]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg/MpInitLib: Remove useless code.
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
1 /** @file
2 CPU MP Initialize Library common functions.
3
4 Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "MpLib.h"
16
17 EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;
18
19 /**
20 The function will check if BSP Execute Disable is enabled.
21
22 DxeIpl may have enabled Execute Disable for BSP, APs need to
23 get the status and sync up the settings.
24 If BSP's CR0.Paging is not set, BSP execute Disble feature is
25 not working actually.
26
27 @retval TRUE BSP Execute Disable is enabled.
28 @retval FALSE BSP Execute Disable is not enabled.
29 **/
30 BOOLEAN
31 IsBspExecuteDisableEnabled (
32 VOID
33 )
34 {
35 UINT32 Eax;
36 CPUID_EXTENDED_CPU_SIG_EDX Edx;
37 MSR_IA32_EFER_REGISTER EferMsr;
38 BOOLEAN Enabled;
39 IA32_CR0 Cr0;
40
41 Enabled = FALSE;
42 Cr0.UintN = AsmReadCr0 ();
43 if (Cr0.Bits.PG != 0) {
44 //
45 // If CR0 Paging bit is set
46 //
47 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);
48 if (Eax >= CPUID_EXTENDED_CPU_SIG) {
49 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);
50 //
51 // CPUID 0x80000001
52 // Bit 20: Execute Disable Bit available.
53 //
54 if (Edx.Bits.NX != 0) {
55 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);
56 //
57 // MSR 0xC0000080
58 // Bit 11: Execute Disable Bit enable.
59 //
60 if (EferMsr.Bits.NXE != 0) {
61 Enabled = TRUE;
62 }
63 }
64 }
65 }
66
67 return Enabled;
68 }
69
70 /**
71 Worker function for SwitchBSP().
72
73 Worker function for SwitchBSP(), assigned to the AP which is intended
74 to become BSP.
75
76 @param[in] Buffer Pointer to CPU MP Data
77 **/
78 VOID
79 EFIAPI
80 FutureBSPProc (
81 IN VOID *Buffer
82 )
83 {
84 CPU_MP_DATA *DataInHob;
85
86 DataInHob = (CPU_MP_DATA *) Buffer;
87 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);
88 }
89
90 /**
91 Get the Application Processors state.
92
93 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
94
95 @return The AP status
96 **/
97 CPU_STATE
98 GetApState (
99 IN CPU_AP_DATA *CpuData
100 )
101 {
102 return CpuData->State;
103 }
104
105 /**
106 Set the Application Processors state.
107
108 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
109 @param[in] State The AP status
110 **/
111 VOID
112 SetApState (
113 IN CPU_AP_DATA *CpuData,
114 IN CPU_STATE State
115 )
116 {
117 AcquireSpinLock (&CpuData->ApLock);
118 CpuData->State = State;
119 ReleaseSpinLock (&CpuData->ApLock);
120 }
121
122 /**
123 Save BSP's local APIC timer setting.
124
125 @param[in] CpuMpData Pointer to CPU MP Data
126 **/
127 VOID
128 SaveLocalApicTimerSetting (
129 IN CPU_MP_DATA *CpuMpData
130 )
131 {
132 //
133 // Record the current local APIC timer setting of BSP
134 //
135 GetApicTimerState (
136 &CpuMpData->DivideValue,
137 &CpuMpData->PeriodicMode,
138 &CpuMpData->Vector
139 );
140 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();
141 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();
142 }
143
144 /**
145 Sync local APIC timer setting from BSP to AP.
146
147 @param[in] CpuMpData Pointer to CPU MP Data
148 **/
149 VOID
150 SyncLocalApicTimerSetting (
151 IN CPU_MP_DATA *CpuMpData
152 )
153 {
154 //
155 // Sync local APIC timer setting from BSP to AP
156 //
157 InitializeApicTimer (
158 CpuMpData->DivideValue,
159 CpuMpData->CurrentTimerCount,
160 CpuMpData->PeriodicMode,
161 CpuMpData->Vector
162 );
163 //
164 // Disable AP's local APIC timer interrupt
165 //
166 DisableApicTimerInterrupt ();
167 }
168
169 /**
170 Save the volatile registers required to be restored following INIT IPI.
171
172 @param[out] VolatileRegisters Returns buffer saved the volatile resisters
173 **/
174 VOID
175 SaveVolatileRegisters (
176 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters
177 )
178 {
179 CPUID_VERSION_INFO_EDX VersionInfoEdx;
180
181 VolatileRegisters->Cr0 = AsmReadCr0 ();
182 VolatileRegisters->Cr3 = AsmReadCr3 ();
183 VolatileRegisters->Cr4 = AsmReadCr4 ();
184
185 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
186 if (VersionInfoEdx.Bits.DE != 0) {
187 //
188 // If processor supports Debugging Extensions feature
189 // by CPUID.[EAX=01H]:EDX.BIT2
190 //
191 VolatileRegisters->Dr0 = AsmReadDr0 ();
192 VolatileRegisters->Dr1 = AsmReadDr1 ();
193 VolatileRegisters->Dr2 = AsmReadDr2 ();
194 VolatileRegisters->Dr3 = AsmReadDr3 ();
195 VolatileRegisters->Dr6 = AsmReadDr6 ();
196 VolatileRegisters->Dr7 = AsmReadDr7 ();
197 }
198
199 AsmReadGdtr (&VolatileRegisters->Gdtr);
200 AsmReadIdtr (&VolatileRegisters->Idtr);
201 VolatileRegisters->Tr = AsmReadTr ();
202 }
203
204 /**
205 Restore the volatile registers following INIT IPI.
206
207 @param[in] VolatileRegisters Pointer to volatile resisters
208 @param[in] IsRestoreDr TRUE: Restore DRx if supported
209 FALSE: Do not restore DRx
210 **/
211 VOID
212 RestoreVolatileRegisters (
213 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,
214 IN BOOLEAN IsRestoreDr
215 )
216 {
217 CPUID_VERSION_INFO_EDX VersionInfoEdx;
218 IA32_TSS_DESCRIPTOR *Tss;
219
220 AsmWriteCr0 (VolatileRegisters->Cr0);
221 AsmWriteCr3 (VolatileRegisters->Cr3);
222 AsmWriteCr4 (VolatileRegisters->Cr4);
223
224 if (IsRestoreDr) {
225 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
226 if (VersionInfoEdx.Bits.DE != 0) {
227 //
228 // If processor supports Debugging Extensions feature
229 // by CPUID.[EAX=01H]:EDX.BIT2
230 //
231 AsmWriteDr0 (VolatileRegisters->Dr0);
232 AsmWriteDr1 (VolatileRegisters->Dr1);
233 AsmWriteDr2 (VolatileRegisters->Dr2);
234 AsmWriteDr3 (VolatileRegisters->Dr3);
235 AsmWriteDr6 (VolatileRegisters->Dr6);
236 AsmWriteDr7 (VolatileRegisters->Dr7);
237 }
238 }
239
240 AsmWriteGdtr (&VolatileRegisters->Gdtr);
241 AsmWriteIdtr (&VolatileRegisters->Idtr);
242 if (VolatileRegisters->Tr != 0 &&
243 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {
244 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +
245 VolatileRegisters->Tr);
246 if (Tss->Bits.P == 1) {
247 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case
248 AsmWriteTr (VolatileRegisters->Tr);
249 }
250 }
251 }
252
253 /**
254 Detect whether Mwait-monitor feature is supported.
255
256 @retval TRUE Mwait-monitor feature is supported.
257 @retval FALSE Mwait-monitor feature is not supported.
258 **/
259 BOOLEAN
260 IsMwaitSupport (
261 VOID
262 )
263 {
264 CPUID_VERSION_INFO_ECX VersionInfoEcx;
265
266 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);
267 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;
268 }
269
270 /**
271 Get AP loop mode.
272
273 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.
274
275 @return The AP loop mode.
276 **/
277 UINT8
278 GetApLoopMode (
279 OUT UINT32 *MonitorFilterSize
280 )
281 {
282 UINT8 ApLoopMode;
283 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;
284
285 ASSERT (MonitorFilterSize != NULL);
286
287 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
288 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);
289 if (ApLoopMode == ApInMwaitLoop) {
290 if (!IsMwaitSupport ()) {
291 //
292 // If processor does not support MONITOR/MWAIT feature,
293 // force AP in Hlt-loop mode
294 //
295 ApLoopMode = ApInHltLoop;
296 }
297 }
298
299 if (ApLoopMode != ApInMwaitLoop) {
300 *MonitorFilterSize = sizeof (UINT32);
301 } else {
302 //
303 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes
304 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT
305 //
306 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);
307 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;
308 }
309
310 return ApLoopMode;
311 }
312
313 /**
314 Sort the APIC ID of all processors.
315
316 This function sorts the APIC ID of all processors so that processor number is
317 assigned in the ascending order of APIC ID which eases MP debugging.
