]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/Library/MpInitLib/MpLib.c
594a035d8b927ec031daff272c600d7c81dfd447
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
1 /** @file
2 CPU MP Initialize Library common functions.
3
4 Copyright (c) 2016 - 2019, Intel Corporation. All rights reserved.<BR>
5 SPDX-License-Identifier: BSD-2-Clause-Patent
6
7 **/
8
9 #include "MpLib.h"
10
11 EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;
12
13 /**
14 The function will check if BSP Execute Disable is enabled.
15
16 DxeIpl may have enabled Execute Disable for BSP, APs need to
17 get the status and sync up the settings.
18 If BSP's CR0.Paging is not set, BSP execute Disble feature is
19 not working actually.
20
21 @retval TRUE BSP Execute Disable is enabled.
22 @retval FALSE BSP Execute Disable is not enabled.
23 **/
24 BOOLEAN
25 IsBspExecuteDisableEnabled (
26 VOID
27 )
28 {
29 UINT32 Eax;
30 CPUID_EXTENDED_CPU_SIG_EDX Edx;
31 MSR_IA32_EFER_REGISTER EferMsr;
32 BOOLEAN Enabled;
33 IA32_CR0 Cr0;
34
35 Enabled = FALSE;
36 Cr0.UintN = AsmReadCr0 ();
37 if (Cr0.Bits.PG != 0) {
38 //
39 // If CR0 Paging bit is set
40 //
41 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);
42 if (Eax >= CPUID_EXTENDED_CPU_SIG) {
43 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);
44 //
45 // CPUID 0x80000001
46 // Bit 20: Execute Disable Bit available.
47 //
48 if (Edx.Bits.NX != 0) {
49 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);
50 //
51 // MSR 0xC0000080
52 // Bit 11: Execute Disable Bit enable.
53 //
54 if (EferMsr.Bits.NXE != 0) {
55 Enabled = TRUE;
56 }
57 }
58 }
59 }
60
61 return Enabled;
62 }
63
64 /**
65 Worker function for SwitchBSP().
66
67 Worker function for SwitchBSP(), assigned to the AP which is intended
68 to become BSP.
69
70 @param[in] Buffer Pointer to CPU MP Data
71 **/
72 VOID
73 EFIAPI
74 FutureBSPProc (
75 IN VOID *Buffer
76 )
77 {
78 CPU_MP_DATA *DataInHob;
79
80 DataInHob = (CPU_MP_DATA *) Buffer;
81 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);
82 }
83
84 /**
85 Get the Application Processors state.
86
87 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
88
89 @return The AP status
90 **/
91 CPU_STATE
92 GetApState (
93 IN CPU_AP_DATA *CpuData
94 )
95 {
96 return CpuData->State;
97 }
98
99 /**
100 Set the Application Processors state.
101
102 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
103 @param[in] State The AP status
104 **/
105 VOID
106 SetApState (
107 IN CPU_AP_DATA *CpuData,
108 IN CPU_STATE State
109 )
110 {
111 AcquireSpinLock (&CpuData->ApLock);
112 CpuData->State = State;
113 ReleaseSpinLock (&CpuData->ApLock);
114 }
115
116 /**
117 Save BSP's local APIC timer setting.
118
119 @param[in] CpuMpData Pointer to CPU MP Data
120 **/
121 VOID
122 SaveLocalApicTimerSetting (
123 IN CPU_MP_DATA *CpuMpData
124 )
125 {
126 //
127 // Record the current local APIC timer setting of BSP
128 //
129 GetApicTimerState (
130 &CpuMpData->DivideValue,
131 &CpuMpData->PeriodicMode,
132 &CpuMpData->Vector
133 );
134 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();
135 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();
136 }
137
138 /**
139 Sync local APIC timer setting from BSP to AP.
140
141 @param[in] CpuMpData Pointer to CPU MP Data
142 **/
143 VOID
144 SyncLocalApicTimerSetting (
145 IN CPU_MP_DATA *CpuMpData
146 )
147 {
148 //
149 // Sync local APIC timer setting from BSP to AP
150 //
151 InitializeApicTimer (
152 CpuMpData->DivideValue,
153 CpuMpData->CurrentTimerCount,
154 CpuMpData->PeriodicMode,
155 CpuMpData->Vector
156 );
157 //
158 // Disable AP's local APIC timer interrupt
159 //
160 DisableApicTimerInterrupt ();
161 }
162
163 /**
164 Save the volatile registers required to be restored following INIT IPI.
165
166 @param[out] VolatileRegisters Returns buffer saved the volatile resisters
167 **/
168 VOID
169 SaveVolatileRegisters (
170 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters
171 )
172 {
173 CPUID_VERSION_INFO_EDX VersionInfoEdx;
174
175 VolatileRegisters->Cr0 = AsmReadCr0 ();
176 VolatileRegisters->Cr3 = AsmReadCr3 ();
177 VolatileRegisters->Cr4 = AsmReadCr4 ();
178
179 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
180 if (VersionInfoEdx.Bits.DE != 0) {
181 //
182 // If processor supports Debugging Extensions feature
183 // by CPUID.[EAX=01H]:EDX.BIT2
184 //
185 VolatileRegisters->Dr0 = AsmReadDr0 ();
186 VolatileRegisters->Dr1 = AsmReadDr1 ();
187 VolatileRegisters->Dr2 = AsmReadDr2 ();
188 VolatileRegisters->Dr3 = AsmReadDr3 ();
189 VolatileRegisters->Dr6 = AsmReadDr6 ();
190 VolatileRegisters->Dr7 = AsmReadDr7 ();
191 }
192
193 AsmReadGdtr (&VolatileRegisters->Gdtr);
194 AsmReadIdtr (&VolatileRegisters->Idtr);
195 VolatileRegisters->Tr = AsmReadTr ();
196 }
197
198 /**
199 Restore the volatile registers following INIT IPI.
200
201 @param[in] VolatileRegisters Pointer to volatile resisters
202 @param[in] IsRestoreDr TRUE: Restore DRx if supported
203 FALSE: Do not restore DRx
204 **/
205 VOID
206 RestoreVolatileRegisters (
207 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,
208 IN BOOLEAN IsRestoreDr
209 )
210 {
211 CPUID_VERSION_INFO_EDX VersionInfoEdx;
212 IA32_TSS_DESCRIPTOR *Tss;
213
214 AsmWriteCr3 (VolatileRegisters->Cr3);
215 AsmWriteCr4 (VolatileRegisters->Cr4);
216 AsmWriteCr0 (VolatileRegisters->Cr0);
217
218 if (IsRestoreDr) {
219 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
220 if (VersionInfoEdx.Bits.DE != 0) {
221 //
222 // If processor supports Debugging Extensions feature
223 // by CPUID.[EAX=01H]:EDX.BIT2
224 //
225 AsmWriteDr0 (VolatileRegisters->Dr0);
226 AsmWriteDr1 (VolatileRegisters->Dr1);
227 AsmWriteDr2 (VolatileRegisters->Dr2);
228 AsmWriteDr3 (VolatileRegisters->Dr3);
229 AsmWriteDr6 (VolatileRegisters->Dr6);
230 AsmWriteDr7 (VolatileRegisters->Dr7);
231 }
232 }
233
234 AsmWriteGdtr (&VolatileRegisters->Gdtr);
235 AsmWriteIdtr (&VolatileRegisters->Idtr);
236 if (VolatileRegisters->Tr != 0 &&
237 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {
238 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +
239 VolatileRegisters->Tr);
240 if (Tss->Bits.P == 1) {
241 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case
242 AsmWriteTr (VolatileRegisters->Tr);
243 }
244 }
245 }
246
247 /**
248 Detect whether Mwait-monitor feature is supported.
249
250 @retval TRUE Mwait-monitor feature is supported.
251 @retval FALSE Mwait-monitor feature is not supported.
252 **/
253 BOOLEAN
254 IsMwaitSupport (
255 VOID
256 )
257 {
258 CPUID_VERSION_INFO_ECX VersionInfoEcx;
259
260 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);
261 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;
262 }
263
264 /**
265 Get AP loop mode.
266
267 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.
268
269 @return The AP loop mode.
270 **/
271 UINT8
272 GetApLoopMode (
273 OUT UINT32 *MonitorFilterSize
274 )
275 {
276 UINT8 ApLoopMode;
277 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;
278
279 ASSERT (MonitorFilterSize != NULL);
280
281 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
282 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);
283 if (ApLoopMode == ApInMwaitLoop) {
284 if (!IsMwaitSupport ()) {
285 //
286 // If processor does not support MONITOR/MWAIT feature,
287 // force AP in Hlt-loop mode
288 //
289 ApLoopMode = ApInHltLoop;
290 }
291 }
292
293 if (ApLoopMode != ApInMwaitLoop) {
294 *MonitorFilterSize = sizeof (UINT32);
295 } else {
296 //
297 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes
298 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT
299 //
300 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);
301 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;
302 }
303
304 return ApLoopMode;
305 }
306
307 /**
308 Sort the APIC ID of all processors.
309
310 This function sorts the APIC ID of all processors so that processor number is
311 assigned in the ascending order of APIC ID which eases MP debugging.
