memory usage outside of the allocated buffer.
1596 //
1597 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==
1598 Buffer + BufferSize);
1599
1600 //
1601 // Duplicate BSP's IDT to APs.
1602 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1
1603 //
1604 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);
1605 VolatileRegisters.Idtr.Base = ApIdtBase;
1606 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));
1607 //
1608 // Set BSP basic information
1609 //
1610 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);
1611 //
1612 // Save assembly code information
1613 //
1614 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));
1615 //
1616 // Finally set AP loop mode
1617 //
1618 CpuMpData->ApLoopMode = ApLoopMode;
1619 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));
1620 //
1621 // Set up APs wakeup signal buffer
1622 //
1623 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {
1624 CpuMpData->CpuData[Index].StartupApSignal =
1625 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);
1626 }
1627 //
1628 // Load Microcode on BSP
1629 //
1630 MicrocodeDetect (CpuMpData);
1631 //
1632 // Store BSP's MTRR setting
1633 //
1634 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);
1635 //
1636 // Enable the local APIC for Virtual Wire Mode.
1637 //
1638 ProgramVirtualWireMode ();
1639
1640 if (OldCpuMpData == NULL) {
1641 if (MaxLogicalProcessorNumber > 1) {
1642 //
1643 // Wakeup all APs and calculate the processor count in system
1644 //
1645 CollectProcessorCount (CpuMpData);
1646 }
1647 } else {
1648 //
1649 // APs have been wakeup before, just get the CPU Information
1650 // from HOB
1651 //
1652 CpuMpData->CpuCount = OldCpuMpData->CpuCount;
1653 CpuMpData->BspNumber = OldCpuMpData->BspNumber;
1654 CpuMpData->InitFlag = ApInitReconfig;
1655 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;
1656 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1657 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1658 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);
1659 if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {
1660 CpuMpData->X2ApicEnable = TRUE;
1661 }
1662 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;
1663 CpuMpData->CpuData[Index].ApFunction = 0;
1664 CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));
1665 }
1666 if (MaxLogicalProcessorNumber > 1) {
1667 //
1668 // Wakeup APs to do some AP initialize sync
1669 //
1670 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData);
1671 //
1672 // Wait for all APs finished initialization
1673 //
1674 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
1675 CpuPause ();
1676 }
1677 CpuMpData->InitFlag = ApInitDone;
1678 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1679 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
1680 }
1681 }
1682 }
1683
1684 //
1685 // Initialize global data for MP support
1686 //
1687 InitMpGlobalData (CpuMpData);
1688
1689 return EFI_SUCCESS;
1690 }
1691
1692 /**
1693 Gets detailed MP-related information on the requested processor at the
1694 instant this call is made. This service may only be called from the BSP.
1695
1696 @param[in] ProcessorNumber The handle number of processor.
1697 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for
1698 the requested processor is deposited.
1699 @param[out] HealthData Return processor health data.
1700
1701 @retval EFI_SUCCESS Processor information was returned.
1702 @retval EFI_DEVICE_ERROR The calling processor is an AP.
1703 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
1704 @retval EFI_NOT_FOUND The processor with the handle specified by
1705 ProcessorNumber does not exist in the platform.
1706 @retval EFI_NOT_READY MP Initialize Library is not initialized.