318
319 @param[in] CpuMpData Pointer to PEI CPU MP Data
320 **/
321 VOID
322 SortApicId (
323 IN CPU_MP_DATA *CpuMpData
324 )
325 {
326 UINTN Index1;
327 UINTN Index2;
328 UINTN Index3;
329 UINT32 ApicId;
330 CPU_INFO_IN_HOB CpuInfo;
331 UINT32 ApCount;
332 CPU_INFO_IN_HOB *CpuInfoInHob;
333 volatile UINT32 *StartupApSignal;
334
335 ApCount = CpuMpData->CpuCount - 1;
336 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
337 if (ApCount != 0) {
338 for (Index1 = 0; Index1 < ApCount; Index1++) {
339 Index3 = Index1;
340 //
341 // Sort key is the hardware default APIC ID
342 //
343 ApicId = CpuInfoInHob[Index1].ApicId;
344 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {
345 if (ApicId > CpuInfoInHob[Index2].ApicId) {
346 Index3 = Index2;
347 ApicId = CpuInfoInHob[Index2].ApicId;
348 }
349 }
350 if (Index3 != Index1) {
351 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));
352 CopyMem (
353 &CpuInfoInHob[Index3],
354 &CpuInfoInHob[Index1],
355 sizeof (CPU_INFO_IN_HOB)
356 );
357 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));
358
359 //
360 // Also exchange the StartupApSignal.
361 //
362 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;
363 CpuMpData->CpuData[Index3].StartupApSignal =
364 CpuMpData->CpuData[Index1].StartupApSignal;
365 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;
366 }
367 }
368
369 //
370 // Get the processor number for the BSP
371 //
372 ApicId = GetInitialApicId ();
373 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
374 if (CpuInfoInHob[Index1].ApicId == ApicId) {
375 CpuMpData->BspNumber = (UINT32) Index1;
376 break;
377 }
378 }
379 }
380 }
381
382 /**
383 Enable x2APIC mode on APs.
384
385 @param[in, out] Buffer Pointer to private data buffer.
386 **/
387 VOID
388 EFIAPI
389 ApFuncEnableX2Apic (
390 IN OUT VOID *Buffer
391 )
392 {
393 SetApicMode (LOCAL_APIC_MODE_X2APIC);
394 }
395
396 /**
397 Do sync on APs.
398
399 @param[in, out] Buffer Pointer to private data buffer.
400 **/
401 VOID
402 EFIAPI
403 ApInitializeSync (
404 IN OUT VOID *Buffer
405 )
406 {
407 CPU_MP_DATA *CpuMpData;
408
409 CpuMpData = (CPU_MP_DATA *) Buffer;
410 //
411 // Load microcode on AP
412 //
413 MicrocodeDetect (CpuMpData, FALSE);
414 //
415 // Sync BSP's MTRR table to AP
416 //
417 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);
418 }
419
420 /**
421 Find the current Processor number by APIC ID.
422
423 @param[in] CpuMpData Pointer to PEI CPU MP Data
424 @param[out] ProcessorNumber Return the pocessor number found
425
426 @retval EFI_SUCCESS ProcessorNumber is found and returned.
427 @retval EFI_NOT_FOUND ProcessorNumber is not found.
428 **/
429 EFI_STATUS
430 GetProcessorNumber (
431 IN CPU_MP_DATA *CpuMpData,
432 OUT UINTN *ProcessorNumber
433 )
434 {
435 UINTN TotalProcessorNumber;
436 UINTN Index;
437 CPU_INFO_IN_HOB *CpuInfoInHob;
438 UINT32 CurrentApicId;
439
440 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
441
442 TotalProcessorNumber = CpuMpData->CpuCount;
443 CurrentApicId = GetApicId ();
444 for (Index = 0; Index < TotalProcessorNumber; Index ++) {
445 if (CpuInfoInHob[Index].ApicId == CurrentApicId) {
446 *ProcessorNumber = Index;
447 return EFI_SUCCESS;
448 }
449 }
450
451 return EFI_NOT_FOUND;
452 }
453
454 /**
455 This function will get CPU count in the system.
456
457 @param[in] CpuMpData Pointer to PEI CPU MP Data
458
459 @return CPU count detected
460 **/
461 UINTN
462 CollectProcessorCount (
463 IN CPU_MP_DATA *CpuMpData
464 )
465 {
466 UINTN Index;
467
468 //
469 // Send 1st broadcast IPI to APs to wakeup APs
470 //
471 CpuMpData->InitFlag = ApInitConfig;
472 CpuMpData->X2ApicEnable = FALSE;
473 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL);
474 CpuMpData->InitFlag = ApInitDone;
475 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
476 //
477 // Wait for all APs finished the initialization
478 //
479 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
480 CpuPause ();
481 }
482
483 if (CpuMpData->CpuCount > 255) {
484 //
485 // If there are more than 255 processor found, force to enable X2APIC
486 //
487 CpuMpData->X2ApicEnable = TRUE;
488 }
489 if (CpuMpData->X2ApicEnable) {
490 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));
491 //
492 // Wakeup all APs to enable x2APIC mode
493 //
494 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL);
495 //
496 // Wait for all known APs finished
497 //
498 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
499 CpuPause ();
500 }
501 //
502 // Enable x2APIC on BSP
503 //
504 SetApicMode (LOCAL_APIC_MODE_X2APIC);
505 //
506 // Set BSP/Aps state to IDLE
507 //
508 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
509 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
510 }
511 }
512 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));
513 //
514 // Sort BSP/Aps by CPU APIC ID in ascending order
515 //
516 SortApicId (CpuMpData);
517
518 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));
519
520 return CpuMpData->CpuCount;
521 }
522
523 /**
524 Initialize CPU AP Data when AP is wakeup at the first time.
525
526 @param[in, out] CpuMpData Pointer to PEI CPU MP Data
527 @param[in] ProcessorNumber The handle number of processor
528 @param[in] BistData Processor BIST data
529 @param[in] ApTopOfStack Top of AP stack
530
531 **/
532 VOID
533 InitializeApData (
534 IN OUT CPU_MP_DATA *CpuMpData,
535 IN UINTN ProcessorNumber,
536 IN UINT32 BistData,
537 IN UINT64 ApTopOfStack
538 )
539 {
540 CPU_INFO_IN_HOB *CpuInfoInHob;
541
542 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
543 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
544 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
545 CpuInfoInHob[ProcessorNumber].Health = BistData;
546 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;
547
548 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
549 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;
550 if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {
551 //
552 // Set x2APIC mode if there are any logical processor reporting
553 // an Initial APIC ID of 255 or greater.
554 //
555 AcquireSpinLock(&CpuMpData->MpLock);
556 CpuMpData->X2ApicEnable = TRUE;
557 ReleaseSpinLock(&CpuMpData->MpLock);
558 }
559
560 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);
561 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
562 }
563
564 /**
565 This function will be called from AP reset code if BSP uses WakeUpAP.
566
567 @param[in] ExchangeInfo Pointer to the MP exchange info buffer
568 @param[in] ApIndex Number of current executing AP
569 **/
570 VOID
571 EFIAPI
572 ApWakeupFunction (
573 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,
574 IN UINTN ApIndex
575 )
576 {
577 CPU_MP_DATA *CpuMpData;
578 UINTN ProcessorNumber;
579 EFI_AP_PROCEDURE Procedure;
580 VOID *Parameter;
581 UINT32 BistData;
582 volatile UINT32 *ApStartupSignalBuffer;
583 CPU_INFO_IN_HOB *CpuInfoInHob;
584 UINT64 ApTopOfStack;
585 UINTN CurrentApicMode;
586
587 //
588 // AP finished assembly code and begin to execute C code
589 //
590 CpuMpData = ExchangeInfo->CpuMpData;
591
592 //
593 // AP's local APIC settings will be lost after received INIT IPI
594 // We need to re-initialize them at here
595 //
596 ProgramVirtualWireMode ();
597 //
598 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.
599 //
600 DisableLvtInterrupts ();
601 SyncLocalApicTimerSetting (CpuMpData);
602
603 CurrentApicMode = GetApicMode ();
604 while (TRUE) {
605 if (CpuMpData->InitFlag == ApInitConfig) {
606 //
607 // Add CPU number
608 //
609 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);
610 ProcessorNumber = ApIndex;
611 //
612 // This is first time AP wakeup, get BIST information from AP stack
613 //
614 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;
615 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));
616 //
617 // Do some AP initialize sync
618 //
619 ApInitializeSync (CpuMpData);
620 //
621 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,
622 // to initialize AP in InitConfig path.
623 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.
