]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
UefiCpuPkg/PiSmmCpuDxeSmm: Add paging protection.
[mirror_edk2.git] / UefiCpuPkg / PiSmmCpuDxeSmm / PiSmmCpuDxeSmm.c
1 /** @file
2 Agent Module to load other modules to deploy SMM Entry Vector for X86 CPU.
3
4 Copyright (c) 2009 - 2016, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "PiSmmCpuDxeSmm.h"
16
17 //
18 // SMM CPU Private Data structure that contains SMM Configuration Protocol
19 // along its supporting fields.
20 //
21 SMM_CPU_PRIVATE_DATA mSmmCpuPrivateData = {
22 SMM_CPU_PRIVATE_DATA_SIGNATURE, // Signature
23 NULL, // SmmCpuHandle
24 NULL, // Pointer to ProcessorInfo array
25 NULL, // Pointer to Operation array
26 NULL, // Pointer to CpuSaveStateSize array
27 NULL, // Pointer to CpuSaveState array
28 { {0} }, // SmmReservedSmramRegion
29 {
30 SmmStartupThisAp, // SmmCoreEntryContext.SmmStartupThisAp
31 0, // SmmCoreEntryContext.CurrentlyExecutingCpu
32 0, // SmmCoreEntryContext.NumberOfCpus
33 NULL, // SmmCoreEntryContext.CpuSaveStateSize
34 NULL // SmmCoreEntryContext.CpuSaveState
35 },
36 NULL, // SmmCoreEntry
37 {
38 mSmmCpuPrivateData.SmmReservedSmramRegion, // SmmConfiguration.SmramReservedRegions
39 RegisterSmmEntry // SmmConfiguration.RegisterSmmEntry
40 },
41 };
42
43 CPU_HOT_PLUG_DATA mCpuHotPlugData = {
44 CPU_HOT_PLUG_DATA_REVISION_1, // Revision
45 0, // Array Length of SmBase and APIC ID
46 NULL, // Pointer to APIC ID array
47 NULL, // Pointer to SMBASE array
48 0, // Reserved
49 0, // SmrrBase
50 0 // SmrrSize
51 };
52
53 //
54 // Global pointer used to access mSmmCpuPrivateData from outside and inside SMM
55 //
56 SMM_CPU_PRIVATE_DATA *gSmmCpuPrivate = &mSmmCpuPrivateData;
57
58 //
59 // SMM Relocation variables
60 //
61 volatile BOOLEAN *mRebased;
62 volatile BOOLEAN mIsBsp;
63
64 ///
65 /// Handle for the SMM CPU Protocol
66 ///
67 EFI_HANDLE mSmmCpuHandle = NULL;
68
69 ///
70 /// SMM CPU Protocol instance
71 ///
72 EFI_SMM_CPU_PROTOCOL mSmmCpu = {
73 SmmReadSaveState,
74 SmmWriteSaveState
75 };
76
77 EFI_CPU_INTERRUPT_HANDLER mExternalVectorTable[EXCEPTION_VECTOR_NUMBER];
78
79 //
80 // SMM stack information
81 //
82 UINTN mSmmStackArrayBase;
83 UINTN mSmmStackArrayEnd;
84 UINTN mSmmStackSize;
85
86 UINTN mMaxNumberOfCpus = 1;
87 UINTN mNumberOfCpus = 1;
88
89 //
90 // SMM ready to lock flag
91 //
92 BOOLEAN mSmmReadyToLock = FALSE;
93
94 //
95 // Global used to cache PCD for SMM Code Access Check enable
96 //
97 BOOLEAN mSmmCodeAccessCheckEnable = FALSE;
98
99 //
100 // Spin lock used to serialize setting of SMM Code Access Check feature
101 //
102 SPIN_LOCK *mConfigSmmCodeAccessCheckLock = NULL;
103
104 /**
105 Initialize IDT to setup exception handlers for SMM.
106
107 **/
108 VOID
109 InitializeSmmIdt (
110 VOID
111 )
112 {
113 EFI_STATUS Status;
114 BOOLEAN InterruptState;
115 IA32_DESCRIPTOR DxeIdtr;
116
117 //
118 // There are 32 (not 255) entries in it since only processor
119 // generated exceptions will be handled.
