]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
UefiCpuPkg/PiSmmCpuDxeSmm: Enable MM MP Protocol
[mirror_edk2.git] / UefiCpuPkg / PiSmmCpuDxeSmm / PiSmmCpuDxeSmm.c
1 /** @file
2 Agent Module to load other modules to deploy SMM Entry Vector for X86 CPU.
3
4 Copyright (c) 2009 - 2019, Intel Corporation. All rights reserved.<BR>
5 Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>
6
7 SPDX-License-Identifier: BSD-2-Clause-Patent
8
9 **/
10
11 #include "PiSmmCpuDxeSmm.h"
12
13 //
14 // SMM CPU Private Data structure that contains SMM Configuration Protocol
15 // along its supporting fields.
16 //
17 SMM_CPU_PRIVATE_DATA mSmmCpuPrivateData = {
18 SMM_CPU_PRIVATE_DATA_SIGNATURE, // Signature
19 NULL, // SmmCpuHandle
20 NULL, // Pointer to ProcessorInfo array
21 NULL, // Pointer to Operation array
22 NULL, // Pointer to CpuSaveStateSize array
23 NULL, // Pointer to CpuSaveState array
24 { {0} }, // SmmReservedSmramRegion
25 {
26 SmmStartupThisAp, // SmmCoreEntryContext.SmmStartupThisAp
27 0, // SmmCoreEntryContext.CurrentlyExecutingCpu
28 0, // SmmCoreEntryContext.NumberOfCpus
29 NULL, // SmmCoreEntryContext.CpuSaveStateSize
30 NULL // SmmCoreEntryContext.CpuSaveState
31 },
32 NULL, // SmmCoreEntry
33 {
34 mSmmCpuPrivateData.SmmReservedSmramRegion, // SmmConfiguration.SmramReservedRegions
35 RegisterSmmEntry // SmmConfiguration.RegisterSmmEntry
36 },
37 NULL, // pointer to Ap Wrapper Func array
38 {NULL, NULL}, // List_Entry for Tokens.
39 };
40
41 CPU_HOT_PLUG_DATA mCpuHotPlugData = {
42 CPU_HOT_PLUG_DATA_REVISION_1, // Revision
43 0, // Array Length of SmBase and APIC ID
44 NULL, // Pointer to APIC ID array
45 NULL, // Pointer to SMBASE array
46 0, // Reserved
47 0, // SmrrBase
48 0 // SmrrSize
49 };
50
51 //
52 // Global pointer used to access mSmmCpuPrivateData from outside and inside SMM
53 //
54 SMM_CPU_PRIVATE_DATA *gSmmCpuPrivate = &mSmmCpuPrivateData;
55
56 //
57 // SMM Relocation variables
58 //
59 volatile BOOLEAN *mRebased;
60 volatile BOOLEAN mIsBsp;
61
62 ///
63 /// Handle for the SMM CPU Protocol
64 ///
65 EFI_HANDLE mSmmCpuHandle = NULL;
66
67 ///
68 /// SMM CPU Protocol instance
69 ///
70 EFI_SMM_CPU_PROTOCOL mSmmCpu = {
71 SmmReadSaveState,
72 SmmWriteSaveState
73 };
74
75 ///
76 /// SMM Memory Attribute Protocol instance
77 ///
78 EDKII_SMM_MEMORY_ATTRIBUTE_PROTOCOL mSmmMemoryAttribute = {
79 EdkiiSmmGetMemoryAttributes,
80 EdkiiSmmSetMemoryAttributes,
81 EdkiiSmmClearMemoryAttributes
82 };
83
84 EFI_CPU_INTERRUPT_HANDLER mExternalVectorTable[EXCEPTION_VECTOR_NUMBER];
85
86 //
87 // SMM stack information
88 //
89 UINTN mSmmStackArrayBase;
90 UINTN mSmmStackArrayEnd;
91 UINTN mSmmStackSize;
92
93 UINTN mSmmShadowStackSize;
94 BOOLEAN mCetSupported = TRUE;
95
96 UINTN mMaxNumberOfCpus = 1;
97 UINTN mNumberOfCpus = 1;
98
99 //
100 // SMM ready to lock flag
101 //
102 BOOLEAN mSmmReadyToLock = FALSE;
103
104 //
105 // Global used to cache PCD for SMM Code Access Check enable
106 //
107 BOOLEAN mSmmCodeAccessCheckEnable = FALSE;
108
109 //
110 // Global copy of the PcdPteMemoryEncryptionAddressOrMask
111 //
112 UINT64 mAddressEncMask = 0;
113
114 //
115 // Spin lock used to serialize setting of SMM Code Access Check feature
116 //
117 SPIN_LOCK *mConfigSmmCodeAccessCheckLock = NULL;
118
119 //
120 // Saved SMM ranges information
121 //
122 EFI_SMRAM_DESCRIPTOR *mSmmCpuSmramRanges;
123 UINTN mSmmCpuSmramRangeCount;
124
125 UINT8 mPhysicalAddressBits;
126
127 //
128 // Control register contents saved for SMM S3 resume state initialization.
129 //
130 UINT32 mSmmCr0;
131 UINT32 mSmmCr4;
132
133 /**
134 Initialize IDT to setup exception handlers for SMM.
135
136 **/
137 VOID
138 InitializeSmmIdt (
139 VOID
140 )
141 {
142 EFI_STATUS Status;
143 BOOLEAN InterruptState;
144 IA32_DESCRIPTOR DxeIdtr;
145
146 //
147 // There are 32 (not 255) entries in it since only processor
148 // generated exceptions will be handled.
149 //
150 gcSmiIdtr.Limit = (sizeof(IA32_IDT_GATE_DESCRIPTOR) * 32) - 1;
151 //
152 // Allocate page aligned IDT, because it might be set as read only.
153 //
154 gcSmiIdtr.Base = (UINTN)AllocateCodePages (EFI_SIZE_TO_PAGES(gcSmiIdtr.Limit + 1));
155 ASSERT (gcSmiIdtr.Base != 0);
156 ZeroMem ((VOID *)gcSmiIdtr.Base, gcSmiIdtr.Limit + 1);
157
158 //
159 // Disable Interrupt and save DXE IDT table
160 //
161 InterruptState = SaveAndDisableInterrupts ();
162 AsmReadIdtr (&DxeIdtr);
163 //
164 // Load SMM temporary IDT table
165 //
166 AsmWriteIdtr (&gcSmiIdtr);
167 //
168 // Setup SMM default exception handlers, SMM IDT table
169 // will be updated and saved in gcSmiIdtr
170 //
171 Status = InitializeCpuExceptionHandlers (NULL);
172 ASSERT_EFI_ERROR (Status);
173 //
174 // Restore DXE IDT table and CPU interrupt
175 //
176 AsmWriteIdtr ((IA32_DESCRIPTOR *) &DxeIdtr);
177 SetInterruptState (InterruptState);
178 }
179
180 /**
181 Search module name by input IP address and output it.
182
183 @param CallerIpAddress Caller instruction pointer.