1707
1708 **/
1709 EFI_STATUS
1710 EFIAPI
1711 MpInitLibGetProcessorInfo (
1712 IN UINTN ProcessorNumber,
1713 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,
1714 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL
1715 )
1716 {
1717 CPU_MP_DATA *CpuMpData;
1718 UINTN CallerNumber;
1719 CPU_INFO_IN_HOB *CpuInfoInHob;
1720
1721 CpuMpData = GetCpuMpData ();
1722 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1723
1724 //
1725 // Check whether caller processor is BSP
1726 //
1727 MpInitLibWhoAmI (&CallerNumber);
1728 if (CallerNumber != CpuMpData->BspNumber) {
1729 return EFI_DEVICE_ERROR;
1730 }
1731
1732 if (ProcessorInfoBuffer == NULL) {
1733 return EFI_INVALID_PARAMETER;
1734 }
1735
1736 if (ProcessorNumber >= CpuMpData->CpuCount) {
1737 return EFI_NOT_FOUND;
1738 }
1739
1740 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;
1741 ProcessorInfoBuffer->StatusFlag = 0;
1742 if (ProcessorNumber == CpuMpData->BspNumber) {
1743 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
1744 }
1745 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {
1746 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
1747 }
1748 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
1749 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;
1750 } else {
1751 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
1752 }
1753
1754 //
1755 // Get processor location information
1756 //
1757 GetProcessorLocationByApicId (
1758 CpuInfoInHob[ProcessorNumber].ApicId,
1759 &ProcessorInfoBuffer->Location.Package,
1760 &ProcessorInfoBuffer->Location.Core,
1761 &ProcessorInfoBuffer->Location.Thread
1762 );
1763
1764 if (HealthData != NULL) {
1765 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;
1766 }
1767
1768 return EFI_SUCCESS;
1769 }
1770
1771 /**
1772 Worker function to switch the requested AP to be the BSP from that point onward.
1773
1774 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.
1775 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
1776 enabled AP. Otherwise, it will be disabled.
1777
1778 @retval EFI_SUCCESS BSP successfully switched.
1779 @retval others Failed to switch BSP.
1780
1781 **/
1782 EFI_STATUS
1783 SwitchBSPWorker (
1784 IN UINTN ProcessorNumber,
1785 IN BOOLEAN EnableOldBSP
1786 )
1787 {
1788 CPU_MP_DATA *CpuMpData;
1789 UINTN CallerNumber;
1790 CPU_STATE State;
1791 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;
1792 BOOLEAN OldInterruptState;
1793 BOOLEAN OldTimerInterruptState;
1794
1795 //
1796 // Save and Disable Local APIC timer interrupt
1797 //
1798 OldTimerInterruptState = GetApicTimerInterruptState ();
1799 DisableApicTimerInterrupt ();
1800 //
1801 // Before send both BSP and AP to a procedure to exchange their roles,
1802 // interrupt must be disabled. This is because during the exchange role
1803 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will
1804 // be corrupted, since interrupt return address will be pushed to stack
1805 // by hardware.
1806 //
1807 OldInterruptState = SaveAndDisableInterrupts ();
1808
1809 //
1810 // Mask LINT0 & LINT1 for the old BSP
1811 //
1812 DisableLvtInterrupts ();
1813
1814 CpuMpData = GetCpuMpData ();
1815
1816 //
1817 // Check whether caller processor is BSP
1818 //
1819 MpInitLibWhoAmI (&CallerNumber);
1820 if (CallerNumber != CpuMpData->BspNumber) {
1821 return EFI_DEVICE_ERROR;
1822 }
1823
1824 if (ProcessorNumber >= CpuMpData->CpuCount) {
1825 return EFI_NOT_FOUND;
1826 }
1827
1828 //
1829 // Check whether specified AP is disabled
1830 //
1831 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);
1832 if (State == CpuStateDisabled) {
1833 return EFI_INVALID_PARAMETER;
1834 }
1835
1836 //
1837 // Check whether ProcessorNumber specifies the current BSP
1838 //
1839 if (ProcessorNumber == CpuMpData->BspNumber) {
1840 return EFI_INVALID_PARAMETER;
1841 }
1842
1843 //
1844 // Check whether specified AP is busy
1845 //
1846 if (State == CpuStateBusy) {
1847 return EFI_NOT_READY;
1848 }
1849
1850 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;
1851 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;
1852 CpuMpData->SwitchBspFlag = TRUE;
1853 CpuMpData->NewBspNumber = ProcessorNumber;
1854
1855 //
1856 // Clear the BSP bit of MSR_IA32_APIC_BASE
1857 //
1858 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1859 ApicBaseMsr.Bits.BSP = 0;
1860 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1861
1862 //
1863 // Need to wakeUp AP (future BSP).