624 //
625 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
626 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);
627 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
628 } else {
629 //
630 // Execute AP function if AP is ready
631 //
632 GetProcessorNumber (CpuMpData, &ProcessorNumber);
633 //
634 // Clear AP start-up signal when AP waken up
635 //
636 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
637 InterlockedCompareExchange32 (
638 (UINT32 *) ApStartupSignalBuffer,
639 WAKEUP_AP_SIGNAL,
640 0
641 );
642 if (CpuMpData->ApLoopMode == ApInHltLoop) {
643 //
644 // Restore AP's volatile registers saved
645 //
646 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);
647 } else {
648 //
649 // The CPU driver might not flush TLB for APs on spot after updating
650 // page attributes. AP in mwait loop mode needs to take care of it when
651 // woken up.
652 //
653 CpuFlushTlb ();
654 }
655
656 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {
657 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;
658 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;
659 if (Procedure != NULL) {
660 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);
661 //
662 // Enable source debugging on AP function
663 //
664 EnableDebugAgent ();
665 //
666 // Invoke AP function here
667 //
668 Procedure (Parameter);
669 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
670 if (CpuMpData->SwitchBspFlag) {
671 //
672 // Re-get the processor number due to BSP/AP maybe exchange in AP function
673 //
674 GetProcessorNumber (CpuMpData, &ProcessorNumber);
675 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;
676 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;
677 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
678 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;
679 } else {
680 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||
681 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {
682 if (CurrentApicMode != GetApicMode ()) {
683 //
684 // If APIC mode change happened during AP function execution,
685 // we do not support APIC ID value changed.
686 //
687 ASSERT (FALSE);
688 CpuDeadLoop ();
689 } else {
690 //
691 // Re-get the CPU APICID and Initial APICID if they are changed
692 //
693 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
694 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
695 }
696 }
697 }
698 }
699 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);
700 }
701 }
702
703 //
704 // AP finished executing C code
705 //
706 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);
707 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);
708
709 //
710 // Place AP is specified loop mode
711 //
712 if (CpuMpData->ApLoopMode == ApInHltLoop) {
713 //
714 // Save AP volatile registers
715 //
716 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);
717 //
718 // Place AP in HLT-loop
719 //
720 while (TRUE) {
721 DisableInterrupts ();
722 CpuSleep ();
723 CpuPause ();
724 }
725 }
726 while (TRUE) {
727 DisableInterrupts ();
728 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
729 //
730 // Place AP in MWAIT-loop
731 //
732 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);
733 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {
734 //
735 // Check AP start-up signal again.
736 // If AP start-up signal is not set, place AP into
737 // the specified C-state
738 //
739 AsmMwait (CpuMpData->ApTargetCState << 4, 0);
740 }
741 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {
742 //
743 // Place AP in Run-loop
744 //
745 CpuPause ();
746 } else {
747 ASSERT (FALSE);
748 }
749
750 //
751 // If AP start-up signal is written, AP is waken up
752 // otherwise place AP in loop again
753 //
754 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {
755 break;
756 }
757 }
758 }
759 }
760
761 /**
762 Wait for AP wakeup and write AP start-up signal till AP is waken up.
763
764 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal
765 **/
766 VOID
767 WaitApWakeup (
768 IN volatile UINT32 *ApStartupSignalBuffer
769 )
770 {
771 //
772 // If AP is waken up, StartupApSignal should be cleared.
773 // Otherwise, write StartupApSignal again till AP waken up.
774 //
775 while (InterlockedCompareExchange32 (
776 (UINT32 *) ApStartupSignalBuffer,
777 WAKEUP_AP_SIGNAL,
778 WAKEUP_AP_SIGNAL
779 ) != 0) {
780 CpuPause ();
781 }
782 }
783
784 /**
785 This function will fill the exchange info structure.
786
787 @param[in] CpuMpData Pointer to CPU MP Data
788
789 **/
790 VOID
791 FillExchangeInfoData (
792 IN CPU_MP_DATA *CpuMpData
793 )
794 {
795 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
796 UINTN Size;
797 IA32_SEGMENT_DESCRIPTOR *Selector;
798
799 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
800 ExchangeInfo->Lock = 0;
801 ExchangeInfo->StackStart = CpuMpData->Buffer;
802 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;
803 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;
804 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;
805
806 ExchangeInfo->CodeSegment = AsmReadCs ();
807 ExchangeInfo->DataSegment = AsmReadDs ();
808
809 ExchangeInfo->Cr3 = AsmReadCr3 ();
810
811 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;
812 ExchangeInfo->ApIndex = 0;
813 ExchangeInfo->NumApsExecuting = 0;
814 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;
815 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
816 ExchangeInfo->CpuMpData = CpuMpData;
817
818 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();
819
820 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;
821
822 //
823 // Get the BSP's data of GDT and IDT
824 //
825 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);
826 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);
827
828 //
829 // Find a 32-bit code segment
830 //
831 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;
832 Size = ExchangeInfo->GdtrProfile.Limit + 1;
833 while (Size > 0) {
834 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {
835 ExchangeInfo->ModeTransitionSegment =
836 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);
837 break;
838 }
839 Selector += 1;
840 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);
841 }
842
843 //
844 // Copy all 32-bit code and 64-bit code into memory with type of
845 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.
846 //
847 if (CpuMpData->WakeupBufferHigh != 0) {
848 Size = CpuMpData->AddressMap.RendezvousFunnelSize -
849 CpuMpData->AddressMap.ModeTransitionOffset;
850 CopyMem (
851 (VOID *)CpuMpData->WakeupBufferHigh,
852 CpuMpData->AddressMap.RendezvousFunnelAddress +
853 CpuMpData->AddressMap.ModeTransitionOffset,
854 Size
855 );
856
857 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;
858 } else {
859 ExchangeInfo->ModeTransitionMemory = (UINT32)
860 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);
861 }
862
863 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +
864 (UINT32)ExchangeInfo->ModeOffset -
865 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;
866 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;
867 }
868
869 /**
870 Helper function that waits until the finished AP count reaches the specified
871 limit, or the specified timeout elapses (whichever comes first).
872
873 @param[in] CpuMpData Pointer to CPU MP Data.
874 @param[in] FinishedApLimit The number of finished APs to wait for.
875 @param[in] TimeLimit The number of microseconds to wait for.
876 **/
877 VOID
878 TimedWaitForApFinish (
879 IN CPU_MP_DATA *CpuMpData,
880 IN UINT32 FinishedApLimit,
881 IN UINT32 TimeLimit
882 );
883
884 /**
885 Get available system memory below 1MB by specified size.
886
887 @param[in] CpuMpData The pointer to CPU MP Data structure.
888 **/
889 VOID
890 BackupAndPrepareWakeupBuffer(
891 IN CPU_MP_DATA *CpuMpData
892 )
893 {
894 CopyMem (
895 (VOID *) CpuMpData->BackupBuffer,
896 (VOID *) CpuMpData->WakeupBuffer,
897 CpuMpData->BackupBufferSize
898 );
899 CopyMem (
900 (VOID *) CpuMpData->WakeupBuffer,
901 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,
902 CpuMpData->AddressMap.RendezvousFunnelSize
903 );
904 }
905
906 /**
907 Restore wakeup buffer data.
908
909 @param[in] CpuMpData The pointer to CPU MP Data structure.
910 **/
911 VOID
912 RestoreWakeupBuffer(
913 IN CPU_MP_DATA *CpuMpData
914 )
915 {
916 CopyMem (
917 (VOID *) CpuMpData->WakeupBuffer,
918 (VOID *) CpuMpData->BackupBuffer,
919 CpuMpData->BackupBufferSize
920 );
921 }
922
923 /**
924 Allocate reset vector buffer.
925
926 @param[in, out] CpuMpData The pointer to CPU MP Data structure.
927 **/
928 VOID
929 AllocateResetVector (
930 IN OUT CPU_MP_DATA *CpuMpData
931 )
932 {
933 UINTN ApResetVectorSize;
934
935 if (CpuMpData->WakeupBuffer == (UINTN) -1) {
936 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +
937 sizeof (MP_CPU_EXCHANGE_INFO);
938
939 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);
940 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)
941 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);
942 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (
943 CpuMpData->AddressMap.RendezvousFunnelSize -
944 CpuMpData->AddressMap.ModeTransitionOffset
945 );
946 }
947 BackupAndPrepareWakeupBuffer (CpuMpData);
948 }
949
950 /**
951 Free AP reset vector buffer.
952
953 @param[in] CpuMpData The pointer to CPU MP Data structure.
