]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/Library/MpInitLib/MpLib.c
BaseTools: Remove invalid leading space before !INCLUDE in Makefile
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
1 /** @file
2 CPU MP Initialize Library common functions.
3
4 Copyright (c) 2016 - 2020, Intel Corporation. All rights reserved.<BR>
5 SPDX-License-Identifier: BSD-2-Clause-Patent
6
7 **/
8
9 #include "MpLib.h"
10
11 EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;
12
13 /**
14 The function will check if BSP Execute Disable is enabled.
15
16 DxeIpl may have enabled Execute Disable for BSP, APs need to
17 get the status and sync up the settings.
18 If BSP's CR0.Paging is not set, BSP execute Disble feature is
19 not working actually.
20
21 @retval TRUE BSP Execute Disable is enabled.
22 @retval FALSE BSP Execute Disable is not enabled.
23 **/
24 BOOLEAN
25 IsBspExecuteDisableEnabled (
26 VOID
27 )
28 {
29 UINT32 Eax;
30 CPUID_EXTENDED_CPU_SIG_EDX Edx;
31 MSR_IA32_EFER_REGISTER EferMsr;
32 BOOLEAN Enabled;
33 IA32_CR0 Cr0;
34
35 Enabled = FALSE;
36 Cr0.UintN = AsmReadCr0 ();
37 if (Cr0.Bits.PG != 0) {
38 //
39 // If CR0 Paging bit is set
40 //
41 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);
42 if (Eax >= CPUID_EXTENDED_CPU_SIG) {
43 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);
44 //
45 // CPUID 0x80000001
46 // Bit 20: Execute Disable Bit available.
47 //
48 if (Edx.Bits.NX != 0) {
49 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);
50 //
51 // MSR 0xC0000080
52 // Bit 11: Execute Disable Bit enable.
53 //
54 if (EferMsr.Bits.NXE != 0) {
55 Enabled = TRUE;
56 }
57 }
58 }
59 }
60
61 return Enabled;
62 }
63
64 /**
65 Worker function for SwitchBSP().
66
67 Worker function for SwitchBSP(), assigned to the AP which is intended
68 to become BSP.
69
70 @param[in] Buffer Pointer to CPU MP Data
71 **/
72 VOID
73 EFIAPI
74 FutureBSPProc (
75 IN VOID *Buffer
76 )
77 {
78 CPU_MP_DATA *DataInHob;
79
80 DataInHob = (CPU_MP_DATA *) Buffer;
81 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);
82 }
83
84 /**
85 Get the Application Processors state.
86
87 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
88
89 @return The AP status
90 **/
91 CPU_STATE
92 GetApState (
93 IN CPU_AP_DATA *CpuData
94 )
95 {
96 return CpuData->State;
97 }
98
99 /**
100 Set the Application Processors state.
101
102 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
103 @param[in] State The AP status
104 **/
105 VOID
106 SetApState (
107 IN CPU_AP_DATA *CpuData,
108 IN CPU_STATE State
109 )
110 {
111 AcquireSpinLock (&CpuData->ApLock);
112 CpuData->State = State;
113 ReleaseSpinLock (&CpuData->ApLock);
114 }
115
116 /**
117 Save BSP's local APIC timer setting.
118
119 @param[in] CpuMpData Pointer to CPU MP Data
120 **/
121 VOID
122 SaveLocalApicTimerSetting (
123 IN CPU_MP_DATA *CpuMpData
124 )
125 {
126 //
127 // Record the current local APIC timer setting of BSP
128 //
129 GetApicTimerState (
130 &CpuMpData->DivideValue,
131 &CpuMpData->PeriodicMode,
132 &CpuMpData->Vector
133 );
134 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();
135 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();
136 }
137
138 /**
139 Sync local APIC timer setting from BSP to AP.
140
141 @param[in] CpuMpData Pointer to CPU MP Data
142 **/
143 VOID
144 SyncLocalApicTimerSetting (
145 IN CPU_MP_DATA *CpuMpData
146 )
147 {
148 //
149 // Sync local APIC timer setting from BSP to AP
150 //
151 InitializeApicTimer (
152 CpuMpData->DivideValue,
153 CpuMpData->CurrentTimerCount,
154 CpuMpData->PeriodicMode,
155 CpuMpData->Vector
156 );
157 //
158 // Disable AP's local APIC timer interrupt
159 //
160 DisableApicTimerInterrupt ();
161 }
162
163 /**
164 Save the volatile registers required to be restored following INIT IPI.
165
166 @param[out] VolatileRegisters Returns buffer saved the volatile resisters
167 **/
168 VOID
169 SaveVolatileRegisters (
170 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters
171 )
172 {
173 CPUID_VERSION_INFO_EDX VersionInfoEdx;
174
175 VolatileRegisters->Cr0 = AsmReadCr0 ();
176 VolatileRegisters->Cr3 = AsmReadCr3 ();
177 VolatileRegisters->Cr4 = AsmReadCr4 ();
178
179 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
180 if (VersionInfoEdx.Bits.DE != 0) {
181 //
182 // If processor supports Debugging Extensions feature
183 // by CPUID.[EAX=01H]:EDX.BIT2
184 //
185 VolatileRegisters->Dr0 = AsmReadDr0 ();
186 VolatileRegisters->Dr1 = AsmReadDr1 ();
187 VolatileRegisters->Dr2 = AsmReadDr2 ();
188 VolatileRegisters->Dr3 = AsmReadDr3 ();
189 VolatileRegisters->Dr6 = AsmReadDr6 ();
190 VolatileRegisters->Dr7 = AsmReadDr7 ();
191 }
192
193 AsmReadGdtr (&VolatileRegisters->Gdtr);
194 AsmReadIdtr (&VolatileRegisters->Idtr);
195 VolatileRegisters->Tr = AsmReadTr ();
196 }
197
198 /**
199 Restore the volatile registers following INIT IPI.
200
201 @param[in] VolatileRegisters Pointer to volatile resisters
202 @param[in] IsRestoreDr TRUE: Restore DRx if supported
203 FALSE: Do not restore DRx
204 **/
205 VOID
206 RestoreVolatileRegisters (
207 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,
208 IN BOOLEAN IsRestoreDr
209 )
210 {
211 CPUID_VERSION_INFO_EDX VersionInfoEdx;
212 IA32_TSS_DESCRIPTOR *Tss;
213
214 AsmWriteCr3 (VolatileRegisters->Cr3);
215 AsmWriteCr4 (VolatileRegisters->Cr4);
216 AsmWriteCr0 (VolatileRegisters->Cr0);
217
218 if (IsRestoreDr) {
219 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
220 if (VersionInfoEdx.Bits.DE != 0) {
221 //
222 // If processor supports Debugging Extensions feature
223 // by CPUID.[EAX=01H]:EDX.BIT2
224 //
225 AsmWriteDr0 (VolatileRegisters->Dr0);
226 AsmWriteDr1 (VolatileRegisters->Dr1);
227 AsmWriteDr2 (VolatileRegisters->Dr2);
228 AsmWriteDr3 (VolatileRegisters->Dr3);
229 AsmWriteDr6 (VolatileRegisters->Dr6);
230 AsmWriteDr7 (VolatileRegisters->Dr7);
231 }
232 }
233
234 AsmWriteGdtr (&VolatileRegisters->Gdtr);
235 AsmWriteIdtr (&VolatileRegisters->Idtr);
236 if (VolatileRegisters->Tr != 0 &&
237 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {
238 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +
239 VolatileRegisters->Tr);
240 if (Tss->Bits.P == 1) {
241 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case
242 AsmWriteTr (VolatileRegisters->Tr);
243 }
244 }
245 }
246
247 /**
248 Detect whether Mwait-monitor feature is supported.
249
250 @retval TRUE Mwait-monitor feature is supported.
251 @retval FALSE Mwait-monitor feature is not supported.
252 **/
253 BOOLEAN
254 IsMwaitSupport (
255 VOID
256 )
257 {
258 CPUID_VERSION_INFO_ECX VersionInfoEcx;
259
260 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);
261 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;
262 }
263
264 /**
265 Get AP loop mode.
266
267 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.
268
269 @return The AP loop mode.
270 **/
271 UINT8
272 GetApLoopMode (
273 OUT UINT32 *MonitorFilterSize
274 )
275 {
276 UINT8 ApLoopMode;
277 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;
278
279 ASSERT (MonitorFilterSize != NULL);
280
281 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
282 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);
283 if (ApLoopMode == ApInMwaitLoop) {
284 if (!IsMwaitSupport ()) {
285 //
286 // If processor does not support MONITOR/MWAIT feature,
287 // force AP in Hlt-loop mode
288 //
289 ApLoopMode = ApInHltLoop;
290 }
291 }
292
293 if (ApLoopMode != ApInMwaitLoop) {
294 *MonitorFilterSize = sizeof (UINT32);
295 } else {
296 //
297 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes
298 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT
299 //
300 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);
301 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;
302 }
303
304 return ApLoopMode;
305 }
306
307 /**
308 Sort the APIC ID of all processors.
309
310 This function sorts the APIC ID of all processors so that processor number is
311 assigned in the ascending order of APIC ID which eases MP debugging.