184
185 **/
186 VOID
187 DumpModuleInfoByIp (
188 IN UINTN CallerIpAddress
189 )
190 {
191 UINTN Pe32Data;
192 VOID *PdbPointer;
193
194 //
195 // Find Image Base
196 //
197 Pe32Data = PeCoffSearchImageBase (CallerIpAddress);
198 if (Pe32Data != 0) {
199 DEBUG ((DEBUG_ERROR, "It is invoked from the instruction before IP(0x%p)", (VOID *) CallerIpAddress));
200 PdbPointer = PeCoffLoaderGetPdbPointer ((VOID *) Pe32Data);
201 if (PdbPointer != NULL) {
202 DEBUG ((DEBUG_ERROR, " in module (%a)\n", PdbPointer));
203 }
204 }
205 }
206
207 /**
208 Read information from the CPU save state.
209
210 @param This EFI_SMM_CPU_PROTOCOL instance
211 @param Width The number of bytes to read from the CPU save state.
212 @param Register Specifies the CPU register to read form the save state.
213 @param CpuIndex Specifies the zero-based index of the CPU save state.
214 @param Buffer Upon return, this holds the CPU register value read from the save state.
215
216 @retval EFI_SUCCESS The register was read from Save State
217 @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor
218 @retval EFI_INVALID_PARAMTER This or Buffer is NULL.
219
220 **/
221 EFI_STATUS
222 EFIAPI
223 SmmReadSaveState (
224 IN CONST EFI_SMM_CPU_PROTOCOL *This,
225 IN UINTN Width,
226 IN EFI_SMM_SAVE_STATE_REGISTER Register,
227 IN UINTN CpuIndex,
228 OUT VOID *Buffer
229 )
230 {
231 EFI_STATUS Status;
232
233 //
234 // Retrieve pointer to the specified CPU's SMM Save State buffer
235 //
236 if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {
237 return EFI_INVALID_PARAMETER;
238 }
239 //
240 // The SpeculationBarrier() call here is to ensure the above check for the
241 // CpuIndex has been completed before the execution of subsequent codes.
242 //
243 SpeculationBarrier ();
244
245 //
246 // Check for special EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID
247 //
248 if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {
249 //
250 // The pseudo-register only supports the 64-bit size specified by Width.
251 //
252 if (Width != sizeof (UINT64)) {
253 return EFI_INVALID_PARAMETER;
254 }
255 //
256 // If the processor is in SMM at the time the SMI occurred,
257 // the pseudo register value for EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID is returned in Buffer.
258 // Otherwise, EFI_NOT_FOUND is returned.
259 //
260 if (*(mSmmMpSyncData->CpuData[CpuIndex].Present)) {
261 *(UINT64 *)Buffer = gSmmCpuPrivate->ProcessorInfo[CpuIndex].ProcessorId;
262 return EFI_SUCCESS;
263 } else {
264 return EFI_NOT_FOUND;
265 }
266 }
267
268 if (!(*(mSmmMpSyncData->CpuData[CpuIndex].Present))) {
269 return EFI_INVALID_PARAMETER;
270 }
271
272 Status = SmmCpuFeaturesReadSaveStateRegister (CpuIndex, Register, Width, Buffer);
273 if (Status == EFI_UNSUPPORTED) {
274 Status = ReadSaveStateRegister (CpuIndex, Register, Width, Buffer);
275 }
276 return Status;
277 }
278
279 /**
280 Write data to the CPU save state.
281
282 @param This EFI_SMM_CPU_PROTOCOL instance
283 @param Width The number of bytes to read from the CPU save state.
284 @param Register Specifies the CPU register to write to the save state.
285 @param CpuIndex Specifies the zero-based index of the CPU save state
286 @param Buffer Upon entry, this holds the new CPU register value.
287
288 @retval EFI_SUCCESS The register was written from Save State
289 @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor
290 @retval EFI_INVALID_PARAMTER ProcessorIndex or Width is not correct
291
292 **/
293 EFI_STATUS
294 EFIAPI
295 SmmWriteSaveState (
296 IN CONST EFI_SMM_CPU_PROTOCOL *This,
297 IN UINTN Width,
298 IN EFI_SMM_SAVE_STATE_REGISTER Register,
299 IN UINTN CpuIndex,
300 IN CONST VOID *Buffer
301 )
302 {
303 EFI_STATUS Status;
304
305 //
306 // Retrieve pointer to the specified CPU's SMM Save State buffer
307 //
308 if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {
309 return EFI_INVALID_PARAMETER;
310 }
311
312 //
313 // Writes to EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID are ignored
314 //
315 if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {
316 return EFI_SUCCESS;
317 }
318
319 if (!mSmmMpSyncData->CpuData[CpuIndex].Present) {
320 return EFI_INVALID_PARAMETER;
321 }
322
323 Status = SmmCpuFeaturesWriteSaveStateRegister (CpuIndex, Register, Width, Buffer);
324 if (Status == EFI_UNSUPPORTED) {
325 Status = WriteSaveStateRegister (CpuIndex, Register, Width, Buffer);
326 }
327 return Status;
328 }
329
330
331 /**
332 C function for SMI handler. To change all processor's SMMBase Register.
333
334 **/
335 VOID
336 EFIAPI
337 SmmInitHandler (
338 VOID
339 )
340 {
341 UINT32 ApicId;
342 UINTN Index;
343
344 //
345 // Update SMM IDT entries' code segment and load IDT
346 //
347 AsmWriteIdtr (&gcSmiIdtr);
348 ApicId = GetApicId ();
349
350 ASSERT (mNumberOfCpus <= mMaxNumberOfCpus);
351
352 for (Index = 0; Index < mNumberOfCpus; Index++) {
353 if (ApicId == (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {
354 //
355 // Initialize SMM specific features on the currently executing CPU
356 //
357 SmmCpuFeaturesInitializeProcessor (
358 Index,
359 mIsBsp,
360 gSmmCpuPrivate->ProcessorInfo,
361 &mCpuHotPlugData
362 );
363
364 if (!mSmmS3Flag) {
365 //
366 // Check XD and BTS features on each processor on normal boot
367 //
368 CheckFeatureSupported ();
369 }
370
371 if (mIsBsp) {
372 //
373 // BSP rebase is already done above.
374 // Initialize private data during S3 resume
375 //
376 InitializeMpSyncData ();
377 }
378
379 //
380 // Hook return after RSM to set SMM re-based flag
381 //
382 SemaphoreHook (Index, &mRebased[Index]);
383
384 return;
385 }
386 }
387 ASSERT (FALSE);
388 }
389
390 /**
391 Relocate SmmBases for each processor.
392
393 Execute on first boot and all S3 resumes
394
395 **/
396 VOID
397 EFIAPI
398 SmmRelocateBases (
399 VOID
400 )
401 {
402 UINT8 BakBuf[BACK_BUF_SIZE];
403 SMRAM_SAVE_STATE_MAP BakBuf2;
404 SMRAM_SAVE_STATE_MAP *CpuStatePtr;
405 UINT8 *U8Ptr;
406 UINT32 ApicId;
407 UINTN Index;
408 UINTN BspIndex;
409
410 //
411 // Make sure the reserved size is large enough for procedure SmmInitTemplate.
