]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg/MpInitLib: fix register restore issue in AP wakeup
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
1 /** @file
2 CPU MP Initialize Library common functions.
3
4 Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "MpLib.h"
16
17 EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;
18
19 /**
20 The function will check if BSP Execute Disable is enabled.
21
22 DxeIpl may have enabled Execute Disable for BSP, APs need to
23 get the status and sync up the settings.
24 If BSP's CR0.Paging is not set, BSP execute Disble feature is
25 not working actually.
26
27 @retval TRUE BSP Execute Disable is enabled.
28 @retval FALSE BSP Execute Disable is not enabled.
29 **/
30 BOOLEAN
31 IsBspExecuteDisableEnabled (
32 VOID
33 )
34 {
35 UINT32 Eax;
36 CPUID_EXTENDED_CPU_SIG_EDX Edx;
37 MSR_IA32_EFER_REGISTER EferMsr;
38 BOOLEAN Enabled;
39 IA32_CR0 Cr0;
40
41 Enabled = FALSE;
42 Cr0.UintN = AsmReadCr0 ();
43 if (Cr0.Bits.PG != 0) {
44 //
45 // If CR0 Paging bit is set
46 //
47 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);
48 if (Eax >= CPUID_EXTENDED_CPU_SIG) {
49 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);
50 //
51 // CPUID 0x80000001
52 // Bit 20: Execute Disable Bit available.
53 //
54 if (Edx.Bits.NX != 0) {
55 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);
56 //
57 // MSR 0xC0000080
58 // Bit 11: Execute Disable Bit enable.
59 //
60 if (EferMsr.Bits.NXE != 0) {
61 Enabled = TRUE;
62 }
63 }
64 }
65 }
66
67 return Enabled;
68 }
69
70 /**
71 Worker function for SwitchBSP().
72
73 Worker function for SwitchBSP(), assigned to the AP which is intended
74 to become BSP.
75
76 @param[in] Buffer Pointer to CPU MP Data
77 **/
78 VOID
79 EFIAPI
80 FutureBSPProc (
81 IN VOID *Buffer
82 )
83 {
84 CPU_MP_DATA *DataInHob;
85
86 DataInHob = (CPU_MP_DATA *) Buffer;
87 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);
88 }
89
90 /**
91 Get the Application Processors state.
92
93 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
94
95 @return The AP status
96 **/
97 CPU_STATE
98 GetApState (
99 IN CPU_AP_DATA *CpuData
100 )
101 {
102 return CpuData->State;
103 }
104
105 /**
106 Set the Application Processors state.
107
108 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
109 @param[in] State The AP status
110 **/
111 VOID
112 SetApState (
113 IN CPU_AP_DATA *CpuData,
114 IN CPU_STATE State
115 )
116 {
117 AcquireSpinLock (&CpuData->ApLock);
118 CpuData->State = State;
119 ReleaseSpinLock (&CpuData->ApLock);
120 }
121
122 /**
123 Save BSP's local APIC timer setting.
124
125 @param[in] CpuMpData Pointer to CPU MP Data
126 **/
127 VOID
128 SaveLocalApicTimerSetting (
129 IN CPU_MP_DATA *CpuMpData
130 )
131 {
132 //
133 // Record the current local APIC timer setting of BSP
134 //
135 GetApicTimerState (
136 &CpuMpData->DivideValue,
137 &CpuMpData->PeriodicMode,
138 &CpuMpData->Vector
139 );
140 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();
141 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();
142 }
143
144 /**
145 Sync local APIC timer setting from BSP to AP.
146
147 @param[in] CpuMpData Pointer to CPU MP Data
148 **/
149 VOID
150 SyncLocalApicTimerSetting (
151 IN CPU_MP_DATA *CpuMpData
152 )
153 {
154 //
155 // Sync local APIC timer setting from BSP to AP
156 //
157 InitializeApicTimer (
158 CpuMpData->DivideValue,
159 CpuMpData->CurrentTimerCount,
160 CpuMpData->PeriodicMode,
161 CpuMpData->Vector
162 );
163 //
164 // Disable AP's local APIC timer interrupt
165 //
166 DisableApicTimerInterrupt ();
167 }
168
169 /**
170 Save the volatile registers required to be restored following INIT IPI.
171
172 @param[out] VolatileRegisters Returns buffer saved the volatile resisters
173 **/
174 VOID
175 SaveVolatileRegisters (
176 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters
177 )
178 {
179 CPUID_VERSION_INFO_EDX VersionInfoEdx;
180
181 VolatileRegisters->Cr0 = AsmReadCr0 ();
182 VolatileRegisters->Cr3 = AsmReadCr3 ();
183 VolatileRegisters->Cr4 = AsmReadCr4 ();
184
185 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
186 if (VersionInfoEdx.Bits.DE != 0) {
187 //
188 // If processor supports Debugging Extensions feature
189 // by CPUID.[EAX=01H]:EDX.BIT2
190 //
191 VolatileRegisters->Dr0 = AsmReadDr0 ();
192 VolatileRegisters->Dr1 = AsmReadDr1 ();
193 VolatileRegisters->Dr2 = AsmReadDr2 ();
194 VolatileRegisters->Dr3 = AsmReadDr3 ();
195 VolatileRegisters->Dr6 = AsmReadDr6 ();
196 VolatileRegisters->Dr7 = AsmReadDr7 ();
197 }
198
199 AsmReadGdtr (&VolatileRegisters->Gdtr);
200 AsmReadIdtr (&VolatileRegisters->Idtr);
201 VolatileRegisters->Tr = AsmReadTr ();
202 }
203
204 /**
205 Restore the volatile registers following INIT IPI.
206
207 @param[in] VolatileRegisters Pointer to volatile resisters
208 @param[in] IsRestoreDr TRUE: Restore DRx if supported
209 FALSE: Do not restore DRx
210 **/
211 VOID
212 RestoreVolatileRegisters (
213 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,
214 IN BOOLEAN IsRestoreDr
215 )
216 {
217 CPUID_VERSION_INFO_EDX VersionInfoEdx;
218 IA32_TSS_DESCRIPTOR *Tss;
219
220 AsmWriteCr3 (VolatileRegisters->Cr3);
221 AsmWriteCr4 (VolatileRegisters->Cr4);
222 AsmWriteCr0 (VolatileRegisters->Cr0);
223
224 if (IsRestoreDr) {
225 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
226 if (VersionInfoEdx.Bits.DE != 0) {
227 //
228 // If processor supports Debugging Extensions feature
229 // by CPUID.[EAX=01H]:EDX.BIT2
230 //
231 AsmWriteDr0 (VolatileRegisters->Dr0);
232 AsmWriteDr1 (VolatileRegisters->Dr1);
233 AsmWriteDr2 (VolatileRegisters->Dr2);
234 AsmWriteDr3 (VolatileRegisters->Dr3);
235 AsmWriteDr6 (VolatileRegisters->Dr6);
236 AsmWriteDr7 (VolatileRegisters->Dr7);
237 }
238 }
239
240 AsmWriteGdtr (&VolatileRegisters->Gdtr);
241 AsmWriteIdtr (&VolatileRegisters->Idtr);
242 if (VolatileRegisters->Tr != 0 &&
243 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {
244 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +
245 VolatileRegisters->Tr);
246 if (Tss->Bits.P == 1) {
247 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case
248 AsmWriteTr (VolatileRegisters->Tr);
249 }
250 }
251 }
252
253 /**
254 Detect whether Mwait-monitor feature is supported.
255
256 @retval TRUE Mwait-monitor feature is supported.
257 @retval FALSE Mwait-monitor feature is not supported.
258 **/
259 BOOLEAN
260 IsMwaitSupport (
261 VOID
262 )
263 {
264 CPUID_VERSION_INFO_ECX VersionInfoEcx;
265
266 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);
267 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;
268 }
269
270 /**
271 Get AP loop mode.
272
273 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.
274
275 @return The AP loop mode.
276 **/
277 UINT8
278 GetApLoopMode (
279 OUT UINT32 *MonitorFilterSize
280 )
281 {
282 UINT8 ApLoopMode;
283 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;
284
285 ASSERT (MonitorFilterSize != NULL);
286
287 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
288 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);
289 if (ApLoopMode == ApInMwaitLoop) {
290 if (!IsMwaitSupport ()) {
291 //
292 // If processor does not support MONITOR/MWAIT feature,
293 // force AP in Hlt-loop mode
294 //
295 ApLoopMode = ApInHltLoop;
296 }
297 }
298
299 if (ApLoopMode != ApInMwaitLoop) {
300 *MonitorFilterSize = sizeof (UINT32);
301 } else {
302 //
303 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes
304 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT
305 //
306 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);
307 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;
308 }
309
310 return ApLoopMode;
311 }
312
313 /**
314 Sort the APIC ID of all processors.
315
316 This function sorts the APIC ID of all processors so that processor number is
317 assigned in the ascending order of APIC ID which eases MP debugging.