1864 //
1865 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData);
1866
1867 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);
1868
1869 //
1870 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP
1871 //
1872 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1873 ApicBaseMsr.Bits.BSP = 1;
1874 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1875 ProgramVirtualWireMode ();
1876
1877 //
1878 // Wait for old BSP finished AP task
1879 //
1880 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {
1881 CpuPause ();
1882 }
1883
1884 CpuMpData->SwitchBspFlag = FALSE;
1885 //
1886 // Set old BSP enable state
1887 //
1888 if (!EnableOldBSP) {
1889 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);
1890 } else {
1891 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);
1892 }
1893 //
1894 // Save new BSP number
1895 //
1896 CpuMpData->BspNumber = (UINT32) ProcessorNumber;
1897
1898 //
1899 // Restore interrupt state.
1900 //
1901 SetInterruptState (OldInterruptState);
1902
1903 if (OldTimerInterruptState) {
1904 EnableApicTimerInterrupt ();
1905 }
1906
1907 return EFI_SUCCESS;
1908 }
1909
1910 /**
1911 Worker function to let the caller enable or disable an AP from this point onward.
1912 This service may only be called from the BSP.
1913
1914 @param[in] ProcessorNumber The handle number of AP.
1915 @param[in] EnableAP Specifies the new state for the processor for
1916 enabled, FALSE for disabled.
1917 @param[in] HealthFlag If not NULL, a pointer to a value that specifies
1918 the new health status of the AP.
1919
1920 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
1921 @retval others Failed to Enable/Disable AP.
1922
1923 **/
1924 EFI_STATUS
1925 EnableDisableApWorker (
1926 IN UINTN ProcessorNumber,
1927 IN BOOLEAN EnableAP,
1928 IN UINT32 *HealthFlag OPTIONAL
1929 )
1930 {
1931 CPU_MP_DATA *CpuMpData;
1932 UINTN CallerNumber;
1933
1934 CpuMpData = GetCpuMpData ();
1935
1936 //
1937 // Check whether caller processor is BSP
1938 //
1939 MpInitLibWhoAmI (&CallerNumber);
1940 if (CallerNumber != CpuMpData->BspNumber) {
1941 return EFI_DEVICE_ERROR;
1942 }
1943
1944 if (ProcessorNumber == CpuMpData->BspNumber) {
1945 return EFI_INVALID_PARAMETER;
1946 }
1947
1948 if (ProcessorNumber >= CpuMpData->CpuCount) {
1949 return EFI_NOT_FOUND;
1950 }
1951
1952 if (!EnableAP) {
1953 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);
1954 } else {
1955 ResetProcessorToIdleState (ProcessorNumber);
1956 }
1957
1958 if (HealthFlag != NULL) {
1959 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =
1960 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);
1961 }
1962
1963 return EFI_SUCCESS;
1964 }
1965
1966 /**
1967 This return the handle number for the calling processor. This service may be
1968 called from the BSP and APs.
1969
1970 @param[out] ProcessorNumber Pointer to the handle number of AP.
1971 The range is from 0 to the total number of
1972 logical processors minus 1. The total number of
1973 logical processors can be retrieved by
1974 MpInitLibGetNumberOfProcessors().
1975
1976 @retval EFI_SUCCESS The current processor handle number was returned
1977 in ProcessorNumber.
1978 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
1979 @retval EFI_NOT_READY MP Initialize Library is not initialized.
1980
1981 **/
1982 EFI_STATUS
1983 EFIAPI
1984 MpInitLibWhoAmI (
1985 OUT UINTN *ProcessorNumber
1986 )
1987 {
1988 CPU_MP_DATA *CpuMpData;
1989
1990 if (ProcessorNumber == NULL) {
1991 return EFI_INVALID_PARAMETER;
1992 }
1993
1994 CpuMpData = GetCpuMpData ();
1995
1996 return GetProcessorNumber (CpuMpData, ProcessorNumber);
1997 }
1998
1999 /**
2000 Retrieves the number of logical processor in the platform and the number of
2001 those logical processors that are enabled on this boot. This service may only
2002 be called from the BSP.