412 //
413 ASSERT (sizeof (BakBuf) >= gcSmmInitSize);
414
415 //
416 // Patch ASM code template with current CR0, CR3, and CR4 values
417 //
418 mSmmCr0 = (UINT32)AsmReadCr0 ();
419 PatchInstructionX86 (gPatchSmmCr0, mSmmCr0, 4);
420 PatchInstructionX86 (gPatchSmmCr3, AsmReadCr3 (), 4);
421 mSmmCr4 = (UINT32)AsmReadCr4 ();
422 PatchInstructionX86 (gPatchSmmCr4, mSmmCr4 & (~CR4_CET_ENABLE), 4);
423
424 //
425 // Patch GDTR for SMM base relocation
426 //
427 gcSmiInitGdtr.Base = gcSmiGdtr.Base;
428 gcSmiInitGdtr.Limit = gcSmiGdtr.Limit;
429
430 U8Ptr = (UINT8*)(UINTN)(SMM_DEFAULT_SMBASE + SMM_HANDLER_OFFSET);
431 CpuStatePtr = (SMRAM_SAVE_STATE_MAP *)(UINTN)(SMM_DEFAULT_SMBASE + SMRAM_SAVE_STATE_MAP_OFFSET);
432
433 //
434 // Backup original contents at address 0x38000
435 //
436 CopyMem (BakBuf, U8Ptr, sizeof (BakBuf));
437 CopyMem (&BakBuf2, CpuStatePtr, sizeof (BakBuf2));
438
439 //
440 // Load image for relocation
441 //
442 CopyMem (U8Ptr, gcSmmInitTemplate, gcSmmInitSize);
443
444 //
445 // Retrieve the local APIC ID of current processor
446 //
447 ApicId = GetApicId ();
448
449 //
450 // Relocate SM bases for all APs
451 // This is APs' 1st SMI - rebase will be done here, and APs' default SMI handler will be overridden by gcSmmInitTemplate
452 //
453 mIsBsp = FALSE;
454 BspIndex = (UINTN)-1;
455 for (Index = 0; Index < mNumberOfCpus; Index++) {
456 mRebased[Index] = FALSE;
457 if (ApicId != (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {
458 SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);
459 //
460 // Wait for this AP to finish its 1st SMI
461 //
462 while (!mRebased[Index]);
463 } else {
464 //
465 // BSP will be Relocated later
466 //
467 BspIndex = Index;
468 }
469 }
470
471 //
472 // Relocate BSP's SMM base
473 //
474 ASSERT (BspIndex != (UINTN)-1);
475 mIsBsp = TRUE;
476 SendSmiIpi (ApicId);
477 //
478 // Wait for the BSP to finish its 1st SMI
479 //
480 while (!mRebased[BspIndex]);
481
482 //
483 // Restore contents at address 0x38000
484 //
485 CopyMem (CpuStatePtr, &BakBuf2, sizeof (BakBuf2));
486 CopyMem (U8Ptr, BakBuf, sizeof (BakBuf));
487 }
488
489 /**
490 SMM Ready To Lock event notification handler.
491
492 The CPU S3 data is copied to SMRAM for security and mSmmReadyToLock is set to
493 perform additional lock actions that must be performed from SMM on the next SMI.
494
495 @param[in] Protocol Points to the protocol's unique identifier.
496 @param[in] Interface Points to the interface instance.
497 @param[in] Handle The handle on which the interface was installed.
498
499 @retval EFI_SUCCESS Notification handler runs successfully.
500 **/
501 EFI_STATUS
502 EFIAPI
503 SmmReadyToLockEventNotify (
504 IN CONST EFI_GUID *Protocol,
505 IN VOID *Interface,
506 IN EFI_HANDLE Handle
507 )
508 {
509 GetAcpiCpuData ();
510
511 //
512 // Cache a copy of UEFI memory map before we start profiling feature.
513 //
514 GetUefiMemoryMap ();
515
516 //
517 // Set SMM ready to lock flag and return
518 //
519 mSmmReadyToLock = TRUE;
520 return EFI_SUCCESS;
521 }
522
523 /**
524 The module Entry Point of the CPU SMM driver.
525
526 @param ImageHandle The firmware allocated handle for the EFI image.
527 @param SystemTable A pointer to the EFI System Table.
528
529 @retval EFI_SUCCESS The entry point is executed successfully.
530 @retval Other Some error occurs when executing this entry point.
531
532 **/
533 EFI_STATUS
534 EFIAPI
535 PiCpuSmmEntry (
536 IN EFI_HANDLE ImageHandle,
537 IN EFI_SYSTEM_TABLE *SystemTable
538 )
539 {
540 EFI_STATUS Status;
541 EFI_MP_SERVICES_PROTOCOL *MpServices;
542 UINTN NumberOfEnabledProcessors;
543 UINTN Index;
544 VOID *Buffer;
545 UINTN BufferPages;
546 UINTN TileCodeSize;
547 UINTN TileDataSize;
548 UINTN TileSize;
549 UINT8 *Stacks;
550 VOID *Registration;
551 UINT32 RegEax;
552 UINT32 RegEbx;
553 UINT32 RegEcx;
554 UINT32 RegEdx;
555 UINTN FamilyId;
556 UINTN ModelId;
557 UINT32 Cr3;
558
559 //
560 // Initialize address fixup
561 //
562 PiSmmCpuSmmInitFixupAddress ();
563 PiSmmCpuSmiEntryFixupAddress ();
564
565 //
566 // Initialize Debug Agent to support source level debug in SMM code
567 //
568 InitializeDebugAgent (DEBUG_AGENT_INIT_SMM, NULL, NULL);
569
570 //
571 // Report the start of CPU SMM initialization.
572 //
573 REPORT_STATUS_CODE (
574 EFI_PROGRESS_CODE,
575 EFI_COMPUTING_UNIT_HOST_PROCESSOR | EFI_CU_HP_PC_SMM_INIT
576 );
577
578 //
579 // Find out SMRR Base and SMRR Size
580 //
581 FindSmramInfo (&mCpuHotPlugData.SmrrBase, &mCpuHotPlugData.SmrrSize);
582
583 //
584 // Get MP Services Protocol
585 //
586 Status = SystemTable->BootServices->LocateProtocol (&gEfiMpServiceProtocolGuid, NULL, (VOID **)&MpServices);
587 ASSERT_EFI_ERROR (Status);
588
589 //
590 // Use MP Services Protocol to retrieve the number of processors and number of enabled processors
591 //
592 Status = MpServices->GetNumberOfProcessors (MpServices, &mNumberOfCpus, &NumberOfEnabledProcessors);
593 ASSERT_EFI_ERROR (Status);
594 ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
595
596 //
597 // If support CPU hot plug, PcdCpuSmmEnableBspElection should be set to TRUE.
598 // A constant BSP index makes no sense because it may be hot removed.
599 //
600 DEBUG_CODE (
601 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
602
603 ASSERT (FeaturePcdGet (PcdCpuSmmEnableBspElection));
604 }
605 );
606
607 //
608 // Save the PcdCpuSmmCodeAccessCheckEnable value into a global variable.
609 //
610 mSmmCodeAccessCheckEnable = PcdGetBool (PcdCpuSmmCodeAccessCheckEnable);
611 DEBUG ((EFI_D_INFO, "PcdCpuSmmCodeAccessCheckEnable = %d\n", mSmmCodeAccessCheckEnable));
612
613 //
614 // Save the PcdPteMemoryEncryptionAddressOrMask value into a global variable.
615 // Make sure AddressEncMask is contained to smallest supported address field.