318
319 @param[in] CpuMpData Pointer to PEI CPU MP Data
320 **/
321 VOID
322 SortApicId (
323 IN CPU_MP_DATA *CpuMpData
324 )
325 {
326 UINTN Index1;
327 UINTN Index2;
328 UINTN Index3;
329 UINT32 ApicId;
330 CPU_INFO_IN_HOB CpuInfo;
331 UINT32 ApCount;
332 CPU_INFO_IN_HOB *CpuInfoInHob;
333 volatile UINT32 *StartupApSignal;
334
335 ApCount = CpuMpData->CpuCount - 1;
336 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
337 if (ApCount != 0) {
338 for (Index1 = 0; Index1 < ApCount; Index1++) {
339 Index3 = Index1;
340 //
341 // Sort key is the hardware default APIC ID
342 //
343 ApicId = CpuInfoInHob[Index1].ApicId;
344 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {
345 if (ApicId > CpuInfoInHob[Index2].ApicId) {
346 Index3 = Index2;
347 ApicId = CpuInfoInHob[Index2].ApicId;
348 }
349 }
350 if (Index3 != Index1) {
351 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));
352 CopyMem (
353 &CpuInfoInHob[Index3],
354 &CpuInfoInHob[Index1],
355 sizeof (CPU_INFO_IN_HOB)
356 );
357 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));
358
359 //
360 // Also exchange the StartupApSignal.
361 //
362 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;
363 CpuMpData->CpuData[Index3].StartupApSignal =
364 CpuMpData->CpuData[Index1].StartupApSignal;
365 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;
366 }
367 }
368
369 //
370 // Get the processor number for the BSP
371 //
372 ApicId = GetInitialApicId ();
373 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
374 if (CpuInfoInHob[Index1].ApicId == ApicId) {
375 CpuMpData->BspNumber = (UINT32) Index1;
376 break;
377 }
378 }
379 }
380 }
381
382 /**
383 Enable x2APIC mode on APs.
384
385 @param[in, out] Buffer Pointer to private data buffer.
386 **/
387 VOID
388 EFIAPI
389 ApFuncEnableX2Apic (
390 IN OUT VOID *Buffer
391 )
392 {
393 SetApicMode (LOCAL_APIC_MODE_X2APIC);
394 }
395
396 /**
397 Do sync on APs.
398
399 @param[in, out] Buffer Pointer to private data buffer.
400 **/
401 VOID
402 EFIAPI
403 ApInitializeSync (
404 IN OUT VOID *Buffer
405 )
406 {
407 CPU_MP_DATA *CpuMpData;
408
409 CpuMpData = (CPU_MP_DATA *) Buffer;
410 //
411 // Load microcode on AP
412 //
413 MicrocodeDetect (CpuMpData, FALSE);
414 //
415 // Sync BSP's MTRR table to AP
416 //
417 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);
418 }
419
420 /**
421 Find the current Processor number by APIC ID.
422
423 @param[in] CpuMpData Pointer to PEI CPU MP Data
424 @param[out] ProcessorNumber Return the pocessor number found
425
426 @retval EFI_SUCCESS ProcessorNumber is found and returned.
427 @retval EFI_NOT_FOUND ProcessorNumber is not found.
428 **/
429 EFI_STATUS
430 GetProcessorNumber (
431 IN CPU_MP_DATA *CpuMpData,
432 OUT UINTN *ProcessorNumber
433 )
434 {
435 UINTN TotalProcessorNumber;
436 UINTN Index;
437 CPU_INFO_IN_HOB *CpuInfoInHob;
438 UINT32 CurrentApicId;
439
440 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
441
442 TotalProcessorNumber = CpuMpData->CpuCount;
443 CurrentApicId = GetApicId ();
444 for (Index = 0; Index < TotalProcessorNumber; Index ++) {
445 if (CpuInfoInHob[Index].ApicId == CurrentApicId) {
446 *ProcessorNumber = Index;
447 return EFI_SUCCESS;
448 }
449 }
450
451 return EFI_NOT_FOUND;
452 }
453
454 /**
455 This function will get CPU count in the system.
456
457 @param[in] CpuMpData Pointer to PEI CPU MP Data
458
459 @return CPU count detected
460 **/
461 UINTN
462 CollectProcessorCount (
463 IN CPU_MP_DATA *CpuMpData
464 )
465 {
466 UINTN Index;
467
468 //
469 // Send 1st broadcast IPI to APs to wakeup APs
470 //
471 CpuMpData->InitFlag = ApInitConfig;
472 CpuMpData->X2ApicEnable = FALSE;
473 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);
474 CpuMpData->InitFlag = ApInitDone;
475 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
476 //
477 // Wait for all APs finished the initialization
478 //
479 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
480 CpuPause ();
481 }
482
483 if (CpuMpData->CpuCount > 255) {
484 //
485 // If there are more than 255 processor found, force to enable X2APIC
486 //
487 CpuMpData->X2ApicEnable = TRUE;
488 }
489 if (CpuMpData->X2ApicEnable) {
490 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));
491 //
492 // Wakeup all APs to enable x2APIC mode
493 //
494 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE);
495 //
496 // Wait for all known APs finished
497 //
498 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
499 CpuPause ();
500 }
501 //
502 // Enable x2APIC on BSP
503 //
504 SetApicMode (LOCAL_APIC_MODE_X2APIC);
505 //
506 // Set BSP/Aps state to IDLE
507 //
508 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
509 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
510 }
511 }
512 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));
513 //
514 // Sort BSP/Aps by CPU APIC ID in ascending order
515 //
516 SortApicId (CpuMpData);
517
518 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));
519
520 return CpuMpData->CpuCount;
521 }
522
523 /**
524 Initialize CPU AP Data when AP is wakeup at the first time.
525
526 @param[in, out] CpuMpData Pointer to PEI CPU MP Data
527 @param[in] ProcessorNumber The handle number of processor
528 @param[in] BistData Processor BIST data
529 @param[in] ApTopOfStack Top of AP stack
530
531 **/
532 VOID
533 InitializeApData (
534 IN OUT CPU_MP_DATA *CpuMpData,
535 IN UINTN ProcessorNumber,
536 IN UINT32 BistData,
537 IN UINT64 ApTopOfStack
538 )
539 {
540 CPU_INFO_IN_HOB *CpuInfoInHob;
541
542 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
543 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
544 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
545 CpuInfoInHob[ProcessorNumber].Health = BistData;
546 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;
547
548 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
549 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;
550 if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {
551 //
552 // Set x2APIC mode if there are any logical processor reporting
553 // an Initial APIC ID of 255 or greater.
554 //
555 AcquireSpinLock(&CpuMpData->MpLock);
556 CpuMpData->X2ApicEnable = TRUE;
557 ReleaseSpinLock(&CpuMpData->MpLock);
558 }
559
560 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);
561 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
562 }
563
564 /**
565 This function will be called from AP reset code if BSP uses WakeUpAP.
566
567 @param[in] ExchangeInfo Pointer to the MP exchange info buffer
568 @param[in] ApIndex Number of current executing AP
569 **/
570 VOID
571 EFIAPI
572 ApWakeupFunction (
573 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,
574 IN UINTN ApIndex
575 )
576 {
577 CPU_MP_DATA *CpuMpData;
578 UINTN ProcessorNumber;
579 EFI_AP_PROCEDURE Procedure;
580 VOID *Parameter;
581 UINT32 BistData;
582 volatile UINT32 *ApStartupSignalBuffer;
583 CPU_INFO_IN_HOB *CpuInfoInHob;
584 UINT64 ApTopOfStack;
585 UINTN CurrentApicMode;
586
587 //
588 // AP finished assembly code and begin to execute C code
589 //
590 CpuMpData = ExchangeInfo->CpuMpData;
591
592 //
593 // AP's local APIC settings will be lost after received INIT IPI
594 // We need to re-initialize them at here
595 //
596 ProgramVirtualWireMode ();
597 //
598 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.
599 //
600 DisableLvtInterrupts ();
601 SyncLocalApicTimerSetting (CpuMpData);
602
603 CurrentApicMode = GetApicMode ();
604 while (TRUE) {
605 if (CpuMpData->InitFlag == ApInitConfig) {
606 //
607 // Add CPU number
608 //
609 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);
610 ProcessorNumber = ApIndex;
611 //
612 // This is first time AP wakeup, get BIST information from AP stack
613 //
614 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;
615 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));
616 //
617 // Do some AP initialize sync
618 //
619 ApInitializeSync (CpuMpData);
620 //
621 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,
622 // to initialize AP in InitConfig path.
623 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.