312
313 @param[in] CpuMpData Pointer to PEI CPU MP Data
314 **/
315 VOID
316 SortApicId (
317 IN CPU_MP_DATA *CpuMpData
318 )
319 {
320 UINTN Index1;
321 UINTN Index2;
322 UINTN Index3;
323 UINT32 ApicId;
324 CPU_INFO_IN_HOB CpuInfo;
325 UINT32 ApCount;
326 CPU_INFO_IN_HOB *CpuInfoInHob;
327 volatile UINT32 *StartupApSignal;
328
329 ApCount = CpuMpData->CpuCount - 1;
330 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
331 if (ApCount != 0) {
332 for (Index1 = 0; Index1 < ApCount; Index1++) {
333 Index3 = Index1;
334 //
335 // Sort key is the hardware default APIC ID
336 //
337 ApicId = CpuInfoInHob[Index1].ApicId;
338 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {
339 if (ApicId > CpuInfoInHob[Index2].ApicId) {
340 Index3 = Index2;
341 ApicId = CpuInfoInHob[Index2].ApicId;
342 }
343 }
344 if (Index3 != Index1) {
345 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));
346 CopyMem (
347 &CpuInfoInHob[Index3],
348 &CpuInfoInHob[Index1],
349 sizeof (CPU_INFO_IN_HOB)
350 );
351 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));
352
353 //
354 // Also exchange the StartupApSignal.
355 //
356 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;
357 CpuMpData->CpuData[Index3].StartupApSignal =
358 CpuMpData->CpuData[Index1].StartupApSignal;
359 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;
360 }
361 }
362
363 //
364 // Get the processor number for the BSP
365 //
366 ApicId = GetInitialApicId ();
367 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
368 if (CpuInfoInHob[Index1].ApicId == ApicId) {
369 CpuMpData->BspNumber = (UINT32) Index1;
370 break;
371 }
372 }
373 }
374 }
375
376 /**
377 Enable x2APIC mode on APs.
378
379 @param[in, out] Buffer Pointer to private data buffer.
380 **/
381 VOID
382 EFIAPI
383 ApFuncEnableX2Apic (
384 IN OUT VOID *Buffer
385 )
386 {
387 SetApicMode (LOCAL_APIC_MODE_X2APIC);
388 }
389
390 /**
391 Do sync on APs.
392
393 @param[in, out] Buffer Pointer to private data buffer.
394 **/
395 VOID
396 EFIAPI
397 ApInitializeSync (
398 IN OUT VOID *Buffer
399 )
400 {
401 CPU_MP_DATA *CpuMpData;
402 UINTN ProcessorNumber;
403 EFI_STATUS Status;
404
405 CpuMpData = (CPU_MP_DATA *) Buffer;
406 Status = GetProcessorNumber (CpuMpData, &ProcessorNumber);
407 ASSERT_EFI_ERROR (Status);
408 //
409 // Load microcode on AP
410 //
411 MicrocodeDetect (CpuMpData, ProcessorNumber);
412 //
413 // Sync BSP's MTRR table to AP
414 //
415 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);
416 }
417
418 /**
419 Find the current Processor number by APIC ID.
420
421 @param[in] CpuMpData Pointer to PEI CPU MP Data
422 @param[out] ProcessorNumber Return the pocessor number found
423
424 @retval EFI_SUCCESS ProcessorNumber is found and returned.
425 @retval EFI_NOT_FOUND ProcessorNumber is not found.
426 **/
427 EFI_STATUS
428 GetProcessorNumber (
429 IN CPU_MP_DATA *CpuMpData,
430 OUT UINTN *ProcessorNumber
431 )
432 {
433 UINTN TotalProcessorNumber;
434 UINTN Index;
435 CPU_INFO_IN_HOB *CpuInfoInHob;
436 UINT32 CurrentApicId;
437
438 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
439
440 TotalProcessorNumber = CpuMpData->CpuCount;
441 CurrentApicId = GetApicId ();
442 for (Index = 0; Index < TotalProcessorNumber; Index ++) {
443 if (CpuInfoInHob[Index].ApicId == CurrentApicId) {
444 *ProcessorNumber = Index;
445 return EFI_SUCCESS;
446 }
447 }
448
449 return EFI_NOT_FOUND;
450 }
451
452 /**
453 This function will get CPU count in the system.
454
455 @param[in] CpuMpData Pointer to PEI CPU MP Data
456
457 @return CPU count detected
458 **/
459 UINTN
460 CollectProcessorCount (
461 IN CPU_MP_DATA *CpuMpData
462 )
463 {
464 UINTN Index;
465 CPU_INFO_IN_HOB *CpuInfoInHob;
466 BOOLEAN X2Apic;
467
468 //
469 // Send 1st broadcast IPI to APs to wakeup APs
470 //
471 CpuMpData->InitFlag = ApInitConfig;
472 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);
473 CpuMpData->InitFlag = ApInitDone;
474 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
475 //
476 // Wait for all APs finished the initialization
477 //
478 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
479 CpuPause ();
480 }
481
482
483 //
484 // Enable x2APIC mode if
485 // 1. Number of CPU is greater than 255; or
486 // 2. There are any logical processors reporting an Initial APIC ID of 255 or greater.
487 //
488 X2Apic = FALSE;
489 if (CpuMpData->CpuCount > 255) {
490 //
491 // If there are more than 255 processor found, force to enable X2APIC
492 //
493 X2Apic = TRUE;
494 } else {
495 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
496 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
497 if (CpuInfoInHob[Index].InitialApicId >= 0xFF) {
498 X2Apic = TRUE;
499 break;
500 }
501 }
502 }
503
504 if (X2Apic) {
505 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));
506 //
507 // Wakeup all APs to enable x2APIC mode
508 //
509 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE);
510 //
511 // Wait for all known APs finished
512 //
513 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
514 CpuPause ();
515 }
516 //
517 // Enable x2APIC on BSP
518 //
519 SetApicMode (LOCAL_APIC_MODE_X2APIC);
520 //
521 // Set BSP/Aps state to IDLE
522 //
523 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
524 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
525 }
526 }
527 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));
528 //
529 // Sort BSP/Aps by CPU APIC ID in ascending order
530 //
531 SortApicId (CpuMpData);
532
533 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));
534
535 return CpuMpData->CpuCount;
536 }
537
538 /**
539 Initialize CPU AP Data when AP is wakeup at the first time.
540
541 @param[in, out] CpuMpData Pointer to PEI CPU MP Data
542 @param[in] ProcessorNumber The handle number of processor
543 @param[in] BistData Processor BIST data
544 @param[in] ApTopOfStack Top of AP stack
545
546 **/
547 VOID
548 InitializeApData (
549 IN OUT CPU_MP_DATA *CpuMpData,
550 IN UINTN ProcessorNumber,
551 IN UINT32 BistData,
552 IN UINT64 ApTopOfStack
553 )
554 {
555 CPU_INFO_IN_HOB *CpuInfoInHob;
556 MSR_IA32_PLATFORM_ID_REGISTER PlatformIdMsr;
557
558 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
559 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
560 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
561 CpuInfoInHob[ProcessorNumber].Health = BistData;
562 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;
563
564 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
565 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;
566
567 PlatformIdMsr.Uint64 = AsmReadMsr64 (MSR_IA32_PLATFORM_ID);
568 CpuMpData->CpuData[ProcessorNumber].PlatformId = (UINT8) PlatformIdMsr.Bits.PlatformId;
569
570 AsmCpuid (
571 CPUID_VERSION_INFO,
572 &CpuMpData->CpuData[ProcessorNumber].ProcessorSignature,
573 NULL,
574 NULL,
575 NULL
576 );
577
578 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);
579 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
580 }
581
582 /**
583 This function will be called from AP reset code if BSP uses WakeUpAP.
584
585 @param[in] ExchangeInfo Pointer to the MP exchange info buffer
586 @param[in] ApIndex Number of current executing AP
587 **/
588 VOID
589 EFIAPI
590 ApWakeupFunction (
591 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,
592 IN UINTN ApIndex
593 )
594 {
595 CPU_MP_DATA *CpuMpData;
596 UINTN ProcessorNumber;
597 EFI_AP_PROCEDURE Procedure;
598 VOID *Parameter;
599 UINT32 BistData;
600 volatile UINT32 *ApStartupSignalBuffer;
601 CPU_INFO_IN_HOB *CpuInfoInHob;
602 UINT64 ApTopOfStack;
603 UINTN CurrentApicMode;
604
605 //
606 // AP finished assembly code and begin to execute C code
607 //
608 CpuMpData = ExchangeInfo->CpuMpData;
609
610 //
611 // AP's local APIC settings will be lost after received INIT IPI
612 // We need to re-initialize them at here
613 //
614 ProgramVirtualWireMode ();
615 //
616 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.
617 //
618 DisableLvtInterrupts ();
619 SyncLocalApicTimerSetting (CpuMpData);
620
621 CurrentApicMode = GetApicMode ();
622 while (TRUE) {
623 if (CpuMpData->InitFlag == ApInitConfig) {
624 //
625 // Add CPU number
626 //
627 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);
628 ProcessorNumber = ApIndex;
629 //
630 // This is first time AP wakeup, get BIST information from AP stack
631 //
632 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;
633 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));
634 //
635 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,
636 // to initialize AP in InitConfig path.
637 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.
638 //
639 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
640 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);
641 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
642
643 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);
644 } else {
645 //
646 // Execute AP function if AP is ready
647 //
648 GetProcessorNumber (CpuMpData, &ProcessorNumber);
649 //
650 // Clear AP start-up signal when AP waken up
651 //
652 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
653 InterlockedCompareExchange32 (
654 (UINT32 *) ApStartupSignalBuffer,
655 WAKEUP_AP_SIGNAL,
656 0
657 );
658 if (CpuMpData->ApLoopMode == ApInHltLoop) {
659 //
660 // Restore AP's volatile registers saved
661 //
662 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);
663 } else {
664 //
665 // The CPU driver might not flush TLB for APs on spot after updating
666 // page attributes. AP in mwait loop mode needs to take care of it when
667 // woken up.
