]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/PiSmmCpuDxeSmm/CpuS3.c
UefiCpuPkg/PiSmmCpuDxeSmm: Add logic to support semaphore type.
[mirror_edk2.git] / UefiCpuPkg / PiSmmCpuDxeSmm / CpuS3.c
1 /** @file
2 Code for Processor S3 restoration
3
4 Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "PiSmmCpuDxeSmm.h"
16
17 #pragma pack(1)
18 typedef struct {
19 UINTN Lock;
20 VOID *StackStart;
21 UINTN StackSize;
22 VOID *ApFunction;
23 IA32_DESCRIPTOR GdtrProfile;
24 IA32_DESCRIPTOR IdtrProfile;
25 UINT32 BufferStart;
26 UINT32 Cr3;
27 UINTN InitializeFloatingPointUnitsAddress;
28 } MP_CPU_EXCHANGE_INFO;
29 #pragma pack()
30
31 typedef struct {
32 UINT8 *RendezvousFunnelAddress;
33 UINTN PModeEntryOffset;
34 UINTN FlatJumpOffset;
35 UINTN Size;
36 UINTN LModeEntryOffset;
37 UINTN LongJumpOffset;
38 } MP_ASSEMBLY_ADDRESS_MAP;
39
40 //
41 // Flags used when program the register.
42 //
43 typedef struct {
44 volatile UINTN ConsoleLogLock; // Spinlock used to control console.
45 volatile UINTN MemoryMappedLock; // Spinlock used to program mmio
46 volatile UINT32 *SemaphoreCount; // Semaphore used to program semaphore.
47 } PROGRAM_CPU_REGISTER_FLAGS;
48
49 //
50 // Signal that SMM BASE relocation is complete.
51 //
52 volatile BOOLEAN mInitApsAfterSmmBaseReloc;
53
54 /**
55 Get starting address and size of the rendezvous entry for APs.
56 Information for fixing a jump instruction in the code is also returned.
57
58 @param AddressMap Output buffer for address map information.
59 **/
60 VOID *
61 EFIAPI
62 AsmGetAddressMap (
63 MP_ASSEMBLY_ADDRESS_MAP *AddressMap
64 );
65
66 #define LEGACY_REGION_SIZE (2 * 0x1000)
67 #define LEGACY_REGION_BASE (0xA0000 - LEGACY_REGION_SIZE)
68
69 PROGRAM_CPU_REGISTER_FLAGS mCpuFlags;
70 ACPI_CPU_DATA mAcpiCpuData;
71 volatile UINT32 mNumberToFinish;
72 MP_CPU_EXCHANGE_INFO *mExchangeInfo;
73 BOOLEAN mRestoreSmmConfigurationInS3 = FALSE;
74
75 //
76 // S3 boot flag
77 //
78 BOOLEAN mSmmS3Flag = FALSE;
79
80 //
81 // Pointer to structure used during S3 Resume
82 //
83 SMM_S3_RESUME_STATE *mSmmS3ResumeState = NULL;
84
85 BOOLEAN mAcpiS3Enable = TRUE;
86
87 UINT8 *mApHltLoopCode = NULL;
88 UINT8 mApHltLoopCodeTemplate[] = {
89 0x8B, 0x44, 0x24, 0x04, // mov eax, dword ptr [esp+4]
90 0xF0, 0xFF, 0x08, // lock dec dword ptr [eax]
91 0xFA, // cli
92 0xF4, // hlt
93 0xEB, 0xFC // jmp $-2
94 };
95
96 CHAR16 *mRegisterTypeStr[] = {L"MSR", L"CR", L"MMIO", L"CACHE", L"SEMAP", L"INVALID" };
97
98 /**
99 Sync up the MTRR values for all processors.
100
101 @param MtrrTable Table holding fixed/variable MTRR values to be loaded.
102 **/
103 VOID
104 EFIAPI
105 LoadMtrrData (
106 EFI_PHYSICAL_ADDRESS MtrrTable
107 )
108 /*++
109
110 Routine Description:
111
112 Sync up the MTRR values for all processors.
113
114 Arguments:
115
116 Returns:
117 None
118
119 --*/
120 {
121 MTRR_SETTINGS *MtrrSettings;
122
123 MtrrSettings = (MTRR_SETTINGS *) (UINTN) MtrrTable;
124 MtrrSetAllMtrrs (MtrrSettings);
125 }
126
127 /**
128 Increment semaphore by 1.
129
130 @param Sem IN: 32-bit unsigned integer
131
132 **/
133 VOID
134 S3ReleaseSemaphore (
135 IN OUT volatile UINT32 *Sem
136 )
137 {
138 InterlockedIncrement (Sem);
139 }
140
141 /**
142 Decrement the semaphore by 1 if it is not zero.
143
144 Performs an atomic decrement operation for semaphore.
145 The compare exchange operation must be performed using
146 MP safe mechanisms.
147
148 @param Sem IN: 32-bit unsigned integer
149
150 **/
151 VOID
152 S3WaitForSemaphore (
153 IN OUT volatile UINT32 *Sem
154 )
155 {
156 UINT32 Value;
157
158 do {
159 Value = *Sem;
160 } while (Value == 0 ||
161 InterlockedCompareExchange32 (
162 Sem,
163 Value,
164 Value - 1
165 ) != Value);
166 }
167
168 /**
169 Initialize the CPU registers from a register table.
170
171 @param[in] RegisterTable The register table for this AP.