954 **/
955 VOID
956 FreeResetVector (
957 IN CPU_MP_DATA *CpuMpData
958 )
959 {
960 RestoreWakeupBuffer (CpuMpData);
961 }
962
963 /**
964 This function will be called by BSP to wakeup AP.
965
966 @param[in] CpuMpData Pointer to CPU MP Data
967 @param[in] Broadcast TRUE: Send broadcast IPI to all APs
968 FALSE: Send IPI to AP by ApicId
969 @param[in] ProcessorNumber The handle number of specified processor
970 @param[in] Procedure The function to be invoked by AP
971 @param[in] ProcedureArgument The argument to be passed into AP function
972 **/
973 VOID
974 WakeUpAP (
975 IN CPU_MP_DATA *CpuMpData,
976 IN BOOLEAN Broadcast,
977 IN UINTN ProcessorNumber,
978 IN EFI_AP_PROCEDURE Procedure, OPTIONAL
979 IN VOID *ProcedureArgument OPTIONAL
980 )
981 {
982 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
983 UINTN Index;
984 CPU_AP_DATA *CpuData;
985 BOOLEAN ResetVectorRequired;
986 CPU_INFO_IN_HOB *CpuInfoInHob;
987
988 CpuMpData->FinishedCount = 0;
989 ResetVectorRequired = FALSE;
990
991 if (CpuMpData->WakeUpByInitSipiSipi ||
992 CpuMpData->InitFlag != ApInitDone) {
993 ResetVectorRequired = TRUE;
994 AllocateResetVector (CpuMpData);
995 FillExchangeInfoData (CpuMpData);
996 SaveLocalApicTimerSetting (CpuMpData);
997 }
998
999 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
1000 //
1001 // Get AP target C-state each time when waking up AP,
1002 // for it maybe updated by platform again
1003 //
1004 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);
1005 }
1006
1007 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
1008
1009 if (Broadcast) {
1010 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1011 if (Index != CpuMpData->BspNumber) {
1012 CpuData = &CpuMpData->CpuData[Index];
1013 CpuData->ApFunction = (UINTN) Procedure;
1014 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
1015 SetApState (CpuData, CpuStateReady);
1016 if (CpuMpData->InitFlag != ApInitConfig) {
1017 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
1018 }
1019 }
1020 }
1021 if (ResetVectorRequired) {
1022 //
1023 // Wakeup all APs
1024 //
1025 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);
1026 }
1027 if (CpuMpData->InitFlag == ApInitConfig) {
1028 //
1029 // Here support two methods to collect AP count through adjust
1030 // PcdCpuApInitTimeOutInMicroSeconds values.
1031 //
1032 // one way is set a value to just let the first AP to start the
1033 // initialization, then through the later while loop to wait all Aps
1034 // finsh the initialization.
1035 // The other way is set a value to let all APs finished the initialzation.
1036 // In this case, the later while loop is useless.
1037 //
1038 TimedWaitForApFinish (
1039 CpuMpData,
1040 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,
1041 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)
1042 );
1043
1044 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {
1045 CpuPause();
1046 }
1047 } else {
1048 //
1049 // Wait all APs waken up if this is not the 1st broadcast of SIPI
1050 //
1051 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1052 CpuData = &CpuMpData->CpuData[Index];
1053 if (Index != CpuMpData->BspNumber) {
1054 WaitApWakeup (CpuData->StartupApSignal);
1055 }
1056 }
1057 }
1058 } else {
1059 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1060 CpuData->ApFunction = (UINTN) Procedure;
1061 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
1062 SetApState (CpuData, CpuStateReady);
1063 //
1064 // Wakeup specified AP
1065 //
1066 ASSERT (CpuMpData->InitFlag != ApInitConfig);
1067 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
1068 if (ResetVectorRequired) {
1069 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1070 SendInitSipiSipi (
1071 CpuInfoInHob[ProcessorNumber].ApicId,
1072 (UINT32) ExchangeInfo->BufferStart
1073 );
1074 }
1075 //
1076 // Wait specified AP waken up
1077 //
1078 WaitApWakeup (CpuData->StartupApSignal);
1079 }
1080
1081 if (ResetVectorRequired) {
1082 FreeResetVector (CpuMpData);
1083 }
1084
1085 //
1086 // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with
1087 // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by
1088 // S3SmmInitDone Ppi.
1089 //
1090 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
1091 }
1092
1093 /**
1094 Calculate timeout value and return the current performance counter value.
1095
1096 Calculate the number of performance counter ticks required for a timeout.
1097 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1098 as infinity.
1099
1100 @param[in] TimeoutInMicroseconds Timeout value in microseconds.
1101 @param[out] CurrentTime Returns the current value of the performance counter.
1102
1103 @return Expected time stamp counter for timeout.
1104 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1105 as infinity.
1106
1107 **/
1108 UINT64
1109 CalculateTimeout (
1110 IN UINTN TimeoutInMicroseconds,
1111 OUT UINT64 *CurrentTime
1112 )
1113 {
1114 UINT64 TimeoutInSeconds;
1115 UINT64 TimestampCounterFreq;
1116
1117 //
1118 // Read the current value of the performance counter
1119 //
1120 *CurrentTime = GetPerformanceCounter ();
1121
1122 //
1123 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1124 // as infinity.
1125 //
1126 if (TimeoutInMicroseconds == 0) {
1127 return 0;
1128 }
1129
1130 //
1131 // GetPerformanceCounterProperties () returns the timestamp counter's frequency
1132 // in Hz.
1133 //
1134 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);
1135
1136 //
1137 // Check the potential overflow before calculate the number of ticks for the timeout value.
1138 //
1139 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {
1140 //
1141 // Convert microseconds into seconds if direct multiplication overflows
1142 //
1143 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);
1144 //
1145 // Assertion if the final tick count exceeds MAX_UINT64
1146 //
1147 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);
1148 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);
1149 } else {
1150 //
1151 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide
1152 // it by 1,000,000, to get the number of ticks for the timeout value.
1153 //
1154 return DivU64x32 (
1155 MultU64x64 (
1156 TimestampCounterFreq,
1157 TimeoutInMicroseconds
1158 ),
1159 1000000
1160 );
1161 }
1162 }
1163
1164 /**
1165 Checks whether timeout expires.
1166
1167 Check whether the number of elapsed performance counter ticks required for
1168 a timeout condition has been reached.
1169 If Timeout is zero, which means infinity, return value is always FALSE.
1170
1171 @param[in, out] PreviousTime On input, the value of the performance counter
1172 when it was last read.
1173 On output, the current value of the performance
1174 counter
1175 @param[in] TotalTime The total amount of elapsed time in performance
1176 counter ticks.
1177 @param[in] Timeout The number of performance counter ticks required
1178 to reach a timeout condition.
1179
1180 @retval TRUE A timeout condition has been reached.
1181 @retval FALSE A timeout condition has not been reached.
1182
1183 **/
1184 BOOLEAN
1185 CheckTimeout (
1186 IN OUT UINT64 *PreviousTime,
1187 IN UINT64 *TotalTime,
1188 IN UINT64 Timeout
1189 )
1190 {
1191 UINT64 Start;
1192 UINT64 End;
1193 UINT64 CurrentTime;
1194 INT64 Delta;
1195 INT64 Cycle;
1196
1197 if (Timeout == 0) {
1198 return FALSE;
1199 }
1200 GetPerformanceCounterProperties (&Start, &End);
1201 Cycle = End - Start;
1202 if (Cycle < 0) {
1203 Cycle = -Cycle;
1204 }
1205 Cycle++;
1206 CurrentTime = GetPerformanceCounter();
1207 Delta = (INT64) (CurrentTime - *PreviousTime);
1208 if (Start > End) {
1209 Delta = -Delta;
1210 }
1211 if (Delta < 0) {
1212 Delta += Cycle;
1213 }
1214 *TotalTime += Delta;
1215 *PreviousTime = CurrentTime;
1216 if (*TotalTime > Timeout) {
1217 return TRUE;
1218 }
1219 return FALSE;
1220 }
1221
1222 /**
1223 Helper function that waits until the finished AP count reaches the specified
1224 limit, or the specified timeout elapses (whichever comes first).
1225
1226 @param[in] CpuMpData Pointer to CPU MP Data.
1227 @param[in] FinishedApLimit The number of finished APs to wait for.
1228 @param[in] TimeLimit The number of microseconds to wait for.
1229 **/
1230 VOID
1231 TimedWaitForApFinish (
1232 IN CPU_MP_DATA *CpuMpData,
1233 IN UINT32 FinishedApLimit,
1234 IN UINT32 TimeLimit
1235 )
1236 {
1237 //
1238 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0
1239 // "infinity", so check for (TimeLimit == 0) explicitly.
1240 //
1241 if (TimeLimit == 0) {
1242 return;
1243 }
1244
1245 CpuMpData->TotalTime = 0;
1246 CpuMpData->ExpectedTime = CalculateTimeout (
1247 TimeLimit,
1248 &CpuMpData->CurrentTime
1249 );
1250 while (CpuMpData->FinishedCount < FinishedApLimit &&
1251 !CheckTimeout (
1252 &CpuMpData->CurrentTime,
1253 &CpuMpData->TotalTime,
1254 CpuMpData->ExpectedTime
1255 )) {
1256 CpuPause ();
1257 }
1258
1259 if (CpuMpData->FinishedCount >= FinishedApLimit) {
1260 DEBUG ((
1261 DEBUG_VERBOSE,
1262 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",
1263 __FUNCTION__,
1264 FinishedApLimit,
1265 DivU64x64Remainder (
1266 MultU64x32 (CpuMpData->TotalTime, 1000000),
1267 GetPerformanceCounterProperties (NULL, NULL),
1268 NULL
1269 )
1270 ));
1271 }
1272 }
1273
1274 /**
1275 Reset an AP to Idle state.
1276
1277 Any task being executed by the AP will be aborted and the AP
1278 will be waiting for a new task in Wait-For-SIPI state.