624 //
625 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
626 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);
627 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
628 } else {
629 //
630 // Execute AP function if AP is ready
631 //
632 GetProcessorNumber (CpuMpData, &ProcessorNumber);
633 //
634 // Clear AP start-up signal when AP waken up
635 //
636 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
637 InterlockedCompareExchange32 (
638 (UINT32 *) ApStartupSignalBuffer,
639 WAKEUP_AP_SIGNAL,
640 0
641 );
642 if (CpuMpData->ApLoopMode == ApInHltLoop) {
643 //
644 // Restore AP's volatile registers saved
645 //
646 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);
647 } else {
648 //
649 // The CPU driver might not flush TLB for APs on spot after updating
650 // page attributes. AP in mwait loop mode needs to take care of it when
651 // woken up.
652 //
653 CpuFlushTlb ();
654 }
655
656 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {
657 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;
658 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;
659 if (Procedure != NULL) {
660 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);
661 //
662 // Enable source debugging on AP function
663 //
664 EnableDebugAgent ();
665 //
666 // Invoke AP function here
667 //
668 Procedure (Parameter);
669 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
670 if (CpuMpData->SwitchBspFlag) {
671 //
672 // Re-get the processor number due to BSP/AP maybe exchange in AP function
673 //
674 GetProcessorNumber (CpuMpData, &ProcessorNumber);
675 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;
676 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;
677 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
678 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;
679 } else {
680 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||
681 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {
682 if (CurrentApicMode != GetApicMode ()) {
683 //
684 // If APIC mode change happened during AP function execution,
685 // we do not support APIC ID value changed.
686 //
687 ASSERT (FALSE);
688 CpuDeadLoop ();
689 } else {
690 //
691 // Re-get the CPU APICID and Initial APICID if they are changed
692 //
693 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
694 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
695 }
696 }
697 }
698 }
699 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
700 }
701 }
702
703 //
704 // AP finished executing C code
705 //
706 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);
707 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);
708
709 //
710 // Place AP is specified loop mode
711 //
712 if (CpuMpData->ApLoopMode == ApInHltLoop) {
713 //
714 // Save AP volatile registers
715 //
716 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);
717 //
718 // Place AP in HLT-loop
719 //
720 while (TRUE) {
721 DisableInterrupts ();
722 CpuSleep ();
723 CpuPause ();
724 }
725 }
726 while (TRUE) {
727 DisableInterrupts ();
728 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
729 //
730 // Place AP in MWAIT-loop
731 //
732 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);
733 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {
734 //
735 // Check AP start-up signal again.
736 // If AP start-up signal is not set, place AP into
737 // the specified C-state
738 //
739 AsmMwait (CpuMpData->ApTargetCState << 4, 0);
740 }
741 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {
742 //
743 // Place AP in Run-loop
744 //
745 CpuPause ();
746 } else {
747 ASSERT (FALSE);
748 }
749
750 //
751 // If AP start-up signal is written, AP is waken up
752 // otherwise place AP in loop again
753 //
754 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {
755 break;
756 }
757 }
758 }
759 }
760
761 /**
762 Wait for AP wakeup and write AP start-up signal till AP is waken up.
763
764 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal
765 **/
766 VOID
767 WaitApWakeup (
768 IN volatile UINT32 *ApStartupSignalBuffer
769 )
770 {
771 //
772 // If AP is waken up, StartupApSignal should be cleared.
773 // Otherwise, write StartupApSignal again till AP waken up.
774 //
775 while (InterlockedCompareExchange32 (
776 (UINT32 *) ApStartupSignalBuffer,
777 WAKEUP_AP_SIGNAL,
778 WAKEUP_AP_SIGNAL
779 ) != 0) {
780 CpuPause ();
781 }
782 }
783
784 /**
785 This function will fill the exchange info structure.
786
787 @param[in] CpuMpData Pointer to CPU MP Data
788
789 **/
790 VOID
791 FillExchangeInfoData (
792 IN CPU_MP_DATA *CpuMpData
793 )
794 {
795 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
796 UINTN Size;
797 IA32_SEGMENT_DESCRIPTOR *Selector;
798
799 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
800 ExchangeInfo->Lock = 0;
801 ExchangeInfo->StackStart = CpuMpData->Buffer;
802 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;
803 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;
804 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;
805
806 ExchangeInfo->CodeSegment = AsmReadCs ();
807 ExchangeInfo->DataSegment = AsmReadDs ();
808
809 ExchangeInfo->Cr3 = AsmReadCr3 ();
810
811 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;
812 ExchangeInfo->ApIndex = 0;
813 ExchangeInfo->NumApsExecuting = 0;
814 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;
815 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
816 ExchangeInfo->CpuMpData = CpuMpData;
817
818 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();
819
820 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;
821
822 //
823 // Get the BSP's data of GDT and IDT
824 //
825 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);
826 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);
827
828 //
829 // Find a 32-bit code segment
830 //
831 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;
832 Size = ExchangeInfo->GdtrProfile.Limit + 1;
833 while (Size > 0) {
834 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {
835 ExchangeInfo->ModeTransitionSegment =
836 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);
837 break;
838 }
839 Selector += 1;
840 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);
841 }
842
843 //
844 // Copy all 32-bit code and 64-bit code into memory with type of
845 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.
846 //
847 if (CpuMpData->WakeupBufferHigh != 0) {
848 Size = CpuMpData->AddressMap.RendezvousFunnelSize -
849 CpuMpData->AddressMap.ModeTransitionOffset;
850 CopyMem (
851 (VOID *)CpuMpData->WakeupBufferHigh,
852 CpuMpData->AddressMap.RendezvousFunnelAddress +
853 CpuMpData->AddressMap.ModeTransitionOffset,
854 Size
855 );
856
857 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;
858 } else {
859 ExchangeInfo->ModeTransitionMemory = (UINT32)
860 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);
861 }
862
863 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +
864 (UINT32)ExchangeInfo->ModeOffset -
865 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;
866 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;
867 }
868
869 /**
870 Helper function that waits until the finished AP count reaches the specified
871 limit, or the specified timeout elapses (whichever comes first).
872
873 @param[in] CpuMpData Pointer to CPU MP Data.
874 @param[in] FinishedApLimit The number of finished APs to wait for.
875 @param[in] TimeLimit The number of microseconds to wait for.
876 **/
877 VOID
878 TimedWaitForApFinish (
879 IN CPU_MP_DATA *CpuMpData,
880 IN UINT32 FinishedApLimit,
881 IN UINT32 TimeLimit
882 );
883
884 /**
885 Get available system memory below 1MB by specified size.
886
887 @param[in] CpuMpData The pointer to CPU MP Data structure.
888 **/
889 VOID
890 BackupAndPrepareWakeupBuffer(
891 IN CPU_MP_DATA *CpuMpData
892 )
893 {
894 CopyMem (
895 (VOID *) CpuMpData->BackupBuffer,
896 (VOID *) CpuMpData->WakeupBuffer,
897 CpuMpData->BackupBufferSize
898 );
899 CopyMem (
900 (VOID *) CpuMpData->WakeupBuffer,
901 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,
902 CpuMpData->AddressMap.RendezvousFunnelSize
903 );
904 }
905
906 /**
907 Restore wakeup buffer data.
908
909 @param[in] CpuMpData The pointer to CPU MP Data structure.
910 **/
911 VOID
912 RestoreWakeupBuffer(
913 IN CPU_MP_DATA *CpuMpData
914 )
915 {
916 CopyMem (
917 (VOID *) CpuMpData->WakeupBuffer,
918 (VOID *) CpuMpData->BackupBuffer,
919 CpuMpData->BackupBufferSize
920 );
921 }
922
923 /**
924 Allocate reset vector buffer.
925
926 @param[in, out] CpuMpData The pointer to CPU MP Data structure.
927 **/
928 VOID
929 AllocateResetVector (
930 IN OUT CPU_MP_DATA *CpuMpData
931 )
932 {
933 UINTN ApResetVectorSize;
934
935 if (CpuMpData->WakeupBuffer == (UINTN) -1) {
936 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +
937 sizeof (MP_CPU_EXCHANGE_INFO);
938
939 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);
940 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)
941 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);
942 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (
943 CpuMpData->AddressMap.RendezvousFunnelSize -
944 CpuMpData->AddressMap.ModeTransitionOffset
945 );
946 }
947 BackupAndPrepareWakeupBuffer (CpuMpData);
948 }
949
950 /**
951 Free AP reset vector buffer.
952
953 @param[in] CpuMpData The pointer to CPU MP Data structure.
954 **/
955 VOID
956 FreeResetVector (
957 IN CPU_MP_DATA *CpuMpData
958 )
959 {
960 RestoreWakeupBuffer (CpuMpData);
961 }
962
963 /**
964 This function will be called by BSP to wakeup AP.
965
966 @param[in] CpuMpData Pointer to CPU MP Data
967 @param[in] Broadcast TRUE: Send broadcast IPI to all APs
968 FALSE: Send IPI to AP by ApicId
969 @param[in] ProcessorNumber The handle number of specified processor
970 @param[in] Procedure The function to be invoked by AP
971 @param[in] ProcedureArgument The argument to be passed into AP function
972 @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode.