2003
2004 @param[out] NumberOfProcessors Pointer to the total number of logical
2005 processors in the system, including the BSP
2006 and disabled APs.
2007 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
2008 processors that exist in system, including
2009 the BSP.
2010
2011 @retval EFI_SUCCESS The number of logical processors and enabled
2012 logical processors was retrieved.
2013 @retval EFI_DEVICE_ERROR The calling processor is an AP.
2014 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors
2015 is NULL.
2016 @retval EFI_NOT_READY MP Initialize Library is not initialized.
2017
2018 **/
2019 EFI_STATUS
2020 EFIAPI
2021 MpInitLibGetNumberOfProcessors (
2022 OUT UINTN *NumberOfProcessors, OPTIONAL
2023 OUT UINTN *NumberOfEnabledProcessors OPTIONAL
2024 )
2025 {
2026 CPU_MP_DATA *CpuMpData;
2027 UINTN CallerNumber;
2028 UINTN ProcessorNumber;
2029 UINTN EnabledProcessorNumber;
2030 UINTN Index;
2031
2032 CpuMpData = GetCpuMpData ();
2033
2034 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {
2035 return EFI_INVALID_PARAMETER;
2036 }
2037
2038 //
2039 // Check whether caller processor is BSP
2040 //
2041 MpInitLibWhoAmI (&CallerNumber);
2042 if (CallerNumber != CpuMpData->BspNumber) {
2043 return EFI_DEVICE_ERROR;
2044 }
2045
2046 ProcessorNumber = CpuMpData->CpuCount;
2047 EnabledProcessorNumber = 0;
2048 for (Index = 0; Index < ProcessorNumber; Index++) {
2049 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {
2050 EnabledProcessorNumber ++;
2051 }
2052 }
2053
2054 if (NumberOfProcessors != NULL) {
2055 *NumberOfProcessors = ProcessorNumber;
2056 }
2057 if (NumberOfEnabledProcessors != NULL) {
2058 *NumberOfEnabledProcessors = EnabledProcessorNumber;
2059 }
2060
2061 return EFI_SUCCESS;
2062 }
2063
2064
2065 /**
2066 Worker function to execute a caller provided function on all enabled APs.
2067
2068 @param[in] Procedure A pointer to the function to be run on
2069 enabled APs of the system.
2070 @param[in] SingleThread If TRUE, then all the enabled APs execute
2071 the function specified by Procedure one by
2072 one, in ascending order of processor handle
2073 number. If FALSE, then all the enabled APs
2074 execute the function specified by Procedure
2075 simultaneously.
2076 @param[in] WaitEvent The event created by the caller with CreateEvent()
2077 service.
2078 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
2079 APs to return from Procedure, either for
2080 blocking or non-blocking mode.
2081 @param[in] ProcedureArgument The parameter passed into Procedure for
2082 all APs.
2083 @param[out] FailedCpuList If all APs finish successfully, then its
2084 content is set to NULL. If not all APs
2085 finish before timeout expires, then its
2086 content is set to address of the buffer
2087 holding handle numbers of the failed APs.
2088
2089 @retval EFI_SUCCESS In blocking mode, all APs have finished before
2090 the timeout expired.
2091 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
2092 to all enabled APs.
2093 @retval others Failed to Startup all APs.