616 //
617 mAddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;
618 DEBUG ((EFI_D_INFO, "mAddressEncMask = 0x%lx\n", mAddressEncMask));
619
620 //
621 // If support CPU hot plug, we need to allocate resources for possibly hot-added processors
622 //
623 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
624 mMaxNumberOfCpus = PcdGet32 (PcdCpuMaxLogicalProcessorNumber);
625 } else {
626 mMaxNumberOfCpus = mNumberOfCpus;
627 }
628 gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus = mMaxNumberOfCpus;
629
630 //
631 // The CPU save state and code for the SMI entry point are tiled within an SMRAM
632 // allocated buffer. The minimum size of this buffer for a uniprocessor system
633 // is 32 KB, because the entry point is SMBASE + 32KB, and CPU save state area
634 // just below SMBASE + 64KB. If more than one CPU is present in the platform,
635 // then the SMI entry point and the CPU save state areas can be tiles to minimize
636 // the total amount SMRAM required for all the CPUs. The tile size can be computed
637 // by adding the // CPU save state size, any extra CPU specific context, and
638 // the size of code that must be placed at the SMI entry point to transfer
639 // control to a C function in the native SMM execution mode. This size is
640 // rounded up to the nearest power of 2 to give the tile size for a each CPU.
641 // The total amount of memory required is the maximum number of CPUs that
642 // platform supports times the tile size. The picture below shows the tiling,
643 // where m is the number of tiles that fit in 32KB.
644 //
645 // +-----------------------------+ <-- 2^n offset from Base of allocated buffer
646 // | CPU m+1 Save State |
647 // +-----------------------------+
648 // | CPU m+1 Extra Data |
649 // +-----------------------------+
650 // | Padding |
651 // +-----------------------------+
652 // | CPU 2m SMI Entry |
653 // +#############################+ <-- Base of allocated buffer + 64 KB
654 // | CPU m-1 Save State |
655 // +-----------------------------+
656 // | CPU m-1 Extra Data |
657 // +-----------------------------+
658 // | Padding |
659 // +-----------------------------+
660 // | CPU 2m-1 SMI Entry |
661 // +=============================+ <-- 2^n offset from Base of allocated buffer
662 // | . . . . . . . . . . . . |
663 // +=============================+ <-- 2^n offset from Base of allocated buffer
664 // | CPU 2 Save State |
665 // +-----------------------------+
666 // | CPU 2 Extra Data |
667 // +-----------------------------+
668 // | Padding |
669 // +-----------------------------+
670 // | CPU m+1 SMI Entry |
671 // +=============================+ <-- Base of allocated buffer + 32 KB
672 // | CPU 1 Save State |
673 // +-----------------------------+
674 // | CPU 1 Extra Data |
675 // +-----------------------------+
676 // | Padding |
677 // +-----------------------------+
678 // | CPU m SMI Entry |
679 // +#############################+ <-- Base of allocated buffer + 32 KB == CPU 0 SMBASE + 64 KB
680 // | CPU 0 Save State |
681 // +-----------------------------+
682 // | CPU 0 Extra Data |
683 // +-----------------------------+
684 // | Padding |
685 // +-----------------------------+
686 // | CPU m-1 SMI Entry |
687 // +=============================+ <-- 2^n offset from Base of allocated buffer
688 // | . . . . . . . . . . . . |
689 // +=============================+ <-- 2^n offset from Base of allocated buffer
690 // | Padding |
691 // +-----------------------------+
692 // | CPU 1 SMI Entry |
693 // +=============================+ <-- 2^n offset from Base of allocated buffer
694 // | Padding |
695 // +-----------------------------+
696 // | CPU 0 SMI Entry |
697 // +#############################+ <-- Base of allocated buffer == CPU 0 SMBASE + 32 KB
698 //
699
700 //
701 // Retrieve CPU Family
702 //
703 AsmCpuid (CPUID_VERSION_INFO, &RegEax, NULL, NULL, NULL);
704 FamilyId = (RegEax >> 8) & 0xf;
705 ModelId = (RegEax >> 4) & 0xf;
706 if (FamilyId == 0x06 || FamilyId == 0x0f) {
707 ModelId = ModelId | ((RegEax >> 12) & 0xf0);
708 }
709
710 RegEdx = 0;
711 AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);
712 if (RegEax >= CPUID_EXTENDED_CPU_SIG) {
713 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &RegEdx);
714 }
715 //
716 // Determine the mode of the CPU at the time an SMI occurs
717 // Intel(R) 64 and IA-32 Architectures Software Developer's Manual
718 // Volume 3C, Section 34.4.1.1
719 //
720 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT;
721 if ((RegEdx & BIT29) != 0) {
722 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;
723 }
724 if (FamilyId == 0x06) {
725 if (ModelId == 0x17 || ModelId == 0x0f || ModelId == 0x1c) {
726 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;
727 }
728 }
729
730 DEBUG ((DEBUG_INFO, "PcdControlFlowEnforcementPropertyMask = %d\n", PcdGet32 (PcdControlFlowEnforcementPropertyMask)));
731 if (PcdGet32 (PcdControlFlowEnforcementPropertyMask) != 0) {
732 AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);
733 if (RegEax > CPUID_EXTENDED_FUNCTION) {
734 AsmCpuidEx (CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS, CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO, NULL, NULL, &RegEcx, &RegEdx);
735 DEBUG ((DEBUG_INFO, "CPUID[7/0] ECX - 0x%08x\n", RegEcx));
736 DEBUG ((DEBUG_INFO, " CET_SS - 0x%08x\n", RegEcx & CPUID_CET_SS));
737 DEBUG ((DEBUG_INFO, " CET_IBT - 0x%08x\n", RegEdx & CPUID_CET_IBT));
738 if ((RegEcx & CPUID_CET_SS) == 0) {
739 mCetSupported = FALSE;
740 PatchInstructionX86 (mPatchCetSupported, mCetSupported, 1);
741 }
742 if (mCetSupported) {
743 AsmCpuidEx (CPUID_EXTENDED_STATE, CPUID_EXTENDED_STATE_SUB_LEAF, NULL, &RegEbx, &RegEcx, NULL);
744 DEBUG ((DEBUG_INFO, "CPUID[D/1] EBX - 0x%08x, ECX - 0x%08x\n", RegEbx, RegEcx));
745 AsmCpuidEx (CPUID_EXTENDED_STATE, 11, &RegEax, NULL, &RegEcx, NULL);
746 DEBUG ((DEBUG_INFO, "CPUID[D/11] EAX - 0x%08x, ECX - 0x%08x\n", RegEax, RegEcx));
747 AsmCpuidEx(CPUID_EXTENDED_STATE, 12, &RegEax, NULL, &RegEcx, NULL);
748 DEBUG ((DEBUG_INFO, "CPUID[D/12] EAX - 0x%08x, ECX - 0x%08x\n", RegEax, RegEcx));
749 }
750 }
751 } else {
752 mCetSupported = FALSE;
753 PatchInstructionX86 (mPatchCetSupported, mCetSupported, 1);
754 }
755
756 //
757 // Compute tile size of buffer required to hold the CPU SMRAM Save State Map, extra CPU
758 // specific context start starts at SMBASE + SMM_PSD_OFFSET, and the SMI entry point.
759 // This size is rounded up to nearest power of 2.