973 **/
974 VOID
975 WakeUpAP (
976 IN CPU_MP_DATA *CpuMpData,
977 IN BOOLEAN Broadcast,
978 IN UINTN ProcessorNumber,
979 IN EFI_AP_PROCEDURE Procedure, OPTIONAL
980 IN VOID *ProcedureArgument, OPTIONAL
981 IN BOOLEAN WakeUpDisabledAps
982 )
983 {
984 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
985 UINTN Index;
986 CPU_AP_DATA *CpuData;
987 BOOLEAN ResetVectorRequired;
988 CPU_INFO_IN_HOB *CpuInfoInHob;
989
990 CpuMpData->FinishedCount = 0;
991 ResetVectorRequired = FALSE;
992
993 if (CpuMpData->WakeUpByInitSipiSipi ||
994 CpuMpData->InitFlag != ApInitDone) {
995 ResetVectorRequired = TRUE;
996 AllocateResetVector (CpuMpData);
997 FillExchangeInfoData (CpuMpData);
998 SaveLocalApicTimerSetting (CpuMpData);
999 }
1000
1001 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
1002 //
1003 // Get AP target C-state each time when waking up AP,
1004 // for it maybe updated by platform again
1005 //
1006 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);
1007 }
1008
1009 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
1010
1011 if (Broadcast) {
1012 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1013 if (Index != CpuMpData->BspNumber) {
1014 CpuData = &CpuMpData->CpuData[Index];
1015 //
1016 // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but
1017 // the AP procedure will be skipped for disabled AP because AP state
1018 // is not CpuStateReady.
1019 //
1020 if (GetApState (CpuData) == CpuStateDisabled && !WakeUpDisabledAps) {
1021 continue;
1022 }
1023
1024 CpuData->ApFunction = (UINTN) Procedure;
1025 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
1026 SetApState (CpuData, CpuStateReady);
1027 if (CpuMpData->InitFlag != ApInitConfig) {
1028 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
1029 }
1030 }
1031 }
1032 if (ResetVectorRequired) {
1033 //
1034 // Wakeup all APs
1035 //
1036 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);
1037 }
1038 if (CpuMpData->InitFlag == ApInitConfig) {
1039 //
1040 // Here support two methods to collect AP count through adjust
1041 // PcdCpuApInitTimeOutInMicroSeconds values.
1042 //
1043 // one way is set a value to just let the first AP to start the
1044 // initialization, then through the later while loop to wait all Aps
1045 // finsh the initialization.
1046 // The other way is set a value to let all APs finished the initialzation.
1047 // In this case, the later while loop is useless.
1048 //
1049 TimedWaitForApFinish (
1050 CpuMpData,
1051 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,
1052 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)
1053 );
1054
1055 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {
1056 CpuPause();
1057 }
1058 } else {
1059 //
1060 // Wait all APs waken up if this is not the 1st broadcast of SIPI
1061 //
1062 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1063 CpuData = &CpuMpData->CpuData[Index];
1064 if (Index != CpuMpData->BspNumber) {
1065 WaitApWakeup (CpuData->StartupApSignal);
1066 }
1067 }
1068 }
1069 } else {
1070 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1071 CpuData->ApFunction = (UINTN) Procedure;
1072 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
1073 SetApState (CpuData, CpuStateReady);
1074 //
1075 // Wakeup specified AP
1076 //
1077 ASSERT (CpuMpData->InitFlag != ApInitConfig);
1078 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
1079 if (ResetVectorRequired) {
1080 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1081 SendInitSipiSipi (
1082 CpuInfoInHob[ProcessorNumber].ApicId,
1083 (UINT32) ExchangeInfo->BufferStart
1084 );
1085 }
1086 //
1087 // Wait specified AP waken up
1088 //
1089 WaitApWakeup (CpuData->StartupApSignal);
1090 }
1091
1092 if (ResetVectorRequired) {
1093 FreeResetVector (CpuMpData);
1094 }
1095
1096 //
1097 // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with
1098 // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by
1099 // S3SmmInitDone Ppi.
1100 //
1101 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
1102 }
1103
1104 /**
1105 Calculate timeout value and return the current performance counter value.
1106
1107 Calculate the number of performance counter ticks required for a timeout.
1108 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1109 as infinity.
1110
1111 @param[in] TimeoutInMicroseconds Timeout value in microseconds.
1112 @param[out] CurrentTime Returns the current value of the performance counter.
1113
1114 @return Expected time stamp counter for timeout.
1115 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1116 as infinity.
1117
1118 **/
1119 UINT64
1120 CalculateTimeout (
1121 IN UINTN TimeoutInMicroseconds,
1122 OUT UINT64 *CurrentTime
1123 )
1124 {
1125 UINT64 TimeoutInSeconds;
1126 UINT64 TimestampCounterFreq;
1127
1128 //
1129 // Read the current value of the performance counter
1130 //
1131 *CurrentTime = GetPerformanceCounter ();
1132
1133 //
1134 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1135 // as infinity.
1136 //
1137 if (TimeoutInMicroseconds == 0) {
1138 return 0;
1139 }
1140
1141 //
1142 // GetPerformanceCounterProperties () returns the timestamp counter's frequency
1143 // in Hz.
1144 //
1145 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);
1146
1147 //
1148 // Check the potential overflow before calculate the number of ticks for the timeout value.
1149 //
1150 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {
1151 //
1152 // Convert microseconds into seconds if direct multiplication overflows
1153 //
1154 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);
1155 //
1156 // Assertion if the final tick count exceeds MAX_UINT64
1157 //
1158 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);
1159 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);
1160 } else {
1161 //
1162 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide
1163 // it by 1,000,000, to get the number of ticks for the timeout value.
1164 //
1165 return DivU64x32 (
1166 MultU64x64 (
1167 TimestampCounterFreq,
1168 TimeoutInMicroseconds
1169 ),
1170 1000000
1171 );
1172 }
1173 }
1174
1175 /**
1176 Checks whether timeout expires.
1177
1178 Check whether the number of elapsed performance counter ticks required for
1179 a timeout condition has been reached.
1180 If Timeout is zero, which means infinity, return value is always FALSE.
1181
1182 @param[in, out] PreviousTime On input, the value of the performance counter
1183 when it was last read.
1184 On output, the current value of the performance
1185 counter
1186 @param[in] TotalTime The total amount of elapsed time in performance
1187 counter ticks.
1188 @param[in] Timeout The number of performance counter ticks required
1189 to reach a timeout condition.
1190
1191 @retval TRUE A timeout condition has been reached.
1192 @retval FALSE A timeout condition has not been reached.
1193
1194 **/
1195 BOOLEAN
1196 CheckTimeout (
1197 IN OUT UINT64 *PreviousTime,
1198 IN UINT64 *TotalTime,
1199 IN UINT64 Timeout
1200 )
1201 {
1202 UINT64 Start;
1203 UINT64 End;
1204 UINT64 CurrentTime;
1205 INT64 Delta;
1206 INT64 Cycle;
1207
1208 if (Timeout == 0) {
1209 return FALSE;
1210 }
1211 GetPerformanceCounterProperties (&Start, &End);
1212 Cycle = End - Start;
1213 if (Cycle < 0) {
1214 Cycle = -Cycle;
1215 }
1216 Cycle++;
1217 CurrentTime = GetPerformanceCounter();
1218 Delta = (INT64) (CurrentTime - *PreviousTime);
1219 if (Start > End) {
1220 Delta = -Delta;
1221 }
1222 if (Delta < 0) {
1223 Delta += Cycle;
1224 }
1225 *TotalTime += Delta;
1226 *PreviousTime = CurrentTime;
1227 if (*TotalTime > Timeout) {
1228 return TRUE;
1229 }
1230 return FALSE;
1231 }
1232
1233 /**
1234 Helper function that waits until the finished AP count reaches the specified
1235 limit, or the specified timeout elapses (whichever comes first).
1236
1237 @param[in] CpuMpData Pointer to CPU MP Data.
1238 @param[in] FinishedApLimit The number of finished APs to wait for.
1239 @param[in] TimeLimit The number of microseconds to wait for.
1240 **/
1241 VOID
1242 TimedWaitForApFinish (
1243 IN CPU_MP_DATA *CpuMpData,
1244 IN UINT32 FinishedApLimit,
1245 IN UINT32 TimeLimit
1246 )
1247 {
1248 //
1249 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0
1250 // "infinity", so check for (TimeLimit == 0) explicitly.