668 //
669 CpuFlushTlb ();
670 }
671
672 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {
673 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;
674 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;
675 if (Procedure != NULL) {
676 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);
677 //
678 // Enable source debugging on AP function
679 //
680 EnableDebugAgent ();
681 //
682 // Invoke AP function here
683 //
684 Procedure (Parameter);
685 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
686 if (CpuMpData->SwitchBspFlag) {
687 //
688 // Re-get the processor number due to BSP/AP maybe exchange in AP function
689 //
690 GetProcessorNumber (CpuMpData, &ProcessorNumber);
691 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;
692 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;
693 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
694 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;
695 } else {
696 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||
697 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {
698 if (CurrentApicMode != GetApicMode ()) {
699 //
700 // If APIC mode change happened during AP function execution,
701 // we do not support APIC ID value changed.
702 //
703 ASSERT (FALSE);
704 CpuDeadLoop ();
705 } else {
706 //
707 // Re-get the CPU APICID and Initial APICID if they are changed
708 //
709 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
710 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
711 }
712 }
713 }
714 }
715 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);
716 }
717 }
718
719 //
720 // AP finished executing C code
721 //
722 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);
723
724 //
725 // Place AP is specified loop mode
726 //
727 if (CpuMpData->ApLoopMode == ApInHltLoop) {
728 //
729 // Save AP volatile registers
730 //
731 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);
732 //
733 // Place AP in HLT-loop
734 //
735 while (TRUE) {
736 DisableInterrupts ();
737 CpuSleep ();
738 CpuPause ();
739 }
740 }
741 while (TRUE) {
742 DisableInterrupts ();
743 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
744 //
745 // Place AP in MWAIT-loop
746 //
747 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);
748 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {
749 //
750 // Check AP start-up signal again.
751 // If AP start-up signal is not set, place AP into
752 // the specified C-state
753 //
754 AsmMwait (CpuMpData->ApTargetCState << 4, 0);
755 }
756 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {
757 //
758 // Place AP in Run-loop
759 //
760 CpuPause ();
761 } else {
762 ASSERT (FALSE);
763 }
764
765 //
766 // If AP start-up signal is written, AP is waken up
767 // otherwise place AP in loop again
768 //
769 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {
770 break;
771 }
772 }
773 }
774 }
775
776 /**
777 Wait for AP wakeup and write AP start-up signal till AP is waken up.
778
779 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal
780 **/
781 VOID
782 WaitApWakeup (
783 IN volatile UINT32 *ApStartupSignalBuffer
784 )
785 {
786 //
787 // If AP is waken up, StartupApSignal should be cleared.
788 // Otherwise, write StartupApSignal again till AP waken up.
789 //
790 while (InterlockedCompareExchange32 (
791 (UINT32 *) ApStartupSignalBuffer,
792 WAKEUP_AP_SIGNAL,
793 WAKEUP_AP_SIGNAL
794 ) != 0) {
795 CpuPause ();
796 }
797 }
798
799 /**
800 This function will fill the exchange info structure.
801
802 @param[in] CpuMpData Pointer to CPU MP Data
803
804 **/
805 VOID
806 FillExchangeInfoData (
807 IN CPU_MP_DATA *CpuMpData
808 )
809 {
810 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
811 UINTN Size;
812 IA32_SEGMENT_DESCRIPTOR *Selector;
813 IA32_CR4 Cr4;
814
815 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
816 ExchangeInfo->Lock = 0;
817 ExchangeInfo->StackStart = CpuMpData->Buffer;
818 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;
819 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;
820 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;
821
822 ExchangeInfo->CodeSegment = AsmReadCs ();
823 ExchangeInfo->DataSegment = AsmReadDs ();
824
825 ExchangeInfo->Cr3 = AsmReadCr3 ();
826
827 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;
828 ExchangeInfo->ApIndex = 0;
829 ExchangeInfo->NumApsExecuting = 0;
830 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;
831 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
832 ExchangeInfo->CpuMpData = CpuMpData;
833
834 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();
835
836 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;
837
838 //
839 // We can check either CPUID(7).ECX[bit16] or check CR4.LA57[bit12]
840 // to determin whether 5-Level Paging is enabled.
841 // CPUID(7).ECX[bit16] shows CPU's capability, CR4.LA57[bit12] shows
842 // current system setting.
843 // Using latter way is simpler because it also eliminates the needs to
844 // check whether platform wants to enable it.
845 //
846 Cr4.UintN = AsmReadCr4 ();
847 ExchangeInfo->Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);
848 DEBUG ((DEBUG_INFO, "%a: 5-Level Paging = %d\n", gEfiCallerBaseName, ExchangeInfo->Enable5LevelPaging));
849
850 //
851 // Get the BSP's data of GDT and IDT
852 //
853 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);
854 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);
855
856 //
857 // Find a 32-bit code segment
858 //
859 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;
860 Size = ExchangeInfo->GdtrProfile.Limit + 1;
861 while (Size > 0) {
862 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {
863 ExchangeInfo->ModeTransitionSegment =
864 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);
865 break;
866 }
867 Selector += 1;
868 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);
869 }
870
871 //
872 // Copy all 32-bit code and 64-bit code into memory with type of
873 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.
874 //
875 if (CpuMpData->WakeupBufferHigh != 0) {
876 Size = CpuMpData->AddressMap.RendezvousFunnelSize -
877 CpuMpData->AddressMap.ModeTransitionOffset;
878 CopyMem (
879 (VOID *)CpuMpData->WakeupBufferHigh,
880 CpuMpData->AddressMap.RendezvousFunnelAddress +
881 CpuMpData->AddressMap.ModeTransitionOffset,
882 Size
883 );
884
885 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;
886 } else {
887 ExchangeInfo->ModeTransitionMemory = (UINT32)
888 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);
889 }
890
891 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +
892 (UINT32)ExchangeInfo->ModeOffset -
893 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;
894 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;
895 }
896
897 /**
898 Helper function that waits until the finished AP count reaches the specified
899 limit, or the specified timeout elapses (whichever comes first).
900
901 @param[in] CpuMpData Pointer to CPU MP Data.
902 @param[in] FinishedApLimit The number of finished APs to wait for.
903 @param[in] TimeLimit The number of microseconds to wait for.
904 **/
905 VOID
906 TimedWaitForApFinish (
907 IN CPU_MP_DATA *CpuMpData,
908 IN UINT32 FinishedApLimit,
909 IN UINT32 TimeLimit
910 );
911
912 /**
913 Get available system memory below 1MB by specified size.
914
915 @param[in] CpuMpData The pointer to CPU MP Data structure.
916 **/
917 VOID
918 BackupAndPrepareWakeupBuffer(
919 IN CPU_MP_DATA *CpuMpData
920 )
921 {
922 CopyMem (
923 (VOID *) CpuMpData->BackupBuffer,
924 (VOID *) CpuMpData->WakeupBuffer,
925 CpuMpData->BackupBufferSize
926 );
927 CopyMem (
928 (VOID *) CpuMpData->WakeupBuffer,
929 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,
930 CpuMpData->AddressMap.RendezvousFunnelSize
931 );
932 }
933
934 /**
935 Restore wakeup buffer data.
936
937 @param[in] CpuMpData The pointer to CPU MP Data structure.
938 **/
939 VOID
940 RestoreWakeupBuffer(
941 IN CPU_MP_DATA *CpuMpData
942 )
943 {
944 CopyMem (
945 (VOID *) CpuMpData->WakeupBuffer,
946 (VOID *) CpuMpData->BackupBuffer,
947 CpuMpData->BackupBufferSize
948 );
949 }
950
951 /**
952 Allocate reset vector buffer.
953
954 @param[in, out] CpuMpData The pointer to CPU MP Data structure.
955 **/
956 VOID
957 AllocateResetVector (
958 IN OUT CPU_MP_DATA *CpuMpData
959 )
960 {
961 UINTN ApResetVectorSize;
962
963 if (CpuMpData->WakeupBuffer == (UINTN) -1) {
964 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +
965 sizeof (MP_CPU_EXCHANGE_INFO);
966
967 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);
968 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)
969 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);
970 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (
971 CpuMpData->AddressMap.RendezvousFunnelSize -
972 CpuMpData->AddressMap.ModeTransitionOffset
973 );
974 }
975 BackupAndPrepareWakeupBuffer (CpuMpData);
976 }
977
978 /**
979 Free AP reset vector buffer.
980
981 @param[in] CpuMpData The pointer to CPU MP Data structure.
982 **/
983 VOID
984 FreeResetVector (
985 IN CPU_MP_DATA *CpuMpData
986 )
987 {
988 RestoreWakeupBuffer (CpuMpData);
989 }
990
991 /**
992 This function will be called by BSP to wakeup AP.
993
994 @param[in] CpuMpData Pointer to CPU MP Data
995 @param[in] Broadcast TRUE: Send broadcast IPI to all APs
996 FALSE: Send IPI to AP by ApicId
997 @param[in] ProcessorNumber The handle number of specified processor
998 @param[in] Procedure The function to be invoked by AP
999 @param[in] ProcedureArgument The argument to be passed into AP function
1000 @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode.