1279
1280 @param[in] ProcessorNumber The handle number of processor.
1281 **/
1282 VOID
1283 ResetProcessorToIdleState (
1284 IN UINTN ProcessorNumber
1285 )
1286 {
1287 CPU_MP_DATA *CpuMpData;
1288
1289 CpuMpData = GetCpuMpData ();
1290
1291 CpuMpData->InitFlag = ApInitReconfig;
1292 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL);
1293 while (CpuMpData->FinishedCount < 1) {
1294 CpuPause ();
1295 }
1296 CpuMpData->InitFlag = ApInitDone;
1297
1298 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
1299 }
1300
1301 /**
1302 Searches for the next waiting AP.
1303
1304 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().
1305
1306 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.
1307
1308 @retval EFI_SUCCESS The next waiting AP has been found.
1309 @retval EFI_NOT_FOUND No waiting AP exists.
1310
1311 **/
1312 EFI_STATUS
1313 GetNextWaitingProcessorNumber (
1314 OUT UINTN *NextProcessorNumber
1315 )
1316 {
1317 UINTN ProcessorNumber;
1318 CPU_MP_DATA *CpuMpData;
1319
1320 CpuMpData = GetCpuMpData ();
1321
1322 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1323 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1324 *NextProcessorNumber = ProcessorNumber;
1325 return EFI_SUCCESS;
1326 }
1327 }
1328
1329 return EFI_NOT_FOUND;
1330 }
1331
1332 /** Checks status of specified AP.
1333
1334 This function checks whether the specified AP has finished the task assigned
1335 by StartupThisAP(), and whether timeout expires.
1336
1337 @param[in] ProcessorNumber The handle number of processor.
1338
1339 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().
1340 @retval EFI_TIMEOUT The timeout expires.
1341 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.
1342 **/
1343 EFI_STATUS
1344 CheckThisAP (
1345 IN UINTN ProcessorNumber
1346 )
1347 {
1348 CPU_MP_DATA *CpuMpData;
1349 CPU_AP_DATA *CpuData;
1350
1351 CpuMpData = GetCpuMpData ();
1352 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1353
1354 //
1355 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.
1356 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1357 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.
1358 //
1359 //
1360 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.
1361 //
1362 if (GetApState(CpuData) == CpuStateFinished) {
1363 if (CpuData->Finished != NULL) {
1364 *(CpuData->Finished) = TRUE;
1365 }
1366 SetApState (CpuData, CpuStateIdle);
1367 return EFI_SUCCESS;
1368 } else {
1369 //
1370 // If timeout expires for StartupThisAP(), report timeout.
1371 //
1372 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
1373 if (CpuData->Finished != NULL) {
1374 *(CpuData->Finished) = FALSE;
1375 }
1376 //
1377 // Reset failed AP to idle state
1378 //
1379 ResetProcessorToIdleState (ProcessorNumber);
1380
1381 return EFI_TIMEOUT;
1382 }
1383 }
1384 return EFI_NOT_READY;
1385 }
1386
1387 /**
1388 Checks status of all APs.
1389
1390 This function checks whether all APs have finished task assigned by StartupAllAPs(),
1391 and whether timeout expires.
1392
1393 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().
1394 @retval EFI_TIMEOUT The timeout expires.
1395 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.
1396 **/
1397 EFI_STATUS
1398 CheckAllAPs (
1399 VOID
1400 )
1401 {
1402 UINTN ProcessorNumber;
1403 UINTN NextProcessorNumber;
1404 UINTN ListIndex;
1405 EFI_STATUS Status;
1406 CPU_MP_DATA *CpuMpData;
1407 CPU_AP_DATA *CpuData;
1408
1409 CpuMpData = GetCpuMpData ();
1410
1411 NextProcessorNumber = 0;
1412
1413 //
1414 // Go through all APs that are responsible for the StartupAllAPs().
1415 //
1416 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1417 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {
1418 continue;
1419 }
1420
1421 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1422 //
1423 // Check the CPU state of AP. If it is CpuStateFinished, then the AP has finished its task.
1424 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1425 // value of state after setting the it to CpuStateFinished, so BSP can safely make use of its value.
1426 //
1427 if (GetApState(CpuData) == CpuStateFinished) {
1428 CpuMpData->RunningCount ++;
1429 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1430 SetApState(CpuData, CpuStateIdle);
1431
1432 //
1433 // If in Single Thread mode, then search for the next waiting AP for execution.
1434 //
1435 if (CpuMpData->SingleThread) {
1436 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);
1437
1438 if (!EFI_ERROR (Status)) {
1439 WakeUpAP (
1440 CpuMpData,
1441 FALSE,
1442 (UINT32) NextProcessorNumber,
1443 CpuMpData->Procedure,
1444 CpuMpData->ProcArguments
1445 );
1446 }
1447 }
1448 }
1449 }
1450
1451 //
1452 // If all APs finish, return EFI_SUCCESS.
1453 //
1454 if (CpuMpData->RunningCount == CpuMpData->StartCount) {
1455 return EFI_SUCCESS;
1456 }
1457
1458 //
1459 // If timeout expires, report timeout.
1460 //
1461 if (CheckTimeout (
1462 &CpuMpData->CurrentTime,
1463 &CpuMpData->TotalTime,
1464 CpuMpData->ExpectedTime)
1465 ) {
1466 //
1467 // If FailedCpuList is not NULL, record all failed APs in it.
1468 //
1469 if (CpuMpData->FailedCpuList != NULL) {
1470 *CpuMpData->FailedCpuList =
1471 AllocatePool ((CpuMpData->StartCount - CpuMpData->FinishedCount + 1) * sizeof (UINTN));
1472 ASSERT (*CpuMpData->FailedCpuList != NULL);
1473 }
1474 ListIndex = 0;
1475
1476 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1477 //
1478 // Check whether this processor is responsible for StartupAllAPs().
1479 //
1480 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1481 //
1482 // Reset failed APs to idle state
1483 //
1484 ResetProcessorToIdleState (ProcessorNumber);
1485 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1486 if (CpuMpData->FailedCpuList != NULL) {
1487 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;
1488 }
1489 }
1490 }
1491 if (CpuMpData->FailedCpuList != NULL) {
1492 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;
1493 }
1494 return EFI_TIMEOUT;
1495 }
1496 return EFI_NOT_READY;
1497 }
1498
1499 /**
1500 MP Initialize Library initialization.
1501
1502 This service will allocate AP reset vector and wakeup all APs to do APs
1503 initialization.
1504
1505 This service must be invoked before all other MP Initialize Library
1506 service are invoked.
1507
1508 @retval EFI_SUCCESS MP initialization succeeds.
1509 @retval Others MP initialization fails.
1510
1511 **/
1512 EFI_STATUS
1513 EFIAPI
1514 MpInitLibInitialize (
1515 VOID
1516 )
1517 {
1518 CPU_MP_DATA *OldCpuMpData;
1519 CPU_INFO_IN_HOB *CpuInfoInHob;
1520 UINT32 MaxLogicalProcessorNumber;
1521 UINT32 ApStackSize;
1522 MP_ASSEMBLY_ADDRESS_MAP AddressMap;
1523 CPU_VOLATILE_REGISTERS VolatileRegisters;
1524 UINTN BufferSize;
1525 UINT32 MonitorFilterSize;
1526 VOID *MpBuffer;
1527 UINTN Buffer;
1528 CPU_MP_DATA *CpuMpData;
1529 UINT8 ApLoopMode;
1530 UINT8 *MonitorBuffer;
1531 UINTN Index;
1532 UINTN ApResetVectorSize;
1533 UINTN BackupBufferAddr;
1534 UINTN ApIdtBase;
1535 VOID *MicrocodePatchInRam;
1536
1537 OldCpuMpData = GetCpuMpDataFromGuidedHob ();
1538 if (OldCpuMpData == NULL) {
1539 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);
1540 } else {
1541 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;
1542 }
1543 ASSERT (MaxLogicalProcessorNumber != 0);
1544
1545 AsmGetAddressMap (&AddressMap);
1546 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);
1547 ApStackSize = PcdGet32(PcdCpuApStackSize);
1548 ApLoopMode = GetApLoopMode (&MonitorFilterSize);
1549
1550 //
1551 // Save BSP's Control registers for APs
1552 //
1553 SaveVolatileRegisters (&VolatileRegisters);
1554
1555 BufferSize = ApStackSize * MaxLogicalProcessorNumber;
1556 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;
1557 BufferSize += ApResetVectorSize;
1558 BufferSize = ALIGN_VALUE (BufferSize, 8);
1559 BufferSize += VolatileRegisters.Idtr.Limit + 1;
1560 BufferSize += sizeof (CPU_MP_DATA);
1561 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;
1562 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));
1563 ASSERT (MpBuffer != NULL);
1564 ZeroMem (MpBuffer, BufferSize);
1565 Buffer = (UINTN) MpBuffer;
1566
1567 //
1568 // The layout of the Buffer is as below:
1569 //
1570 // +--------------------+ <-- Buffer
1571 // AP Stacks (N)
1572 // +--------------------+ <-- MonitorBuffer
1573 // AP Monitor Filters (N)
1574 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)
1575 // Backup Buffer
1576 // +--------------------+
1577 // Padding
1578 // +--------------------+ <-- ApIdtBase (8-byte boundary)
1579 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.