172 @param[in] ApLocation AP location info for this ap.
173 @param[in] CpuStatus CPU status info for this CPU.
174 @param[in] CpuFlags Flags data structure used when program the register.
175
176 @note This service could be called by BSP/APs.
177 **/
178 VOID
179 ProgramProcessorRegister (
180 IN CPU_REGISTER_TABLE *RegisterTable,
181 IN EFI_CPU_PHYSICAL_LOCATION *ApLocation,
182 IN CPU_STATUS_INFORMATION *CpuStatus,
183 IN PROGRAM_CPU_REGISTER_FLAGS *CpuFlags
184 )
185 {
186 CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
187 UINTN Index;
188 UINTN Value;
189 CPU_REGISTER_TABLE_ENTRY *RegisterTableEntryHead;
190 volatile UINT32 *SemaphorePtr;
191 UINT32 FirstThread;
192 UINT32 PackageThreadsCount;
193 UINT32 CurrentThread;
194 UINTN ProcessorIndex;
195 UINTN ThreadIndex;
196 UINTN ValidThreadCount;
197 UINT32 *ValidCoreCountPerPackage;
198
199 //
200 // Traverse Register Table of this logical processor
201 //
202 RegisterTableEntryHead = (CPU_REGISTER_TABLE_ENTRY *) (UINTN) RegisterTable->RegisterTableEntry;
203
204 for (Index = 0; Index < RegisterTable->TableLength; Index++) {
205
206 RegisterTableEntry = &RegisterTableEntryHead[Index];
207
208 DEBUG_CODE_BEGIN ();
209 if (ApLocation != NULL) {
210 AcquireSpinLock (&CpuFlags->ConsoleLogLock);
211 ThreadIndex = ApLocation->Package * CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount +
212 ApLocation->Core * CpuStatus->MaxThreadCount +
213 ApLocation->Thread;
214 DEBUG ((
215 DEBUG_INFO,
216 "Processor = %lu, Entry Index %lu, Type = %s!\n",
217 (UINT64)ThreadIndex,
218 (UINT64)Index,
219 mRegisterTypeStr[MIN ((REGISTER_TYPE)RegisterTableEntry->RegisterType, InvalidReg)]
220 ));
221 ReleaseSpinLock (&CpuFlags->ConsoleLogLock);
222 }
223 DEBUG_CODE_END ();
224
225 //
226 // Check the type of specified register
227 //
228 switch (RegisterTableEntry->RegisterType) {
229 //
230 // The specified register is Control Register
231 //
232 case ControlRegister:
233 switch (RegisterTableEntry->Index) {
234 case 0:
235 Value = AsmReadCr0 ();
236 Value = (UINTN) BitFieldWrite64 (
237 Value,
238 RegisterTableEntry->ValidBitStart,
239 RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
240 (UINTN) RegisterTableEntry->Value
241 );
242 AsmWriteCr0 (Value);
243 break;
244 case 2:
245 Value = AsmReadCr2 ();
246 Value = (UINTN) BitFieldWrite64 (
247 Value,
248 RegisterTableEntry->ValidBitStart,
249 RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
250 (UINTN) RegisterTableEntry->Value
251 );
252 AsmWriteCr2 (Value);
253 break;
254 case 3:
255 Value = AsmReadCr3 ();
256 Value = (UINTN) BitFieldWrite64 (
257 Value,
258 RegisterTableEntry->ValidBitStart,
259 RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
260 (UINTN) RegisterTableEntry->Value
261 );
262 AsmWriteCr3 (Value);
263 break;
264 case 4:
265 Value = AsmReadCr4 ();
266 Value = (UINTN) BitFieldWrite64 (
267 Value,
268 RegisterTableEntry->ValidBitStart,
269 RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
270 (UINTN) RegisterTableEntry->Value
271 );
272 AsmWriteCr4 (Value);
273 break;
274 default:
275 break;
276 }
277 break;
278 //
279 // The specified register is Model Specific Register
280 //
281 case Msr:
282 //
283 // If this function is called to restore register setting after INIT signal,
284 // there is no need to restore MSRs in register table.
285 //
286 if (RegisterTableEntry->ValidBitLength >= 64) {
287 //
288 // If length is not less than 64 bits, then directly write without reading
289 //
290 AsmWriteMsr64 (
291 RegisterTableEntry->Index,
292 RegisterTableEntry->Value
293 );
294 } else {
295 //
296 // Set the bit section according to bit start and length
297 //
298 AsmMsrBitFieldWrite64 (
299 RegisterTableEntry->Index,
300 RegisterTableEntry->ValidBitStart,
301 RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
302 RegisterTableEntry->Value
303 );
304 }
305 break;
306 //
307 // MemoryMapped operations
308 //
309 case MemoryMapped:
310 AcquireSpinLock (&CpuFlags->MemoryMappedLock);
311 MmioBitFieldWrite32 (
312 (UINTN)(RegisterTableEntry->Index | LShiftU64 (RegisterTableEntry->HighIndex, 32)),
313 RegisterTableEntry->ValidBitStart,
314 RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
315 (UINT32)RegisterTableEntry->Value
316 );
317 ReleaseSpinLock (&CpuFlags->MemoryMappedLock);
318 break;
319 //
320 // Enable or disable cache
321 //
322 case CacheControl:
323 //
324 // If value of the entry is 0, then disable cache. Otherwise, enable cache.