120 //
121 gcSmiIdtr.Limit = (sizeof(IA32_IDT_GATE_DESCRIPTOR) * 32) - 1;
122 //
123 // Allocate page aligned IDT, because it might be set as read only.
124 //
125 gcSmiIdtr.Base = (UINTN)AllocateCodePages (EFI_SIZE_TO_PAGES(gcSmiIdtr.Limit + 1));
126 ASSERT (gcSmiIdtr.Base != 0);
127 ZeroMem ((VOID *)gcSmiIdtr.Base, gcSmiIdtr.Limit + 1);
128
129 //
130 // Disable Interrupt and save DXE IDT table
131 //
132 InterruptState = SaveAndDisableInterrupts ();
133 AsmReadIdtr (&DxeIdtr);
134 //
135 // Load SMM temporary IDT table
136 //
137 AsmWriteIdtr (&gcSmiIdtr);
138 //
139 // Setup SMM default exception handlers, SMM IDT table
140 // will be updated and saved in gcSmiIdtr
141 //
142 Status = InitializeCpuExceptionHandlers (NULL);
143 ASSERT_EFI_ERROR (Status);
144 //
145 // Restore DXE IDT table and CPU interrupt
146 //
147 AsmWriteIdtr ((IA32_DESCRIPTOR *) &DxeIdtr);
148 SetInterruptState (InterruptState);
149 }
150
151 /**
152 Search module name by input IP address and output it.
153
154 @param CallerIpAddress Caller instruction pointer.
155
156 **/
157 VOID
158 DumpModuleInfoByIp (
159 IN UINTN CallerIpAddress
160 )
161 {
162 UINTN Pe32Data;
163 EFI_IMAGE_DOS_HEADER *DosHdr;
164 EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr;
165 VOID *PdbPointer;
166 UINT64 DumpIpAddress;
167
168 //
169 // Find Image Base
170 //
171 Pe32Data = CallerIpAddress & ~(SIZE_4KB - 1);
172 while (Pe32Data != 0) {
173 DosHdr = (EFI_IMAGE_DOS_HEADER *) Pe32Data;
174 if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE) {
175 //
176 // DOS image header is present, so read the PE header after the DOS image header.
177 //
178 Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)(Pe32Data + (UINTN) ((DosHdr->e_lfanew) & 0x0ffff));
179 //
180 // Make sure PE header address does not overflow and is less than the initial address.
181 //
182 if (((UINTN)Hdr.Pe32 > Pe32Data) && ((UINTN)Hdr.Pe32 < CallerIpAddress)) {
183 if (Hdr.Pe32->Signature == EFI_IMAGE_NT_SIGNATURE) {
184 //
185 // It's PE image.
186 //
187 break;
188 }
189 }
190 }
191
192 //
193 // Not found the image base, check the previous aligned address
194 //
195 Pe32Data -= SIZE_4KB;
196 }
197
198 DumpIpAddress = CallerIpAddress;
199 DEBUG ((EFI_D_ERROR, "It is invoked from the instruction before IP(0x%lx)", DumpIpAddress));
200
201 if (Pe32Data != 0) {
202 PdbPointer = PeCoffLoaderGetPdbPointer ((VOID *) Pe32Data);
203 if (PdbPointer != NULL) {
204 DEBUG ((EFI_D_ERROR, " in module (%a)", PdbPointer));
205 }
206 }
207 }
208
209 /**
210 Read information from the CPU save state.
211
212 @param This EFI_SMM_CPU_PROTOCOL instance
213 @param Width The number of bytes to read from the CPU save state.
214 @param Register Specifies the CPU register to read form the save state.
215 @param CpuIndex Specifies the zero-based index of the CPU save state.
216 @param Buffer Upon return, this holds the CPU register value read from the save state.
217
218 @retval EFI_SUCCESS The register was read from Save State
219 @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor
220 @retval EFI_INVALID_PARAMTER This or Buffer is NULL.
221
222 **/
223 EFI_STATUS
224 EFIAPI
225 SmmReadSaveState (
226 IN CONST EFI_SMM_CPU_PROTOCOL *This,
227 IN UINTN Width,
228 IN EFI_SMM_SAVE_STATE_REGISTER Register,
229 IN UINTN CpuIndex,
230 OUT VOID *Buffer
231 )
232 {
233 EFI_STATUS Status;
234
235 //
236 // Retrieve pointer to the specified CPU's SMM Save State buffer
237 //
238 if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {
239 return EFI_INVALID_PARAMETER;
240 }
241
242 //
243 // Check for special EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID
244 //
245 if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {
246 //
247 // The pseudo-register only supports the 64-bit size specified by Width.