1580 // +--------------------+ <-- CpuMpData
1581 // CPU_MP_DATA
1582 // +--------------------+ <-- CpuMpData->CpuData
1583 // CPU_AP_DATA (N)
1584 // +--------------------+ <-- CpuMpData->CpuInfoInHob
1585 // CPU_INFO_IN_HOB (N)
1586 // +--------------------+
1587 //
1588 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);
1589 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;
1590 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);
1591 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);
1592 CpuMpData->Buffer = Buffer;
1593 CpuMpData->CpuApStackSize = ApStackSize;
1594 CpuMpData->BackupBuffer = BackupBufferAddr;
1595 CpuMpData->BackupBufferSize = ApResetVectorSize;
1596 CpuMpData->WakeupBuffer = (UINTN) -1;
1597 CpuMpData->CpuCount = 1;
1598 CpuMpData->BspNumber = 0;
1599 CpuMpData->WaitEvent = NULL;
1600 CpuMpData->SwitchBspFlag = FALSE;
1601 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);
1602 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);
1603 CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);
1604 //
1605 // If platform has more than one CPU, relocate microcode to memory to reduce
1606 // loading microcode time.
1607 //
1608 MicrocodePatchInRam = NULL;
1609 if (MaxLogicalProcessorNumber > 1) {
1610 MicrocodePatchInRam = AllocatePages (
1611 EFI_SIZE_TO_PAGES (
1612 (UINTN)CpuMpData->MicrocodePatchRegionSize
1613 )
1614 );
1615 }
1616 if (MicrocodePatchInRam == NULL) {
1617 //
1618 // there is only one processor, or no microcode patch is available, or
1619 // memory allocation failed
1620 //
1621 CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);
1622 } else {
1623 //
1624 // there are multiple processors, and a microcode patch is available, and
1625 // memory allocation succeeded
1626 //
1627 CopyMem (
1628 MicrocodePatchInRam,
1629 (VOID *)(UINTN)PcdGet64 (PcdCpuMicrocodePatchAddress),
1630 (UINTN)CpuMpData->MicrocodePatchRegionSize
1631 );
1632 CpuMpData->MicrocodePatchAddress = (UINTN)MicrocodePatchInRam;
1633 }
1634
1635 InitializeSpinLock(&CpuMpData->MpLock);
1636
1637 //
1638 // Make sure no memory usage outside of the allocated buffer.
1639 //
1640 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==
1641 Buffer + BufferSize);
1642
1643 //
1644 // Duplicate BSP's IDT to APs.
1645 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1
1646 //
1647 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);
1648 VolatileRegisters.Idtr.Base = ApIdtBase;
1649 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));
1650 //
1651 // Set BSP basic information
1652 //
1653 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);
1654 //
1655 // Save assembly code information
1656 //
1657 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));
1658 //
1659 // Finally set AP loop mode
1660 //
1661 CpuMpData->ApLoopMode = ApLoopMode;
1662 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));
1663
1664 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
1665
1666 //
1667 // Set up APs wakeup signal buffer
1668 //
1669 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {
1670 CpuMpData->CpuData[Index].StartupApSignal =
1671 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);
1672 }
1673 //
1674 // Load Microcode on BSP
1675 //
1676 MicrocodeDetect (CpuMpData, TRUE);
1677 //
1678 // Store BSP's MTRR setting
1679 //
1680 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);
1681 //
1682 // Enable the local APIC for Virtual Wire Mode.
1683 //
1684 ProgramVirtualWireMode ();
1685
1686 if (OldCpuMpData == NULL) {
1687 if (MaxLogicalProcessorNumber > 1) {
1688 //
1689 // Wakeup all APs and calculate the processor count in system
1690 //
1691 CollectProcessorCount (CpuMpData);
1692 }
1693 } else {
1694 //
1695 // APs have been wakeup before, just get the CPU Information
1696 // from HOB
1697 //
1698 CpuMpData->CpuCount = OldCpuMpData->CpuCount;
1699 CpuMpData->BspNumber = OldCpuMpData->BspNumber;
1700 CpuMpData->InitFlag = ApInitReconfig;
1701 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;
1702 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1703 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1704 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);
1705 if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {
1706 CpuMpData->X2ApicEnable = TRUE;
1707 }
1708 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;
1709 CpuMpData->CpuData[Index].ApFunction = 0;
1710 CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));
1711 }
1712 if (MaxLogicalProcessorNumber > 1) {
1713 //
1714 // Wakeup APs to do some AP initialize sync
1715 //
1716 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData);
1717 //
1718 // Wait for all APs finished initialization
1719 //
1720 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
1721 CpuPause ();
1722 }
1723 CpuMpData->InitFlag = ApInitDone;
1724 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1725 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
1726 }
1727 }
1728 }
1729
1730 //
1731 // Initialize global data for MP support
1732 //
1733 InitMpGlobalData (CpuMpData);
1734
1735 return EFI_SUCCESS;
1736 }
1737
1738 /**
1739 Gets detailed MP-related information on the requested processor at the
1740 instant this call is made. This service may only be called from the BSP.
1741
1742 @param[in] ProcessorNumber The handle number of processor.
1743 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for
1744 the requested processor is deposited.
1745 @param[out] HealthData Return processor health data.
1746
1747 @retval EFI_SUCCESS Processor information was returned.
1748 @retval EFI_DEVICE_ERROR The calling processor is an AP.
1749 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
1750 @retval EFI_NOT_FOUND The processor with the handle specified by
1751 ProcessorNumber does not exist in the platform.
1752 @retval EFI_NOT_READY MP Initialize Library is not initialized.
1753
1754 **/
1755 EFI_STATUS
1756 EFIAPI
1757 MpInitLibGetProcessorInfo (
1758 IN UINTN ProcessorNumber,
1759 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,
1760 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL
1761 )
1762 {
1763 CPU_MP_DATA *CpuMpData;
1764 UINTN CallerNumber;
1765 CPU_INFO_IN_HOB *CpuInfoInHob;
1766
1767 CpuMpData = GetCpuMpData ();
1768 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1769
1770 //
1771 // Check whether caller processor is BSP
1772 //
1773 MpInitLibWhoAmI (&CallerNumber);
1774 if (CallerNumber != CpuMpData->BspNumber) {
1775 return EFI_DEVICE_ERROR;
1776 }
1777
1778 if (ProcessorInfoBuffer == NULL) {
1779 return EFI_INVALID_PARAMETER;
1780 }
1781
1782 if (ProcessorNumber >= CpuMpData->CpuCount) {
1783 return EFI_NOT_FOUND;
1784 }
1785
1786 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;
1787 ProcessorInfoBuffer->StatusFlag = 0;
1788 if (ProcessorNumber == CpuMpData->BspNumber) {
1789 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
1790 }
1791 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {
1792 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
1793 }
1794 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
1795 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;
1796 } else {
1797 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
1798 }
1799
1800 //
1801 // Get processor location information
1802 //
1803 GetProcessorLocationByApicId (
1804 CpuInfoInHob[ProcessorNumber].ApicId,
1805 &ProcessorInfoBuffer->Location.Package,
1806 &ProcessorInfoBuffer->Location.Core,
1807 &ProcessorInfoBuffer->Location.Thread
1808 );
1809
1810 if (HealthData != NULL) {
1811 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;
1812 }
1813
1814 return EFI_SUCCESS;
1815 }
1816
1817 /**
1818 Worker function to switch the requested AP to be the BSP from that point onward.
1819
1820 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.
1821 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
1822 enabled AP. Otherwise, it will be disabled.
1823
1824 @retval EFI_SUCCESS BSP successfully switched.
1825 @retval others Failed to switch BSP.