312
313 @param[in] CpuMpData Pointer to PEI CPU MP Data
314 **/
315 VOID
316 SortApicId (
317 IN CPU_MP_DATA *CpuMpData
318 )
319 {
320 UINTN Index1;
321 UINTN Index2;
322 UINTN Index3;
323 UINT32 ApicId;
324 CPU_INFO_IN_HOB CpuInfo;
325 UINT32 ApCount;
326 CPU_INFO_IN_HOB *CpuInfoInHob;
327 volatile UINT32 *StartupApSignal;
328
329 ApCount = CpuMpData->CpuCount - 1;
330 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
331 if (ApCount != 0) {
332 for (Index1 = 0; Index1 < ApCount; Index1++) {
333 Index3 = Index1;
334 //
335 // Sort key is the hardware default APIC ID
336 //
337 ApicId = CpuInfoInHob[Index1].ApicId;
338 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {
339 if (ApicId > CpuInfoInHob[Index2].ApicId) {
340 Index3 = Index2;
341 ApicId = CpuInfoInHob[Index2].ApicId;
342 }
343 }
344 if (Index3 != Index1) {
345 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));
346 CopyMem (
347 &CpuInfoInHob[Index3],
348 &CpuInfoInHob[Index1],
349 sizeof (CPU_INFO_IN_HOB)
350 );
351 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));
352
353 //
354 // Also exchange the StartupApSignal.
355 //
356 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;
357 CpuMpData->CpuData[Index3].StartupApSignal =
358 CpuMpData->CpuData[Index1].StartupApSignal;
359 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;
360 }
361 }
362
363 //
364 // Get the processor number for the BSP
365 //
366 ApicId = GetInitialApicId ();
367 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
368 if (CpuInfoInHob[Index1].ApicId == ApicId) {
369 CpuMpData->BspNumber = (UINT32) Index1;
370 break;
371 }
372 }
373 }
374 }
375
376 /**
377 Enable x2APIC mode on APs.
378
379 @param[in, out] Buffer Pointer to private data buffer.
380 **/
381 VOID
382 EFIAPI
383 ApFuncEnableX2Apic (
384 IN OUT VOID *Buffer
385 )
386 {
387 SetApicMode (LOCAL_APIC_MODE_X2APIC);
388 }
389
390 /**
391 Do sync on APs.
392
393 @param[in, out] Buffer Pointer to private data buffer.
394 **/
395 VOID
396 EFIAPI
397 ApInitializeSync (
398 IN OUT VOID *Buffer
399 )
400 {
401 CPU_MP_DATA *CpuMpData;
402
403 CpuMpData = (CPU_MP_DATA *) Buffer;
404 //
405 // Load microcode on AP
406 //
407 MicrocodeDetect (CpuMpData, FALSE);
408 //
409 // Sync BSP's MTRR table to AP
410 //
411 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);
412 }
413
414 /**
415 Find the current Processor number by APIC ID.
416
417 @param[in] CpuMpData Pointer to PEI CPU MP Data
418 @param[out] ProcessorNumber Return the pocessor number found
419
420 @retval EFI_SUCCESS ProcessorNumber is found and returned.
421 @retval EFI_NOT_FOUND ProcessorNumber is not found.
422 **/
423 EFI_STATUS
424 GetProcessorNumber (
425 IN CPU_MP_DATA *CpuMpData,
426 OUT UINTN *ProcessorNumber
427 )
428 {
429 UINTN TotalProcessorNumber;
430 UINTN Index;
431 CPU_INFO_IN_HOB *CpuInfoInHob;
432 UINT32 CurrentApicId;
433
434 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
435
436 TotalProcessorNumber = CpuMpData->CpuCount;
437 CurrentApicId = GetApicId ();
438 for (Index = 0; Index < TotalProcessorNumber; Index ++) {
439 if (CpuInfoInHob[Index].ApicId == CurrentApicId) {
440 *ProcessorNumber = Index;
441 return EFI_SUCCESS;
442 }
443 }
444
445 return EFI_NOT_FOUND;
446 }
447
448 /**
449 This function will get CPU count in the system.
450
451 @param[in] CpuMpData Pointer to PEI CPU MP Data
452
453 @return CPU count detected
454 **/
455 UINTN
456 CollectProcessorCount (
457 IN CPU_MP_DATA *CpuMpData
458 )
459 {
460 UINTN Index;
461
462 //
463 // Send 1st broadcast IPI to APs to wakeup APs
464 //
465 CpuMpData->InitFlag = ApInitConfig;
466 CpuMpData->X2ApicEnable = FALSE;
467 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);
468 CpuMpData->InitFlag = ApInitDone;
469 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
470 //
471 // Wait for all APs finished the initialization
472 //
473 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
474 CpuPause ();
475 }
476
477 if (CpuMpData->CpuCount > 255) {
478 //
479 // If there are more than 255 processor found, force to enable X2APIC
480 //
481 CpuMpData->X2ApicEnable = TRUE;
482 }
483 if (CpuMpData->X2ApicEnable) {
484 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));
485 //
486 // Wakeup all APs to enable x2APIC mode
487 //
488 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE);
489 //
490 // Wait for all known APs finished
491 //
492 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
493 CpuPause ();
494 }
495 //
496 // Enable x2APIC on BSP
497 //
498 SetApicMode (LOCAL_APIC_MODE_X2APIC);
499 //
500 // Set BSP/Aps state to IDLE
501 //
502 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
503 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
504 }
505 }
506 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));
507 //
508 // Sort BSP/Aps by CPU APIC ID in ascending order
509 //
510 SortApicId (CpuMpData);
511
512 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));
513
514 return CpuMpData->CpuCount;
515 }
516
517 /**
518 Initialize CPU AP Data when AP is wakeup at the first time.
519
520 @param[in, out] CpuMpData Pointer to PEI CPU MP Data
521 @param[in] ProcessorNumber The handle number of processor
522 @param[in] BistData Processor BIST data
523 @param[in] ApTopOfStack Top of AP stack
524
525 **/
526 VOID
527 InitializeApData (
528 IN OUT CPU_MP_DATA *CpuMpData,
529 IN UINTN ProcessorNumber,
530 IN UINT32 BistData,
531 IN UINT64 ApTopOfStack
532 )
533 {
534 CPU_INFO_IN_HOB *CpuInfoInHob;
535
536 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
537 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
538 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
539 CpuInfoInHob[ProcessorNumber].Health = BistData;
540 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;
541
542 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
543 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;
544 if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {
545 //
546 // Set x2APIC mode if there are any logical processor reporting
547 // an Initial APIC ID of 255 or greater.
548 //
549 AcquireSpinLock(&CpuMpData->MpLock);
550 CpuMpData->X2ApicEnable = TRUE;
551 ReleaseSpinLock(&CpuMpData->MpLock);
552 }
553
554 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);
555 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
556 }
557
558 /**
559 This function will be called from AP reset code if BSP uses WakeUpAP.
560
561 @param[in] ExchangeInfo Pointer to the MP exchange info buffer
562 @param[in] ApIndex Number of current executing AP
563 **/
564 VOID
565 EFIAPI
566 ApWakeupFunction (
567 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,
568 IN UINTN ApIndex
569 )
570 {
571 CPU_MP_DATA *CpuMpData;
572 UINTN ProcessorNumber;
573 EFI_AP_PROCEDURE Procedure;
574 VOID *Parameter;
575 UINT32 BistData;
576 volatile UINT32 *ApStartupSignalBuffer;
577 CPU_INFO_IN_HOB *CpuInfoInHob;
578 UINT64 ApTopOfStack;
579 UINTN CurrentApicMode;
580
581 //
582 // AP finished assembly code and begin to execute C code
583 //
584 CpuMpData = ExchangeInfo->CpuMpData;
585
586 //
587 // AP's local APIC settings will be lost after received INIT IPI
588 // We need to re-initialize them at here
589 //
590 ProgramVirtualWireMode ();
591 //
592 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.
593 //
594 DisableLvtInterrupts ();
595 SyncLocalApicTimerSetting (CpuMpData);
596
597 CurrentApicMode = GetApicMode ();
598 while (TRUE) {
599 if (CpuMpData->InitFlag == ApInitConfig) {
600 //
601 // Add CPU number
602 //
603 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);
604 ProcessorNumber = ApIndex;
605 //
606 // This is first time AP wakeup, get BIST information from AP stack
607 //
608 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;
609 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));
610 //
611 // Do some AP initialize sync
612 //
613 ApInitializeSync (CpuMpData);
614 //
615 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,
616 // to initialize AP in InitConfig path.
617 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.
618 //
619 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
620 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);
621 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
622
623 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);
624 } else {
625 //
626 // Execute AP function if AP is ready
627 //
628 GetProcessorNumber (CpuMpData, &ProcessorNumber);
629 //
630 // Clear AP start-up signal when AP waken up
631 //
632 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
633 InterlockedCompareExchange32 (
634 (UINT32 *) ApStartupSignalBuffer,
635 WAKEUP_AP_SIGNAL,
636 0
637 );
638 if (CpuMpData->ApLoopMode == ApInHltLoop) {
639 //
640 // Restore AP's volatile registers saved
641 //
642 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);
643 } else {
644 //
645 // The CPU driver might not flush TLB for APs on spot after updating
646 // page attributes. AP in mwait loop mode needs to take care of it when
647 // woken up.
648 //
649 CpuFlushTlb ();
650 }
651
652 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {
653 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;
654 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;
655 if (Procedure != NULL) {
656 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);
657 //
658 // Enable source debugging on AP function
659 //
660 EnableDebugAgent ();
661 //
662 // Invoke AP function here
663 //
664 Procedure (Parameter);
665 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
666 if (CpuMpData->SwitchBspFlag) {
667 //
668 // Re-get the processor number due to BSP/AP maybe exchange in AP function
669 //
670 GetProcessorNumber (CpuMpData, &ProcessorNumber);
671 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;
672 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;
673 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
674 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;
675 } else {
676 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||
677 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {
678 if (CurrentApicMode != GetApicMode ()) {
679 //
680 // If APIC mode change happened during AP function execution,
681 // we do not support APIC ID value changed.