760 //
761 TileCodeSize = GetSmiHandlerSize ();
762 TileCodeSize = ALIGN_VALUE(TileCodeSize, SIZE_4KB);
763 TileDataSize = (SMRAM_SAVE_STATE_MAP_OFFSET - SMM_PSD_OFFSET) + sizeof (SMRAM_SAVE_STATE_MAP);
764 TileDataSize = ALIGN_VALUE(TileDataSize, SIZE_4KB);
765 TileSize = TileDataSize + TileCodeSize - 1;
766 TileSize = 2 * GetPowerOfTwo32 ((UINT32)TileSize);
767 DEBUG ((EFI_D_INFO, "SMRAM TileSize = 0x%08x (0x%08x, 0x%08x)\n", TileSize, TileCodeSize, TileDataSize));
768
769 //
770 // If the TileSize is larger than space available for the SMI Handler of
771 // CPU[i], the extra CPU specific context of CPU[i+1], and the SMRAM Save
772 // State Map of CPU[i+1], then ASSERT(). If this ASSERT() is triggered, then
773 // the SMI Handler size must be reduced or the size of the extra CPU specific
774 // context must be reduced.
775 //
776 ASSERT (TileSize <= (SMRAM_SAVE_STATE_MAP_OFFSET + sizeof (SMRAM_SAVE_STATE_MAP) - SMM_HANDLER_OFFSET));
777
778 //
779 // Allocate buffer for all of the tiles.
780 //
781 // Intel(R) 64 and IA-32 Architectures Software Developer's Manual
782 // Volume 3C, Section 34.11 SMBASE Relocation
783 // For Pentium and Intel486 processors, the SMBASE values must be
784 // aligned on a 32-KByte boundary or the processor will enter shutdown
785 // state during the execution of a RSM instruction.
786 //
787 // Intel486 processors: FamilyId is 4
788 // Pentium processors : FamilyId is 5
789 //
790 BufferPages = EFI_SIZE_TO_PAGES (SIZE_32KB + TileSize * (mMaxNumberOfCpus - 1));
791 if ((FamilyId == 4) || (FamilyId == 5)) {
792 Buffer = AllocateAlignedCodePages (BufferPages, SIZE_32KB);
793 } else {
794 Buffer = AllocateAlignedCodePages (BufferPages, SIZE_4KB);
795 }
796 ASSERT (Buffer != NULL);
797 DEBUG ((EFI_D_INFO, "SMRAM SaveState Buffer (0x%08x, 0x%08x)\n", Buffer, EFI_PAGES_TO_SIZE(BufferPages)));
798
799 //
800 // Allocate buffer for pointers to array in SMM_CPU_PRIVATE_DATA.
801 //
802 gSmmCpuPrivate->ProcessorInfo = (EFI_PROCESSOR_INFORMATION *)AllocatePool (sizeof (EFI_PROCESSOR_INFORMATION) * mMaxNumberOfCpus);
803 ASSERT (gSmmCpuPrivate->ProcessorInfo != NULL);
804
805 gSmmCpuPrivate->Operation = (SMM_CPU_OPERATION *)AllocatePool (sizeof (SMM_CPU_OPERATION) * mMaxNumberOfCpus);
806 ASSERT (gSmmCpuPrivate->Operation != NULL);
807
808 gSmmCpuPrivate->CpuSaveStateSize = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);
809 ASSERT (gSmmCpuPrivate->CpuSaveStateSize != NULL);
810
811 gSmmCpuPrivate->CpuSaveState = (VOID **)AllocatePool (sizeof (VOID *) * mMaxNumberOfCpus);
812 ASSERT (gSmmCpuPrivate->CpuSaveState != NULL);
813
814 mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveStateSize = gSmmCpuPrivate->CpuSaveStateSize;
815 mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveState = gSmmCpuPrivate->CpuSaveState;
816
817 //
818 // Allocate buffer for pointers to array in CPU_HOT_PLUG_DATA.
819 //
820 mCpuHotPlugData.ApicId = (UINT64 *)AllocatePool (sizeof (UINT64) * mMaxNumberOfCpus);
821 ASSERT (mCpuHotPlugData.ApicId != NULL);
822 mCpuHotPlugData.SmBase = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);
823 ASSERT (mCpuHotPlugData.SmBase != NULL);
824 mCpuHotPlugData.ArrayLength = (UINT32)mMaxNumberOfCpus;
825
826 //
827 // Retrieve APIC ID of each enabled processor from the MP Services protocol.
828 // Also compute the SMBASE address, CPU Save State address, and CPU Save state
829 // size for each CPU in the platform
830 //
831 for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
832 mCpuHotPlugData.SmBase[Index] = (UINTN)Buffer + Index * TileSize - SMM_HANDLER_OFFSET;
833 gSmmCpuPrivate->CpuSaveStateSize[Index] = sizeof(SMRAM_SAVE_STATE_MAP);
834 gSmmCpuPrivate->CpuSaveState[Index] = (VOID *)(mCpuHotPlugData.SmBase[Index] + SMRAM_SAVE_STATE_MAP_OFFSET);
835 gSmmCpuPrivate->Operation[Index] = SmmCpuNone;
836
837 if (Index < mNumberOfCpus) {
838 Status = MpServices->GetProcessorInfo (MpServices, Index, &gSmmCpuPrivate->ProcessorInfo[Index]);
839 ASSERT_EFI_ERROR (Status);
840 mCpuHotPlugData.ApicId[Index] = gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId;
841
842 DEBUG ((EFI_D_INFO, "CPU[%03x] APIC ID=%04x SMBASE=%08x SaveState=%08x Size=%08x\n",
843 Index,
844 (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId,
845 mCpuHotPlugData.SmBase[Index],
846 gSmmCpuPrivate->CpuSaveState[Index],
847 gSmmCpuPrivate->CpuSaveStateSize[Index]
848 ));
849 } else {
850 gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId = INVALID_APIC_ID;
851 mCpuHotPlugData.ApicId[Index] = INVALID_APIC_ID;
852 }
853 }
854
855 //
856 // Allocate SMI stacks for all processors.
857 //
858 mSmmStackSize = EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStackSize)));
859 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
860 //
861 // 2 more pages is allocated for each processor.
862 // one is guard page and the other is known good stack.