1001 **/
1002 VOID
1003 WakeUpAP (
1004 IN CPU_MP_DATA *CpuMpData,
1005 IN BOOLEAN Broadcast,
1006 IN UINTN ProcessorNumber,
1007 IN EFI_AP_PROCEDURE Procedure, OPTIONAL
1008 IN VOID *ProcedureArgument, OPTIONAL
1009 IN BOOLEAN WakeUpDisabledAps
1010 )
1011 {
1012 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
1013 UINTN Index;
1014 CPU_AP_DATA *CpuData;
1015 BOOLEAN ResetVectorRequired;
1016 CPU_INFO_IN_HOB *CpuInfoInHob;
1017
1018 CpuMpData->FinishedCount = 0;
1019 ResetVectorRequired = FALSE;
1020
1021 if (CpuMpData->WakeUpByInitSipiSipi ||
1022 CpuMpData->InitFlag != ApInitDone) {
1023 ResetVectorRequired = TRUE;
1024 AllocateResetVector (CpuMpData);
1025 FillExchangeInfoData (CpuMpData);
1026 SaveLocalApicTimerSetting (CpuMpData);
1027 }
1028
1029 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
1030 //
1031 // Get AP target C-state each time when waking up AP,
1032 // for it maybe updated by platform again
1033 //
1034 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);
1035 }
1036
1037 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
1038
1039 if (Broadcast) {
1040 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1041 if (Index != CpuMpData->BspNumber) {
1042 CpuData = &CpuMpData->CpuData[Index];
1043 //
1044 // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but
1045 // the AP procedure will be skipped for disabled AP because AP state
1046 // is not CpuStateReady.
1047 //
1048 if (GetApState (CpuData) == CpuStateDisabled && !WakeUpDisabledAps) {
1049 continue;
1050 }
1051
1052 CpuData->ApFunction = (UINTN) Procedure;
1053 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
1054 SetApState (CpuData, CpuStateReady);
1055 if (CpuMpData->InitFlag != ApInitConfig) {
1056 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
1057 }
1058 }
1059 }
1060 if (ResetVectorRequired) {
1061 //
1062 // Wakeup all APs
1063 //
1064 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);
1065 }
1066 if (CpuMpData->InitFlag == ApInitConfig) {
1067 if (PcdGet32 (PcdCpuBootLogicalProcessorNumber) > 0) {
1068 //
1069 // The AP enumeration algorithm below is suitable only when the
1070 // platform can tell us the *exact* boot CPU count in advance.
1071 //
1072 // The wait below finishes only when the detected AP count reaches
1073 // (PcdCpuBootLogicalProcessorNumber - 1), regardless of how long that
1074 // takes. If at least one AP fails to check in (meaning a platform
1075 // hardware bug), the detection hangs forever, by design. If the actual
1076 // boot CPU count in the system is higher than
1077 // PcdCpuBootLogicalProcessorNumber (meaning a platform
1078 // misconfiguration), then some APs may complete initialization after
1079 // the wait finishes, and cause undefined behavior.
1080 //
1081 TimedWaitForApFinish (
1082 CpuMpData,
1083 PcdGet32 (PcdCpuBootLogicalProcessorNumber) - 1,
1084 MAX_UINT32 // approx. 71 minutes
1085 );
1086 } else {
1087 //
1088 // The AP enumeration algorithm below is suitable for two use cases.
1089 //
1090 // (1) The check-in time for an individual AP is bounded, and APs run
1091 // through their initialization routines strongly concurrently. In
1092 // particular, the number of concurrently running APs
1093 // ("NumApsExecuting") is never expected to fall to zero
1094 // *temporarily* -- it is expected to fall to zero only when all
1095 // APs have checked-in.
1096 //
1097 // In this case, the platform is supposed to set
1098 // PcdCpuApInitTimeOutInMicroSeconds to a low-ish value (just long
1099 // enough for one AP to start initialization). The timeout will be
1100 // reached soon, and remaining APs are collected by watching
1101 // NumApsExecuting fall to zero. If NumApsExecuting falls to zero
1102 // mid-process, while some APs have not completed initialization,
1103 // the behavior is undefined.
1104 //
1105 // (2) The check-in time for an individual AP is unbounded, and/or APs
1106 // may complete their initializations widely spread out. In
1107 // particular, some APs may finish initialization before some APs
1108 // even start.
1109 //
1110 // In this case, the platform is supposed to set
1111 // PcdCpuApInitTimeOutInMicroSeconds to a high-ish value. The AP
1112 // enumeration will always take that long (except when the boot CPU
1113 // count happens to be maximal, that is,
1114 // PcdCpuMaxLogicalProcessorNumber). All APs are expected to
1115 // check-in before the timeout, and NumApsExecuting is assumed zero
1116 // at timeout. APs that miss the time-out may cause undefined
1117 // behavior.
1118 //
1119 TimedWaitForApFinish (
1120 CpuMpData,
1121 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,
1122 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)
1123 );
1124
1125 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {
1126 CpuPause();
1127 }
1128 }
1129 } else {
1130 //
1131 // Wait all APs waken up if this is not the 1st broadcast of SIPI
1132 //
1133 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1134 CpuData = &CpuMpData->CpuData[Index];
1135 if (Index != CpuMpData->BspNumber) {
1136 WaitApWakeup (CpuData->StartupApSignal);
1137 }
1138 }
1139 }
1140 } else {
1141 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1142 CpuData->ApFunction = (UINTN) Procedure;
1143 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
1144 SetApState (CpuData, CpuStateReady);
1145 //
1146 // Wakeup specified AP
1147 //
1148 ASSERT (CpuMpData->InitFlag != ApInitConfig);
1149 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
1150 if (ResetVectorRequired) {
1151 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1152 SendInitSipiSipi (
1153 CpuInfoInHob[ProcessorNumber].ApicId,
1154 (UINT32) ExchangeInfo->BufferStart
1155 );
1156 }
1157 //
1158 // Wait specified AP waken up
1159 //
1160 WaitApWakeup (CpuData->StartupApSignal);
1161 }
1162
1163 if (ResetVectorRequired) {
1164 FreeResetVector (CpuMpData);
1165 }
1166
1167 //
1168 // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with
1169 // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by
1170 // S3SmmInitDone Ppi.
1171 //
1172 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
1173 }
1174
1175 /**
1176 Calculate timeout value and return the current performance counter value.
1177
1178 Calculate the number of performance counter ticks required for a timeout.
1179 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1180 as infinity.
1181
1182 @param[in] TimeoutInMicroseconds Timeout value in microseconds.
1183 @param[out] CurrentTime Returns the current value of the performance counter.
1184
1185 @return Expected time stamp counter for timeout.
1186 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1187 as infinity.
1188
1189 **/
1190 UINT64
1191 CalculateTimeout (
1192 IN UINTN TimeoutInMicroseconds,
1193 OUT UINT64 *CurrentTime
1194 )
1195 {
1196 UINT64 TimeoutInSeconds;
1197 UINT64 TimestampCounterFreq;
1198
1199 //
1200 // Read the current value of the performance counter
1201 //
1202 *CurrentTime = GetPerformanceCounter ();
1203
1204 //
1205 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1206 // as infinity.
1207 //
1208 if (TimeoutInMicroseconds == 0) {
1209 return 0;
1210 }
1211
1212 //
1213 // GetPerformanceCounterProperties () returns the timestamp counter's frequency
1214 // in Hz.
1215 //
1216 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);
1217
1218 //
1219 // Check the potential overflow before calculate the number of ticks for the timeout value.
1220 //
1221 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {
1222 //
1223 // Convert microseconds into seconds if direct multiplication overflows
1224 //
1225 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);
1226 //
1227 // Assertion if the final tick count exceeds MAX_UINT64
1228 //
1229 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);
1230 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);
1231 } else {
1232 //
1233 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide
1234 // it by 1,000,000, to get the number of ticks for the timeout value.
1235 //
1236 return DivU64x32 (
1237 MultU64x64 (
1238 TimestampCounterFreq,
1239 TimeoutInMicroseconds
1240 ),
1241 1000000
1242 );
1243 }
1244 }
1245
1246 /**
1247 Checks whether timeout expires.
1248
1249 Check whether the number of elapsed performance counter ticks required for
1250 a timeout condition has been reached.
1251 If Timeout is zero, which means infinity, return value is always FALSE.
1252
1253 @param[in, out] PreviousTime On input, the value of the performance counter
1254 when it was last read.
1255 On output, the current value of the performance
1256 counter
1257 @param[in] TotalTime The total amount of elapsed time in performance
1258 counter ticks.
1259 @param[in] Timeout The number of performance counter ticks required
1260 to reach a timeout condition.
1261
1262 @retval TRUE A timeout condition has been reached.
1263 @retval FALSE A timeout condition has not been reached.
1264
1265 **/
1266 BOOLEAN
1267 CheckTimeout (
1268 IN OUT UINT64 *PreviousTime,
1269 IN UINT64 *TotalTime,
1270 IN UINT64 Timeout
1271 )
1272 {
1273 UINT64 Start;
1274 UINT64 End;
1275 UINT64 CurrentTime;
1276 INT64 Delta;
1277 INT64 Cycle;
1278
1279 if (Timeout == 0) {
1280 return FALSE;
1281 }
1282 GetPerformanceCounterProperties (&Start, &End);
1283 Cycle = End - Start;
1284 if (Cycle < 0) {
1285 Cycle = -Cycle;
1286 }
1287 Cycle++;
1288 CurrentTime = GetPerformanceCounter();
1289 Delta = (INT64) (CurrentTime - *PreviousTime);
1290 if (Start > End) {
1291 Delta = -Delta;
1292 }
1293 if (Delta < 0) {
1294 Delta += Cycle;
1295 }
1296 *TotalTime += Delta;
1297 *PreviousTime = CurrentTime;
1298 if (*TotalTime > Timeout) {
1299 return TRUE;
1300 }
1301 return FALSE;
1302 }
1303
1304 /**
1305 Helper function that waits until the finished AP count reaches the specified
1306 limit, or the specified timeout elapses (whichever comes first).