1826
1827 **/
1828 EFI_STATUS
1829 SwitchBSPWorker (
1830 IN UINTN ProcessorNumber,
1831 IN BOOLEAN EnableOldBSP
1832 )
1833 {
1834 CPU_MP_DATA *CpuMpData;
1835 UINTN CallerNumber;
1836 CPU_STATE State;
1837 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;
1838 BOOLEAN OldInterruptState;
1839 BOOLEAN OldTimerInterruptState;
1840
1841 //
1842 // Save and Disable Local APIC timer interrupt
1843 //
1844 OldTimerInterruptState = GetApicTimerInterruptState ();
1845 DisableApicTimerInterrupt ();
1846 //
1847 // Before send both BSP and AP to a procedure to exchange their roles,
1848 // interrupt must be disabled. This is because during the exchange role
1849 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will
1850 // be corrupted, since interrupt return address will be pushed to stack
1851 // by hardware.
1852 //
1853 OldInterruptState = SaveAndDisableInterrupts ();
1854
1855 //
1856 // Mask LINT0 & LINT1 for the old BSP
1857 //
1858 DisableLvtInterrupts ();
1859
1860 CpuMpData = GetCpuMpData ();
1861
1862 //
1863 // Check whether caller processor is BSP
1864 //
1865 MpInitLibWhoAmI (&CallerNumber);
1866 if (CallerNumber != CpuMpData->BspNumber) {
1867 return EFI_DEVICE_ERROR;
1868 }
1869
1870 if (ProcessorNumber >= CpuMpData->CpuCount) {
1871 return EFI_NOT_FOUND;
1872 }
1873
1874 //
1875 // Check whether specified AP is disabled
1876 //
1877 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);
1878 if (State == CpuStateDisabled) {
1879 return EFI_INVALID_PARAMETER;
1880 }
1881
1882 //
1883 // Check whether ProcessorNumber specifies the current BSP
1884 //
1885 if (ProcessorNumber == CpuMpData->BspNumber) {
1886 return EFI_INVALID_PARAMETER;
1887 }
1888
1889 //
1890 // Check whether specified AP is busy
1891 //
1892 if (State == CpuStateBusy) {
1893 return EFI_NOT_READY;
1894 }
1895
1896 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;
1897 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;
1898 CpuMpData->SwitchBspFlag = TRUE;
1899 CpuMpData->NewBspNumber = ProcessorNumber;
1900
1901 //
1902 // Clear the BSP bit of MSR_IA32_APIC_BASE
1903 //
1904 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1905 ApicBaseMsr.Bits.BSP = 0;
1906 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1907
1908 //
1909 // Need to wakeUp AP (future BSP).
1910 //
1911 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData);
1912
1913 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);
1914
1915 //
1916 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP
1917 //
1918 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1919 ApicBaseMsr.Bits.BSP = 1;
1920 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1921 ProgramVirtualWireMode ();
1922
1923 //
1924 // Wait for old BSP finished AP task
1925 //
1926 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {
1927 CpuPause ();
1928 }
1929
1930 CpuMpData->SwitchBspFlag = FALSE;
1931 //
1932 // Set old BSP enable state
1933 //
1934 if (!EnableOldBSP) {
1935 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);
1936 } else {
1937 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);
1938 }
1939 //
1940 // Save new BSP number
1941 //
1942 CpuMpData->BspNumber = (UINT32) ProcessorNumber;
1943
1944 //
1945 // Restore interrupt state.
1946 //
1947 SetInterruptState (OldInterruptState);
1948
1949 if (OldTimerInterruptState) {
1950 EnableApicTimerInterrupt ();
1951 }
1952
1953 return EFI_SUCCESS;
1954 }
1955
1956 /**
1957 Worker function to let the caller enable or disable an AP from this point onward.
1958 This service may only be called from the BSP.
1959
1960 @param[in] ProcessorNumber The handle number of AP.
1961 @param[in] EnableAP Specifies the new state for the processor for
1962 enabled, FALSE for disabled.
1963 @param[in] HealthFlag If not NULL, a pointer to a value that specifies
1964 the new health status of the AP.
1965
1966 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
1967 @retval others Failed to Enable/Disable AP.
1968
1969 **/
1970 EFI_STATUS
1971 EnableDisableApWorker (
1972 IN UINTN ProcessorNumber,
1973 IN BOOLEAN EnableAP,
1974 IN UINT32 *HealthFlag OPTIONAL
1975 )
1976 {
1977 CPU_MP_DATA *CpuMpData;
1978 UINTN CallerNumber;
1979
1980 CpuMpData = GetCpuMpData ();
1981
1982 //
1983 // Check whether caller processor is BSP
1984 //
1985 MpInitLibWhoAmI (&CallerNumber);
1986 if (CallerNumber != CpuMpData->BspNumber) {
1987 return EFI_DEVICE_ERROR;
1988 }
1989
1990 if (ProcessorNumber == CpuMpData->BspNumber) {
1991 return EFI_INVALID_PARAMETER;
1992 }
1993
1994 if (ProcessorNumber >= CpuMpData->CpuCount) {
1995 return EFI_NOT_FOUND;
1996 }
1997
1998 if (!EnableAP) {
1999 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);
2000 } else {
2001 ResetProcessorToIdleState (ProcessorNumber);
2002 }
2003
2004 if (HealthFlag != NULL) {
2005 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =
2006 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);
2007 }
2008
2009 return EFI_SUCCESS;
2010 }
2011
2012 /**
2013 This return the handle number for the calling processor. This service may be
2014 called from the BSP and APs.
2015
2016 @param[out] ProcessorNumber Pointer to the handle number of AP.
2017 The range is from 0 to the total number of
2018 logical processors minus 1. The total number of
2019 logical processors can be retrieved by
2020 MpInitLibGetNumberOfProcessors().
2021
2022 @retval EFI_SUCCESS The current processor handle number was returned
2023 in ProcessorNumber.
2024 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
2025 @retval EFI_NOT_READY MP Initialize Library is not initialized.
2026
2027 **/
2028 EFI_STATUS
2029 EFIAPI
2030 MpInitLibWhoAmI (
2031 OUT UINTN *ProcessorNumber
2032 )
2033 {
2034 CPU_MP_DATA *CpuMpData;
2035
2036 if (ProcessorNumber == NULL) {
2037 return EFI_INVALID_PARAMETER;
2038 }
2039
2040 CpuMpData = GetCpuMpData ();
2041
2042 return GetProcessorNumber (CpuMpData, ProcessorNumber);
2043 }
2044
2045 /**
2046 Retrieves the number of logical processor in the platform and the number of
2047 those logical processors that are enabled on this boot. This service may only
2048 be called from the BSP.
2049
2050 @param[out] NumberOfProcessors Pointer to the total number of logical
2051 processors in the system, including the BSP
2052 and disabled APs.
2053 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
2054 processors that exist in system, including
2055 the BSP.
2056
2057 @retval EFI_SUCCESS The number of logical processors and enabled
2058 logical processors was retrieved.
2059 @retval EFI_DEVICE_ERROR The calling processor is an AP.
2060 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors
2061 is NULL.
2062 @retval EFI_NOT_READY MP Initialize Library is not initialized.
2063
2064 **/
2065 EFI_STATUS
2066 EFIAPI
2067 MpInitLibGetNumberOfProcessors (
2068 OUT UINTN *NumberOfProcessors, OPTIONAL
2069 OUT UINTN *NumberOfEnabledProcessors OPTIONAL
2070 )
2071 {
2072 CPU_MP_DATA *CpuMpData;
2073 UINTN CallerNumber;
2074 UINTN ProcessorNumber;
2075 UINTN EnabledProcessorNumber;
2076 UINTN Index;
2077
2078 CpuMpData = GetCpuMpData ();
2079
2080 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {
2081 return EFI_INVALID_PARAMETER;
2082 }
2083
2084 //
2085 // Check whether caller processor is BSP
2086 //
2087 MpInitLibWhoAmI (&CallerNumber);
2088 if (CallerNumber != CpuMpData->BspNumber) {
2089 return EFI_DEVICE_ERROR;
2090 }
2091
2092 ProcessorNumber = CpuMpData->CpuCount;
2093 EnabledProcessorNumber = 0;
2094 for (Index = 0; Index < ProcessorNumber; Index++) {
2095 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {
2096 EnabledProcessorNumber ++;
2097 }
2098 }
2099
2100 if (NumberOfProcessors != NULL) {
2101 *NumberOfProcessors = ProcessorNumber;
2102 }
2103 if (NumberOfEnabledProcessors != NULL) {
2104 *NumberOfEnabledProcessors = EnabledProcessorNumber;
2105 }
2106
2107 return EFI_SUCCESS;
2108 }
2109
2110
2111 /**
2112 Worker function to execute a caller provided function on all enabled APs.
2113
2114 @param[in] Procedure A pointer to the function to be run on
2115 enabled APs of the system.
2116 @param[in] SingleThread If TRUE, then all the enabled APs execute
2117 the function specified by Procedure one by
2118 one, in ascending order of processor handle
2119 number. If FALSE, then all the enabled APs
2120 execute the function specified by Procedure
2121 simultaneously.
2122 @param[in] WaitEvent The event created by the caller with CreateEvent()
2123 service.
2124 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
2125 APs to return from Procedure, either for
2126 blocking or non-blocking mode.