682 //
683 ASSERT (FALSE);
684 CpuDeadLoop ();
685 } else {
686 //
687 // Re-get the CPU APICID and Initial APICID if they are changed
688 //
689 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
690 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
691 }
692 }
693 }
694 }
695 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);
696 }
697 }
698
699 //
700 // AP finished executing C code
701 //
702 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);
703
704 //
705 // Place AP is specified loop mode
706 //
707 if (CpuMpData->ApLoopMode == ApInHltLoop) {
708 //
709 // Save AP volatile registers
710 //
711 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);
712 //
713 // Place AP in HLT-loop
714 //
715 while (TRUE) {
716 DisableInterrupts ();
717 CpuSleep ();
718 CpuPause ();
719 }
720 }
721 while (TRUE) {
722 DisableInterrupts ();
723 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
724 //
725 // Place AP in MWAIT-loop
726 //
727 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);
728 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {
729 //
730 // Check AP start-up signal again.
731 // If AP start-up signal is not set, place AP into
732 // the specified C-state
733 //
734 AsmMwait (CpuMpData->ApTargetCState << 4, 0);
735 }
736 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {
737 //
738 // Place AP in Run-loop
739 //
740 CpuPause ();
741 } else {
742 ASSERT (FALSE);
743 }
744
745 //
746 // If AP start-up signal is written, AP is waken up
747 // otherwise place AP in loop again
748 //
749 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {
750 break;
751 }
752 }
753 }
754 }
755
756 /**
757 Wait for AP wakeup and write AP start-up signal till AP is waken up.
758
759 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal
760 **/
761 VOID
762 WaitApWakeup (
763 IN volatile UINT32 *ApStartupSignalBuffer
764 )
765 {
766 //
767 // If AP is waken up, StartupApSignal should be cleared.
768 // Otherwise, write StartupApSignal again till AP waken up.
769 //
770 while (InterlockedCompareExchange32 (
771 (UINT32 *) ApStartupSignalBuffer,
772 WAKEUP_AP_SIGNAL,
773 WAKEUP_AP_SIGNAL
774 ) != 0) {
775 CpuPause ();
776 }
777 }
778
779 /**
780 This function will fill the exchange info structure.
781
782 @param[in] CpuMpData Pointer to CPU MP Data
783
784 **/
785 VOID
786 FillExchangeInfoData (
787 IN CPU_MP_DATA *CpuMpData
788 )
789 {
790 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
791 UINTN Size;
792 IA32_SEGMENT_DESCRIPTOR *Selector;
793 IA32_CR4 Cr4;
794
795 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
796 ExchangeInfo->Lock = 0;
797 ExchangeInfo->StackStart = CpuMpData->Buffer;
798 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;
799 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;
800 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;
801
802 ExchangeInfo->CodeSegment = AsmReadCs ();
803 ExchangeInfo->DataSegment = AsmReadDs ();
804
805 ExchangeInfo->Cr3 = AsmReadCr3 ();
806
807 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;
808 ExchangeInfo->ApIndex = 0;
809 ExchangeInfo->NumApsExecuting = 0;
810 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;
811 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
812 ExchangeInfo->CpuMpData = CpuMpData;
813
814 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();
815
816 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;
817
818 //
819 // We can check either CPUID(7).ECX[bit16] or check CR4.LA57[bit12]
820 // to determin whether 5-Level Paging is enabled.
821 // CPUID(7).ECX[bit16] shows CPU's capability, CR4.LA57[bit12] shows
822 // current system setting.
823 // Using latter way is simpler because it also eliminates the needs to
824 // check whether platform wants to enable it.
825 //
826 Cr4.UintN = AsmReadCr4 ();
827 ExchangeInfo->Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);
828 DEBUG ((DEBUG_INFO, "%a: 5-Level Paging = %d\n", gEfiCallerBaseName, ExchangeInfo->Enable5LevelPaging));
829
830 //
831 // Get the BSP's data of GDT and IDT
832 //
833 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);
834 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);
835
836 //
837 // Find a 32-bit code segment
838 //
839 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;
840 Size = ExchangeInfo->GdtrProfile.Limit + 1;
841 while (Size > 0) {
842 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {
843 ExchangeInfo->ModeTransitionSegment =
844 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);
845 break;
846 }
847 Selector += 1;
848 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);
849 }
850
851 //
852 // Copy all 32-bit code and 64-bit code into memory with type of
853 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.
854 //
855 if (CpuMpData->WakeupBufferHigh != 0) {
856 Size = CpuMpData->AddressMap.RendezvousFunnelSize -
857 CpuMpData->AddressMap.ModeTransitionOffset;
858 CopyMem (
859 (VOID *)CpuMpData->WakeupBufferHigh,
860 CpuMpData->AddressMap.RendezvousFunnelAddress +
861 CpuMpData->AddressMap.ModeTransitionOffset,
862 Size
863 );
864
865 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;
866 } else {
867 ExchangeInfo->ModeTransitionMemory = (UINT32)
868 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);
869 }
870
871 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +
872 (UINT32)ExchangeInfo->ModeOffset -
873 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;
874 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;
875 }
876
877 /**
878 Helper function that waits until the finished AP count reaches the specified
879 limit, or the specified timeout elapses (whichever comes first).
880
881 @param[in] CpuMpData Pointer to CPU MP Data.
882 @param[in] FinishedApLimit The number of finished APs to wait for.
883 @param[in] TimeLimit The number of microseconds to wait for.
884 **/
885 VOID
886 TimedWaitForApFinish (
887 IN CPU_MP_DATA *CpuMpData,
888 IN UINT32 FinishedApLimit,
889 IN UINT32 TimeLimit
890 );
891
892 /**
893 Get available system memory below 1MB by specified size.
894
895 @param[in] CpuMpData The pointer to CPU MP Data structure.
896 **/
897 VOID
898 BackupAndPrepareWakeupBuffer(
899 IN CPU_MP_DATA *CpuMpData
900 )
901 {
902 CopyMem (
903 (VOID *) CpuMpData->BackupBuffer,
904 (VOID *) CpuMpData->WakeupBuffer,
905 CpuMpData->BackupBufferSize
906 );
907 CopyMem (
908 (VOID *) CpuMpData->WakeupBuffer,
909 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,
910 CpuMpData->AddressMap.RendezvousFunnelSize
911 );
912 }
913
914 /**
915 Restore wakeup buffer data.
916
917 @param[in] CpuMpData The pointer to CPU MP Data structure.
918 **/
919 VOID
920 RestoreWakeupBuffer(
921 IN CPU_MP_DATA *CpuMpData
922 )
923 {
924 CopyMem (
925 (VOID *) CpuMpData->WakeupBuffer,
926 (VOID *) CpuMpData->BackupBuffer,
927 CpuMpData->BackupBufferSize
928 );
929 }
930
931 /**
932 Allocate reset vector buffer.
933
934 @param[in, out] CpuMpData The pointer to CPU MP Data structure.
935 **/
936 VOID
937 AllocateResetVector (
938 IN OUT CPU_MP_DATA *CpuMpData
939 )
940 {
941 UINTN ApResetVectorSize;
942
943 if (CpuMpData->WakeupBuffer == (UINTN) -1) {
944 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +
945 sizeof (MP_CPU_EXCHANGE_INFO);
946
947 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);
948 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)
949 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);
950 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (
951 CpuMpData->AddressMap.RendezvousFunnelSize -
952 CpuMpData->AddressMap.ModeTransitionOffset
953 );
954 }
955 BackupAndPrepareWakeupBuffer (CpuMpData);
956 }
957
958 /**
959 Free AP reset vector buffer.
960
961 @param[in] CpuMpData The pointer to CPU MP Data structure.
962 **/
963 VOID
964 FreeResetVector (
965 IN CPU_MP_DATA *CpuMpData
966 )
967 {
968 RestoreWakeupBuffer (CpuMpData);
969 }
970
971 /**
972 This function will be called by BSP to wakeup AP.
973
974 @param[in] CpuMpData Pointer to CPU MP Data
975 @param[in] Broadcast TRUE: Send broadcast IPI to all APs
976 FALSE: Send IPI to AP by ApicId
977 @param[in] ProcessorNumber The handle number of specified processor
978 @param[in] Procedure The function to be invoked by AP
979 @param[in] ProcedureArgument The argument to be passed into AP function
980 @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode.
981 **/
982 VOID
983 WakeUpAP (
984 IN CPU_MP_DATA *CpuMpData,
985 IN BOOLEAN Broadcast,
986 IN UINTN ProcessorNumber,
987 IN EFI_AP_PROCEDURE Procedure, OPTIONAL
988 IN VOID *ProcedureArgument, OPTIONAL
989 IN BOOLEAN WakeUpDisabledAps
990 )
991 {
992 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
993 UINTN Index;
994 CPU_AP_DATA *CpuData;
995 BOOLEAN ResetVectorRequired;
996 CPU_INFO_IN_HOB *CpuInfoInHob;
997
998 CpuMpData->FinishedCount = 0;
999 ResetVectorRequired = FALSE;
1000
1001 if (CpuMpData->WakeUpByInitSipiSipi ||
1002 CpuMpData->InitFlag != ApInitDone) {
1003 ResetVectorRequired = TRUE;
1004 AllocateResetVector (CpuMpData);
1005 FillExchangeInfoData (CpuMpData);
1006 SaveLocalApicTimerSetting (CpuMpData);
1007 }
1008
1009 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
1010 //
1011 // Get AP target C-state each time when waking up AP,
1012 // for it maybe updated by platform again
1013 //
1014 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);
1015 }
1016
1017 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
1018
1019 if (Broadcast) {
1020 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1021 if (Index != CpuMpData->BspNumber) {
1022 CpuData = &CpuMpData->CpuData[Index];
1023 //
1024 // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but
1025 // the AP procedure will be skipped for disabled AP because AP state
1026 // is not CpuStateReady.