325 //
326 if (RegisterTableEntry->Value == 0) {
327 AsmDisableCache ();
328 } else {
329 AsmEnableCache ();
330 }
331 break;
332
333 case Semaphore:
334 // Semaphore works logic like below:
335 //
336 // V(x) = LibReleaseSemaphore (Semaphore[FirstThread + x]);
337 // P(x) = LibWaitForSemaphore (Semaphore[FirstThread + x]);
338 //
339 // All threads (T0...Tn) waits in P() line and continues running
340 // together.
341 //
342 //
343 // T0 T1 ... Tn
344 //
345 // V(0...n) V(0...n) ... V(0...n)
346 // n * P(0) n * P(1) ... n * P(n)
347 //
348 ASSERT (
349 (ApLocation != NULL) &&
350 (CpuStatus->ValidCoreCountPerPackage != 0) &&
351 (CpuFlags->SemaphoreCount) != NULL
352 );
353 SemaphorePtr = CpuFlags->SemaphoreCount;
354 switch (RegisterTableEntry->Value) {
355 case CoreDepType:
356 //
357 // Get Offset info for the first thread in the core which current thread belongs to.
358 //
359 FirstThread = (ApLocation->Package * CpuStatus->MaxCoreCount + ApLocation->Core) * CpuStatus->MaxThreadCount;
360 CurrentThread = FirstThread + ApLocation->Thread;
361 //
362 // First Notify all threads in current Core that this thread has ready.
363 //
364 for (ProcessorIndex = 0; ProcessorIndex < CpuStatus->MaxThreadCount; ProcessorIndex ++) {
365 S3ReleaseSemaphore (&SemaphorePtr[FirstThread + ProcessorIndex]);
366 }
367 //
368 // Second, check whether all valid threads in current core have ready.
369 //
370 for (ProcessorIndex = 0; ProcessorIndex < CpuStatus->MaxThreadCount; ProcessorIndex ++) {
371 S3WaitForSemaphore (&SemaphorePtr[CurrentThread]);
372 }
373 break;
374
375 case PackageDepType:
376 ValidCoreCountPerPackage = (UINT32 *)(UINTN)CpuStatus->ValidCoreCountPerPackage;
377 //
378 // Get Offset info for the first thread in the package which current thread belongs to.
379 //
380 FirstThread = ApLocation->Package * CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount;
381 //
382 // Get the possible threads count for current package.
383 //
384 PackageThreadsCount = CpuStatus->MaxThreadCount * CpuStatus->MaxCoreCount;
385 CurrentThread = FirstThread + CpuStatus->MaxThreadCount * ApLocation->Core + ApLocation->Thread;
386 //
387 // Get the valid thread count for current package.
388 //
389 ValidThreadCount = CpuStatus->MaxThreadCount * ValidCoreCountPerPackage[ApLocation->Package];
390
391 //
392 // Different packages may have different valid cores in them. If driver maintail clearly
393 // cores number in different packages, the logic will be much complicated.
394 // Here driver just simply records the max core number in all packages and use it as expect
395 // core number for all packages.
396 // In below two steps logic, first current thread will Release semaphore for each thread
397 // in current package. Maybe some threads are not valid in this package, but driver don't
398 // care. Second, driver will let current thread wait semaphore for all valid threads in
399 // current package. Because only the valid threads will do release semaphore for this
400 // thread, driver here only need to wait the valid thread count.
401 //
402
403 //
404 // First Notify all threads in current package that this thread has ready.
405 //
406 for (ProcessorIndex = 0; ProcessorIndex < PackageThreadsCount ; ProcessorIndex ++) {
407 S3ReleaseSemaphore (&SemaphorePtr[FirstThread + ProcessorIndex]);
408 }
409 //
410 // Second, check whether all valid threads in current package have ready.
411 //
412 for (ProcessorIndex = 0; ProcessorIndex < ValidThreadCount; ProcessorIndex ++) {
413 S3WaitForSemaphore (&SemaphorePtr[CurrentThread]);
414 }
415 break;
416
417 default:
418 break;
419 }
420 break;
421
422 default:
423 break;
424 }
425 }
426 }
427
428 /**
429
430 Set Processor register for one AP.
431
432 @param PreSmmRegisterTable Use pre Smm register table or register table.