1307
1308 @param[in] CpuMpData Pointer to CPU MP Data.
1309 @param[in] FinishedApLimit The number of finished APs to wait for.
1310 @param[in] TimeLimit The number of microseconds to wait for.
1311 **/
1312 VOID
1313 TimedWaitForApFinish (
1314 IN CPU_MP_DATA *CpuMpData,
1315 IN UINT32 FinishedApLimit,
1316 IN UINT32 TimeLimit
1317 )
1318 {
1319 //
1320 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0
1321 // "infinity", so check for (TimeLimit == 0) explicitly.
1322 //
1323 if (TimeLimit == 0) {
1324 return;
1325 }
1326
1327 CpuMpData->TotalTime = 0;
1328 CpuMpData->ExpectedTime = CalculateTimeout (
1329 TimeLimit,
1330 &CpuMpData->CurrentTime
1331 );
1332 while (CpuMpData->FinishedCount < FinishedApLimit &&
1333 !CheckTimeout (
1334 &CpuMpData->CurrentTime,
1335 &CpuMpData->TotalTime,
1336 CpuMpData->ExpectedTime
1337 )) {
1338 CpuPause ();
1339 }
1340
1341 if (CpuMpData->FinishedCount >= FinishedApLimit) {
1342 DEBUG ((
1343 DEBUG_VERBOSE,
1344 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",
1345 __FUNCTION__,
1346 FinishedApLimit,
1347 DivU64x64Remainder (
1348 MultU64x32 (CpuMpData->TotalTime, 1000000),
1349 GetPerformanceCounterProperties (NULL, NULL),
1350 NULL
1351 )
1352 ));
1353 }
1354 }
1355
1356 /**
1357 Reset an AP to Idle state.
1358
1359 Any task being executed by the AP will be aborted and the AP
1360 will be waiting for a new task in Wait-For-SIPI state.
1361
1362 @param[in] ProcessorNumber The handle number of processor.
1363 **/
1364 VOID
1365 ResetProcessorToIdleState (
1366 IN UINTN ProcessorNumber
1367 )
1368 {
1369 CPU_MP_DATA *CpuMpData;
1370
1371 CpuMpData = GetCpuMpData ();
1372
1373 CpuMpData->InitFlag = ApInitReconfig;
1374 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE);
1375 while (CpuMpData->FinishedCount < 1) {
1376 CpuPause ();
1377 }
1378 CpuMpData->InitFlag = ApInitDone;
1379
1380 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
1381 }
1382
1383 /**
1384 Searches for the next waiting AP.
1385
1386 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().
1387
1388 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.
1389
1390 @retval EFI_SUCCESS The next waiting AP has been found.
1391 @retval EFI_NOT_FOUND No waiting AP exists.
1392
1393 **/
1394 EFI_STATUS
1395 GetNextWaitingProcessorNumber (
1396 OUT UINTN *NextProcessorNumber
1397 )
1398 {
1399 UINTN ProcessorNumber;
1400 CPU_MP_DATA *CpuMpData;
1401
1402 CpuMpData = GetCpuMpData ();
1403
1404 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1405 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1406 *NextProcessorNumber = ProcessorNumber;
1407 return EFI_SUCCESS;
1408 }
1409 }
1410
1411 return EFI_NOT_FOUND;
1412 }
1413
1414 /** Checks status of specified AP.
1415
1416 This function checks whether the specified AP has finished the task assigned
1417 by StartupThisAP(), and whether timeout expires.
1418
1419 @param[in] ProcessorNumber The handle number of processor.
1420
1421 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().
1422 @retval EFI_TIMEOUT The timeout expires.
1423 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.
1424 **/
1425 EFI_STATUS
1426 CheckThisAP (
1427 IN UINTN ProcessorNumber
1428 )
1429 {
1430 CPU_MP_DATA *CpuMpData;
1431 CPU_AP_DATA *CpuData;
1432
1433 CpuMpData = GetCpuMpData ();
1434 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1435
1436 //
1437 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
1438 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1439 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
1440 //
1441 //
1442 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.
1443 //
1444 if (GetApState(CpuData) == CpuStateFinished) {
1445 if (CpuData->Finished != NULL) {
1446 *(CpuData->Finished) = TRUE;
1447 }
1448 SetApState (CpuData, CpuStateIdle);
1449 return EFI_SUCCESS;
1450 } else {
1451 //
1452 // If timeout expires for StartupThisAP(), report timeout.
1453 //
1454 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
1455 if (CpuData->Finished != NULL) {
1456 *(CpuData->Finished) = FALSE;
1457 }
1458 //
1459 // Reset failed AP to idle state
1460 //
1461 ResetProcessorToIdleState (ProcessorNumber);
1462
1463 return EFI_TIMEOUT;
1464 }
1465 }
1466 return EFI_NOT_READY;
1467 }
1468
1469 /**
1470 Checks status of all APs.
1471
1472 This function checks whether all APs have finished task assigned by StartupAllAPs(),
1473 and whether timeout expires.
1474
1475 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().
1476 @retval EFI_TIMEOUT The timeout expires.
1477 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.
1478 **/
1479 EFI_STATUS
1480 CheckAllAPs (
1481 VOID
1482 )
1483 {
1484 UINTN ProcessorNumber;
1485 UINTN NextProcessorNumber;
1486 UINTN ListIndex;
1487 EFI_STATUS Status;
1488 CPU_MP_DATA *CpuMpData;
1489 CPU_AP_DATA *CpuData;
1490
1491 CpuMpData = GetCpuMpData ();
1492
1493 NextProcessorNumber = 0;
1494
1495 //
1496 // Go through all APs that are responsible for the StartupAllAPs().
1497 //
1498 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1499 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {
1500 continue;
1501 }
1502
1503 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1504 //
1505 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
1506 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1507 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
1508 //
1509 if (GetApState(CpuData) == CpuStateFinished) {
1510 CpuMpData->RunningCount --;
1511 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1512 SetApState(CpuData, CpuStateIdle);
1513
1514 //
1515 // If in Single Thread mode, then search for the next waiting AP for execution.
1516 //
1517 if (CpuMpData->SingleThread) {
1518 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);
1519
1520 if (!EFI_ERROR (Status)) {
1521 WakeUpAP (
1522 CpuMpData,
1523 FALSE,
1524 (UINT32) NextProcessorNumber,
1525 CpuMpData->Procedure,
1526 CpuMpData->ProcArguments,
1527 TRUE
1528 );
1529 }
1530 }
1531 }
1532 }
1533
1534 //
1535 // If all APs finish, return EFI_SUCCESS.
1536 //
1537 if (CpuMpData->RunningCount == 0) {
1538 return EFI_SUCCESS;
1539 }
1540
1541 //
1542 // If timeout expires, report timeout.
1543 //
1544 if (CheckTimeout (
1545 &CpuMpData->CurrentTime,
1546 &CpuMpData->TotalTime,
1547 CpuMpData->ExpectedTime)
1548 ) {
1549 //
1550 // If FailedCpuList is not NULL, record all failed APs in it.
1551 //
1552 if (CpuMpData->FailedCpuList != NULL) {
1553 *CpuMpData->FailedCpuList =
1554 AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN));
1555 ASSERT (*CpuMpData->FailedCpuList != NULL);
1556 }
1557 ListIndex = 0;
1558
1559 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1560 //
1561 // Check whether this processor is responsible for StartupAllAPs().
1562 //
1563 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1564 //
1565 // Reset failed APs to idle state
1566 //
1567 ResetProcessorToIdleState (ProcessorNumber);
1568 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1569 if (CpuMpData->FailedCpuList != NULL) {
1570 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;
1571 }
1572 }
1573 }
1574 if (CpuMpData->FailedCpuList != NULL) {
1575 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;
1576 }
1577 return EFI_TIMEOUT;
1578 }
1579 return EFI_NOT_READY;
1580 }
1581
1582 /**
1583 MP Initialize Library initialization.
1584
1585 This service will allocate AP reset vector and wakeup all APs to do APs
1586 initialization.
1587
1588 This service must be invoked before all other MP Initialize Library
1589 service are invoked.
1590
1591 @retval EFI_SUCCESS MP initialization succeeds.
1592 @retval Others MP initialization fails.
1593
1594 **/
1595 EFI_STATUS
1596 EFIAPI
1597 MpInitLibInitialize (
1598 VOID
1599 )
1600 {
1601 CPU_MP_DATA *OldCpuMpData;
1602 CPU_INFO_IN_HOB *CpuInfoInHob;
1603 UINT32 MaxLogicalProcessorNumber;
1604 UINT32 ApStackSize;
1605 MP_ASSEMBLY_ADDRESS_MAP AddressMap;
1606 CPU_VOLATILE_REGISTERS VolatileRegisters;
1607 UINTN BufferSize;
1608 UINT32 MonitorFilterSize;
1609 VOID *MpBuffer;
1610 UINTN Buffer;
1611 CPU_MP_DATA *CpuMpData;
1612 UINT8 ApLoopMode;
1613 UINT8 *MonitorBuffer;
1614 UINTN Index;
1615 UINTN ApResetVectorSize;
1616 UINTN BackupBufferAddr;
1617 UINTN ApIdtBase;
1618
1619 OldCpuMpData = GetCpuMpDataFromGuidedHob ();
1620 if (OldCpuMpData == NULL) {
1621 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);
1622 } else {
1623 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;
1624 }
1625 ASSERT (MaxLogicalProcessorNumber != 0);
1626
1627 AsmGetAddressMap (&AddressMap);
1628 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);
1629 ApStackSize = PcdGet32(PcdCpuApStackSize);
1630 ApLoopMode = GetApLoopMode (&MonitorFilterSize);
1631
1632 //
1633 // Save BSP's Control registers for APs.