1027 //
1028 if (GetApState (CpuData) == CpuStateDisabled && !WakeUpDisabledAps) {
1029 continue;
1030 }
1031
1032 CpuData->ApFunction = (UINTN) Procedure;
1033 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
1034 SetApState (CpuData, CpuStateReady);
1035 if (CpuMpData->InitFlag != ApInitConfig) {
1036 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
1037 }
1038 }
1039 }
1040 if (ResetVectorRequired) {
1041 //
1042 // Wakeup all APs
1043 //
1044 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);
1045 }
1046 if (CpuMpData->InitFlag == ApInitConfig) {
1047 //
1048 // The AP enumeration algorithm below is suitable for two use cases.
1049 //
1050 // (1) The check-in time for an individual AP is bounded, and APs run
1051 // through their initialization routines strongly concurrently. In
1052 // particular, the number of concurrently running APs
1053 // ("NumApsExecuting") is never expected to fall to zero
1054 // *temporarily* -- it is expected to fall to zero only when all
1055 // APs have checked-in.
1056 //
1057 // In this case, the platform is supposed to set
1058 // PcdCpuApInitTimeOutInMicroSeconds to a low-ish value (just long
1059 // enough for one AP to start initialization). The timeout will be
1060 // reached soon, and remaining APs are collected by watching
1061 // NumApsExecuting fall to zero. If NumApsExecuting falls to zero
1062 // mid-process, while some APs have not completed initialization,
1063 // the behavior is undefined.
1064 //
1065 // (2) The check-in time for an individual AP is unbounded, and/or APs
1066 // may complete their initializations widely spread out. In
1067 // particular, some APs may finish initialization before some APs
1068 // even start.
1069 //
1070 // In this case, the platform is supposed to set
1071 // PcdCpuApInitTimeOutInMicroSeconds to a high-ish value. The AP
1072 // enumeration will always take that long (except when the boot CPU
1073 // count happens to be maximal, that is,
1074 // PcdCpuMaxLogicalProcessorNumber). All APs are expected to
1075 // check-in before the timeout, and NumApsExecuting is assumed zero
1076 // at timeout. APs that miss the time-out may cause undefined
1077 // behavior.
1078 //
1079 TimedWaitForApFinish (
1080 CpuMpData,
1081 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,
1082 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)
1083 );
1084
1085 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {
1086 CpuPause();
1087 }
1088 } else {
1089 //
1090 // Wait all APs waken up if this is not the 1st broadcast of SIPI
1091 //
1092 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1093 CpuData = &CpuMpData->CpuData[Index];
1094 if (Index != CpuMpData->BspNumber) {
1095 WaitApWakeup (CpuData->StartupApSignal);
1096 }
1097 }
1098 }
1099 } else {
1100 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1101 CpuData->ApFunction = (UINTN) Procedure;
1102 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
1103 SetApState (CpuData, CpuStateReady);
1104 //
1105 // Wakeup specified AP
1106 //
1107 ASSERT (CpuMpData->InitFlag != ApInitConfig);
1108 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
1109 if (ResetVectorRequired) {
1110 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1111 SendInitSipiSipi (
1112 CpuInfoInHob[ProcessorNumber].ApicId,
1113 (UINT32) ExchangeInfo->BufferStart
1114 );
1115 }
1116 //
1117 // Wait specified AP waken up
1118 //
1119 WaitApWakeup (CpuData->StartupApSignal);
1120 }
1121
1122 if (ResetVectorRequired) {
1123 FreeResetVector (CpuMpData);
1124 }
1125
1126 //
1127 // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with
1128 // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by
1129 // S3SmmInitDone Ppi.
1130 //
1131 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
1132 }
1133
1134 /**
1135 Calculate timeout value and return the current performance counter value.
1136
1137 Calculate the number of performance counter ticks required for a timeout.
1138 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1139 as infinity.
1140
1141 @param[in] TimeoutInMicroseconds Timeout value in microseconds.
1142 @param[out] CurrentTime Returns the current value of the performance counter.
1143
1144 @return Expected time stamp counter for timeout.
1145 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1146 as infinity.
1147
1148 **/
1149 UINT64
1150 CalculateTimeout (
1151 IN UINTN TimeoutInMicroseconds,
1152 OUT UINT64 *CurrentTime
1153 )
1154 {
1155 UINT64 TimeoutInSeconds;
1156 UINT64 TimestampCounterFreq;
1157
1158 //
1159 // Read the current value of the performance counter
1160 //
1161 *CurrentTime = GetPerformanceCounter ();
1162
1163 //
1164 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1165 // as infinity.
1166 //
1167 if (TimeoutInMicroseconds == 0) {
1168 return 0;
1169 }
1170
1171 //
1172 // GetPerformanceCounterProperties () returns the timestamp counter's frequency
1173 // in Hz.
1174 //
1175 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);
1176
1177 //
1178 // Check the potential overflow before calculate the number of ticks for the timeout value.
1179 //
1180 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {
1181 //
1182 // Convert microseconds into seconds if direct multiplication overflows
1183 //
1184 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);
1185 //
1186 // Assertion if the final tick count exceeds MAX_UINT64
1187 //
1188 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);
1189 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);
1190 } else {
1191 //
1192 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide
1193 // it by 1,000,000, to get the number of ticks for the timeout value.
1194 //
1195 return DivU64x32 (
1196 MultU64x64 (
1197 TimestampCounterFreq,
1198 TimeoutInMicroseconds
1199 ),
1200 1000000
1201 );
1202 }
1203 }
1204
1205 /**
1206 Checks whether timeout expires.
1207
1208 Check whether the number of elapsed performance counter ticks required for
1209 a timeout condition has been reached.
1210 If Timeout is zero, which means infinity, return value is always FALSE.
1211
1212 @param[in, out] PreviousTime On input, the value of the performance counter
1213 when it was last read.
1214 On output, the current value of the performance
1215 counter
1216 @param[in] TotalTime The total amount of elapsed time in performance
1217 counter ticks.
1218 @param[in] Timeout The number of performance counter ticks required
1219 to reach a timeout condition.
1220
1221 @retval TRUE A timeout condition has been reached.
1222 @retval FALSE A timeout condition has not been reached.
1223
1224 **/
1225 BOOLEAN
1226 CheckTimeout (
1227 IN OUT UINT64 *PreviousTime,
1228 IN UINT64 *TotalTime,
1229 IN UINT64 Timeout
1230 )
1231 {
1232 UINT64 Start;
1233 UINT64 End;
1234 UINT64 CurrentTime;
1235 INT64 Delta;
1236 INT64 Cycle;
1237
1238 if (Timeout == 0) {
1239 return FALSE;
1240 }
1241 GetPerformanceCounterProperties (&Start, &End);
1242 Cycle = End - Start;
1243 if (Cycle < 0) {
1244 Cycle = -Cycle;
1245 }
1246 Cycle++;
1247 CurrentTime = GetPerformanceCounter();
1248 Delta = (INT64) (CurrentTime - *PreviousTime);
1249 if (Start > End) {
1250 Delta = -Delta;
1251 }
1252 if (Delta < 0) {
1253 Delta += Cycle;
1254 }
1255 *TotalTime += Delta;
1256 *PreviousTime = CurrentTime;
1257 if (*TotalTime > Timeout) {
1258 return TRUE;
1259 }
1260 return FALSE;
1261 }
1262
1263 /**
1264 Helper function that waits until the finished AP count reaches the specified
1265 limit, or the specified timeout elapses (whichever comes first).
1266
1267 @param[in] CpuMpData Pointer to CPU MP Data.
1268 @param[in] FinishedApLimit The number of finished APs to wait for.
1269 @param[in] TimeLimit The number of microseconds to wait for.
1270 **/
1271 VOID
1272 TimedWaitForApFinish (
1273 IN CPU_MP_DATA *CpuMpData,
1274 IN UINT32 FinishedApLimit,
1275 IN UINT32 TimeLimit
1276 )
1277 {
1278 //
1279 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0
1280 // "infinity", so check for (TimeLimit == 0) explicitly.
1281 //
1282 if (TimeLimit == 0) {
1283 return;
1284 }
1285
1286 CpuMpData->TotalTime = 0;
1287 CpuMpData->ExpectedTime = CalculateTimeout (
1288 TimeLimit,
1289 &CpuMpData->CurrentTime
1290 );
1291 while (CpuMpData->FinishedCount < FinishedApLimit &&
1292 !CheckTimeout (
1293 &CpuMpData->CurrentTime,
1294 &CpuMpData->TotalTime,
1295 CpuMpData->ExpectedTime
1296 )) {
1297 CpuPause ();
1298 }
1299
1300 if (CpuMpData->FinishedCount >= FinishedApLimit) {
1301 DEBUG ((
1302 DEBUG_VERBOSE,
1303 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",
1304 __FUNCTION__,
1305 FinishedApLimit,
1306 DivU64x64Remainder (
1307 MultU64x32 (CpuMpData->TotalTime, 1000000),
1308 GetPerformanceCounterProperties (NULL, NULL),
1309 NULL
1310 )
1311 ));
1312 }
1313 }
1314
1315 /**
1316 Reset an AP to Idle state.
1317
1318 Any task being executed by the AP will be aborted and the AP
1319 will be waiting for a new task in Wait-For-SIPI state.