863 //
864 // +-------------------------------------------+-----+-------------------------------------------+
865 // | Known Good Stack | Guard Page | SMM Stack | ... | Known Good Stack | Guard Page | SMM Stack |
866 // +-------------------------------------------+-----+-------------------------------------------+
867 // | | | |
868 // |<-------------- Processor 0 -------------->| |<-------------- Processor n -------------->|
869 //
870 mSmmStackSize += EFI_PAGES_TO_SIZE (2);
871 }
872
873 mSmmShadowStackSize = 0;
874 if ((PcdGet32 (PcdControlFlowEnforcementPropertyMask) != 0) && mCetSupported) {
875 //
876 // Append Shadow Stack after normal stack
877 //
878 // |= Stacks
879 // +--------------------------------------------------+---------------------------------------------------------------+
880 // | Known Good Stack | Guard Page | SMM Stack | Known Good Shadow Stack | Guard Page | SMM Shadow Stack |
881 // +--------------------------------------------------+---------------------------------------------------------------+
882 // | |PcdCpuSmmStackSize| |PcdCpuSmmShadowStackSize|
883 // |<---------------- mSmmStackSize ----------------->|<--------------------- mSmmShadowStackSize ------------------->|
884 // | |
885 // |<-------------------------------------------- Processor N ------------------------------------------------------->|
886 //
887 mSmmShadowStackSize = EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmShadowStackSize)));
888 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
889 mSmmShadowStackSize += EFI_PAGES_TO_SIZE (2);
890 }
891 }
892
893 Stacks = (UINT8 *) AllocatePages (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * (EFI_SIZE_TO_PAGES (mSmmStackSize + mSmmShadowStackSize)));
894 ASSERT (Stacks != NULL);
895 mSmmStackArrayBase = (UINTN)Stacks;
896 mSmmStackArrayEnd = mSmmStackArrayBase + gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * (mSmmStackSize + mSmmShadowStackSize) - 1;
897
898 DEBUG ((DEBUG_INFO, "Stacks - 0x%x\n", Stacks));
899 DEBUG ((DEBUG_INFO, "mSmmStackSize - 0x%x\n", mSmmStackSize));
900 DEBUG ((DEBUG_INFO, "PcdCpuSmmStackGuard - 0x%x\n", FeaturePcdGet (PcdCpuSmmStackGuard)));
901 if ((PcdGet32 (PcdControlFlowEnforcementPropertyMask) != 0) && mCetSupported) {
902 DEBUG ((DEBUG_INFO, "mSmmShadowStackSize - 0x%x\n", mSmmShadowStackSize));
903 }
904
905 //
906 // Set SMI stack for SMM base relocation
907 //
908 PatchInstructionX86 (
909 gPatchSmmInitStack,
910 (UINTN) (Stacks + mSmmStackSize - sizeof (UINTN)),
911 sizeof (UINTN)
912 );
913
914 //
915 // Initialize IDT
916 //
917 InitializeSmmIdt ();
918
919 //
920 // Relocate SMM Base addresses to the ones allocated from SMRAM
921 //
922 mRebased = (BOOLEAN *)AllocateZeroPool (sizeof (BOOLEAN) * mMaxNumberOfCpus);
923 ASSERT (mRebased != NULL);
924 SmmRelocateBases ();
925
926 //
927 // Call hook for BSP to perform extra actions in normal mode after all
928 // SMM base addresses have been relocated on all CPUs
929 //
930 SmmCpuFeaturesSmmRelocationComplete ();
931
932 DEBUG ((DEBUG_INFO, "mXdSupported - 0x%x\n", mXdSupported));
933
934 //
935 // SMM Time initialization
936 //
937 InitializeSmmTimer ();
938
939 //
940 // Initialize MP globals
941 //
942 Cr3 = InitializeMpServiceData (Stacks, mSmmStackSize, mSmmShadowStackSize);
943
944 if ((PcdGet32 (PcdControlFlowEnforcementPropertyMask) != 0) && mCetSupported) {
945 for (Index = 0; Index < gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus; Index++) {
946 SetShadowStack (
947 Cr3,
948 (EFI_PHYSICAL_ADDRESS)(UINTN)Stacks + mSmmStackSize + (mSmmStackSize + mSmmShadowStackSize) * Index,
949 mSmmShadowStackSize
950 );
951 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
952 SetNotPresentPage (
953 Cr3,
954 (EFI_PHYSICAL_ADDRESS)(UINTN)Stacks + mSmmStackSize + EFI_PAGES_TO_SIZE(1) + (mSmmStackSize + mSmmShadowStackSize) * Index,
955 EFI_PAGES_TO_SIZE(1)
956 );
957 }
958 }
959 }
960
961 //
962 // Fill in SMM Reserved Regions
963 //
964 gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedStart = 0;
965 gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedSize = 0;
966
967 //
968 // Install the SMM Configuration Protocol onto a new handle on the handle database.
969 // The entire SMM Configuration Protocol is allocated from SMRAM, so only a pointer
970 // to an SMRAM address will be present in the handle database
971 //
972 Status = SystemTable->BootServices->InstallMultipleProtocolInterfaces (
973 &gSmmCpuPrivate->SmmCpuHandle,
974 &gEfiSmmConfigurationProtocolGuid, &gSmmCpuPrivate->SmmConfiguration,
975 NULL
976 );
977 ASSERT_EFI_ERROR (Status);
978
979 //
980 // Install the SMM CPU Protocol into SMM protocol database
981 //
982 Status = gSmst->SmmInstallProtocolInterface (
983 &mSmmCpuHandle,
984 &gEfiSmmCpuProtocolGuid,
985 EFI_NATIVE_INTERFACE,
986 &mSmmCpu
987 );
988 ASSERT_EFI_ERROR (Status);
989
990 //
991 // Install the SMM Memory Attribute Protocol into SMM protocol database
992 //
993 Status = gSmst->SmmInstallProtocolInterface (
994 &mSmmCpuHandle,
995 &gEdkiiSmmMemoryAttributeProtocolGuid,
996 EFI_NATIVE_INTERFACE,
997 &mSmmMemoryAttribute
998 );
999 ASSERT_EFI_ERROR (Status);
1000
1001 //
1002 // Initialize global buffer for MM MP.
1003 //
1004 InitializeDataForMmMp ();
1005
1006 //
1007 // Install the SMM Mp Protocol into SMM protocol database
1008 //
1009 Status = gSmst->SmmInstallProtocolInterface (
1010 &mSmmCpuHandle,
1011 &gEfiMmMpProtocolGuid,
1012 EFI_NATIVE_INTERFACE,
1013 &mSmmMp
1014 );
1015 ASSERT_EFI_ERROR (Status);
1016
1017 //
1018 // Expose address of CPU Hot Plug Data structure if CPU hot plug is supported.
1019 //
1020 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
1021 Status = PcdSet64S (PcdCpuHotPlugDataAddress, (UINT64)(UINTN)&mCpuHotPlugData);
1022 ASSERT_EFI_ERROR (Status);
1023 }
1024
1025 //
1026 // Initialize SMM CPU Services Support
1027 //
1028 Status = InitializeSmmCpuServices (mSmmCpuHandle);
1029 ASSERT_EFI_ERROR (Status);
1030
1031 //
1032 // register SMM Ready To Lock Protocol notification
1033 //
1034 Status = gSmst->SmmRegisterProtocolNotify (
1035 &gEfiSmmReadyToLockProtocolGuid,
1036 SmmReadyToLockEventNotify,
1037 &Registration
1038 );
1039 ASSERT_EFI_ERROR (Status);
1040
1041 //
1042 // Initialize SMM Profile feature
1043 //
1044 InitSmmProfile (Cr3);
1045
1046 GetAcpiS3EnableFlag ();
1047 InitSmmS3ResumeState (Cr3);
1048
1049 DEBUG ((EFI_D_INFO, "SMM CPU Module exit from SMRAM with EFI_SUCCESS\n"));
1050
1051 return EFI_SUCCESS;