2094
2095 **/
2096 EFI_STATUS
2097 StartupAllAPsWorker (
2098 IN EFI_AP_PROCEDURE Procedure,
2099 IN BOOLEAN SingleThread,
2100 IN EFI_EVENT WaitEvent OPTIONAL,
2101 IN UINTN TimeoutInMicroseconds,
2102 IN VOID *ProcedureArgument OPTIONAL,
2103 OUT UINTN **FailedCpuList OPTIONAL
2104 )
2105 {
2106 EFI_STATUS Status;
2107 CPU_MP_DATA *CpuMpData;
2108 UINTN ProcessorCount;
2109 UINTN ProcessorNumber;
2110 UINTN CallerNumber;
2111 CPU_AP_DATA *CpuData;
2112 BOOLEAN HasEnabledAp;
2113 CPU_STATE ApState;
2114
2115 CpuMpData = GetCpuMpData ();
2116
2117 if (FailedCpuList != NULL) {
2118 *FailedCpuList = NULL;
2119 }
2120
2121 if (CpuMpData->CpuCount == 1) {
2122 return EFI_NOT_STARTED;
2123 }
2124
2125 if (Procedure == NULL) {
2126 return EFI_INVALID_PARAMETER;
2127 }
2128
2129 //
2130 // Check whether caller processor is BSP
2131 //
2132 MpInitLibWhoAmI (&CallerNumber);
2133 if (CallerNumber != CpuMpData->BspNumber) {
2134 return EFI_DEVICE_ERROR;
2135 }
2136
2137 //
2138 // Update AP state
2139 //
2140 CheckAndUpdateApsStatus ();
2141
2142 ProcessorCount = CpuMpData->CpuCount;
2143 HasEnabledAp = FALSE;
2144 //
2145 // Check whether all enabled APs are idle.
2146 // If any enabled AP is not idle, return EFI_NOT_READY.
2147 //
2148 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2149 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2150 if (ProcessorNumber != CpuMpData->BspNumber) {
2151 ApState = GetApState (CpuData);
2152 if (ApState != CpuStateDisabled) {
2153 HasEnabledAp = TRUE;
2154 if (ApState != CpuStateIdle) {
2155 //
2156 // If any enabled APs are busy, return EFI_NOT_READY.
2157 //
2158 return EFI_NOT_READY;
2159 }
2160 }
2161 }
2162 }
2163
2164 if (!HasEnabledAp) {
2165 //
2166 // If no enabled AP exists, return EFI_NOT_STARTED.
2167 //
2168 return EFI_NOT_STARTED;
2169 }
2170
2171 CpuMpData->StartCount = 0;
2172 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2173 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2174 CpuData->Waiting = FALSE;
2175 if (ProcessorNumber != CpuMpData->BspNumber) {
2176 if (CpuData->State == CpuStateIdle) {
2177 //
2178 // Mark this processor as responsible for current calling.
2179 //
2180 CpuData->Waiting = TRUE;
2181 CpuMpData->StartCount++;
2182 }
2183 }
2184 }
2185
2186 CpuMpData->Procedure = Procedure;
2187 CpuMpData->ProcArguments = ProcedureArgument;
2188 CpuMpData->SingleThread = SingleThread;
2189 CpuMpData->FinishedCount = 0;
2190 CpuMpData->RunningCount = 0;
2191 CpuMpData->FailedCpuList = FailedCpuList;
2192 CpuMpData->ExpectedTime = CalculateTimeout (
2193 TimeoutInMicroseconds,
2194 &CpuMpData->CurrentTime
2195 );
2196 CpuMpData->TotalTime = 0;
2197 CpuMpData->WaitEvent = WaitEvent;
2198
2199 if (!SingleThread) {
2200 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument);
2201 } else {
2202 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2203 if (ProcessorNumber == CallerNumber) {
2204 continue;
2205 }
2206 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
2207 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);
2208 break;
2209 }
2210 }
2211 }
2212
2213 Status = EFI_SUCCESS;
2214 if (WaitEvent == NULL) {
2215 do {
2216 Status = CheckAllAPs ();
2217 } while (Status == EFI_NOT_READY);
2218 }
2219
2220 return Status;
2221 }
2222
2223 /**
2224 Worker function to let the caller get one enabled AP to execute a caller-provided
2225 function.
2226
2227 @param[in] Procedure A pointer to the function to be run on
2228 enabled APs of the system.
2229 @param[in] ProcessorNumber The handle number of the AP.
2230 @param[in] WaitEvent The event created by the caller with CreateEvent()
2231 service.