1320
1321 @param[in] ProcessorNumber The handle number of processor.
1322 **/
1323 VOID
1324 ResetProcessorToIdleState (
1325 IN UINTN ProcessorNumber
1326 )
1327 {
1328 CPU_MP_DATA *CpuMpData;
1329
1330 CpuMpData = GetCpuMpData ();
1331
1332 CpuMpData->InitFlag = ApInitReconfig;
1333 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE);
1334 while (CpuMpData->FinishedCount < 1) {
1335 CpuPause ();
1336 }
1337 CpuMpData->InitFlag = ApInitDone;
1338
1339 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
1340 }
1341
1342 /**
1343 Searches for the next waiting AP.
1344
1345 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().
1346
1347 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.
1348
1349 @retval EFI_SUCCESS The next waiting AP has been found.
1350 @retval EFI_NOT_FOUND No waiting AP exists.
1351
1352 **/
1353 EFI_STATUS
1354 GetNextWaitingProcessorNumber (
1355 OUT UINTN *NextProcessorNumber
1356 )
1357 {
1358 UINTN ProcessorNumber;
1359 CPU_MP_DATA *CpuMpData;
1360
1361 CpuMpData = GetCpuMpData ();
1362
1363 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1364 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1365 *NextProcessorNumber = ProcessorNumber;
1366 return EFI_SUCCESS;
1367 }
1368 }
1369
1370 return EFI_NOT_FOUND;
1371 }
1372
1373 /** Checks status of specified AP.
1374
1375 This function checks whether the specified AP has finished the task assigned
1376 by StartupThisAP(), and whether timeout expires.
1377
1378 @param[in] ProcessorNumber The handle number of processor.
1379
1380 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().
1381 @retval EFI_TIMEOUT The timeout expires.
1382 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.
1383 **/
1384 EFI_STATUS
1385 CheckThisAP (
1386 IN UINTN ProcessorNumber
1387 )
1388 {
1389 CPU_MP_DATA *CpuMpData;
1390 CPU_AP_DATA *CpuData;
1391
1392 CpuMpData = GetCpuMpData ();
1393 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1394
1395 //
1396 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
1397 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1398 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
1399 //
1400 //
1401 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.
1402 //
1403 if (GetApState(CpuData) == CpuStateFinished) {
1404 if (CpuData->Finished != NULL) {
1405 *(CpuData->Finished) = TRUE;
1406 }
1407 SetApState (CpuData, CpuStateIdle);
1408 return EFI_SUCCESS;
1409 } else {
1410 //
1411 // If timeout expires for StartupThisAP(), report timeout.
1412 //
1413 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
1414 if (CpuData->Finished != NULL) {
1415 *(CpuData->Finished) = FALSE;
1416 }
1417 //
1418 // Reset failed AP to idle state
1419 //
1420 ResetProcessorToIdleState (ProcessorNumber);
1421
1422 return EFI_TIMEOUT;
1423 }
1424 }
1425 return EFI_NOT_READY;
1426 }
1427
1428 /**
1429 Checks status of all APs.
1430
1431 This function checks whether all APs have finished task assigned by StartupAllAPs(),
1432 and whether timeout expires.
1433
1434 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().
1435 @retval EFI_TIMEOUT The timeout expires.
1436 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.
1437 **/
1438 EFI_STATUS
1439 CheckAllAPs (
1440 VOID
1441 )
1442 {
1443 UINTN ProcessorNumber;
1444 UINTN NextProcessorNumber;
1445 UINTN ListIndex;
1446 EFI_STATUS Status;
1447 CPU_MP_DATA *CpuMpData;
1448 CPU_AP_DATA *CpuData;
1449
1450 CpuMpData = GetCpuMpData ();
1451
1452 NextProcessorNumber = 0;
1453
1454 //
1455 // Go through all APs that are responsible for the StartupAllAPs().
1456 //
1457 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1458 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {
1459 continue;
1460 }
1461
1462 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1463 //
1464 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
1465 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1466 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
1467 //
1468 if (GetApState(CpuData) == CpuStateFinished) {
1469 CpuMpData->RunningCount --;
1470 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1471 SetApState(CpuData, CpuStateIdle);
1472
1473 //
1474 // If in Single Thread mode, then search for the next waiting AP for execution.
1475 //
1476 if (CpuMpData->SingleThread) {
1477 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);
1478
1479 if (!EFI_ERROR (Status)) {
1480 WakeUpAP (
1481 CpuMpData,
1482 FALSE,
1483 (UINT32) NextProcessorNumber,
1484 CpuMpData->Procedure,
1485 CpuMpData->ProcArguments,
1486 TRUE
1487 );
1488 }
1489 }
1490 }
1491 }
1492
1493 //
1494 // If all APs finish, return EFI_SUCCESS.
1495 //
1496 if (CpuMpData->RunningCount == 0) {
1497 return EFI_SUCCESS;
1498 }
1499
1500 //
1501 // If timeout expires, report timeout.
1502 //
1503 if (CheckTimeout (
1504 &CpuMpData->CurrentTime,
1505 &CpuMpData->TotalTime,
1506 CpuMpData->ExpectedTime)
1507 ) {
1508 //
1509 // If FailedCpuList is not NULL, record all failed APs in it.
1510 //
1511 if (CpuMpData->FailedCpuList != NULL) {
1512 *CpuMpData->FailedCpuList =
1513 AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN));
1514 ASSERT (*CpuMpData->FailedCpuList != NULL);
1515 }
1516 ListIndex = 0;
1517
1518 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1519 //
1520 // Check whether this processor is responsible for StartupAllAPs().
1521 //
1522 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1523 //
1524 // Reset failed APs to idle state
1525 //
1526 ResetProcessorToIdleState (ProcessorNumber);
1527 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1528 if (CpuMpData->FailedCpuList != NULL) {
1529 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;
1530 }
1531 }
1532 }
1533 if (CpuMpData->FailedCpuList != NULL) {
1534 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;
1535 }
1536 return EFI_TIMEOUT;
1537 }
1538 return EFI_NOT_READY;
1539 }
1540
1541 /**
1542 MP Initialize Library initialization.
1543
1544 This service will allocate AP reset vector and wakeup all APs to do APs
1545 initialization.
1546
1547 This service must be invoked before all other MP Initialize Library
1548 service are invoked.
1549
1550 @retval EFI_SUCCESS MP initialization succeeds.
1551 @retval Others MP initialization fails.
1552
1553 **/
1554 EFI_STATUS
1555 EFIAPI
1556 MpInitLibInitialize (
1557 VOID
1558 )
1559 {
1560 CPU_MP_DATA *OldCpuMpData;
1561 CPU_INFO_IN_HOB *CpuInfoInHob;
1562 UINT32 MaxLogicalProcessorNumber;
1563 UINT32 ApStackSize;
1564 MP_ASSEMBLY_ADDRESS_MAP AddressMap;
1565 CPU_VOLATILE_REGISTERS VolatileRegisters;
1566 UINTN BufferSize;
1567 UINT32 MonitorFilterSize;
1568 VOID *MpBuffer;
1569 UINTN Buffer;
1570 CPU_MP_DATA *CpuMpData;
1571 UINT8 ApLoopMode;
1572 UINT8 *MonitorBuffer;
1573 UINTN Index;
1574 UINTN ApResetVectorSize;
1575 UINTN BackupBufferAddr;
1576 UINTN ApIdtBase;
1577 VOID *MicrocodePatchInRam;
1578
1579 OldCpuMpData = GetCpuMpDataFromGuidedHob ();
1580 if (OldCpuMpData == NULL) {
1581 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);
1582 } else {
1583 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;
1584 }
1585 ASSERT (MaxLogicalProcessorNumber != 0);
1586
1587 AsmGetAddressMap (&AddressMap);
1588 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);
1589 ApStackSize = PcdGet32(PcdCpuApStackSize);
1590 ApLoopMode = GetApLoopMode (&MonitorFilterSize);
1591
1592 //
1593 // Save BSP's Control registers for APs.
1594 //
1595 SaveVolatileRegisters (&VolatileRegisters);
1596
1597 BufferSize = ApStackSize * MaxLogicalProcessorNumber;
1598 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;
1599 BufferSize += ApResetVectorSize;
1600 BufferSize = ALIGN_VALUE (BufferSize, 8);
1601 BufferSize += VolatileRegisters.Idtr.Limit + 1;
1602 BufferSize += sizeof (CPU_MP_DATA);
1603 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;
1604 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));
1605 ASSERT (MpBuffer != NULL);
1606 ZeroMem (MpBuffer, BufferSize);
1607 Buffer = (UINTN) MpBuffer;
1608
1609 //
1610 // The layout of the Buffer is as below:
1611 //
1612 // +--------------------+ <-- Buffer
1613 // AP Stacks (N)
1614 // +--------------------+ <-- MonitorBuffer
1615 // AP Monitor Filters (N)
1616 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)
1617 // Backup Buffer
1618 // +--------------------+
1619 // Padding
1620 // +--------------------+ <-- ApIdtBase (8-byte boundary)
1621 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.