1634 //
1635 SaveVolatileRegisters (&VolatileRegisters);
1636
1637 BufferSize = ApStackSize * MaxLogicalProcessorNumber;
1638 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;
1639 BufferSize += ApResetVectorSize;
1640 BufferSize = ALIGN_VALUE (BufferSize, 8);
1641 BufferSize += VolatileRegisters.Idtr.Limit + 1;
1642 BufferSize += sizeof (CPU_MP_DATA);
1643 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;
1644 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));
1645 ASSERT (MpBuffer != NULL);
1646 ZeroMem (MpBuffer, BufferSize);
1647 Buffer = (UINTN) MpBuffer;
1648
1649 //
1650 // The layout of the Buffer is as below:
1651 //
1652 // +--------------------+ <-- Buffer
1653 // AP Stacks (N)
1654 // +--------------------+ <-- MonitorBuffer
1655 // AP Monitor Filters (N)
1656 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)
1657 // Backup Buffer
1658 // +--------------------+
1659 // Padding
1660 // +--------------------+ <-- ApIdtBase (8-byte boundary)
1661 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.
1662 // +--------------------+ <-- CpuMpData
1663 // CPU_MP_DATA
1664 // +--------------------+ <-- CpuMpData->CpuData
1665 // CPU_AP_DATA (N)
1666 // +--------------------+ <-- CpuMpData->CpuInfoInHob
1667 // CPU_INFO_IN_HOB (N)
1668 // +--------------------+
1669 //
1670 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);
1671 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;
1672 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);
1673 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);
1674 CpuMpData->Buffer = Buffer;
1675 CpuMpData->CpuApStackSize = ApStackSize;
1676 CpuMpData->BackupBuffer = BackupBufferAddr;
1677 CpuMpData->BackupBufferSize = ApResetVectorSize;
1678 CpuMpData->WakeupBuffer = (UINTN) -1;
1679 CpuMpData->CpuCount = 1;
1680 CpuMpData->BspNumber = 0;
1681 CpuMpData->WaitEvent = NULL;
1682 CpuMpData->SwitchBspFlag = FALSE;
1683 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);
1684 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);
1685 InitializeSpinLock(&CpuMpData->MpLock);
1686
1687 //
1688 // Make sure no memory usage outside of the allocated buffer.
1689 //
1690 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==
1691 Buffer + BufferSize);
1692
1693 //
1694 // Duplicate BSP's IDT to APs.
1695 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1
1696 //
1697 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);
1698 VolatileRegisters.Idtr.Base = ApIdtBase;
1699 //
1700 // Don't pass BSP's TR to APs to avoid AP init failure.
1701 //
1702 VolatileRegisters.Tr = 0;
1703 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));
1704 //
1705 // Set BSP basic information
1706 //
1707 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);
1708 //
1709 // Save assembly code information
1710 //
1711 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));
1712 //
1713 // Finally set AP loop mode
1714 //
1715 CpuMpData->ApLoopMode = ApLoopMode;
1716 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));
1717
1718 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
1719
1720 //
1721 // Set up APs wakeup signal buffer
1722 //
1723 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {
1724 CpuMpData->CpuData[Index].StartupApSignal =
1725 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);
1726 }
1727 //
1728 // Enable the local APIC for Virtual Wire Mode.
1729 //
1730 ProgramVirtualWireMode ();
1731
1732 if (OldCpuMpData == NULL) {
1733 if (MaxLogicalProcessorNumber > 1) {
1734 //
1735 // Wakeup all APs and calculate the processor count in system
1736 //
1737 CollectProcessorCount (CpuMpData);
1738 }
1739 } else {
1740 //
1741 // APs have been wakeup before, just get the CPU Information
1742 // from HOB
1743 //
1744 CpuMpData->CpuCount = OldCpuMpData->CpuCount;
1745 CpuMpData->BspNumber = OldCpuMpData->BspNumber;
1746 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;
1747 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1748 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1749 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);
1750 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;
1751 CpuMpData->CpuData[Index].ApFunction = 0;
1752 CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));
1753 }
1754 }
1755
1756 if (!GetMicrocodePatchInfoFromHob (
1757 &CpuMpData->MicrocodePatchAddress,
1758 &CpuMpData->MicrocodePatchRegionSize
1759 )) {
1760 //
1761 // The microcode patch information cache HOB does not exist, which means
1762 // the microcode patches data has not been loaded into memory yet
1763 //
1764 ShadowMicrocodeUpdatePatch (CpuMpData);
1765 }
1766
1767 //
1768 // Detect and apply Microcode on BSP
1769 //
1770 MicrocodeDetect (CpuMpData, CpuMpData->BspNumber);
1771 //
1772 // Store BSP's MTRR setting
1773 //
1774 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);
1775
1776 //
1777 // Wakeup APs to do some AP initialize sync (Microcode & MTRR)
1778 //
1779 if (CpuMpData->CpuCount > 1) {
1780 CpuMpData->InitFlag = ApInitReconfig;
1781 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE);
1782 //
1783 // Wait for all APs finished initialization
1784 //
1785 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
1786 CpuPause ();
1787 }
1788 CpuMpData->InitFlag = ApInitDone;
1789 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1790 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
1791 }
1792 }
1793
1794 //
1795 // Initialize global data for MP support
1796 //
1797 InitMpGlobalData (CpuMpData);
1798
1799 return EFI_SUCCESS;
1800 }
1801
1802 /**
1803 Gets detailed MP-related information on the requested processor at the
1804 instant this call is made. This service may only be called from the BSP.
1805
1806 @param[in] ProcessorNumber The handle number of processor.
1807 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for
1808 the requested processor is deposited.
1809 @param[out] HealthData Return processor health data.
1810
1811 @retval EFI_SUCCESS Processor information was returned.
1812 @retval EFI_DEVICE_ERROR The calling processor is an AP.
1813 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
1814 @retval EFI_NOT_FOUND The processor with the handle specified by
1815 ProcessorNumber does not exist in the platform.
1816 @retval EFI_NOT_READY MP Initialize Library is not initialized.
1817
1818 **/
1819 EFI_STATUS
1820 EFIAPI
1821 MpInitLibGetProcessorInfo (
1822 IN UINTN ProcessorNumber,
1823 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,
1824 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL
1825 )
1826 {
1827 CPU_MP_DATA *CpuMpData;
1828 UINTN CallerNumber;
1829 CPU_INFO_IN_HOB *CpuInfoInHob;
1830
1831 CpuMpData = GetCpuMpData ();
1832 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1833
1834 //
1835 // Check whether caller processor is BSP
1836 //
1837 MpInitLibWhoAmI (&CallerNumber);
1838 if (CallerNumber != CpuMpData->BspNumber) {
1839 return EFI_DEVICE_ERROR;
1840 }
1841
1842 if (ProcessorInfoBuffer == NULL) {
1843 return EFI_INVALID_PARAMETER;
1844 }
1845
1846 if (ProcessorNumber >= CpuMpData->CpuCount) {
1847 return EFI_NOT_FOUND;
1848 }
1849
1850 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;
1851 ProcessorInfoBuffer->StatusFlag = 0;
1852 if (ProcessorNumber == CpuMpData->BspNumber) {
1853 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
1854 }
1855 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {
1856 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
1857 }
1858 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
1859 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;
1860 } else {
1861 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
1862 }
1863
1864 //
1865 // Get processor location information
1866 //
1867 GetProcessorLocationByApicId (
1868 CpuInfoInHob[ProcessorNumber].ApicId,
1869 &ProcessorInfoBuffer->Location.Package,
1870 &ProcessorInfoBuffer->Location.Core,
1871 &ProcessorInfoBuffer->Location.Thread
1872 );
1873
1874 if (HealthData != NULL) {
1875 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;
1876 }
1877
1878 return EFI_SUCCESS;
1879 }
1880
1881 /**
1882 Worker function to switch the requested AP to be the BSP from that point onward.
1883
1884 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.
1885 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
1886 enabled AP. Otherwise, it will be disabled.
1887
1888 @retval EFI_SUCCESS BSP successfully switched.
1889 @retval others Failed to switch BSP.
1890
1891 **/
1892 EFI_STATUS
1893 SwitchBSPWorker (
1894 IN UINTN ProcessorNumber,
1895 IN BOOLEAN EnableOldBSP
1896 )
1897 {
1898 CPU_MP_DATA *CpuMpData;
1899 UINTN CallerNumber;
1900 CPU_STATE State;
1901 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;
1902 BOOLEAN OldInterruptState;
1903 BOOLEAN OldTimerInterruptState;
1904
1905 //
1906 // Save and Disable Local APIC timer interrupt
1907 //
1908 OldTimerInterruptState = GetApicTimerInterruptState ();
1909 DisableApicTimerInterrupt ();
1910 //
1911 // Before send both BSP and AP to a procedure to exchange their roles,
1912 // interrupt must be disabled. This is because during the exchange role
1913 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will
1914 // be corrupted, since interrupt return address will be pushed to stack
1915 // by hardware.