1251 //
1252 if (TimeLimit == 0) {
1253 return;
1254 }
1255
1256 CpuMpData->TotalTime = 0;
1257 CpuMpData->ExpectedTime = CalculateTimeout (
1258 TimeLimit,
1259 &CpuMpData->CurrentTime
1260 );
1261 while (CpuMpData->FinishedCount < FinishedApLimit &&
1262 !CheckTimeout (
1263 &CpuMpData->CurrentTime,
1264 &CpuMpData->TotalTime,
1265 CpuMpData->ExpectedTime
1266 )) {
1267 CpuPause ();
1268 }
1269
1270 if (CpuMpData->FinishedCount >= FinishedApLimit) {
1271 DEBUG ((
1272 DEBUG_VERBOSE,
1273 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",
1274 __FUNCTION__,
1275 FinishedApLimit,
1276 DivU64x64Remainder (
1277 MultU64x32 (CpuMpData->TotalTime, 1000000),
1278 GetPerformanceCounterProperties (NULL, NULL),
1279 NULL
1280 )
1281 ));
1282 }
1283 }
1284
1285 /**
1286 Reset an AP to Idle state.
1287
1288 Any task being executed by the AP will be aborted and the AP
1289 will be waiting for a new task in Wait-For-SIPI state.
1290
1291 @param[in] ProcessorNumber The handle number of processor.
1292 **/
1293 VOID
1294 ResetProcessorToIdleState (
1295 IN UINTN ProcessorNumber
1296 )
1297 {
1298 CPU_MP_DATA *CpuMpData;
1299
1300 CpuMpData = GetCpuMpData ();
1301
1302 CpuMpData->InitFlag = ApInitReconfig;
1303 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE);
1304 while (CpuMpData->FinishedCount < 1) {
1305 CpuPause ();
1306 }
1307 CpuMpData->InitFlag = ApInitDone;
1308
1309 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
1310 }
1311
1312 /**
1313 Searches for the next waiting AP.
1314
1315 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().
1316
1317 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.
1318
1319 @retval EFI_SUCCESS The next waiting AP has been found.
1320 @retval EFI_NOT_FOUND No waiting AP exists.
1321
1322 **/
1323 EFI_STATUS
1324 GetNextWaitingProcessorNumber (
1325 OUT UINTN *NextProcessorNumber
1326 )
1327 {
1328 UINTN ProcessorNumber;
1329 CPU_MP_DATA *CpuMpData;
1330
1331 CpuMpData = GetCpuMpData ();
1332
1333 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1334 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1335 *NextProcessorNumber = ProcessorNumber;
1336 return EFI_SUCCESS;
1337 }
1338 }
1339
1340 return EFI_NOT_FOUND;
1341 }
1342
1343 /** Checks status of specified AP.
1344
1345 This function checks whether the specified AP has finished the task assigned
1346 by StartupThisAP(), and whether timeout expires.
1347
1348 @param[in] ProcessorNumber The handle number of processor.
1349
1350 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().
1351 @retval EFI_TIMEOUT The timeout expires.
1352 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.
1353 **/
1354 EFI_STATUS
1355 CheckThisAP (
1356 IN UINTN ProcessorNumber
1357 )
1358 {
1359 CPU_MP_DATA *CpuMpData;
1360 CPU_AP_DATA *CpuData;
1361
1362 CpuMpData = GetCpuMpData ();
1363 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1364
1365 //
1366 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
1367 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1368 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
1369 //
1370 //
1371 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.
1372 //
1373 if (GetApState(CpuData) == CpuStateIdle) {
1374 if (CpuData->Finished != NULL) {
1375 *(CpuData->Finished) = TRUE;
1376 }
1377 return EFI_SUCCESS;
1378 } else {
1379 //
1380 // If timeout expires for StartupThisAP(), report timeout.
1381 //
1382 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
1383 if (CpuData->Finished != NULL) {
1384 *(CpuData->Finished) = FALSE;
1385 }
1386 //
1387 // Reset failed AP to idle state
1388 //
1389 ResetProcessorToIdleState (ProcessorNumber);
1390
1391 return EFI_TIMEOUT;
1392 }
1393 }
1394 return EFI_NOT_READY;
1395 }
1396
1397 /**
1398 Checks status of all APs.
1399
1400 This function checks whether all APs have finished task assigned by StartupAllAPs(),
1401 and whether timeout expires.
1402
1403 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().
1404 @retval EFI_TIMEOUT The timeout expires.
1405 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.
1406 **/
1407 EFI_STATUS
1408 CheckAllAPs (
1409 VOID
1410 )
1411 {
1412 UINTN ProcessorNumber;
1413 UINTN NextProcessorNumber;
1414 UINTN ListIndex;
1415 EFI_STATUS Status;
1416 CPU_MP_DATA *CpuMpData;
1417 CPU_AP_DATA *CpuData;
1418
1419 CpuMpData = GetCpuMpData ();
1420
1421 NextProcessorNumber = 0;
1422
1423 //
1424 // Go through all APs that are responsible for the StartupAllAPs().
1425 //
1426 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1427 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {
1428 continue;
1429 }
1430
1431 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1432 //
1433 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
1434 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1435 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
1436 //
1437 if (GetApState(CpuData) == CpuStateIdle) {
1438 CpuMpData->RunningCount --;
1439 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1440
1441 //
1442 // If in Single Thread mode, then search for the next waiting AP for execution.
1443 //
1444 if (CpuMpData->SingleThread) {
1445 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);
1446
1447 if (!EFI_ERROR (Status)) {
1448 WakeUpAP (
1449 CpuMpData,
1450 FALSE,
1451 (UINT32) NextProcessorNumber,
1452 CpuMpData->Procedure,
1453 CpuMpData->ProcArguments,
1454 TRUE
1455 );
1456 }
1457 }
1458 }
1459 }
1460
1461 //
1462 // If all APs finish, return EFI_SUCCESS.
1463 //
1464 if (CpuMpData->RunningCount == 0) {
1465 return EFI_SUCCESS;
1466 }
1467
1468 //
1469 // If timeout expires, report timeout.
1470 //
1471 if (CheckTimeout (
1472 &CpuMpData->CurrentTime,
1473 &CpuMpData->TotalTime,
1474 CpuMpData->ExpectedTime)
1475 ) {
1476 //
1477 // If FailedCpuList is not NULL, record all failed APs in it.
1478 //
1479 if (CpuMpData->FailedCpuList != NULL) {
1480 *CpuMpData->FailedCpuList =
1481 AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN));
1482 ASSERT (*CpuMpData->FailedCpuList != NULL);
1483 }
1484 ListIndex = 0;
1485
1486 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1487 //
1488 // Check whether this processor is responsible for StartupAllAPs().
1489 //
1490 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1491 //
1492 // Reset failed APs to idle state
1493 //
1494 ResetProcessorToIdleState (ProcessorNumber);
1495 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1496 if (CpuMpData->FailedCpuList != NULL) {
1497 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;
1498 }
1499 }
1500 }
1501 if (CpuMpData->FailedCpuList != NULL) {
1502 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;
1503 }
1504 return EFI_TIMEOUT;
1505 }
1506 return EFI_NOT_READY;
1507 }
1508
1509 /**
1510 MP Initialize Library initialization.
1511
1512 This service will allocate AP reset vector and wakeup all APs to do APs
1513 initialization.
1514
1515 This service must be invoked before all other MP Initialize Library
1516 service are invoked.
1517
1518 @retval EFI_SUCCESS MP initialization succeeds.
1519 @retval Others MP initialization fails.
1520
1521 **/
1522 EFI_STATUS
1523 EFIAPI
1524 MpInitLibInitialize (
1525 VOID
1526 )
1527 {
1528 CPU_MP_DATA *OldCpuMpData;
1529 CPU_INFO_IN_HOB *CpuInfoInHob;
1530 UINT32 MaxLogicalProcessorNumber;
1531 UINT32 ApStackSize;
1532 MP_ASSEMBLY_ADDRESS_MAP AddressMap;
1533 CPU_VOLATILE_REGISTERS VolatileRegisters;
1534 UINTN BufferSize;
1535 UINT32 MonitorFilterSize;
1536 VOID *MpBuffer;
1537 UINTN Buffer;
1538 CPU_MP_DATA *CpuMpData;
1539 UINT8 ApLoopMode;
1540 UINT8 *MonitorBuffer;
1541 UINTN Index;
1542 UINTN ApResetVectorSize;
1543 UINTN BackupBufferAddr;
1544 UINTN ApIdtBase;
1545 VOID *MicrocodePatchInRam;
1546
1547 OldCpuMpData = GetCpuMpDataFromGuidedHob ();
1548 if (OldCpuMpData == NULL) {
1549 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);
1550 } else {
1551 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;
1552 }
1553 ASSERT (MaxLogicalProcessorNumber != 0);
1554
1555 AsmGetAddressMap (&AddressMap);
1556 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);
1557 ApStackSize = PcdGet32(PcdCpuApStackSize);
1558 ApLoopMode = GetApLoopMode (&MonitorFilterSize);
1559
1560 //
1561 // Save BSP's Control registers for APs.