433
434 **/
435 VOID
436 SetRegister (
437 IN BOOLEAN PreSmmRegisterTable
438 )
439 {
440 CPU_REGISTER_TABLE *RegisterTable;
441 CPU_REGISTER_TABLE *RegisterTables;
442 UINT32 InitApicId;
443 UINTN ProcIndex;
444 UINTN Index;
445
446 if (PreSmmRegisterTable) {
447 RegisterTables = (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.PreSmmInitRegisterTable;
448 } else {
449 RegisterTables = (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.RegisterTable;
450 }
451
452 InitApicId = GetInitialApicId ();
453 RegisterTable = NULL;
454 for (Index = 0; Index < mAcpiCpuData.NumberOfCpus; Index++) {
455 if (RegisterTables[Index].InitialApicId == InitApicId) {
456 RegisterTable = &RegisterTables[Index];
457 ProcIndex = Index;
458 break;
459 }
460 }
461 ASSERT (RegisterTable != NULL);
462
463 if (mAcpiCpuData.ApLocation != 0) {
464 ProgramProcessorRegister (
465 RegisterTable,
466 (EFI_CPU_PHYSICAL_LOCATION *)(UINTN)mAcpiCpuData.ApLocation + ProcIndex,
467 &mAcpiCpuData.CpuStatus,
468 &mCpuFlags
469 );
470 } else {
471 ProgramProcessorRegister (
472 RegisterTable,
473 NULL,
474 &mAcpiCpuData.CpuStatus,
475 &mCpuFlags
476 );
477 }
478 }
479
480 /**
481 AP initialization before then after SMBASE relocation in the S3 boot path.
482 **/
483 VOID
484 InitializeAp (
485 VOID
486 )
487 {
488 UINTN TopOfStack;
489 UINT8 Stack[128];
490
491 LoadMtrrData (mAcpiCpuData.MtrrTable);
492
493 SetRegister (TRUE);
494
495 //
496 // Count down the number with lock mechanism.
497 //
498 InterlockedDecrement (&mNumberToFinish);
499
500 //
501 // Wait for BSP to signal SMM Base relocation done.
502 //
503 while (!mInitApsAfterSmmBaseReloc) {
504 CpuPause ();
505 }
506
507 ProgramVirtualWireMode ();
508 DisableLvtInterrupts ();
509
510 SetRegister (FALSE);
511
512 //
513 // Place AP into the safe code, count down the number with lock mechanism in the safe code.
514 //
515 TopOfStack = (UINTN) Stack + sizeof (Stack);
516 TopOfStack &= ~(UINTN) (CPU_STACK_ALIGNMENT - 1);
517 CopyMem ((VOID *) (UINTN) mApHltLoopCode, mApHltLoopCodeTemplate, sizeof (mApHltLoopCodeTemplate));
518 TransferApToSafeState ((UINTN)mApHltLoopCode, TopOfStack, (UINTN)&mNumberToFinish);
519 }
520
521 /**
522 Prepares startup vector for APs.
523
524 This function prepares startup vector for APs.
525
526 @param WorkingBuffer The address of the work buffer.
527 **/
528 VOID
529 PrepareApStartupVector (
530 EFI_PHYSICAL_ADDRESS WorkingBuffer
531 )
532 {
533 EFI_PHYSICAL_ADDRESS StartupVector;
534 MP_ASSEMBLY_ADDRESS_MAP AddressMap;
535
536 //
537 // Get the address map of startup code for AP,
538 // including code size, and offset of long jump instructions to redirect.
539 //
540 ZeroMem (&AddressMap, sizeof (AddressMap));
541 AsmGetAddressMap (&AddressMap);
542
543 StartupVector = WorkingBuffer;
544
545 //
546 // Copy AP startup code to startup vector, and then redirect the long jump
547 // instructions for mode switching.
548 //
549 CopyMem ((VOID *) (UINTN) StartupVector, AddressMap.RendezvousFunnelAddress, AddressMap.Size);
550 *(UINT32 *) (UINTN) (StartupVector + AddressMap.FlatJumpOffset + 3) = (UINT32) (StartupVector + AddressMap.PModeEntryOffset);
551 if (AddressMap.LongJumpOffset != 0) {
552 *(UINT32 *) (UINTN) (StartupVector + AddressMap.LongJumpOffset + 2) = (UINT32) (StartupVector + AddressMap.LModeEntryOffset);
553 }
554
555 //
556 // Get the start address of exchange data between BSP and AP.
557 //
558 mExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN) (StartupVector + AddressMap.Size);
559 ZeroMem ((VOID *) mExchangeInfo, sizeof (MP_CPU_EXCHANGE_INFO));
560
561 CopyMem ((VOID *) (UINTN) &mExchangeInfo->GdtrProfile, (VOID *) (UINTN) mAcpiCpuData.GdtrProfile, sizeof (IA32_DESCRIPTOR));
562 CopyMem ((VOID *) (UINTN) &mExchangeInfo->IdtrProfile, (VOID *) (UINTN) mAcpiCpuData.IdtrProfile, sizeof (IA32_DESCRIPTOR));
563
564 mExchangeInfo->StackStart = (VOID *) (UINTN) mAcpiCpuData.StackAddress;
565 mExchangeInfo->StackSize = mAcpiCpuData.StackSize;
566 mExchangeInfo->BufferStart = (UINT32) StartupVector;
567 mExchangeInfo->Cr3 = (UINT32) (AsmReadCr3 ());
568 mExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;
569 }
570
571 /**
572 The function is invoked before SMBASE relocation in S3 path to restores CPU status.
573
574 The function is invoked before SMBASE relocation in S3 path. It does first time microcode load
575 and restores MTRRs for both BSP and APs.