1052 }
1053
1054 /**
1055
1056 Find out SMRAM information including SMRR base and SMRR size.
1057
1058 @param SmrrBase SMRR base
1059 @param SmrrSize SMRR size
1060
1061 **/
1062 VOID
1063 FindSmramInfo (
1064 OUT UINT32 *SmrrBase,
1065 OUT UINT32 *SmrrSize
1066 )
1067 {
1068 EFI_STATUS Status;
1069 UINTN Size;
1070 EFI_SMM_ACCESS2_PROTOCOL *SmmAccess;
1071 EFI_SMRAM_DESCRIPTOR *CurrentSmramRange;
1072 UINTN Index;
1073 UINT64 MaxSize;
1074 BOOLEAN Found;
1075
1076 //
1077 // Get SMM Access Protocol
1078 //
1079 Status = gBS->LocateProtocol (&gEfiSmmAccess2ProtocolGuid, NULL, (VOID **)&SmmAccess);
1080 ASSERT_EFI_ERROR (Status);
1081
1082 //
1083 // Get SMRAM information
1084 //
1085 Size = 0;
1086 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, NULL);
1087 ASSERT (Status == EFI_BUFFER_TOO_SMALL);
1088
1089 mSmmCpuSmramRanges = (EFI_SMRAM_DESCRIPTOR *)AllocatePool (Size);
1090 ASSERT (mSmmCpuSmramRanges != NULL);
1091
1092 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, mSmmCpuSmramRanges);
1093 ASSERT_EFI_ERROR (Status);
1094
1095 mSmmCpuSmramRangeCount = Size / sizeof (EFI_SMRAM_DESCRIPTOR);
1096
1097 //
1098 // Find the largest SMRAM range between 1MB and 4GB that is at least 256K - 4K in size
1099 //
1100 CurrentSmramRange = NULL;
1101 for (Index = 0, MaxSize = SIZE_256KB - EFI_PAGE_SIZE; Index < mSmmCpuSmramRangeCount; Index++) {
1102 //
1103 // Skip any SMRAM region that is already allocated, needs testing, or needs ECC initialization
1104 //
1105 if ((mSmmCpuSmramRanges[Index].RegionState & (EFI_ALLOCATED | EFI_NEEDS_TESTING | EFI_NEEDS_ECC_INITIALIZATION)) != 0) {
1106 continue;
1107 }
1108
1109 if (mSmmCpuSmramRanges[Index].CpuStart >= BASE_1MB) {
1110 if ((mSmmCpuSmramRanges[Index].CpuStart + mSmmCpuSmramRanges[Index].PhysicalSize) <= SMRR_MAX_ADDRESS) {
1111 if (mSmmCpuSmramRanges[Index].PhysicalSize >= MaxSize) {
1112 MaxSize = mSmmCpuSmramRanges[Index].PhysicalSize;
1113 CurrentSmramRange = &mSmmCpuSmramRanges[Index];
1114 }
1115 }
1116 }
1117 }
1118
1119 ASSERT (CurrentSmramRange != NULL);
1120
1121 *SmrrBase = (UINT32)CurrentSmramRange->CpuStart;
1122 *SmrrSize = (UINT32)CurrentSmramRange->PhysicalSize;
1123
1124 do {
1125 Found = FALSE;
1126 for (Index = 0; Index < mSmmCpuSmramRangeCount; Index++) {
1127 if (mSmmCpuSmramRanges[Index].CpuStart < *SmrrBase &&
1128 *SmrrBase == (mSmmCpuSmramRanges[Index].CpuStart + mSmmCpuSmramRanges[Index].PhysicalSize)) {
1129 *SmrrBase = (UINT32)mSmmCpuSmramRanges[Index].CpuStart;
1130 *SmrrSize = (UINT32)(*SmrrSize + mSmmCpuSmramRanges[Index].PhysicalSize);
1131 Found = TRUE;
1132 } else if ((*SmrrBase + *SmrrSize) == mSmmCpuSmramRanges[Index].CpuStart && mSmmCpuSmramRanges[Index].PhysicalSize > 0) {
1133 *SmrrSize = (UINT32)(*SmrrSize + mSmmCpuSmramRanges[Index].PhysicalSize);
1134 Found = TRUE;
1135 }
1136 }
1137 } while (Found);
1138
1139 DEBUG ((EFI_D_INFO, "SMRR Base: 0x%x, SMRR Size: 0x%x\n", *SmrrBase, *SmrrSize));
1140 }
1141
1142 /**
1143 Configure SMM Code Access Check feature on an AP.
1144 SMM Feature Control MSR will be locked after configuration.
1145
1146 @param[in,out] Buffer Pointer to private data buffer.
1147 **/
1148 VOID
1149 EFIAPI
1150 ConfigSmmCodeAccessCheckOnCurrentProcessor (
1151 IN OUT VOID *Buffer
1152 )
1153 {
1154 UINTN CpuIndex;
1155 UINT64 SmmFeatureControlMsr;
1156 UINT64 NewSmmFeatureControlMsr;
1157
1158 //
1159 // Retrieve the CPU Index from the context passed in
1160 //
1161 CpuIndex = *(UINTN *)Buffer;
1162
1163 //
1164 // Get the current SMM Feature Control MSR value
1165 //
1166 SmmFeatureControlMsr = SmmCpuFeaturesGetSmmRegister (CpuIndex, SmmRegFeatureControl);
1167
1168 //
1169 // Compute the new SMM Feature Control MSR value
1170 //
1171 NewSmmFeatureControlMsr = SmmFeatureControlMsr;
1172 if (mSmmCodeAccessCheckEnable) {
1173 NewSmmFeatureControlMsr |= SMM_CODE_CHK_EN_BIT;
1174 if (FeaturePcdGet (PcdCpuSmmFeatureControlMsrLock)) {
1175 NewSmmFeatureControlMsr |= SMM_FEATURE_CONTROL_LOCK_BIT;
1176 }
1177 }
1178
1179 //
1180 // Only set the SMM Feature Control MSR value if the new value is different than the current value
1181 //
1182 if (NewSmmFeatureControlMsr != SmmFeatureControlMsr) {
1183 SmmCpuFeaturesSetSmmRegister (CpuIndex, SmmRegFeatureControl, NewSmmFeatureControlMsr);
1184 }
1185
1186 //
1187 // Release the spin lock user to serialize the updates to the SMM Feature Control MSR
1188 //
1189 ReleaseSpinLock (mConfigSmmCodeAccessCheckLock);
1190 }
1191
1192 /**
1193 Configure SMM Code Access Check feature for all processors.
1194 SMM Feature Control MSR will be locked after configuration.
1195 **/
1196 VOID
1197 ConfigSmmCodeAccessCheck (
1198 VOID
1199 )
1200 {
1201 UINTN Index;
1202 EFI_STATUS Status;
1203
1204 //
1205 // Check to see if the Feature Control MSR is supported on this CPU
1206 //
1207 Index = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;
1208 if (!SmmCpuFeaturesIsSmmRegisterSupported (Index, SmmRegFeatureControl)) {
1209 mSmmCodeAccessCheckEnable = FALSE;
1210 return;
1211 }
1212
1213 //
1214 // Check to see if the CPU supports the SMM Code Access Check feature
1215 // Do not access this MSR unless the CPU supports the SmmRegFeatureControl
1216 //
1217 if ((AsmReadMsr64 (EFI_MSR_SMM_MCA_CAP) & SMM_CODE_ACCESS_CHK_BIT) == 0) {
1218 mSmmCodeAccessCheckEnable = FALSE;
1219 return;
1220 }
1221
1222 //
1223 // Initialize the lock used to serialize the MSR programming in BSP and all APs
1224 //
1225 InitializeSpinLock (mConfigSmmCodeAccessCheckLock);
1226
1227 //
1228 // Acquire Config SMM Code Access Check spin lock. The BSP will release the
1229 // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().
1230 //
1231 AcquireSpinLock (mConfigSmmCodeAccessCheckLock);
1232
1233 //
1234 // Enable SMM Code Access Check feature on the BSP.
1235 //
1236 ConfigSmmCodeAccessCheckOnCurrentProcessor (&Index);
1237
1238 //
1239 // Enable SMM Code Access Check feature for the APs.