2127 @param[in] ProcedureArgument The parameter passed into Procedure for
2128 all APs.
2129 @param[out] FailedCpuList If all APs finish successfully, then its
2130 content is set to NULL. If not all APs
2131 finish before timeout expires, then its
2132 content is set to address of the buffer
2133 holding handle numbers of the failed APs.
2134
2135 @retval EFI_SUCCESS In blocking mode, all APs have finished before
2136 the timeout expired.
2137 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
2138 to all enabled APs.
2139 @retval others Failed to Startup all APs.
2140
2141 **/
2142 EFI_STATUS
2143 StartupAllAPsWorker (
2144 IN EFI_AP_PROCEDURE Procedure,
2145 IN BOOLEAN SingleThread,
2146 IN EFI_EVENT WaitEvent OPTIONAL,
2147 IN UINTN TimeoutInMicroseconds,
2148 IN VOID *ProcedureArgument OPTIONAL,
2149 OUT UINTN **FailedCpuList OPTIONAL
2150 )
2151 {
2152 EFI_STATUS Status;
2153 CPU_MP_DATA *CpuMpData;
2154 UINTN ProcessorCount;
2155 UINTN ProcessorNumber;
2156 UINTN CallerNumber;
2157 CPU_AP_DATA *CpuData;
2158 BOOLEAN HasEnabledAp;
2159 CPU_STATE ApState;
2160
2161 CpuMpData = GetCpuMpData ();
2162
2163 if (FailedCpuList != NULL) {
2164 *FailedCpuList = NULL;
2165 }
2166
2167 if (CpuMpData->CpuCount == 1) {
2168 return EFI_NOT_STARTED;
2169 }
2170
2171 if (Procedure == NULL) {
2172 return EFI_INVALID_PARAMETER;
2173 }
2174
2175 //
2176 // Check whether caller processor is BSP
2177 //
2178 MpInitLibWhoAmI (&CallerNumber);
2179 if (CallerNumber != CpuMpData->BspNumber) {
2180 return EFI_DEVICE_ERROR;
2181 }
2182
2183 //
2184 // Update AP state
2185 //
2186 CheckAndUpdateApsStatus ();
2187
2188 ProcessorCount = CpuMpData->CpuCount;
2189 HasEnabledAp = FALSE;
2190 //
2191 // Check whether all enabled APs are idle.
2192 // If any enabled AP is not idle, return EFI_NOT_READY.
2193 //
2194 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2195 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2196 if (ProcessorNumber != CpuMpData->BspNumber) {
2197 ApState = GetApState (CpuData);
2198 if (ApState != CpuStateDisabled) {
2199 HasEnabledAp = TRUE;
2200 if (ApState != CpuStateIdle) {
2201 //
2202 // If any enabled APs are busy, return EFI_NOT_READY.
2203 //
2204 return EFI_NOT_READY;
2205 }
2206 }
2207 }
2208 }
2209
2210 if (!HasEnabledAp) {
2211 //
2212 // If no enabled AP exists, return EFI_NOT_STARTED.
2213 //
2214 return EFI_NOT_STARTED;
2215 }
2216
2217 CpuMpData->StartCount = 0;
2218 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2219 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2220 CpuData->Waiting = FALSE;
2221 if (ProcessorNumber != CpuMpData->BspNumber) {
2222 if (CpuData->State == CpuStateIdle) {
2223 //
2224 // Mark this processor as responsible for current calling.
2225 //
2226 CpuData->Waiting = TRUE;
2227 CpuMpData->StartCount++;
2228 }
2229 }
2230 }
2231
2232 CpuMpData->Procedure = Procedure;
2233 CpuMpData->ProcArguments = ProcedureArgument;
2234 CpuMpData->SingleThread = SingleThread;
2235 CpuMpData->FinishedCount = 0;
2236 CpuMpData->RunningCount = 0;
2237 CpuMpData->FailedCpuList = FailedCpuList;
2238 CpuMpData->ExpectedTime = CalculateTimeout (
2239 TimeoutInMicroseconds,
2240 &CpuMpData->CurrentTime
2241 );
2242 CpuMpData->TotalTime = 0;
2243 CpuMpData->WaitEvent = WaitEvent;
2244
2245 if (!SingleThread) {
2246 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument);
2247 } else {
2248 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2249 if (ProcessorNumber == CallerNumber) {
2250 continue;
2251 }
2252 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
2253 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);
2254 break;
2255 }
2256 }
2257 }
2258
2259 Status = EFI_SUCCESS;
2260 if (WaitEvent == NULL) {
2261 do {
2262 Status = CheckAllAPs ();
2263 } while (Status == EFI_NOT_READY);
2264 }
2265
2266 return Status;
2267 }
2268
2269 /**
2270 Worker function to let the caller get one enabled AP to execute a caller-provided
2271 function.
2272
2273 @param[in] Procedure A pointer to the function to be run on
2274 enabled APs of the system.
2275 @param[in] ProcessorNumber The handle number of the AP.
2276 @param[in] WaitEvent The event created by the caller with CreateEvent()
2277 service.
2278 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
2279 APs to return from Procedure, either for
2280 blocking or non-blocking mode.
2281 @param[in] ProcedureArgument The parameter passed into Procedure for
2282 all APs.
2283 @param[out] Finished If AP returns from Procedure before the
2284 timeout expires, its content is set to TRUE.
2285 Otherwise, the value is set to FALSE.
2286
2287 @retval EFI_SUCCESS In blocking mode, specified AP finished before
2288 the timeout expires.
2289 @retval others Failed to Startup AP.
2290
2291 **/
2292 EFI_STATUS
2293 StartupThisAPWorker (
2294 IN EFI_AP_PROCEDURE Procedure,
2295 IN UINTN ProcessorNumber,
2296 IN EFI_EVENT WaitEvent OPTIONAL,
2297 IN UINTN TimeoutInMicroseconds,
2298 IN VOID *ProcedureArgument OPTIONAL,
2299 OUT BOOLEAN *Finished OPTIONAL
2300 )
2301 {
2302 EFI_STATUS Status;
2303 CPU_MP_DATA *CpuMpData;
2304 CPU_AP_DATA *CpuData;
2305 UINTN CallerNumber;
2306
2307 CpuMpData = GetCpuMpData ();
2308
2309 if (Finished != NULL) {
2310 *Finished = FALSE;
2311 }
2312
2313 //
2314 // Check whether caller processor is BSP
2315 //
2316 MpInitLibWhoAmI (&CallerNumber);
2317 if (CallerNumber != CpuMpData->BspNumber) {
2318 return EFI_DEVICE_ERROR;
2319 }
2320
2321 //
2322 // Check whether processor with the handle specified by ProcessorNumber exists
2323 //
2324 if (ProcessorNumber >= CpuMpData->CpuCount) {
2325 return EFI_NOT_FOUND;
2326 }
2327
2328 //
2329 // Check whether specified processor is BSP
2330 //
2331 if (ProcessorNumber == CpuMpData->BspNumber) {
2332 return EFI_INVALID_PARAMETER;
2333 }
2334
2335 //
2336 // Check parameter Procedure
2337 //
2338 if (Procedure == NULL) {
2339 return EFI_INVALID_PARAMETER;
2340 }
2341
2342 //
2343 // Update AP state
2344 //
2345 CheckAndUpdateApsStatus ();
2346
2347 //
2348 // Check whether specified AP is disabled
2349 //
2350 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
2351 return EFI_INVALID_PARAMETER;
2352 }
2353
2354 //
2355 // If WaitEvent is not NULL, execute in non-blocking mode.
2356 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
2357 // CheckAPsStatus() will check completion and timeout periodically.
2358 //
2359 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2360 CpuData->WaitEvent = WaitEvent;
2361 CpuData->Finished = Finished;
2362 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
2363 CpuData->TotalTime = 0;
2364
2365 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument);
2366
2367 //
2368 // If WaitEvent is NULL, execute in blocking mode.
2369 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
2370 //
2371 Status = EFI_SUCCESS;
2372 if (WaitEvent == NULL) {
2373 do {
2374 Status = CheckThisAP (ProcessorNumber);
2375 } while (Status == EFI_NOT_READY);
2376 }
2377
2378 return Status;
2379 }
2380
2381 /**
2382 Get pointer to CPU MP Data structure from GUIDed HOB.
2383
2384 @return The pointer to CPU MP Data structure.
2385 **/
2386 CPU_MP_DATA *
2387 GetCpuMpDataFromGuidedHob (
2388 VOID
2389 )
2390 {
2391 EFI_HOB_GUID_TYPE *GuidHob;
2392 VOID *DataInHob;
2393 CPU_MP_DATA *CpuMpData;
2394
2395 CpuMpData = NULL;
2396 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);
2397 if (GuidHob != NULL) {
2398 DataInHob = GET_GUID_HOB_DATA (GuidHob);
2399 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);
2400 }
2401 return CpuMpData;
2402 }
2403