576
577 **/
578 VOID
579 InitializeCpuBeforeRebase (
580 VOID
581 )
582 {
583 LoadMtrrData (mAcpiCpuData.MtrrTable);
584
585 SetRegister (TRUE);
586
587 ProgramVirtualWireMode ();
588
589 PrepareApStartupVector (mAcpiCpuData.StartupVector);
590
591 mNumberToFinish = mAcpiCpuData.NumberOfCpus - 1;
592 mExchangeInfo->ApFunction = (VOID *) (UINTN) InitializeAp;
593
594 //
595 // Execute code for before SmmBaseReloc. Note: This flag is maintained across S3 boots.
596 //
597 mInitApsAfterSmmBaseReloc = FALSE;
598
599 //
600 // Send INIT IPI - SIPI to all APs
601 //
602 SendInitSipiSipiAllExcludingSelf ((UINT32)mAcpiCpuData.StartupVector);
603
604 while (mNumberToFinish > 0) {
605 CpuPause ();
606 }
607 }
608
609 /**
610 The function is invoked after SMBASE relocation in S3 path to restores CPU status.
611
612 The function is invoked after SMBASE relocation in S3 path. It restores configuration according to
613 data saved by normal boot path for both BSP and APs.
614
615 **/
616 VOID
617 InitializeCpuAfterRebase (
618 VOID
619 )
620 {
621 mNumberToFinish = mAcpiCpuData.NumberOfCpus - 1;
622
623 //
624 // Signal that SMM base relocation is complete and to continue initialization for all APs.
625 //
626 mInitApsAfterSmmBaseReloc = TRUE;
627
628 //
629 // Must begin set register after all APs have continue their initialization.
630 // This is a requirement to support semaphore mechanism in register table.
631 // Because if semaphore's dependence type is package type, semaphore will wait
632 // for all Aps in one package finishing their tasks before set next register
633 // for all APs. If the Aps not begin its task during BSP doing its task, the
634 // BSP thread will hang because it is waiting for other Aps in the same
635 // package finishing their task.
636 //
637 SetRegister (FALSE);
638
639 while (mNumberToFinish > 0) {
640 CpuPause ();
641 }
642 }
643
644 /**
645 Restore SMM Configuration in S3 boot path.
646
647 **/
648 VOID
649 RestoreSmmConfigurationInS3 (
650 VOID
651 )
652 {
653 if (!mAcpiS3Enable) {
654 return;
655 }
656
657 //
658 // Restore SMM Configuration in S3 boot path.
659 //
660 if (mRestoreSmmConfigurationInS3) {
661 //
662 // Need make sure gSmst is correct because below function may use them.
663 //
664 gSmst->SmmStartupThisAp = gSmmCpuPrivate->SmmCoreEntryContext.SmmStartupThisAp;
665 gSmst->CurrentlyExecutingCpu = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;
666 gSmst->NumberOfCpus = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
667 gSmst->CpuSaveStateSize = gSmmCpuPrivate->SmmCoreEntryContext.CpuSaveStateSize;
668 gSmst->CpuSaveState = gSmmCpuPrivate->SmmCoreEntryContext.CpuSaveState;
669
670 //
671 // Configure SMM Code Access Check feature if available.
672 //
673 ConfigSmmCodeAccessCheck ();
674
675 SmmCpuFeaturesCompleteSmmReadyToLock ();
676
677 mRestoreSmmConfigurationInS3 = FALSE;