248 //
249 if (Width != sizeof (UINT64)) {
250 return EFI_INVALID_PARAMETER;
251 }
252 //
253 // If the processor is in SMM at the time the SMI occurred,
254 // the pseudo register value for EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID is returned in Buffer.
255 // Otherwise, EFI_NOT_FOUND is returned.
256 //
257 if (*(mSmmMpSyncData->CpuData[CpuIndex].Present)) {
258 *(UINT64 *)Buffer = gSmmCpuPrivate->ProcessorInfo[CpuIndex].ProcessorId;
259 return EFI_SUCCESS;
260 } else {
261 return EFI_NOT_FOUND;
262 }
263 }
264
265 if (!(*(mSmmMpSyncData->CpuData[CpuIndex].Present))) {
266 return EFI_INVALID_PARAMETER;
267 }
268
269 Status = SmmCpuFeaturesReadSaveStateRegister (CpuIndex, Register, Width, Buffer);
270 if (Status == EFI_UNSUPPORTED) {
271 Status = ReadSaveStateRegister (CpuIndex, Register, Width, Buffer);
272 }
273 return Status;
274 }
275
276 /**
277 Write data to the CPU save state.
278
279 @param This EFI_SMM_CPU_PROTOCOL instance
280 @param Width The number of bytes to read from the CPU save state.
281 @param Register Specifies the CPU register to write to the save state.
282 @param CpuIndex Specifies the zero-based index of the CPU save state
283 @param Buffer Upon entry, this holds the new CPU register value.
284
285 @retval EFI_SUCCESS The register was written from Save State
286 @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor
287 @retval EFI_INVALID_PARAMTER ProcessorIndex or Width is not correct
288
289 **/
290 EFI_STATUS
291 EFIAPI
292 SmmWriteSaveState (
293 IN CONST EFI_SMM_CPU_PROTOCOL *This,
294 IN UINTN Width,
295 IN EFI_SMM_SAVE_STATE_REGISTER Register,
296 IN UINTN CpuIndex,
297 IN CONST VOID *Buffer
298 )
299 {
300 EFI_STATUS Status;
301
302 //
303 // Retrieve pointer to the specified CPU's SMM Save State buffer
304 //
305 if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {
306 return EFI_INVALID_PARAMETER;
307 }
308
309 //
310 // Writes to EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID are ignored
311 //
312 if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {
313 return EFI_SUCCESS;
314 }
315
316 if (!mSmmMpSyncData->CpuData[CpuIndex].Present) {
317 return EFI_INVALID_PARAMETER;
318 }
319
320 Status = SmmCpuFeaturesWriteSaveStateRegister (CpuIndex, Register, Width, Buffer);
321 if (Status == EFI_UNSUPPORTED) {
322 Status = WriteSaveStateRegister (CpuIndex, Register, Width, Buffer);
323 }
324 return Status;
325 }
326
327
328 /**
329 C function for SMI handler. To change all processor's SMMBase Register.
330
331 **/
332 VOID
333 EFIAPI
334 SmmInitHandler (
335 VOID
336 )
337 {
338 UINT32 ApicId;
339 UINTN Index;
340
341 //
342 // Update SMM IDT entries' code segment and load IDT
343 //
344 AsmWriteIdtr (&gcSmiIdtr);
345 ApicId = GetApicId ();
346
347 ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
348
349 for (Index = 0; Index < mNumberOfCpus; Index++) {
350 if (ApicId == (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {
351 //
352 // Initialize SMM specific features on the currently executing CPU
353 //
354 SmmCpuFeaturesInitializeProcessor (
355 Index,
356 mIsBsp,
357 gSmmCpuPrivate->ProcessorInfo,
358 &mCpuHotPlugData
359 );
360
361 if (!mSmmS3Flag) {
362 //
363 // Check XD and BTS features on each processor on normal boot
364 //
365 CheckFeatureSupported ();
366 }
367
368 if (mIsBsp) {
369 //
370 // BSP rebase is already done above.