2232 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
2233 APs to return from Procedure, either for
2234 blocking or non-blocking mode.
2235 @param[in] ProcedureArgument The parameter passed into Procedure for
2236 all APs.
2237 @param[out] Finished If AP returns from Procedure before the
2238 timeout expires, its content is set to TRUE.
2239 Otherwise, the value is set to FALSE.
2240
2241 @retval EFI_SUCCESS In blocking mode, specified AP finished before
2242 the timeout expires.
2243 @retval others Failed to Startup AP.
2244
2245 **/
2246 EFI_STATUS
2247 StartupThisAPWorker (
2248 IN EFI_AP_PROCEDURE Procedure,
2249 IN UINTN ProcessorNumber,
2250 IN EFI_EVENT WaitEvent OPTIONAL,
2251 IN UINTN TimeoutInMicroseconds,
2252 IN VOID *ProcedureArgument OPTIONAL,
2253 OUT BOOLEAN *Finished OPTIONAL
2254 )
2255 {
2256 EFI_STATUS Status;
2257 CPU_MP_DATA *CpuMpData;
2258 CPU_AP_DATA *CpuData;
2259 UINTN CallerNumber;
2260
2261 CpuMpData = GetCpuMpData ();
2262
2263 if (Finished != NULL) {
2264 *Finished = FALSE;
2265 }
2266
2267 //
2268 // Check whether caller processor is BSP
2269 //
2270 MpInitLibWhoAmI (&CallerNumber);
2271 if (CallerNumber != CpuMpData->BspNumber) {
2272 return EFI_DEVICE_ERROR;
2273 }
2274
2275 //
2276 // Check whether processor with the handle specified by ProcessorNumber exists
2277 //
2278 if (ProcessorNumber >= CpuMpData->CpuCount) {
2279 return EFI_NOT_FOUND;
2280 }
2281
2282 //
2283 // Check whether specified processor is BSP
2284 //
2285 if (ProcessorNumber == CpuMpData->BspNumber) {
2286 return EFI_INVALID_PARAMETER;
2287 }
2288
2289 //
2290 // Check parameter Procedure
2291 //
2292 if (Procedure == NULL) {
2293 return EFI_INVALID_PARAMETER;
2294 }
2295
2296 //
2297 // Update AP state
2298 //
2299 CheckAndUpdateApsStatus ();
2300
2301 //
2302 // Check whether specified AP is disabled
2303 //
2304 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
2305 return EFI_INVALID_PARAMETER;
2306 }
2307
2308 //
2309 // If WaitEvent is not NULL, execute in non-blocking mode.
2310 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
2311 // CheckAPsStatus() will check completion and timeout periodically.
2312 //
2313 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2314 CpuData->WaitEvent = WaitEvent;
2315 CpuData->Finished = Finished;
2316 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
2317 CpuData->TotalTime = 0;
2318
2319 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);
2320
2321 //
2322 // If WaitEvent is NULL, execute in blocking mode.
2323 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
2324 //
2325 Status = EFI_SUCCESS;
2326 if (WaitEvent == NULL) {
2327 do {
2328 Status = CheckThisAP (ProcessorNumber);
2329 } while (Status == EFI_NOT_READY);
2330 }
2331
2332 return Status;
2333 }
2334
2335 /**
2336 Get pointer to CPU MP Data structure from GUIDed HOB.
2337
2338 @return The pointer to CPU MP Data structure.
2339 **/
2340 CPU_MP_DATA *
2341 GetCpuMpDataFromGuidedHob (
2342 VOID
2343 )
2344 {
2345 EFI_HOB_GUID_TYPE *GuidHob;
2346 VOID *DataInHob;
2347 CPU_MP_DATA *CpuMpData;
2348
2349 CpuMpData = NULL;
2350 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);
2351 if (GuidHob != NULL) {
2352 DataInHob = GET_GUID_HOB_DATA (GuidHob);
2353 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);
2354 }
2355 return CpuMpData;
2356 }
2357