1622 // +--------------------+ <-- CpuMpData
1623 // CPU_MP_DATA
1624 // +--------------------+ <-- CpuMpData->CpuData
1625 // CPU_AP_DATA (N)
1626 // +--------------------+ <-- CpuMpData->CpuInfoInHob
1627 // CPU_INFO_IN_HOB (N)
1628 // +--------------------+
1629 //
1630 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);
1631 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;
1632 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);
1633 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);
1634 CpuMpData->Buffer = Buffer;
1635 CpuMpData->CpuApStackSize = ApStackSize;
1636 CpuMpData->BackupBuffer = BackupBufferAddr;
1637 CpuMpData->BackupBufferSize = ApResetVectorSize;
1638 CpuMpData->WakeupBuffer = (UINTN) -1;
1639 CpuMpData->CpuCount = 1;
1640 CpuMpData->BspNumber = 0;
1641 CpuMpData->WaitEvent = NULL;
1642 CpuMpData->SwitchBspFlag = FALSE;
1643 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);
1644 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);
1645 if (OldCpuMpData == NULL) {
1646 CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);
1647 //
1648 // If platform has more than one CPU, relocate microcode to memory to reduce
1649 // loading microcode time.
1650 //
1651 MicrocodePatchInRam = NULL;
1652 if (MaxLogicalProcessorNumber > 1) {
1653 MicrocodePatchInRam = AllocatePages (
1654 EFI_SIZE_TO_PAGES (
1655 (UINTN)CpuMpData->MicrocodePatchRegionSize
1656 )
1657 );
1658 }
1659 if (MicrocodePatchInRam == NULL) {
1660 //
1661 // there is only one processor, or no microcode patch is available, or
1662 // memory allocation failed
1663 //
1664 CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);
1665 } else {
1666 //
1667 // there are multiple processors, and a microcode patch is available, and
1668 // memory allocation succeeded
1669 //
1670 CopyMem (
1671 MicrocodePatchInRam,
1672 (VOID *)(UINTN)PcdGet64 (PcdCpuMicrocodePatchAddress),
1673 (UINTN)CpuMpData->MicrocodePatchRegionSize
1674 );
1675 CpuMpData->MicrocodePatchAddress = (UINTN)MicrocodePatchInRam;
1676 }
1677 }else {
1678 CpuMpData->MicrocodePatchRegionSize = OldCpuMpData->MicrocodePatchRegionSize;
1679 CpuMpData->MicrocodePatchAddress = OldCpuMpData->MicrocodePatchAddress;
1680 }
1681 InitializeSpinLock(&CpuMpData->MpLock);
1682
1683 //
1684 // Make sure no memory usage outside of the allocated buffer.
1685 //
1686 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==
1687 Buffer + BufferSize);
1688
1689 //
1690 // Duplicate BSP's IDT to APs.
1691 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1
1692 //
1693 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);
1694 VolatileRegisters.Idtr.Base = ApIdtBase;
1695 //
1696 // Don't pass BSP's TR to APs to avoid AP init failure.
1697 //
1698 VolatileRegisters.Tr = 0;
1699 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));
1700 //
1701 // Set BSP basic information
1702 //
1703 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);
1704 //
1705 // Save assembly code information
1706 //
1707 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));
1708 //
1709 // Finally set AP loop mode
1710 //
1711 CpuMpData->ApLoopMode = ApLoopMode;
1712 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));
1713
1714 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
1715
1716 //
1717 // Set up APs wakeup signal buffer
1718 //
1719 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {
1720 CpuMpData->CpuData[Index].StartupApSignal =
1721 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);
1722 }
1723 //
1724 // Load Microcode on BSP
1725 //
1726 MicrocodeDetect (CpuMpData, TRUE);
1727 //
1728 // Store BSP's MTRR setting
1729 //
1730 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);
1731 //
1732 // Enable the local APIC for Virtual Wire Mode.
1733 //
1734 ProgramVirtualWireMode ();
1735
1736 if (OldCpuMpData == NULL) {
1737 if (MaxLogicalProcessorNumber > 1) {
1738 //
1739 // Wakeup all APs and calculate the processor count in system
1740 //
1741 CollectProcessorCount (CpuMpData);
1742 }
1743 } else {
1744 //
1745 // APs have been wakeup before, just get the CPU Information
1746 // from HOB
1747 //
1748 CpuMpData->CpuCount = OldCpuMpData->CpuCount;
1749 CpuMpData->BspNumber = OldCpuMpData->BspNumber;
1750 CpuMpData->InitFlag = ApInitReconfig;
1751 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;
1752 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1753 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1754 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);
1755 if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {
1756 CpuMpData->X2ApicEnable = TRUE;
1757 }
1758 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;
1759 CpuMpData->CpuData[Index].ApFunction = 0;
1760 CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));
1761 }
1762 if (MaxLogicalProcessorNumber > 1) {
1763 //
1764 // Wakeup APs to do some AP initialize sync
1765 //
1766 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE);
1767 //
1768 // Wait for all APs finished initialization
1769 //
1770 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
1771 CpuPause ();
1772 }
1773 CpuMpData->InitFlag = ApInitDone;
1774 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1775 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
1776 }
1777 }
1778 }
1779
1780 //
1781 // Initialize global data for MP support
1782 //
1783 InitMpGlobalData (CpuMpData);
1784
1785 return EFI_SUCCESS;
1786 }
1787
1788 /**
1789 Gets detailed MP-related information on the requested processor at the
1790 instant this call is made. This service may only be called from the BSP.
1791
1792 @param[in] ProcessorNumber The handle number of processor.
1793 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for
1794 the requested processor is deposited.
1795 @param[out] HealthData Return processor health data.
1796
1797 @retval EFI_SUCCESS Processor information was returned.
1798 @retval EFI_DEVICE_ERROR The calling processor is an AP.
1799 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
1800 @retval EFI_NOT_FOUND The processor with the handle specified by
1801 ProcessorNumber does not exist in the platform.
1802 @retval EFI_NOT_READY MP Initialize Library is not initialized.
1803
1804 **/
1805 EFI_STATUS
1806 EFIAPI
1807 MpInitLibGetProcessorInfo (
1808 IN UINTN ProcessorNumber,
1809 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,
1810 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL
1811 )
1812 {
1813 CPU_MP_DATA *CpuMpData;
1814 UINTN CallerNumber;
1815 CPU_INFO_IN_HOB *CpuInfoInHob;
1816
1817 CpuMpData = GetCpuMpData ();
1818 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1819
1820 //
1821 // Check whether caller processor is BSP
1822 //
1823 MpInitLibWhoAmI (&CallerNumber);
1824 if (CallerNumber != CpuMpData->BspNumber) {
1825 return EFI_DEVICE_ERROR;
1826 }
1827
1828 if (ProcessorInfoBuffer == NULL) {
1829 return EFI_INVALID_PARAMETER;
1830 }
1831
1832 if (ProcessorNumber >= CpuMpData->CpuCount) {
1833 return EFI_NOT_FOUND;
1834 }
1835
1836 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;
1837 ProcessorInfoBuffer->StatusFlag = 0;
1838 if (ProcessorNumber == CpuMpData->BspNumber) {
1839 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
1840 }
1841 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {
1842 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
1843 }
1844 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
1845 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;
1846 } else {
1847 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
1848 }
1849
1850 //
1851 // Get processor location information
1852 //
1853 GetProcessorLocationByApicId (
1854 CpuInfoInHob[ProcessorNumber].ApicId,
1855 &ProcessorInfoBuffer->Location.Package,
1856 &ProcessorInfoBuffer->Location.Core,
1857 &ProcessorInfoBuffer->Location.Thread
1858 );
1859
1860 if (HealthData != NULL) {
1861 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;
1862 }
1863
1864 return EFI_SUCCESS;
1865 }
1866
1867 /**
1868 Worker function to switch the requested AP to be the BSP from that point onward.
1869
1870 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.
1871 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
1872 enabled AP. Otherwise, it will be disabled.
1873
1874 @retval EFI_SUCCESS BSP successfully switched.
1875 @retval others Failed to switch BSP.
1876
1877 **/
1878 EFI_STATUS
1879 SwitchBSPWorker (
1880 IN UINTN ProcessorNumber,
1881 IN BOOLEAN EnableOldBSP
1882 )
1883 {
1884 CPU_MP_DATA *CpuMpData;
1885 UINTN CallerNumber;
1886 CPU_STATE State;
1887 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;
1888 BOOLEAN OldInterruptState;
1889 BOOLEAN OldTimerInterruptState;
1890
1891 //
1892 // Save and Disable Local APIC timer interrupt
1893 //
1894 OldTimerInterruptState = GetApicTimerInterruptState ();
1895 DisableApicTimerInterrupt ();
1896 //
1897 // Before send both BSP and AP to a procedure to exchange their roles,
1898 // interrupt must be disabled. This is because during the exchange role
1899 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will
1900 // be corrupted, since interrupt return address will be pushed to stack
1901 // by hardware.