1562 //
1563 SaveVolatileRegisters (&VolatileRegisters);
1564
1565 BufferSize = ApStackSize * MaxLogicalProcessorNumber;
1566 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;
1567 BufferSize += ApResetVectorSize;
1568 BufferSize = ALIGN_VALUE (BufferSize, 8);
1569 BufferSize += VolatileRegisters.Idtr.Limit + 1;
1570 BufferSize += sizeof (CPU_MP_DATA);
1571 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;
1572 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));
1573 ASSERT (MpBuffer != NULL);
1574 ZeroMem (MpBuffer, BufferSize);
1575 Buffer = (UINTN) MpBuffer;
1576
1577 //
1578 // The layout of the Buffer is as below:
1579 //
1580 // +--------------------+ <-- Buffer
1581 // AP Stacks (N)
1582 // +--------------------+ <-- MonitorBuffer
1583 // AP Monitor Filters (N)
1584 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)
1585 // Backup Buffer
1586 // +--------------------+
1587 // Padding
1588 // +--------------------+ <-- ApIdtBase (8-byte boundary)
1589 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.
1590 // +--------------------+ <-- CpuMpData
1591 // CPU_MP_DATA
1592 // +--------------------+ <-- CpuMpData->CpuData
1593 // CPU_AP_DATA (N)
1594 // +--------------------+ <-- CpuMpData->CpuInfoInHob
1595 // CPU_INFO_IN_HOB (N)
1596 // +--------------------+
1597 //
1598 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);
1599 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;
1600 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);
1601 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);
1602 CpuMpData->Buffer = Buffer;
1603 CpuMpData->CpuApStackSize = ApStackSize;
1604 CpuMpData->BackupBuffer = BackupBufferAddr;
1605 CpuMpData->BackupBufferSize = ApResetVectorSize;
1606 CpuMpData->WakeupBuffer = (UINTN) -1;
1607 CpuMpData->CpuCount = 1;
1608 CpuMpData->BspNumber = 0;
1609 CpuMpData->WaitEvent = NULL;
1610 CpuMpData->SwitchBspFlag = FALSE;
1611 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);
1612 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);
1613 CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);
1614 //
1615 // If platform has more than one CPU, relocate microcode to memory to reduce
1616 // loading microcode time.
1617 //
1618 MicrocodePatchInRam = NULL;
1619 if (MaxLogicalProcessorNumber > 1) {
1620 MicrocodePatchInRam = AllocatePages (
1621 EFI_SIZE_TO_PAGES (
1622 (UINTN)CpuMpData->MicrocodePatchRegionSize
1623 )
1624 );
1625 }
1626 if (MicrocodePatchInRam == NULL) {
1627 //
1628 // there is only one processor, or no microcode patch is available, or
1629 // memory allocation failed
1630 //
1631 CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);
1632 } else {
1633 //
1634 // there are multiple processors, and a microcode patch is available, and
1635 // memory allocation succeeded
1636 //
1637 CopyMem (
1638 MicrocodePatchInRam,
1639 (VOID *)(UINTN)PcdGet64 (PcdCpuMicrocodePatchAddress),
1640 (UINTN)CpuMpData->MicrocodePatchRegionSize
1641 );
1642 CpuMpData->MicrocodePatchAddress = (UINTN)MicrocodePatchInRam;
1643 }
1644
1645 InitializeSpinLock(&CpuMpData->MpLock);
1646
1647 //
1648 // Make sure no memory usage outside of the allocated buffer.
1649 //
1650 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==
1651 Buffer + BufferSize);
1652
1653 //
1654 // Duplicate BSP's IDT to APs.
1655 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1
1656 //
1657 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);
1658 VolatileRegisters.Idtr.Base = ApIdtBase;
1659 //
1660 // Don't pass BSP's TR to APs to avoid AP init failure.
1661 //
1662 VolatileRegisters.Tr = 0;
1663 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));
1664 //
1665 // Set BSP basic information
1666 //
1667 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);
1668 //
1669 // Save assembly code information
1670 //
1671 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));
1672 //
1673 // Finally set AP loop mode
1674 //
1675 CpuMpData->ApLoopMode = ApLoopMode;
1676 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));
1677
1678 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
1679
1680 //
1681 // Set up APs wakeup signal buffer
1682 //
1683 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {
1684 CpuMpData->CpuData[Index].StartupApSignal =
1685 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);
1686 }
1687 //
1688 // Load Microcode on BSP
1689 //
1690 MicrocodeDetect (CpuMpData, TRUE);
1691 //
1692 // Store BSP's MTRR setting
1693 //
1694 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);
1695 //
1696 // Enable the local APIC for Virtual Wire Mode.
1697 //
1698 ProgramVirtualWireMode ();
1699
1700 if (OldCpuMpData == NULL) {
1701 if (MaxLogicalProcessorNumber > 1) {
1702 //
1703 // Wakeup all APs and calculate the processor count in system
1704 //
1705 CollectProcessorCount (CpuMpData);
1706 }
1707 } else {
1708 //
1709 // APs have been wakeup before, just get the CPU Information
1710 // from HOB
1711 //
1712 CpuMpData->CpuCount = OldCpuMpData->CpuCount;
1713 CpuMpData->BspNumber = OldCpuMpData->BspNumber;
1714 CpuMpData->InitFlag = ApInitReconfig;
1715 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;
1716 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1717 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1718 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);
1719 if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {
1720 CpuMpData->X2ApicEnable = TRUE;
1721 }
1722 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;
1723 CpuMpData->CpuData[Index].ApFunction = 0;
1724 CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));
1725 }
1726 if (MaxLogicalProcessorNumber > 1) {
1727 //
1728 // Wakeup APs to do some AP initialize sync
1729 //
1730 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE);
1731 //
1732 // Wait for all APs finished initialization
1733 //
1734 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
1735 CpuPause ();
1736 }
1737 CpuMpData->InitFlag = ApInitDone;
1738 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1739 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
1740 }
1741 }
1742 }
1743
1744 //
1745 // Initialize global data for MP support
1746 //
1747 InitMpGlobalData (CpuMpData);
1748
1749 return EFI_SUCCESS;
1750 }
1751
1752 /**
1753 Gets detailed MP-related information on the requested processor at the
1754 instant this call is made. This service may only be called from the BSP.
1755
1756 @param[in] ProcessorNumber The handle number of processor.
1757 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for
1758 the requested processor is deposited.
1759 @param[out] HealthData Return processor health data.
1760
1761 @retval EFI_SUCCESS Processor information was returned.
1762 @retval EFI_DEVICE_ERROR The calling processor is an AP.
1763 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
1764 @retval EFI_NOT_FOUND The processor with the handle specified by
1765 ProcessorNumber does not exist in the platform.
1766 @retval EFI_NOT_READY MP Initialize Library is not initialized.
1767
1768 **/
1769 EFI_STATUS
1770 EFIAPI
1771 MpInitLibGetProcessorInfo (
1772 IN UINTN ProcessorNumber,
1773 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,
1774 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL
1775 )
1776 {
1777 CPU_MP_DATA *CpuMpData;
1778 UINTN CallerNumber;
1779 CPU_INFO_IN_HOB *CpuInfoInHob;
1780
1781 CpuMpData = GetCpuMpData ();
1782 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1783
1784 //
1785 // Check whether caller processor is BSP
1786 //
1787 MpInitLibWhoAmI (&CallerNumber);
1788 if (CallerNumber != CpuMpData->BspNumber) {
1789 return EFI_DEVICE_ERROR;
1790 }
1791
1792 if (ProcessorInfoBuffer == NULL) {
1793 return EFI_INVALID_PARAMETER;
1794 }
1795
1796 if (ProcessorNumber >= CpuMpData->CpuCount) {
1797 return EFI_NOT_FOUND;
1798 }
1799
1800 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;
1801 ProcessorInfoBuffer->StatusFlag = 0;
1802 if (ProcessorNumber == CpuMpData->BspNumber) {
1803 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
1804 }
1805 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {
1806 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
1807 }
1808 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
1809 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;
1810 } else {
1811 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
1812 }
1813
1814 //
1815 // Get processor location information
1816 //
1817 GetProcessorLocationByApicId (
1818 CpuInfoInHob[ProcessorNumber].ApicId,
1819 &ProcessorInfoBuffer->Location.Package,
1820 &ProcessorInfoBuffer->Location.Core,
1821 &ProcessorInfoBuffer->Location.Thread
1822 );
1823
1824 if (HealthData != NULL) {
1825 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;
1826 }
1827
1828 return EFI_SUCCESS;
1829 }
1830
1831 /**
1832 Worker function to switch the requested AP to be the BSP from that point onward.
1833
1834 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.
1835 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
1836 enabled AP. Otherwise, it will be disabled.
1837
1838 @retval EFI_SUCCESS BSP successfully switched.
1839 @retval others Failed to switch BSP.