1240 //
1241 for (Index = 0; Index < gSmst->NumberOfCpus; Index++) {
1242 if (Index != gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) {
1243 if (gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId == INVALID_APIC_ID) {
1244 //
1245 // If this processor does not exist
1246 //
1247 continue;
1248 }
1249 //
1250 // Acquire Config SMM Code Access Check spin lock. The AP will release the
1251 // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().
1252 //
1253 AcquireSpinLock (mConfigSmmCodeAccessCheckLock);
1254
1255 //
1256 // Call SmmStartupThisAp() to enable SMM Code Access Check on an AP.
1257 //
1258 Status = gSmst->SmmStartupThisAp (ConfigSmmCodeAccessCheckOnCurrentProcessor, Index, &Index);
1259 ASSERT_EFI_ERROR (Status);
1260
1261 //
1262 // Wait for the AP to release the Config SMM Code Access Check spin lock.
1263 //
1264 while (!AcquireSpinLockOrFail (mConfigSmmCodeAccessCheckLock)) {
1265 CpuPause ();
1266 }
1267
1268 //
1269 // Release the Config SMM Code Access Check spin lock.
1270 //
1271 ReleaseSpinLock (mConfigSmmCodeAccessCheckLock);
1272 }
1273 }
1274 }
1275
1276 /**
1277 This API provides a way to allocate memory for page table.
1278
1279 This API can be called more once to allocate memory for page tables.
1280
1281 Allocates the number of 4KB pages of type EfiRuntimeServicesData and returns a pointer to the
1282 allocated buffer. The buffer returned is aligned on a 4KB boundary. If Pages is 0, then NULL
1283 is returned. If there is not enough memory remaining to satisfy the request, then NULL is
1284 returned.
1285
1286 @param Pages The number of 4 KB pages to allocate.
1287
1288 @return A pointer to the allocated buffer or NULL if allocation fails.
1289
1290 **/
1291 VOID *
1292 AllocatePageTableMemory (
1293 IN UINTN Pages
1294 )
1295 {
1296 VOID *Buffer;
1297
1298 Buffer = SmmCpuFeaturesAllocatePageTableMemory (Pages);
1299 if (Buffer != NULL) {
1300 return Buffer;
1301 }
1302 return AllocatePages (Pages);
1303 }
1304
1305 /**
1306 Allocate pages for code.
1307
1308 @param[in] Pages Number of pages to be allocated.
1309
1310 @return Allocated memory.
1311 **/
1312 VOID *
1313 AllocateCodePages (
1314 IN UINTN Pages
1315 )
1316 {
1317 EFI_STATUS Status;
1318 EFI_PHYSICAL_ADDRESS Memory;
1319
1320 if (Pages == 0) {
1321 return NULL;
1322 }
1323
1324 Status = gSmst->SmmAllocatePages (AllocateAnyPages, EfiRuntimeServicesCode, Pages, &Memory);
1325 if (EFI_ERROR (Status)) {
1326 return NULL;
1327 }
1328 return (VOID *) (UINTN) Memory;
1329 }
1330
1331 /**
1332 Allocate aligned pages for code.
1333
1334 @param[in] Pages Number of pages to be allocated.
1335 @param[in] Alignment The requested alignment of the allocation.
1336 Must be a power of two.
1337 If Alignment is zero, then byte alignment is used.
1338
1339 @return Allocated memory.
1340 **/
1341 VOID *
1342 AllocateAlignedCodePages (
1343 IN UINTN Pages,
1344 IN UINTN Alignment
1345 )
1346 {
1347 EFI_STATUS Status;
1348 EFI_PHYSICAL_ADDRESS Memory;
1349 UINTN AlignedMemory;
1350 UINTN AlignmentMask;
1351 UINTN UnalignedPages;
1352 UINTN RealPages;
1353
1354 //
1355 // Alignment must be a power of two or zero.
1356 //
1357 ASSERT ((Alignment & (Alignment - 1)) == 0);
1358
1359 if (Pages == 0) {
1360 return NULL;
1361 }
1362 if (Alignment > EFI_PAGE_SIZE) {
1363 //
1364 // Calculate the total number of pages since alignment is larger than page size.
1365 //
1366 AlignmentMask = Alignment - 1;
1367 RealPages = Pages + EFI_SIZE_TO_PAGES (Alignment);
1368 //
1369 // Make sure that Pages plus EFI_SIZE_TO_PAGES (Alignment) does not overflow.
1370 //
1371 ASSERT (RealPages > Pages);
1372
1373 Status = gSmst->SmmAllocatePages (AllocateAnyPages, EfiRuntimeServicesCode, RealPages, &Memory);
1374 if (EFI_ERROR (Status)) {
1375 return NULL;
1376 }
1377 AlignedMemory = ((UINTN) Memory + AlignmentMask) & ~AlignmentMask;
1378 UnalignedPages = EFI_SIZE_TO_PAGES (AlignedMemory - (UINTN) Memory);
1379 if (UnalignedPages > 0) {
1380 //
1381 // Free first unaligned page(s).
1382 //
1383 Status = gSmst->SmmFreePages (Memory, UnalignedPages);
1384 ASSERT_EFI_ERROR (Status);
1385 }
1386 Memory = AlignedMemory + EFI_PAGES_TO_SIZE (Pages);
1387 UnalignedPages = RealPages - Pages - UnalignedPages;
1388 if (UnalignedPages > 0) {
1389 //
1390 // Free last unaligned page(s).
1391 //
1392 Status = gSmst->SmmFreePages (Memory, UnalignedPages);
1393 ASSERT_EFI_ERROR (Status);
1394 }
1395 } else {
1396 //
1397 // Do not over-allocate pages in this case.
1398 //
1399 Status = gSmst->SmmAllocatePages (AllocateAnyPages, EfiRuntimeServicesCode, Pages, &Memory);
1400 if (EFI_ERROR (Status)) {
1401 return NULL;
1402 }
1403 AlignedMemory = (UINTN) Memory;
1404 }
1405 return (VOID *) AlignedMemory;
1406 }
1407
1408 /**
1409 Perform the remaining tasks.
1410
1411 **/
1412 VOID
1413 PerformRemainingTasks (
1414 VOID
1415 )
1416 {
1417 if (mSmmReadyToLock) {
1418 //
1419 // Start SMM Profile feature
1420 //
1421 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
1422 SmmProfileStart ();
1423 }
1424 //
1425 // Create a mix of 2MB and 4KB page table. Update some memory ranges absent and execute-disable.
1426 //
1427 InitPaging ();
1428
1429 //
1430 // Mark critical region to be read-only in page table
1431 //
1432 SetMemMapAttributes ();
1433
1434 //
1435 // For outside SMRAM, we only map SMM communication buffer or MMIO.
1436 //
1437 SetUefiMemMapAttributes ();
1438
1439 //
1440 // Set page table itself to be read-only
1441 //
1442 SetPageTableAttributes ();
1443
1444 //
1445 // Configure SMM Code Access Check feature if available.
1446 //
1447 ConfigSmmCodeAccessCheck ();
1448
1449 SmmCpuFeaturesCompleteSmmReadyToLock ();
1450
1451 //
1452 // Clean SMM ready to lock flag
1453 //
1454 mSmmReadyToLock = FALSE;
1455 }
1456 }
1457
1458 /**
1459 Perform the pre tasks.
1460
1461 **/
1462 VOID
1463 PerformPreTasks (
1464 VOID
1465 )
1466 {
1467 RestoreSmmConfigurationInS3 ();
1468 }