371 // Initialize private data during S3 resume
372 //
373 InitializeMpSyncData ();
374 }
375
376 //
377 // Hook return after RSM to set SMM re-based flag
378 //
379 SemaphoreHook (Index, &mRebased[Index]);
380
381 return;
382 }
383 }
384 ASSERT (FALSE);
385 }
386
387 /**
388 Relocate SmmBases for each processor.
389
390 Execute on first boot and all S3 resumes
391
392 **/
393 VOID
394 EFIAPI
395 SmmRelocateBases (
396 VOID
397 )
398 {
399 UINT8 BakBuf[BACK_BUF_SIZE];
400 SMRAM_SAVE_STATE_MAP BakBuf2;
401 SMRAM_SAVE_STATE_MAP *CpuStatePtr;
402 UINT8 *U8Ptr;
403 UINT32 ApicId;
404 UINTN Index;
405 UINTN BspIndex;
406
407 //
408 // Make sure the reserved size is large enough for procedure SmmInitTemplate.
409 //
410 ASSERT (sizeof (BakBuf) >= gcSmmInitSize);
411
412 //
413 // Patch ASM code template with current CR0, CR3, and CR4 values
414 //
415 gSmmCr0 = (UINT32)AsmReadCr0 ();
416 gSmmCr3 = (UINT32)AsmReadCr3 ();
417 gSmmCr4 = (UINT32)AsmReadCr4 ();
418
419 //
420 // Patch GDTR for SMM base relocation
421 //
422 gcSmiInitGdtr.Base = gcSmiGdtr.Base;
423 gcSmiInitGdtr.Limit = gcSmiGdtr.Limit;
424
425 U8Ptr = (UINT8*)(UINTN)(SMM_DEFAULT_SMBASE + SMM_HANDLER_OFFSET);
426 CpuStatePtr = (SMRAM_SAVE_STATE_MAP *)(UINTN)(SMM_DEFAULT_SMBASE + SMRAM_SAVE_STATE_MAP_OFFSET);
427
428 //
429 // Backup original contents at address 0x38000
430 //
431 CopyMem (BakBuf, U8Ptr, sizeof (BakBuf));
432 CopyMem (&BakBuf2, CpuStatePtr, sizeof (BakBuf2));
433
434 //
435 // Load image for relocation
436 //
437 CopyMem (U8Ptr, gcSmmInitTemplate, gcSmmInitSize);
438
439 //
440 // Retrieve the local APIC ID of current processor
441 //
442 ApicId = GetApicId ();
443
444 //
445 // Relocate SM bases for all APs
446 // This is APs' 1st SMI - rebase will be done here, and APs' default SMI handler will be overridden by gcSmmInitTemplate
447 //
448 mIsBsp = FALSE;
449 BspIndex = (UINTN)-1;
450 for (Index = 0; Index < mNumberOfCpus; Index++) {
451 mRebased[Index] = FALSE;
452 if (ApicId != (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {
453 SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);
454 //
455 // Wait for this AP to finish its 1st SMI
456 //
457 while (!mRebased[Index]);
458 } else {
459 //
460 // BSP will be Relocated later
461 //
462 BspIndex = Index;
463 }
464 }
465
466 //
467 // Relocate BSP's SMM base
468 //
469 ASSERT (BspIndex != (UINTN)-1);
470 mIsBsp = TRUE;
471 SendSmiIpi (ApicId);
472 //
473 // Wait for the BSP to finish its 1st SMI
474 //
475 while (!mRebased[BspIndex]);
476
477 //
478 // Restore contents at address 0x38000
479 //
480 CopyMem (CpuStatePtr, &BakBuf2, sizeof (BakBuf2));
481 CopyMem (U8Ptr, BakBuf, sizeof (BakBuf));
482 }
483
484 /**
485 SMM Ready To Lock event notification handler.
486
487 The CPU S3 data is copied to SMRAM for security and mSmmReadyToLock is set to
488 perform additional lock actions that must be performed from SMM on the next SMI.
489
490 @param[in] Protocol Points to the protocol's unique identifier.
491 @param[in] Interface Points to the interface instance.
492 @param[in] Handle The handle on which the interface was installed.
493
494 @retval EFI_SUCCESS Notification handler runs successfully.