1916 //
1917 OldInterruptState = SaveAndDisableInterrupts ();
1918
1919 //
1920 // Mask LINT0 & LINT1 for the old BSP
1921 //
1922 DisableLvtInterrupts ();
1923
1924 CpuMpData = GetCpuMpData ();
1925
1926 //
1927 // Check whether caller processor is BSP
1928 //
1929 MpInitLibWhoAmI (&CallerNumber);
1930 if (CallerNumber != CpuMpData->BspNumber) {
1931 return EFI_DEVICE_ERROR;
1932 }
1933
1934 if (ProcessorNumber >= CpuMpData->CpuCount) {
1935 return EFI_NOT_FOUND;
1936 }
1937
1938 //
1939 // Check whether specified AP is disabled
1940 //
1941 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);
1942 if (State == CpuStateDisabled) {
1943 return EFI_INVALID_PARAMETER;
1944 }
1945
1946 //
1947 // Check whether ProcessorNumber specifies the current BSP
1948 //
1949 if (ProcessorNumber == CpuMpData->BspNumber) {
1950 return EFI_INVALID_PARAMETER;
1951 }
1952
1953 //
1954 // Check whether specified AP is busy
1955 //
1956 if (State == CpuStateBusy) {
1957 return EFI_NOT_READY;
1958 }
1959
1960 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;
1961 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;
1962 CpuMpData->SwitchBspFlag = TRUE;
1963 CpuMpData->NewBspNumber = ProcessorNumber;
1964
1965 //
1966 // Clear the BSP bit of MSR_IA32_APIC_BASE
1967 //
1968 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1969 ApicBaseMsr.Bits.BSP = 0;
1970 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1971
1972 //
1973 // Need to wakeUp AP (future BSP).
1974 //
1975 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE);
1976
1977 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);
1978
1979 //
1980 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP
1981 //
1982 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1983 ApicBaseMsr.Bits.BSP = 1;
1984 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1985 ProgramVirtualWireMode ();
1986
1987 //
1988 // Wait for old BSP finished AP task
1989 //
1990 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {
1991 CpuPause ();
1992 }
1993
1994 CpuMpData->SwitchBspFlag = FALSE;
1995 //
1996 // Set old BSP enable state
1997 //
1998 if (!EnableOldBSP) {
1999 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);
2000 } else {
2001 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);
2002 }
2003 //
2004 // Save new BSP number
2005 //
2006 CpuMpData->BspNumber = (UINT32) ProcessorNumber;
2007
2008 //
2009 // Restore interrupt state.
2010 //
2011 SetInterruptState (OldInterruptState);
2012
2013 if (OldTimerInterruptState) {
2014 EnableApicTimerInterrupt ();
2015 }
2016
2017 return EFI_SUCCESS;
2018 }
2019
2020 /**
2021 Worker function to let the caller enable or disable an AP from this point onward.
2022 This service may only be called from the BSP.
2023
2024 @param[in] ProcessorNumber The handle number of AP.
2025 @param[in] EnableAP Specifies the new state for the processor for
2026 enabled, FALSE for disabled.
2027 @param[in] HealthFlag If not NULL, a pointer to a value that specifies
2028 the new health status of the AP.
2029
2030 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
2031 @retval others Failed to Enable/Disable AP.
2032
2033 **/
2034 EFI_STATUS
2035 EnableDisableApWorker (
2036 IN UINTN ProcessorNumber,
2037 IN BOOLEAN EnableAP,
2038 IN UINT32 *HealthFlag OPTIONAL
2039 )
2040 {
2041 CPU_MP_DATA *CpuMpData;
2042 UINTN CallerNumber;
2043
2044 CpuMpData = GetCpuMpData ();
2045
2046 //
2047 // Check whether caller processor is BSP
2048 //
2049 MpInitLibWhoAmI (&CallerNumber);
2050 if (CallerNumber != CpuMpData->BspNumber) {
2051 return EFI_DEVICE_ERROR;
2052 }
2053
2054 if (ProcessorNumber == CpuMpData->BspNumber) {
2055 return EFI_INVALID_PARAMETER;
2056 }
2057
2058 if (ProcessorNumber >= CpuMpData->CpuCount) {
2059 return EFI_NOT_FOUND;
2060 }
2061
2062 if (!EnableAP) {
2063 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);
2064 } else {
2065 ResetProcessorToIdleState (ProcessorNumber);
2066 }
2067
2068 if (HealthFlag != NULL) {
2069 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =
2070 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);
2071 }
2072
2073 return EFI_SUCCESS;
2074 }
2075
2076 /**
2077 This return the handle number for the calling processor. This service may be
2078 called from the BSP and APs.
2079
2080 @param[out] ProcessorNumber Pointer to the handle number of AP.
2081 The range is from 0 to the total number of
2082 logical processors minus 1. The total number of
2083 logical processors can be retrieved by
2084 MpInitLibGetNumberOfProcessors().
2085
2086 @retval EFI_SUCCESS The current processor handle number was returned
2087 in ProcessorNumber.
2088 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
2089 @retval EFI_NOT_READY MP Initialize Library is not initialized.
2090
2091 **/
2092 EFI_STATUS
2093 EFIAPI
2094 MpInitLibWhoAmI (
2095 OUT UINTN *ProcessorNumber
2096 )
2097 {
2098 CPU_MP_DATA *CpuMpData;
2099
2100 if (ProcessorNumber == NULL) {
2101 return EFI_INVALID_PARAMETER;
2102 }
2103
2104 CpuMpData = GetCpuMpData ();
2105
2106 return GetProcessorNumber (CpuMpData, ProcessorNumber);
2107 }
2108
2109 /**
2110 Retrieves the number of logical processor in the platform and the number of
2111 those logical processors that are enabled on this boot. This service may only
2112 be called from the BSP.
2113
2114 @param[out] NumberOfProcessors Pointer to the total number of logical
2115 processors in the system, including the BSP
2116 and disabled APs.
2117 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
2118 processors that exist in system, including
2119 the BSP.
2120
2121 @retval EFI_SUCCESS The number of logical processors and enabled
2122 logical processors was retrieved.
2123 @retval EFI_DEVICE_ERROR The calling processor is an AP.
2124 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors
2125 is NULL.
2126 @retval EFI_NOT_READY MP Initialize Library is not initialized.
2127
2128 **/
2129 EFI_STATUS
2130 EFIAPI
2131 MpInitLibGetNumberOfProcessors (
2132 OUT UINTN *NumberOfProcessors, OPTIONAL
2133 OUT UINTN *NumberOfEnabledProcessors OPTIONAL
2134 )
2135 {
2136 CPU_MP_DATA *CpuMpData;
2137 UINTN CallerNumber;
2138 UINTN ProcessorNumber;
2139 UINTN EnabledProcessorNumber;
2140 UINTN Index;
2141
2142 CpuMpData = GetCpuMpData ();
2143
2144 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {
2145 return EFI_INVALID_PARAMETER;
2146 }
2147
2148 //
2149 // Check whether caller processor is BSP
2150 //
2151 MpInitLibWhoAmI (&CallerNumber);
2152 if (CallerNumber != CpuMpData->BspNumber) {
2153 return EFI_DEVICE_ERROR;
2154 }
2155
2156 ProcessorNumber = CpuMpData->CpuCount;
2157 EnabledProcessorNumber = 0;
2158 for (Index = 0; Index < ProcessorNumber; Index++) {
2159 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {
2160 EnabledProcessorNumber ++;
2161 }
2162 }
2163
2164 if (NumberOfProcessors != NULL) {
2165 *NumberOfProcessors = ProcessorNumber;
2166 }
2167 if (NumberOfEnabledProcessors != NULL) {
2168 *NumberOfEnabledProcessors = EnabledProcessorNumber;
2169 }
2170
2171 return EFI_SUCCESS;
2172 }
2173
2174
2175 /**
2176 Worker function to execute a caller provided function on all enabled APs.
2177
2178 @param[in] Procedure A pointer to the function to be run on
2179 enabled APs of the system.
2180 @param[in] SingleThread If TRUE, then all the enabled APs execute
2181 the function specified by Procedure one by
2182 one, in ascending order of processor handle
2183 number. If FALSE, then all the enabled APs
2184 execute the function specified by Procedure
2185 simultaneously.
2186 @param[in] ExcludeBsp Whether let BSP also trig this task.
2187 @param[in] WaitEvent The event created by the caller with CreateEvent()
2188 service.
2189 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
2190 APs to return from Procedure, either for
2191 blocking or non-blocking mode.
2192 @param[in] ProcedureArgument The parameter passed into Procedure for
2193 all APs.
2194 @param[out] FailedCpuList If all APs finish successfully, then its
2195 content is set to NULL. If not all APs
2196 finish before timeout expires, then its
2197 content is set to address of the buffer
2198 holding handle numbers of the failed APs.
2199
2200 @retval EFI_SUCCESS In blocking mode, all APs have finished before
2201 the timeout expired.
2202 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
2203 to all enabled APs.
2204 @retval others Failed to Startup all APs.