1902 //
1903 OldInterruptState = SaveAndDisableInterrupts ();
1904
1905 //
1906 // Mask LINT0 & LINT1 for the old BSP
1907 //
1908 DisableLvtInterrupts ();
1909
1910 CpuMpData = GetCpuMpData ();
1911
1912 //
1913 // Check whether caller processor is BSP
1914 //
1915 MpInitLibWhoAmI (&CallerNumber);
1916 if (CallerNumber != CpuMpData->BspNumber) {
1917 return EFI_DEVICE_ERROR;
1918 }
1919
1920 if (ProcessorNumber >= CpuMpData->CpuCount) {
1921 return EFI_NOT_FOUND;
1922 }
1923
1924 //
1925 // Check whether specified AP is disabled
1926 //
1927 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);
1928 if (State == CpuStateDisabled) {
1929 return EFI_INVALID_PARAMETER;
1930 }
1931
1932 //
1933 // Check whether ProcessorNumber specifies the current BSP
1934 //
1935 if (ProcessorNumber == CpuMpData->BspNumber) {
1936 return EFI_INVALID_PARAMETER;
1937 }
1938
1939 //
1940 // Check whether specified AP is busy
1941 //
1942 if (State == CpuStateBusy) {
1943 return EFI_NOT_READY;
1944 }
1945
1946 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;
1947 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;
1948 CpuMpData->SwitchBspFlag = TRUE;
1949 CpuMpData->NewBspNumber = ProcessorNumber;
1950
1951 //
1952 // Clear the BSP bit of MSR_IA32_APIC_BASE
1953 //
1954 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1955 ApicBaseMsr.Bits.BSP = 0;
1956 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1957
1958 //
1959 // Need to wakeUp AP (future BSP).
1960 //
1961 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE);
1962
1963 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);
1964
1965 //
1966 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP
1967 //
1968 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1969 ApicBaseMsr.Bits.BSP = 1;
1970 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1971 ProgramVirtualWireMode ();
1972
1973 //
1974 // Wait for old BSP finished AP task
1975 //
1976 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {
1977 CpuPause ();
1978 }
1979
1980 CpuMpData->SwitchBspFlag = FALSE;
1981 //
1982 // Set old BSP enable state
1983 //
1984 if (!EnableOldBSP) {
1985 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);
1986 } else {
1987 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);
1988 }
1989 //
1990 // Save new BSP number
1991 //
1992 CpuMpData->BspNumber = (UINT32) ProcessorNumber;
1993
1994 //
1995 // Restore interrupt state.
1996 //
1997 SetInterruptState (OldInterruptState);
1998
1999 if (OldTimerInterruptState) {
2000 EnableApicTimerInterrupt ();
2001 }
2002
2003 return EFI_SUCCESS;
2004 }
2005
2006 /**
2007 Worker function to let the caller enable or disable an AP from this point onward.
2008 This service may only be called from the BSP.
2009
2010 @param[in] ProcessorNumber The handle number of AP.
2011 @param[in] EnableAP Specifies the new state for the processor for
2012 enabled, FALSE for disabled.
2013 @param[in] HealthFlag If not NULL, a pointer to a value that specifies
2014 the new health status of the AP.
2015
2016 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
2017 @retval others Failed to Enable/Disable AP.
2018
2019 **/
2020 EFI_STATUS
2021 EnableDisableApWorker (
2022 IN UINTN ProcessorNumber,
2023 IN BOOLEAN EnableAP,
2024 IN UINT32 *HealthFlag OPTIONAL
2025 )
2026 {
2027 CPU_MP_DATA *CpuMpData;
2028 UINTN CallerNumber;
2029
2030 CpuMpData = GetCpuMpData ();
2031
2032 //
2033 // Check whether caller processor is BSP
2034 //
2035 MpInitLibWhoAmI (&CallerNumber);
2036 if (CallerNumber != CpuMpData->BspNumber) {
2037 return EFI_DEVICE_ERROR;
2038 }
2039
2040 if (ProcessorNumber == CpuMpData->BspNumber) {
2041 return EFI_INVALID_PARAMETER;
2042 }
2043
2044 if (ProcessorNumber >= CpuMpData->CpuCount) {
2045 return EFI_NOT_FOUND;
2046 }
2047
2048 if (!EnableAP) {
2049 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);
2050 } else {
2051 ResetProcessorToIdleState (ProcessorNumber);
2052 }
2053
2054 if (HealthFlag != NULL) {
2055 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =
2056 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);
2057 }
2058
2059 return EFI_SUCCESS;
2060 }
2061
2062 /**
2063 This return the handle number for the calling processor. This service may be
2064 called from the BSP and APs.
2065
2066 @param[out] ProcessorNumber Pointer to the handle number of AP.
2067 The range is from 0 to the total number of
2068 logical processors minus 1. The total number of
2069 logical processors can be retrieved by
2070 MpInitLibGetNumberOfProcessors().
2071
2072 @retval EFI_SUCCESS The current processor handle number was returned
2073 in ProcessorNumber.
2074 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
2075 @retval EFI_NOT_READY MP Initialize Library is not initialized.
2076
2077 **/
2078 EFI_STATUS
2079 EFIAPI
2080 MpInitLibWhoAmI (
2081 OUT UINTN *ProcessorNumber
2082 )
2083 {
2084 CPU_MP_DATA *CpuMpData;
2085
2086 if (ProcessorNumber == NULL) {
2087 return EFI_INVALID_PARAMETER;
2088 }
2089
2090 CpuMpData = GetCpuMpData ();
2091
2092 return GetProcessorNumber (CpuMpData, ProcessorNumber);
2093 }
2094
2095 /**
2096 Retrieves the number of logical processor in the platform and the number of
2097 those logical processors that are enabled on this boot. This service may only
2098 be called from the BSP.
2099
2100 @param[out] NumberOfProcessors Pointer to the total number of logical
2101 processors in the system, including the BSP
2102 and disabled APs.
2103 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
2104 processors that exist in system, including
2105 the BSP.
2106
2107 @retval EFI_SUCCESS The number of logical processors and enabled
2108 logical processors was retrieved.
2109 @retval EFI_DEVICE_ERROR The calling processor is an AP.
2110 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors
2111 is NULL.
2112 @retval EFI_NOT_READY MP Initialize Library is not initialized.
2113
2114 **/
2115 EFI_STATUS
2116 EFIAPI
2117 MpInitLibGetNumberOfProcessors (
2118 OUT UINTN *NumberOfProcessors, OPTIONAL
2119 OUT UINTN *NumberOfEnabledProcessors OPTIONAL
2120 )
2121 {
2122 CPU_MP_DATA *CpuMpData;
2123 UINTN CallerNumber;
2124 UINTN ProcessorNumber;
2125 UINTN EnabledProcessorNumber;
2126 UINTN Index;
2127
2128 CpuMpData = GetCpuMpData ();
2129
2130 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {
2131 return EFI_INVALID_PARAMETER;
2132 }
2133
2134 //
2135 // Check whether caller processor is BSP
2136 //
2137 MpInitLibWhoAmI (&CallerNumber);
2138 if (CallerNumber != CpuMpData->BspNumber) {
2139 return EFI_DEVICE_ERROR;
2140 }
2141
2142 ProcessorNumber = CpuMpData->CpuCount;
2143 EnabledProcessorNumber = 0;
2144 for (Index = 0; Index < ProcessorNumber; Index++) {
2145 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {
2146 EnabledProcessorNumber ++;
2147 }
2148 }
2149
2150 if (NumberOfProcessors != NULL) {
2151 *NumberOfProcessors = ProcessorNumber;
2152 }
2153 if (NumberOfEnabledProcessors != NULL) {
2154 *NumberOfEnabledProcessors = EnabledProcessorNumber;
2155 }
2156
2157 return EFI_SUCCESS;
2158 }
2159
2160
2161 /**
2162 Worker function to execute a caller provided function on all enabled APs.
2163
2164 @param[in] Procedure A pointer to the function to be run on
2165 enabled APs of the system.
2166 @param[in] SingleThread If TRUE, then all the enabled APs execute
2167 the function specified by Procedure one by
2168 one, in ascending order of processor handle
2169 number. If FALSE, then all the enabled APs
2170 execute the function specified by Procedure
2171 simultaneously.
2172 @param[in] ExcludeBsp Whether let BSP also trig this task.
2173 @param[in] WaitEvent The event created by the caller with CreateEvent()
2174 service.
2175 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
2176 APs to return from Procedure, either for
2177 blocking or non-blocking mode.
2178 @param[in] ProcedureArgument The parameter passed into Procedure for
2179 all APs.
2180 @param[out] FailedCpuList If all APs finish successfully, then its
2181 content is set to NULL. If not all APs
2182 finish before timeout expires, then its
2183 content is set to address of the buffer
2184 holding handle numbers of the failed APs.
2185
2186 @retval EFI_SUCCESS In blocking mode, all APs have finished before
2187 the timeout expired.
2188 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
2189 to all enabled APs.
2190 @retval others Failed to Startup all APs.