1840
1841 **/
1842 EFI_STATUS
1843 SwitchBSPWorker (
1844 IN UINTN ProcessorNumber,
1845 IN BOOLEAN EnableOldBSP
1846 )
1847 {
1848 CPU_MP_DATA *CpuMpData;
1849 UINTN CallerNumber;
1850 CPU_STATE State;
1851 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;
1852 BOOLEAN OldInterruptState;
1853 BOOLEAN OldTimerInterruptState;
1854
1855 //
1856 // Save and Disable Local APIC timer interrupt
1857 //
1858 OldTimerInterruptState = GetApicTimerInterruptState ();
1859 DisableApicTimerInterrupt ();
1860 //
1861 // Before send both BSP and AP to a procedure to exchange their roles,
1862 // interrupt must be disabled. This is because during the exchange role
1863 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will
1864 // be corrupted, since interrupt return address will be pushed to stack
1865 // by hardware.
1866 //
1867 OldInterruptState = SaveAndDisableInterrupts ();
1868
1869 //
1870 // Mask LINT0 & LINT1 for the old BSP
1871 //
1872 DisableLvtInterrupts ();
1873
1874 CpuMpData = GetCpuMpData ();
1875
1876 //
1877 // Check whether caller processor is BSP
1878 //
1879 MpInitLibWhoAmI (&CallerNumber);
1880 if (CallerNumber != CpuMpData->BspNumber) {
1881 return EFI_DEVICE_ERROR;
1882 }
1883
1884 if (ProcessorNumber >= CpuMpData->CpuCount) {
1885 return EFI_NOT_FOUND;
1886 }
1887
1888 //
1889 // Check whether specified AP is disabled
1890 //
1891 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);
1892 if (State == CpuStateDisabled) {
1893 return EFI_INVALID_PARAMETER;
1894 }
1895
1896 //
1897 // Check whether ProcessorNumber specifies the current BSP
1898 //
1899 if (ProcessorNumber == CpuMpData->BspNumber) {
1900 return EFI_INVALID_PARAMETER;
1901 }
1902
1903 //
1904 // Check whether specified AP is busy
1905 //
1906 if (State == CpuStateBusy) {
1907 return EFI_NOT_READY;
1908 }
1909
1910 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;
1911 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;
1912 CpuMpData->SwitchBspFlag = TRUE;
1913 CpuMpData->NewBspNumber = ProcessorNumber;
1914
1915 //
1916 // Clear the BSP bit of MSR_IA32_APIC_BASE
1917 //
1918 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1919 ApicBaseMsr.Bits.BSP = 0;
1920 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1921
1922 //
1923 // Need to wakeUp AP (future BSP).
1924 //
1925 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE);
1926
1927 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);
1928
1929 //
1930 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP
1931 //
1932 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1933 ApicBaseMsr.Bits.BSP = 1;
1934 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1935 ProgramVirtualWireMode ();
1936
1937 //
1938 // Wait for old BSP finished AP task
1939 //
1940 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateIdle) {
1941 CpuPause ();
1942 }
1943
1944 CpuMpData->SwitchBspFlag = FALSE;
1945 //
1946 // Set old BSP enable state
1947 //
1948 if (!EnableOldBSP) {
1949 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);
1950 } else {
1951 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);
1952 }
1953 //
1954 // Save new BSP number
1955 //
1956 CpuMpData->BspNumber = (UINT32) ProcessorNumber;
1957
1958 //
1959 // Restore interrupt state.
1960 //
1961 SetInterruptState (OldInterruptState);
1962
1963 if (OldTimerInterruptState) {
1964 EnableApicTimerInterrupt ();
1965 }
1966
1967 return EFI_SUCCESS;
1968 }
1969
1970 /**
1971 Worker function to let the caller enable or disable an AP from this point onward.
1972 This service may only be called from the BSP.
1973
1974 @param[in] ProcessorNumber The handle number of AP.
1975 @param[in] EnableAP Specifies the new state for the processor for
1976 enabled, FALSE for disabled.
1977 @param[in] HealthFlag If not NULL, a pointer to a value that specifies
1978 the new health status of the AP.
1979
1980 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
1981 @retval others Failed to Enable/Disable AP.
1982
1983 **/
1984 EFI_STATUS
1985 EnableDisableApWorker (
1986 IN UINTN ProcessorNumber,
1987 IN BOOLEAN EnableAP,
1988 IN UINT32 *HealthFlag OPTIONAL
1989 )
1990 {
1991 CPU_MP_DATA *CpuMpData;
1992 UINTN CallerNumber;
1993
1994 CpuMpData = GetCpuMpData ();
1995
1996 //
1997 // Check whether caller processor is BSP
1998 //
1999 MpInitLibWhoAmI (&CallerNumber);
2000 if (CallerNumber != CpuMpData->BspNumber) {
2001 return EFI_DEVICE_ERROR;
2002 }
2003
2004 if (ProcessorNumber == CpuMpData->BspNumber) {
2005 return EFI_INVALID_PARAMETER;
2006 }
2007
2008 if (ProcessorNumber >= CpuMpData->CpuCount) {
2009 return EFI_NOT_FOUND;
2010 }
2011
2012 if (!EnableAP) {
2013 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);
2014 } else {
2015 ResetProcessorToIdleState (ProcessorNumber);
2016 }
2017
2018 if (HealthFlag != NULL) {
2019 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =
2020 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);
2021 }
2022
2023 return EFI_SUCCESS;
2024 }
2025
2026 /**
2027 This return the handle number for the calling processor. This service may be
2028 called from the BSP and APs.
2029
2030 @param[out] ProcessorNumber Pointer to the handle number of AP.
2031 The range is from 0 to the total number of
2032 logical processors minus 1. The total number of
2033 logical processors can be retrieved by
2034 MpInitLibGetNumberOfProcessors().
2035
2036 @retval EFI_SUCCESS The current processor handle number was returned
2037 in ProcessorNumber.
2038 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
2039 @retval EFI_NOT_READY MP Initialize Library is not initialized.
2040
2041 **/
2042 EFI_STATUS
2043 EFIAPI
2044 MpInitLibWhoAmI (
2045 OUT UINTN *ProcessorNumber
2046 )
2047 {
2048 CPU_MP_DATA *CpuMpData;
2049
2050 if (ProcessorNumber == NULL) {
2051 return EFI_INVALID_PARAMETER;
2052 }
2053
2054 CpuMpData = GetCpuMpData ();
2055
2056 return GetProcessorNumber (CpuMpData, ProcessorNumber);
2057 }
2058
2059 /**
2060 Retrieves the number of logical processor in the platform and the number of
2061 those logical processors that are enabled on this boot. This service may only
2062 be called from the BSP.
2063
2064 @param[out] NumberOfProcessors Pointer to the total number of logical
2065 processors in the system, including the BSP
2066 and disabled APs.
2067 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
2068 processors that exist in system, including
2069 the BSP.
2070
2071 @retval EFI_SUCCESS The number of logical processors and enabled
2072 logical processors was retrieved.
2073 @retval EFI_DEVICE_ERROR The calling processor is an AP.
2074 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors
2075 is NULL.
2076 @retval EFI_NOT_READY MP Initialize Library is not initialized.
2077
2078 **/
2079 EFI_STATUS
2080 EFIAPI
2081 MpInitLibGetNumberOfProcessors (
2082 OUT UINTN *NumberOfProcessors, OPTIONAL
2083 OUT UINTN *NumberOfEnabledProcessors OPTIONAL
2084 )
2085 {
2086 CPU_MP_DATA *CpuMpData;
2087 UINTN CallerNumber;
2088 UINTN ProcessorNumber;
2089 UINTN EnabledProcessorNumber;
2090 UINTN Index;
2091
2092 CpuMpData = GetCpuMpData ();
2093
2094 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {
2095 return EFI_INVALID_PARAMETER;
2096 }
2097
2098 //
2099 // Check whether caller processor is BSP
2100 //
2101 MpInitLibWhoAmI (&CallerNumber);
2102 if (CallerNumber != CpuMpData->BspNumber) {
2103 return EFI_DEVICE_ERROR;
2104 }
2105
2106 ProcessorNumber = CpuMpData->CpuCount;
2107 EnabledProcessorNumber = 0;
2108 for (Index = 0; Index < ProcessorNumber; Index++) {
2109 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {
2110 EnabledProcessorNumber ++;
2111 }
2112 }
2113
2114 if (NumberOfProcessors != NULL) {
2115 *NumberOfProcessors = ProcessorNumber;
2116 }
2117 if (NumberOfEnabledProcessors != NULL) {
2118 *NumberOfEnabledProcessors = EnabledProcessorNumber;
2119 }
2120
2121 return EFI_SUCCESS;
2122 }
2123
2124
2125 /**
2126 Worker function to execute a caller provided function on all enabled APs.
2127
2128 @param[in] Procedure A pointer to the function to be run on
2129 enabled APs of the system.
2130 @param[in] SingleThread If TRUE, then all the enabled APs execute
2131 the function specified by Procedure one by
2132 one, in ascending order of processor handle
2133 number. If FALSE, then all the enabled APs
2134 execute the function specified by Procedure
2135 simultaneously.
2136 @param[in] WaitEvent The event created by the caller with CreateEvent()
2137 service.