678 }
679 }
680
681 /**
682 Perform SMM initialization for all processors in the S3 boot path.
683
684 For a native platform, MP initialization in the S3 boot path is also performed in this function.
685 **/
686 VOID
687 EFIAPI
688 SmmRestoreCpu (
689 VOID
690 )
691 {
692 SMM_S3_RESUME_STATE *SmmS3ResumeState;
693 IA32_DESCRIPTOR Ia32Idtr;
694 IA32_DESCRIPTOR X64Idtr;
695 IA32_IDT_GATE_DESCRIPTOR IdtEntryTable[EXCEPTION_VECTOR_NUMBER];
696 EFI_STATUS Status;
697
698 DEBUG ((EFI_D_INFO, "SmmRestoreCpu()\n"));
699
700 mSmmS3Flag = TRUE;
701
702 //
703 // See if there is enough context to resume PEI Phase
704 //
705 if (mSmmS3ResumeState == NULL) {
706 DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));
707 CpuDeadLoop ();
708 }
709
710 SmmS3ResumeState = mSmmS3ResumeState;
711 ASSERT (SmmS3ResumeState != NULL);
712
713 if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
714 //
715 // Save the IA32 IDT Descriptor
716 //
717 AsmReadIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);
718
719 //
720 // Setup X64 IDT table
721 //
722 ZeroMem (IdtEntryTable, sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32);
723 X64Idtr.Base = (UINTN) IdtEntryTable;
724 X64Idtr.Limit = (UINT16) (sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32 - 1);
725 AsmWriteIdtr ((IA32_DESCRIPTOR *) &X64Idtr);
726
727 //
728 // Setup the default exception handler
729 //
730 Status = InitializeCpuExceptionHandlers (NULL);
731 ASSERT_EFI_ERROR (Status);
732
733 //
734 // Initialize Debug Agent to support source level debug
735 //
736 InitializeDebugAgent (DEBUG_AGENT_INIT_THUNK_PEI_IA32TOX64, (VOID *)&Ia32Idtr, NULL);
737 }
738
739 //
740 // Skip initialization if mAcpiCpuData is not valid
741 //
742 if (mAcpiCpuData.NumberOfCpus > 0) {
743 //
744 // First time microcode load and restore MTRRs
745 //
746 InitializeCpuBeforeRebase ();
747 }
748
749 //
750 // Restore SMBASE for BSP and all APs
751 //
752 SmmRelocateBases ();
753
754 //
755 // Skip initialization if mAcpiCpuData is not valid
756 //
757 if (mAcpiCpuData.NumberOfCpus > 0) {
758 //
759 // Restore MSRs for BSP and all APs
760 //
761 InitializeCpuAfterRebase ();
762 }
763
764 //
765 // Set a flag to restore SMM configuration in S3 path.
766 //
767 mRestoreSmmConfigurationInS3 = TRUE;
768
769 DEBUG (( EFI_D_INFO, "SMM S3 Return CS = %x\n", SmmS3ResumeState->ReturnCs));
770 DEBUG (( EFI_D_INFO, "SMM S3 Return Entry Point = %x\n", SmmS3ResumeState->ReturnEntryPoint));
771 DEBUG (( EFI_D_INFO, "SMM S3 Return Context1 = %x\n", SmmS3ResumeState->ReturnContext1));
772 DEBUG (( EFI_D_INFO, "SMM S3 Return Context2 = %x\n", SmmS3ResumeState->ReturnContext2));
773 DEBUG (( EFI_D_INFO, "SMM S3 Return Stack Pointer = %x\n", SmmS3ResumeState->ReturnStackPointer));
774
775 //
776 // If SMM is in 32-bit mode, then use SwitchStack() to resume PEI Phase
777 //
778 if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_32) {
779 DEBUG ((EFI_D_INFO, "Call SwitchStack() to return to S3 Resume in PEI Phase\n"));
780
781 SwitchStack (
782 (SWITCH_STACK_ENTRY_POINT)(UINTN)SmmS3ResumeState->ReturnEntryPoint,
783 (VOID *)(UINTN)SmmS3ResumeState->ReturnContext1,
784 (VOID *)(UINTN)SmmS3ResumeState->ReturnContext2,
785 (VOID *)(UINTN)SmmS3ResumeState->ReturnStackPointer
786 );
787 }
788
789 //
790 // If SMM is in 64-bit mode, then use AsmDisablePaging64() to resume PEI Phase
791 //
792 if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
793 DEBUG ((EFI_D_INFO, "Call AsmDisablePaging64() to return to S3 Resume in PEI Phase\n"));
794 //
795 // Disable interrupt of Debug timer, since new IDT table is for IA32 and will not work in long mode.
796 //
797 SaveAndSetDebugTimerInterrupt (FALSE);
798 //
799 // Restore IA32 IDT table
800 //
801 AsmWriteIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);
802 AsmDisablePaging64 (
803 SmmS3ResumeState->ReturnCs,
804 (UINT32)SmmS3ResumeState->ReturnEntryPoint,
805 (UINT32)SmmS3ResumeState->ReturnContext1,
806 (UINT32)SmmS3ResumeState->ReturnContext2,
807 (UINT32)SmmS3ResumeState->ReturnStackPointer
808 );
809 }
810
811 //
812 // Can not resume PEI Phase
813 //
814 DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));
815 CpuDeadLoop ();
816 }
817
818 /**
819 Initialize SMM S3 resume state structure used during S3 Resume.
820
821 @param[in] Cr3 The base address of the page tables to use in SMM.