2191
2192 **/
2193 EFI_STATUS
2194 StartupAllCPUsWorker (
2195 IN EFI_AP_PROCEDURE Procedure,
2196 IN BOOLEAN SingleThread,
2197 IN BOOLEAN ExcludeBsp,
2198 IN EFI_EVENT WaitEvent OPTIONAL,
2199 IN UINTN TimeoutInMicroseconds,
2200 IN VOID *ProcedureArgument OPTIONAL,
2201 OUT UINTN **FailedCpuList OPTIONAL
2202 )
2203 {
2204 EFI_STATUS Status;
2205 CPU_MP_DATA *CpuMpData;
2206 UINTN ProcessorCount;
2207 UINTN ProcessorNumber;
2208 UINTN CallerNumber;
2209 CPU_AP_DATA *CpuData;
2210 BOOLEAN HasEnabledAp;
2211 CPU_STATE ApState;
2212
2213 CpuMpData = GetCpuMpData ();
2214
2215 if (FailedCpuList != NULL) {
2216 *FailedCpuList = NULL;
2217 }
2218
2219 if (CpuMpData->CpuCount == 1 && ExcludeBsp) {
2220 return EFI_NOT_STARTED;
2221 }
2222
2223 if (Procedure == NULL) {
2224 return EFI_INVALID_PARAMETER;
2225 }
2226
2227 //
2228 // Check whether caller processor is BSP
2229 //
2230 MpInitLibWhoAmI (&CallerNumber);
2231 if (CallerNumber != CpuMpData->BspNumber) {
2232 return EFI_DEVICE_ERROR;
2233 }
2234
2235 //
2236 // Update AP state
2237 //
2238 CheckAndUpdateApsStatus ();
2239
2240 ProcessorCount = CpuMpData->CpuCount;
2241 HasEnabledAp = FALSE;
2242 //
2243 // Check whether all enabled APs are idle.
2244 // If any enabled AP is not idle, return EFI_NOT_READY.
2245 //
2246 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2247 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2248 if (ProcessorNumber != CpuMpData->BspNumber) {
2249 ApState = GetApState (CpuData);
2250 if (ApState != CpuStateDisabled) {
2251 HasEnabledAp = TRUE;
2252 if (ApState != CpuStateIdle) {
2253 //
2254 // If any enabled APs are busy, return EFI_NOT_READY.
2255 //
2256 return EFI_NOT_READY;
2257 }
2258 }
2259 }
2260 }
2261
2262 if (!HasEnabledAp && ExcludeBsp) {
2263 //
2264 // If no enabled AP exists and not include Bsp to do the procedure, return EFI_NOT_STARTED.
2265 //
2266 return EFI_NOT_STARTED;
2267 }
2268
2269 CpuMpData->RunningCount = 0;
2270 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2271 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2272 CpuData->Waiting = FALSE;
2273 if (ProcessorNumber != CpuMpData->BspNumber) {
2274 if (CpuData->State == CpuStateIdle) {
2275 //
2276 // Mark this processor as responsible for current calling.
2277 //
2278 CpuData->Waiting = TRUE;
2279 CpuMpData->RunningCount++;
2280 }
2281 }
2282 }
2283
2284 CpuMpData->Procedure = Procedure;
2285 CpuMpData->ProcArguments = ProcedureArgument;
2286 CpuMpData->SingleThread = SingleThread;
2287 CpuMpData->FinishedCount = 0;
2288 CpuMpData->FailedCpuList = FailedCpuList;
2289 CpuMpData->ExpectedTime = CalculateTimeout (
2290 TimeoutInMicroseconds,
2291 &CpuMpData->CurrentTime
2292 );
2293 CpuMpData->TotalTime = 0;
2294 CpuMpData->WaitEvent = WaitEvent;
2295
2296 if (!SingleThread) {
2297 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);
2298 } else {
2299 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2300 if (ProcessorNumber == CallerNumber) {
2301 continue;
2302 }
2303 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
2304 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
2305 break;
2306 }
2307 }
2308 }
2309
2310 if (!ExcludeBsp) {
2311 //
2312 // Start BSP.
2313 //
2314 Procedure (ProcedureArgument);
2315 }
2316
2317 Status = EFI_SUCCESS;
2318 if (WaitEvent == NULL) {
2319 do {
2320 Status = CheckAllAPs ();
2321 } while (Status == EFI_NOT_READY);
2322 }
2323
2324 return Status;
2325 }
2326
2327 /**
2328 Worker function to let the caller get one enabled AP to execute a caller-provided
2329 function.
2330
2331 @param[in] Procedure A pointer to the function to be run on
2332 enabled APs of the system.
2333 @param[in] ProcessorNumber The handle number of the AP.
2334 @param[in] WaitEvent The event created by the caller with CreateEvent()
2335 service.
2336 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
2337 APs to return from Procedure, either for
2338 blocking or non-blocking mode.
2339 @param[in] ProcedureArgument The parameter passed into Procedure for
2340 all APs.
2341 @param[out] Finished If AP returns from Procedure before the
2342 timeout expires, its content is set to TRUE.
2343 Otherwise, the value is set to FALSE.
2344
2345 @retval EFI_SUCCESS In blocking mode, specified AP finished before
2346 the timeout expires.
2347 @retval others Failed to Startup AP.
2348
2349 **/
2350 EFI_STATUS
2351 StartupThisAPWorker (
2352 IN EFI_AP_PROCEDURE Procedure,
2353 IN UINTN ProcessorNumber,
2354 IN EFI_EVENT WaitEvent OPTIONAL,
2355 IN UINTN TimeoutInMicroseconds,
2356 IN VOID *ProcedureArgument OPTIONAL,
2357 OUT BOOLEAN *Finished OPTIONAL
2358 )
2359 {
2360 EFI_STATUS Status;
2361 CPU_MP_DATA *CpuMpData;
2362 CPU_AP_DATA *CpuData;
2363 UINTN CallerNumber;
2364
2365 CpuMpData = GetCpuMpData ();
2366
2367 if (Finished != NULL) {
2368 *Finished = FALSE;
2369 }
2370
2371 //
2372 // Check whether caller processor is BSP
2373 //
2374 MpInitLibWhoAmI (&CallerNumber);
2375 if (CallerNumber != CpuMpData->BspNumber) {
2376 return EFI_DEVICE_ERROR;
2377 }
2378
2379 //
2380 // Check whether processor with the handle specified by ProcessorNumber exists
2381 //
2382 if (ProcessorNumber >= CpuMpData->CpuCount) {
2383 return EFI_NOT_FOUND;
2384 }
2385
2386 //
2387 // Check whether specified processor is BSP
2388 //
2389 if (ProcessorNumber == CpuMpData->BspNumber) {
2390 return EFI_INVALID_PARAMETER;
2391 }
2392
2393 //
2394 // Check parameter Procedure
2395 //
2396 if (Procedure == NULL) {
2397 return EFI_INVALID_PARAMETER;
2398 }
2399
2400 //
2401 // Update AP state
2402 //
2403 CheckAndUpdateApsStatus ();
2404
2405 //
2406 // Check whether specified AP is disabled
2407 //
2408 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
2409 return EFI_INVALID_PARAMETER;
2410 }
2411
2412 //
2413 // If WaitEvent is not NULL, execute in non-blocking mode.
2414 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
2415 // CheckAPsStatus() will check completion and timeout periodically.
2416 //
2417 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2418 CpuData->WaitEvent = WaitEvent;
2419 CpuData->Finished = Finished;
2420 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
2421 CpuData->TotalTime = 0;
2422
2423 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
2424
2425 //
2426 // If WaitEvent is NULL, execute in blocking mode.
2427 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
2428 //
2429 Status = EFI_SUCCESS;
2430 if (WaitEvent == NULL) {
2431 do {
2432 Status = CheckThisAP (ProcessorNumber);
2433 } while (Status == EFI_NOT_READY);
2434 }
2435
2436 return Status;
2437 }
2438
2439 /**
2440 Get pointer to CPU MP Data structure from GUIDed HOB.
2441
2442 @return The pointer to CPU MP Data structure.
2443 **/
2444 CPU_MP_DATA *
2445 GetCpuMpDataFromGuidedHob (
2446 VOID
2447 )
2448 {
2449 EFI_HOB_GUID_TYPE *GuidHob;
2450 VOID *DataInHob;
2451 CPU_MP_DATA *CpuMpData;
2452
2453 CpuMpData = NULL;
2454 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);
2455 if (GuidHob != NULL) {
2456 DataInHob = GET_GUID_HOB_DATA (GuidHob);
2457 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);
2458 }
2459 return CpuMpData;
2460 }
2461
2462 /**
2463 This service executes a caller provided function on all enabled CPUs.
2464
2465 @param[in] Procedure A pointer to the function to be run on
2466 enabled APs of the system. See type
2467 EFI_AP_PROCEDURE.
2468 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
2469 APs to return from Procedure, either for
2470 blocking or non-blocking mode. Zero means
2471 infinity. TimeoutInMicroseconds is ignored
2472 for BSP.
2473 @param[in] ProcedureArgument The parameter passed into Procedure for
2474 all APs.
2475
2476 @retval EFI_SUCCESS In blocking mode, all CPUs have finished before
2477 the timeout expired.
2478 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
2479 to all enabled CPUs.
2480 @retval EFI_DEVICE_ERROR Caller processor is AP.
2481 @retval EFI_NOT_READY Any enabled APs are busy.
2482 @retval EFI_NOT_READY MP Initialize Library is not initialized.
2483 @retval EFI_TIMEOUT In blocking mode, the timeout expired before
2484 all enabled APs have finished.
2485 @retval EFI_INVALID_PARAMETER Procedure is NULL.
2486
2487 **/
2488 EFI_STATUS
2489 EFIAPI
2490 MpInitLibStartupAllCPUs (
2491 IN EFI_AP_PROCEDURE Procedure,
2492 IN UINTN TimeoutInMicroseconds,
2493 IN VOID *ProcedureArgument OPTIONAL
2494 )
2495 {
2496 return StartupAllCPUsWorker (
2497 Procedure,
2498 FALSE,
2499 FALSE,
2500 NULL,
2501 TimeoutInMicroseconds,
2502 ProcedureArgument,
2503 NULL
2504 );
2505 }