2138 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
2139 APs to return from Procedure, either for
2140 blocking or non-blocking mode.
2141 @param[in] ProcedureArgument The parameter passed into Procedure for
2142 all APs.
2143 @param[out] FailedCpuList If all APs finish successfully, then its
2144 content is set to NULL. If not all APs
2145 finish before timeout expires, then its
2146 content is set to address of the buffer
2147 holding handle numbers of the failed APs.
2148
2149 @retval EFI_SUCCESS In blocking mode, all APs have finished before
2150 the timeout expired.
2151 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
2152 to all enabled APs.
2153 @retval others Failed to Startup all APs.
2154
2155 **/
2156 EFI_STATUS
2157 StartupAllAPsWorker (
2158 IN EFI_AP_PROCEDURE Procedure,
2159 IN BOOLEAN SingleThread,
2160 IN EFI_EVENT WaitEvent OPTIONAL,
2161 IN UINTN TimeoutInMicroseconds,
2162 IN VOID *ProcedureArgument OPTIONAL,
2163 OUT UINTN **FailedCpuList OPTIONAL
2164 )
2165 {
2166 EFI_STATUS Status;
2167 CPU_MP_DATA *CpuMpData;
2168 UINTN ProcessorCount;
2169 UINTN ProcessorNumber;
2170 UINTN CallerNumber;
2171 CPU_AP_DATA *CpuData;
2172 BOOLEAN HasEnabledAp;
2173 CPU_STATE ApState;
2174
2175 CpuMpData = GetCpuMpData ();
2176
2177 if (FailedCpuList != NULL) {
2178 *FailedCpuList = NULL;
2179 }
2180
2181 if (CpuMpData->CpuCount == 1) {
2182 return EFI_NOT_STARTED;
2183 }
2184
2185 if (Procedure == NULL) {
2186 return EFI_INVALID_PARAMETER;
2187 }
2188
2189 //
2190 // Check whether caller processor is BSP
2191 //
2192 MpInitLibWhoAmI (&CallerNumber);
2193 if (CallerNumber != CpuMpData->BspNumber) {
2194 return EFI_DEVICE_ERROR;
2195 }
2196
2197 //
2198 // Update AP state
2199 //
2200 CheckAndUpdateApsStatus ();
2201
2202 ProcessorCount = CpuMpData->CpuCount;
2203 HasEnabledAp = FALSE;
2204 //
2205 // Check whether all enabled APs are idle.
2206 // If any enabled AP is not idle, return EFI_NOT_READY.
2207 //
2208 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2209 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2210 if (ProcessorNumber != CpuMpData->BspNumber) {
2211 ApState = GetApState (CpuData);
2212 if (ApState != CpuStateDisabled) {
2213 HasEnabledAp = TRUE;
2214 if (ApState != CpuStateIdle) {
2215 //
2216 // If any enabled APs are busy, return EFI_NOT_READY.
2217 //
2218 return EFI_NOT_READY;
2219 }
2220 }
2221 }
2222 }
2223
2224 if (!HasEnabledAp) {
2225 //
2226 // If no enabled AP exists, return EFI_NOT_STARTED.
2227 //
2228 return EFI_NOT_STARTED;
2229 }
2230
2231 CpuMpData->RunningCount = 0;
2232 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2233 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2234 CpuData->Waiting = FALSE;
2235 if (ProcessorNumber != CpuMpData->BspNumber) {
2236 if (CpuData->State == CpuStateIdle) {
2237 //
2238 // Mark this processor as responsible for current calling.
2239 //
2240 CpuData->Waiting = TRUE;
2241 CpuMpData->RunningCount++;
2242 }
2243 }
2244 }
2245
2246 CpuMpData->Procedure = Procedure;
2247 CpuMpData->ProcArguments = ProcedureArgument;
2248 CpuMpData->SingleThread = SingleThread;
2249 CpuMpData->FinishedCount = 0;
2250 CpuMpData->FailedCpuList = FailedCpuList;
2251 CpuMpData->ExpectedTime = CalculateTimeout (
2252 TimeoutInMicroseconds,
2253 &CpuMpData->CurrentTime
2254 );
2255 CpuMpData->TotalTime = 0;
2256 CpuMpData->WaitEvent = WaitEvent;
2257
2258 if (!SingleThread) {
2259 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);
2260 } else {
2261 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2262 if (ProcessorNumber == CallerNumber) {
2263 continue;
2264 }
2265 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
2266 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
2267 break;
2268 }
2269 }
2270 }
2271
2272 Status = EFI_SUCCESS;
2273 if (WaitEvent == NULL) {
2274 do {
2275 Status = CheckAllAPs ();
2276 } while (Status == EFI_NOT_READY);
2277 }
2278
2279 return Status;
2280 }
2281
2282 /**
2283 Worker function to let the caller get one enabled AP to execute a caller-provided
2284 function.
2285
2286 @param[in] Procedure A pointer to the function to be run on
2287 enabled APs of the system.
2288 @param[in] ProcessorNumber The handle number of the AP.
2289 @param[in] WaitEvent The event created by the caller with CreateEvent()
2290 service.
2291 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
2292 APs to return from Procedure, either for
2293 blocking or non-blocking mode.
2294 @param[in] ProcedureArgument The parameter passed into Procedure for
2295 all APs.
2296 @param[out] Finished If AP returns from Procedure before the
2297 timeout expires, its content is set to TRUE.
2298 Otherwise, the value is set to FALSE.
2299
2300 @retval EFI_SUCCESS In blocking mode, specified AP finished before
2301 the timeout expires.
2302 @retval others Failed to Startup AP.
2303
2304 **/
2305 EFI_STATUS
2306 StartupThisAPWorker (
2307 IN EFI_AP_PROCEDURE Procedure,
2308 IN UINTN ProcessorNumber,
2309 IN EFI_EVENT WaitEvent OPTIONAL,
2310 IN UINTN TimeoutInMicroseconds,
2311 IN VOID *ProcedureArgument OPTIONAL,
2312 OUT BOOLEAN *Finished OPTIONAL
2313 )
2314 {
2315 EFI_STATUS Status;
2316 CPU_MP_DATA *CpuMpData;
2317 CPU_AP_DATA *CpuData;
2318 UINTN CallerNumber;
2319
2320 CpuMpData = GetCpuMpData ();
2321
2322 if (Finished != NULL) {
2323 *Finished = FALSE;
2324 }
2325
2326 //
2327 // Check whether caller processor is BSP
2328 //
2329 MpInitLibWhoAmI (&CallerNumber);
2330 if (CallerNumber != CpuMpData->BspNumber) {
2331 return EFI_DEVICE_ERROR;
2332 }
2333
2334 //
2335 // Check whether processor with the handle specified by ProcessorNumber exists
2336 //
2337 if (ProcessorNumber >= CpuMpData->CpuCount) {
2338 return EFI_NOT_FOUND;
2339 }
2340
2341 //
2342 // Check whether specified processor is BSP
2343 //
2344 if (ProcessorNumber == CpuMpData->BspNumber) {
2345 return EFI_INVALID_PARAMETER;
2346 }
2347
2348 //
2349 // Check parameter Procedure
2350 //
2351 if (Procedure == NULL) {
2352 return EFI_INVALID_PARAMETER;
2353 }
2354
2355 //
2356 // Update AP state
2357 //
2358 CheckAndUpdateApsStatus ();
2359
2360 //
2361 // Check whether specified AP is disabled
2362 //
2363 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
2364 return EFI_INVALID_PARAMETER;
2365 }
2366
2367 //
2368 // If WaitEvent is not NULL, execute in non-blocking mode.
2369 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
2370 // CheckAPsStatus() will check completion and timeout periodically.
2371 //
2372 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2373 CpuData->WaitEvent = WaitEvent;
2374 CpuData->Finished = Finished;
2375 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
2376 CpuData->TotalTime = 0;
2377
2378 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
2379
2380 //
2381 // If WaitEvent is NULL, execute in blocking mode.
2382 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
2383 //
2384 Status = EFI_SUCCESS;
2385 if (WaitEvent == NULL) {
2386 do {
2387 Status = CheckThisAP (ProcessorNumber);
2388 } while (Status == EFI_NOT_READY);
2389 }
2390
2391 return Status;
2392 }
2393
2394 /**
2395 Get pointer to CPU MP Data structure from GUIDed HOB.
2396
2397 @return The pointer to CPU MP Data structure.
2398 **/
2399 CPU_MP_DATA *
2400 GetCpuMpDataFromGuidedHob (
2401 VOID
2402 )
2403 {
2404 EFI_HOB_GUID_TYPE *GuidHob;
2405 VOID *DataInHob;
2406 CPU_MP_DATA *CpuMpData;
2407
2408 CpuMpData = NULL;
2409 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);
2410 if (GuidHob != NULL) {
2411 DataInHob = GET_GUID_HOB_DATA (GuidHob);
2412 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);
2413 }
2414 return CpuMpData;
2415 }
2416