822
823 **/
824 VOID
825 InitSmmS3ResumeState (
826 IN UINT32 Cr3
827 )
828 {
829 VOID *GuidHob;
830 EFI_SMRAM_DESCRIPTOR *SmramDescriptor;
831 SMM_S3_RESUME_STATE *SmmS3ResumeState;
832 EFI_PHYSICAL_ADDRESS Address;
833 EFI_STATUS Status;
834
835 if (!mAcpiS3Enable) {
836 return;
837 }
838
839 GuidHob = GetFirstGuidHob (&gEfiAcpiVariableGuid);
840 if (GuidHob == NULL) {
841 DEBUG ((
842 DEBUG_ERROR,
843 "ERROR:%a(): HOB(gEfiAcpiVariableGuid=%g) needed by S3 resume doesn't exist!\n",
844 __FUNCTION__,
845 &gEfiAcpiVariableGuid
846 ));
847 CpuDeadLoop ();
848 } else {
849 SmramDescriptor = (EFI_SMRAM_DESCRIPTOR *) GET_GUID_HOB_DATA (GuidHob);
850
851 DEBUG ((EFI_D_INFO, "SMM S3 SMRAM Structure = %x\n", SmramDescriptor));
852 DEBUG ((EFI_D_INFO, "SMM S3 Structure = %x\n", SmramDescriptor->CpuStart));
853
854 SmmS3ResumeState = (SMM_S3_RESUME_STATE *)(UINTN)SmramDescriptor->CpuStart;
855 ZeroMem (SmmS3ResumeState, sizeof (SMM_S3_RESUME_STATE));
856
857 mSmmS3ResumeState = SmmS3ResumeState;
858 SmmS3ResumeState->Smst = (EFI_PHYSICAL_ADDRESS)(UINTN)gSmst;
859
860 SmmS3ResumeState->SmmS3ResumeEntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)SmmRestoreCpu;
861
862 SmmS3ResumeState->SmmS3StackSize = SIZE_32KB;
863 SmmS3ResumeState->SmmS3StackBase = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePages (EFI_SIZE_TO_PAGES ((UINTN)SmmS3ResumeState->SmmS3StackSize));
864 if (SmmS3ResumeState->SmmS3StackBase == 0) {
865 SmmS3ResumeState->SmmS3StackSize = 0;
866 }
867
868 SmmS3ResumeState->SmmS3Cr0 = mSmmCr0;
869 SmmS3ResumeState->SmmS3Cr3 = Cr3;
870 SmmS3ResumeState->SmmS3Cr4 = mSmmCr4;
871
872 if (sizeof (UINTN) == sizeof (UINT64)) {
873 SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_64;
874 }
875 if (sizeof (UINTN) == sizeof (UINT32)) {
876 SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_32;
877 }
878
879 //
880 // Patch SmmS3ResumeState->SmmS3Cr3
881 //
882 InitSmmS3Cr3 ();
883 }
884
885 //
886 // Allocate safe memory in ACPI NVS for AP to execute hlt loop in
887 // protected mode on S3 path
888 //
889 Address = BASE_4GB - 1;
890 Status = gBS->AllocatePages (
891 AllocateMaxAddress,
892 EfiACPIMemoryNVS,
893 EFI_SIZE_TO_PAGES (sizeof (mApHltLoopCodeTemplate)),
894 &Address
895 );
896 ASSERT_EFI_ERROR (Status);
897 mApHltLoopCode = (UINT8 *) (UINTN) Address;
898 }
899
900 /**
901 Copy register table from ACPI NVS memory into SMRAM.
902
903 @param[in] DestinationRegisterTableList Points to destination register table.
904 @param[in] SourceRegisterTableList Points to source register table.
905 @param[in] NumberOfCpus Number of CPUs.
906
907 **/
908 VOID
909 CopyRegisterTable (
910 IN CPU_REGISTER_TABLE *DestinationRegisterTableList,
911 IN CPU_REGISTER_TABLE *SourceRegisterTableList,
912 IN UINT32 NumberOfCpus
913 )
914 {
915 UINTN Index;
916 CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
917
918 CopyMem (DestinationRegisterTableList, SourceRegisterTableList, NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
919 for (Index = 0; Index < NumberOfCpus; Index++) {
920 if (DestinationRegisterTableList[Index].AllocatedSize != 0) {
921 RegisterTableEntry = AllocateCopyPool (
922 DestinationRegisterTableList[Index].AllocatedSize,
923 (VOID *)(UINTN)SourceRegisterTableList[Index].RegisterTableEntry
924 );
925 ASSERT (RegisterTableEntry != NULL);
926 DestinationRegisterTableList[Index].RegisterTableEntry = (EFI_PHYSICAL_ADDRESS)(UINTN)RegisterTableEntry;
927 }
928 }
929 }
930
931 /**
932 Get ACPI CPU data.
933
934 **/
935 VOID
936 GetAcpiCpuData (
937 VOID
938 )
939 {
940 ACPI_CPU_DATA *AcpiCpuData;
941 IA32_DESCRIPTOR *Gdtr;
942 IA32_DESCRIPTOR *Idtr;
943 VOID *GdtForAp;
944 VOID *IdtForAp;
945 VOID *MachineCheckHandlerForAp;
946 CPU_STATUS_INFORMATION *CpuStatus;
947
948 if (!mAcpiS3Enable) {
949 return;
950 }
951
952 //
953 // Prevent use of mAcpiCpuData by initialize NumberOfCpus to 0
954 //
955 mAcpiCpuData.NumberOfCpus = 0;
956
957 //
958 // If PcdCpuS3DataAddress was never set, then do not copy CPU S3 Data into SMRAM
959 //
960 AcpiCpuData = (ACPI_CPU_DATA *)(UINTN)PcdGet64 (PcdCpuS3DataAddress);
961 if (AcpiCpuData == 0) {
962 return;
963 }
964
965 //
966 // For a native platform, copy the CPU S3 data into SMRAM for use on CPU S3 Resume.