2205
2206 **/
2207 EFI_STATUS
2208 StartupAllCPUsWorker (
2209 IN EFI_AP_PROCEDURE Procedure,
2210 IN BOOLEAN SingleThread,
2211 IN BOOLEAN ExcludeBsp,
2212 IN EFI_EVENT WaitEvent OPTIONAL,
2213 IN UINTN TimeoutInMicroseconds,
2214 IN VOID *ProcedureArgument OPTIONAL,
2215 OUT UINTN **FailedCpuList OPTIONAL
2216 )
2217 {
2218 EFI_STATUS Status;
2219 CPU_MP_DATA *CpuMpData;
2220 UINTN ProcessorCount;
2221 UINTN ProcessorNumber;
2222 UINTN CallerNumber;
2223 CPU_AP_DATA *CpuData;
2224 BOOLEAN HasEnabledAp;
2225 CPU_STATE ApState;
2226
2227 CpuMpData = GetCpuMpData ();
2228
2229 if (FailedCpuList != NULL) {
2230 *FailedCpuList = NULL;
2231 }
2232
2233 if (CpuMpData->CpuCount == 1 && ExcludeBsp) {
2234 return EFI_NOT_STARTED;
2235 }
2236
2237 if (Procedure == NULL) {
2238 return EFI_INVALID_PARAMETER;
2239 }
2240
2241 //
2242 // Check whether caller processor is BSP
2243 //
2244 MpInitLibWhoAmI (&CallerNumber);
2245 if (CallerNumber != CpuMpData->BspNumber) {
2246 return EFI_DEVICE_ERROR;
2247 }
2248
2249 //
2250 // Update AP state
2251 //
2252 CheckAndUpdateApsStatus ();
2253
2254 ProcessorCount = CpuMpData->CpuCount;
2255 HasEnabledAp = FALSE;
2256 //
2257 // Check whether all enabled APs are idle.
2258 // If any enabled AP is not idle, return EFI_NOT_READY.
2259 //
2260 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2261 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2262 if (ProcessorNumber != CpuMpData->BspNumber) {
2263 ApState = GetApState (CpuData);
2264 if (ApState != CpuStateDisabled) {
2265 HasEnabledAp = TRUE;
2266 if (ApState != CpuStateIdle) {
2267 //
2268 // If any enabled APs are busy, return EFI_NOT_READY.
2269 //
2270 return EFI_NOT_READY;
2271 }
2272 }
2273 }
2274 }
2275
2276 if (!HasEnabledAp && ExcludeBsp) {
2277 //
2278 // If no enabled AP exists and not include Bsp to do the procedure, return EFI_NOT_STARTED.
2279 //
2280 return EFI_NOT_STARTED;
2281 }
2282
2283 CpuMpData->RunningCount = 0;
2284 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2285 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2286 CpuData->Waiting = FALSE;
2287 if (ProcessorNumber != CpuMpData->BspNumber) {
2288 if (CpuData->State == CpuStateIdle) {
2289 //
2290 // Mark this processor as responsible for current calling.
2291 //
2292 CpuData->Waiting = TRUE;
2293 CpuMpData->RunningCount++;
2294 }
2295 }
2296 }
2297
2298 CpuMpData->Procedure = Procedure;
2299 CpuMpData->ProcArguments = ProcedureArgument;
2300 CpuMpData->SingleThread = SingleThread;
2301 CpuMpData->FinishedCount = 0;
2302 CpuMpData->FailedCpuList = FailedCpuList;
2303 CpuMpData->ExpectedTime = CalculateTimeout (
2304 TimeoutInMicroseconds,
2305 &CpuMpData->CurrentTime
2306 );
2307 CpuMpData->TotalTime = 0;
2308 CpuMpData->WaitEvent = WaitEvent;
2309
2310 if (!SingleThread) {
2311 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);
2312 } else {
2313 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2314 if (ProcessorNumber == CallerNumber) {
2315 continue;
2316 }
2317 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
2318 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
2319 break;
2320 }
2321 }
2322 }
2323
2324 if (!ExcludeBsp) {
2325 //
2326 // Start BSP.
2327 //
2328 Procedure (ProcedureArgument);
2329 }
2330
2331 Status = EFI_SUCCESS;
2332 if (WaitEvent == NULL) {
2333 do {
2334 Status = CheckAllAPs ();
2335 } while (Status == EFI_NOT_READY);
2336 }
2337
2338 return Status;
2339 }
2340
2341 /**
2342 Worker function to let the caller get one enabled AP to execute a caller-provided
2343 function.
2344
2345 @param[in] Procedure A pointer to the function to be run on
2346 enabled APs of the system.
2347 @param[in] ProcessorNumber The handle number of the AP.
2348 @param[in] WaitEvent The event created by the caller with CreateEvent()
2349 service.
2350 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
2351 APs to return from Procedure, either for
2352 blocking or non-blocking mode.
2353 @param[in] ProcedureArgument The parameter passed into Procedure for
2354 all APs.
2355 @param[out] Finished If AP returns from Procedure before the
2356 timeout expires, its content is set to TRUE.
2357 Otherwise, the value is set to FALSE.
2358
2359 @retval EFI_SUCCESS In blocking mode, specified AP finished before
2360 the timeout expires.
2361 @retval others Failed to Startup AP.
2362
2363 **/
2364 EFI_STATUS
2365 StartupThisAPWorker (
2366 IN EFI_AP_PROCEDURE Procedure,
2367 IN UINTN ProcessorNumber,
2368 IN EFI_EVENT WaitEvent OPTIONAL,
2369 IN UINTN TimeoutInMicroseconds,
2370 IN VOID *ProcedureArgument OPTIONAL,
2371 OUT BOOLEAN *Finished OPTIONAL
2372 )
2373 {
2374 EFI_STATUS Status;
2375 CPU_MP_DATA *CpuMpData;
2376 CPU_AP_DATA *CpuData;
2377 UINTN CallerNumber;
2378
2379 CpuMpData = GetCpuMpData ();
2380
2381 if (Finished != NULL) {
2382 *Finished = FALSE;
2383 }
2384
2385 //
2386 // Check whether caller processor is BSP
2387 //
2388 MpInitLibWhoAmI (&CallerNumber);
2389 if (CallerNumber != CpuMpData->BspNumber) {
2390 return EFI_DEVICE_ERROR;
2391 }
2392
2393 //
2394 // Check whether processor with the handle specified by ProcessorNumber exists
2395 //
2396 if (ProcessorNumber >= CpuMpData->CpuCount) {
2397 return EFI_NOT_FOUND;
2398 }
2399
2400 //
2401 // Check whether specified processor is BSP
2402 //
2403 if (ProcessorNumber == CpuMpData->BspNumber) {
2404 return EFI_INVALID_PARAMETER;
2405 }
2406
2407 //
2408 // Check parameter Procedure
2409 //
2410 if (Procedure == NULL) {
2411 return EFI_INVALID_PARAMETER;
2412 }
2413
2414 //
2415 // Update AP state
2416 //
2417 CheckAndUpdateApsStatus ();
2418
2419 //
2420 // Check whether specified AP is disabled
2421 //
2422 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
2423 return EFI_INVALID_PARAMETER;
2424 }
2425
2426 //
2427 // If WaitEvent is not NULL, execute in non-blocking mode.
2428 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
2429 // CheckAPsStatus() will check completion and timeout periodically.
2430 //
2431 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2432 CpuData->WaitEvent = WaitEvent;
2433 CpuData->Finished = Finished;
2434 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
2435 CpuData->TotalTime = 0;
2436
2437 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
2438
2439 //
2440 // If WaitEvent is NULL, execute in blocking mode.
2441 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
2442 //
2443 Status = EFI_SUCCESS;
2444 if (WaitEvent == NULL) {
2445 do {
2446 Status = CheckThisAP (ProcessorNumber);
2447 } while (Status == EFI_NOT_READY);
2448 }
2449
2450 return Status;
2451 }
2452
2453 /**
2454 Get pointer to CPU MP Data structure from GUIDed HOB.
2455
2456 @return The pointer to CPU MP Data structure.
2457 **/
2458 CPU_MP_DATA *
2459 GetCpuMpDataFromGuidedHob (
2460 VOID
2461 )
2462 {
2463 EFI_HOB_GUID_TYPE *GuidHob;
2464 VOID *DataInHob;
2465 CPU_MP_DATA *CpuMpData;
2466
2467 CpuMpData = NULL;
2468 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);
2469 if (GuidHob != NULL) {
2470 DataInHob = GET_GUID_HOB_DATA (GuidHob);
2471 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);
2472 }
2473 return CpuMpData;
2474 }
2475
2476 /**
2477 This service executes a caller provided function on all enabled CPUs.
2478
2479 @param[in] Procedure A pointer to the function to be run on
2480 enabled APs of the system. See type
2481 EFI_AP_PROCEDURE.
2482 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
2483 APs to return from Procedure, either for
2484 blocking or non-blocking mode. Zero means
2485 infinity. TimeoutInMicroseconds is ignored
2486 for BSP.
2487 @param[in] ProcedureArgument The parameter passed into Procedure for
2488 all APs.
2489
2490 @retval EFI_SUCCESS In blocking mode, all CPUs have finished before
2491 the timeout expired.
2492 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
2493 to all enabled CPUs.
2494 @retval EFI_DEVICE_ERROR Caller processor is AP.
2495 @retval EFI_NOT_READY Any enabled APs are busy.
2496 @retval EFI_NOT_READY MP Initialize Library is not initialized.
2497 @retval EFI_TIMEOUT In blocking mode, the timeout expired before
2498 all enabled APs have finished.
2499 @retval EFI_INVALID_PARAMETER Procedure is NULL.
2500
2501 **/
2502 EFI_STATUS
2503 EFIAPI
2504 MpInitLibStartupAllCPUs (
2505 IN EFI_AP_PROCEDURE Procedure,
2506 IN UINTN TimeoutInMicroseconds,
2507 IN VOID *ProcedureArgument OPTIONAL
2508 )
2509 {
2510 return StartupAllCPUsWorker (
2511 Procedure,
2512 FALSE,
2513 FALSE,
2514 NULL,
2515 TimeoutInMicroseconds,
2516 ProcedureArgument,
2517 NULL
2518 );
2519 }