967 //
968 CopyMem (&mAcpiCpuData, AcpiCpuData, sizeof (mAcpiCpuData));
969
970 mAcpiCpuData.MtrrTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (MTRR_SETTINGS));
971 ASSERT (mAcpiCpuData.MtrrTable != 0);
972
973 CopyMem ((VOID *)(UINTN)mAcpiCpuData.MtrrTable, (VOID *)(UINTN)AcpiCpuData->MtrrTable, sizeof (MTRR_SETTINGS));
974
975 mAcpiCpuData.GdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
976 ASSERT (mAcpiCpuData.GdtrProfile != 0);
977
978 CopyMem ((VOID *)(UINTN)mAcpiCpuData.GdtrProfile, (VOID *)(UINTN)AcpiCpuData->GdtrProfile, sizeof (IA32_DESCRIPTOR));
979
980 mAcpiCpuData.IdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
981 ASSERT (mAcpiCpuData.IdtrProfile != 0);
982
983 CopyMem ((VOID *)(UINTN)mAcpiCpuData.IdtrProfile, (VOID *)(UINTN)AcpiCpuData->IdtrProfile, sizeof (IA32_DESCRIPTOR));
984
985 mAcpiCpuData.PreSmmInitRegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
986 ASSERT (mAcpiCpuData.PreSmmInitRegisterTable != 0);
987
988 CopyRegisterTable (
989 (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.PreSmmInitRegisterTable,
990 (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->PreSmmInitRegisterTable,
991 mAcpiCpuData.NumberOfCpus
992 );
993
994 mAcpiCpuData.RegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
995 ASSERT (mAcpiCpuData.RegisterTable != 0);
996
997 CopyRegisterTable (
998 (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.RegisterTable,
999 (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->RegisterTable,
1000 mAcpiCpuData.NumberOfCpus
1001 );
1002
1003 //
1004 // Copy AP's GDT, IDT and Machine Check handler into SMRAM.
1005 //
1006 Gdtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.GdtrProfile;
1007 Idtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.IdtrProfile;
1008
1009 GdtForAp = AllocatePool ((Gdtr->Limit + 1) + (Idtr->Limit + 1) + mAcpiCpuData.ApMachineCheckHandlerSize);
1010 ASSERT (GdtForAp != NULL);
1011 IdtForAp = (VOID *) ((UINTN)GdtForAp + (Gdtr->Limit + 1));
1012 MachineCheckHandlerForAp = (VOID *) ((UINTN)IdtForAp + (Idtr->Limit + 1));
1013
1014 CopyMem (GdtForAp, (VOID *)Gdtr->Base, Gdtr->Limit + 1);
1015 CopyMem (IdtForAp, (VOID *)Idtr->Base, Idtr->Limit + 1);
1016 CopyMem (MachineCheckHandlerForAp, (VOID *)(UINTN)mAcpiCpuData.ApMachineCheckHandlerBase, mAcpiCpuData.ApMachineCheckHandlerSize);
1017
1018 Gdtr->Base = (UINTN)GdtForAp;
1019 Idtr->Base = (UINTN)IdtForAp;
1020 mAcpiCpuData.ApMachineCheckHandlerBase = (EFI_PHYSICAL_ADDRESS)(UINTN)MachineCheckHandlerForAp;
1021
1022 CpuStatus = &mAcpiCpuData.CpuStatus;
1023 CopyMem (CpuStatus, &AcpiCpuData->CpuStatus, sizeof (CPU_STATUS_INFORMATION));
1024 if (AcpiCpuData->CpuStatus.ValidCoreCountPerPackage != 0) {
1025 CpuStatus->ValidCoreCountPerPackage = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateCopyPool (
1026 sizeof (UINT32) * CpuStatus->PackageCount,
1027 (UINT32 *)(UINTN)AcpiCpuData->CpuStatus.ValidCoreCountPerPackage
1028 );
1029 ASSERT (CpuStatus->ValidCoreCountPerPackage != 0);
1030 }
1031 if (AcpiCpuData->ApLocation != 0) {
1032 mAcpiCpuData.ApLocation = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateCopyPool (
1033 mAcpiCpuData.NumberOfCpus * sizeof (EFI_CPU_PHYSICAL_LOCATION),
1034 (EFI_CPU_PHYSICAL_LOCATION *)(UINTN)AcpiCpuData->ApLocation
1035 );
1036 ASSERT (mAcpiCpuData.ApLocation != 0);
1037 }
1038 if (CpuStatus->PackageCount != 0) {
1039 mCpuFlags.SemaphoreCount = AllocateZeroPool (
1040 sizeof (UINT32) * CpuStatus->PackageCount *
1041 CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount);
1042 ASSERT (mCpuFlags.SemaphoreCount != NULL);
1043 }
1044 InitializeSpinLock((SPIN_LOCK*) &mCpuFlags.MemoryMappedLock);
1045 InitializeSpinLock((SPIN_LOCK*) &mCpuFlags.ConsoleLogLock);
1046 }
1047
1048 /**
1049 Get ACPI S3 enable flag.
1050
1051 **/
1052 VOID
1053 GetAcpiS3EnableFlag (
1054 VOID
1055 )
1056 {
1057 mAcpiS3Enable = PcdGetBool (PcdAcpiS3Enable);
1058 }