495 **/
496 EFI_STATUS
497 EFIAPI
498 SmmReadyToLockEventNotify (
499 IN CONST EFI_GUID *Protocol,
500 IN VOID *Interface,
501 IN EFI_HANDLE Handle
502 )
503 {
504 GetAcpiCpuData ();
505
506 //
507 // Set SMM ready to lock flag and return
508 //
509 mSmmReadyToLock = TRUE;
510 return EFI_SUCCESS;
511 }
512
513 /**
514 The module Entry Point of the CPU SMM driver.
515
516 @param ImageHandle The firmware allocated handle for the EFI image.
517 @param SystemTable A pointer to the EFI System Table.
518
519 @retval EFI_SUCCESS The entry point is executed successfully.
520 @retval Other Some error occurs when executing this entry point.
521
522 **/
523 EFI_STATUS
524 EFIAPI
525 PiCpuSmmEntry (
526 IN EFI_HANDLE ImageHandle,
527 IN EFI_SYSTEM_TABLE *SystemTable
528 )
529 {
530 EFI_STATUS Status;
531 EFI_MP_SERVICES_PROTOCOL *MpServices;
532 UINTN NumberOfEnabledProcessors;
533 UINTN Index;
534 VOID *Buffer;
535 UINTN BufferPages;
536 UINTN TileCodeSize;
537 UINTN TileDataSize;
538 UINTN TileSize;
539 UINT8 *Stacks;
540 VOID *Registration;
541 UINT32 RegEax;
542 UINT32 RegEdx;
543 UINTN FamilyId;
544 UINTN ModelId;
545 UINT32 Cr3;
546
547 //
548 // Initialize Debug Agent to support source level debug in SMM code
549 //
550 InitializeDebugAgent (DEBUG_AGENT_INIT_SMM, NULL, NULL);
551
552 //
553 // Report the start of CPU SMM initialization.
554 //
555 REPORT_STATUS_CODE (
556 EFI_PROGRESS_CODE,
557 EFI_COMPUTING_UNIT_HOST_PROCESSOR | EFI_CU_HP_PC_SMM_INIT
558 );
559
560 //
561 // Fix segment address of the long-mode-switch jump
562 //
563 if (sizeof (UINTN) == sizeof (UINT64)) {
564 gSmmJmpAddr.Segment = LONG_MODE_CODE_SEGMENT;
565 }
566
567 //
568 // Find out SMRR Base and SMRR Size
569 //
570 FindSmramInfo (&mCpuHotPlugData.SmrrBase, &mCpuHotPlugData.SmrrSize);
571
572 //
573 // Get MP Services Protocol
574 //
575 Status = SystemTable->BootServices->LocateProtocol (&gEfiMpServiceProtocolGuid, NULL, (VOID **)&MpServices);
576 ASSERT_EFI_ERROR (Status);
577
578 //
579 // Use MP Services Protocol to retrieve the number of processors and number of enabled processors
580 //
581 Status = MpServices->GetNumberOfProcessors (MpServices, &mNumberOfCpus, &NumberOfEnabledProcessors);
582 ASSERT_EFI_ERROR (Status);
583 ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
584
585 //
586 // If support CPU hot plug, PcdCpuSmmEnableBspElection should be set to TRUE.
587 // A constant BSP index makes no sense because it may be hot removed.
588 //
589 DEBUG_CODE (
590 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
591
592 ASSERT (FeaturePcdGet (PcdCpuSmmEnableBspElection));
593 }
594 );
595
596 //
597 // Save the PcdCpuSmmCodeAccessCheckEnable value into a global variable.
598 //
599 mSmmCodeAccessCheckEnable = PcdGetBool (PcdCpuSmmCodeAccessCheckEnable);
600 DEBUG ((EFI_D_INFO, "PcdCpuSmmCodeAccessCheckEnable = %d\n", mSmmCodeAccessCheckEnable));
601
602 //
603 // If support CPU hot plug, we need to allocate resources for possibly hot-added processors
604 //
605 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
606 mMaxNumberOfCpus = PcdGet32 (PcdCpuMaxLogicalProcessorNumber);
607 } else {
608 mMaxNumberOfCpus = mNumberOfCpus;
609 }
610 gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus = mMaxNumberOfCpus;
611
612 //
613 // The CPU save state and code for the SMI entry point are tiled within an SMRAM
614 // allocated buffer. The minimum size of this buffer for a uniprocessor system
615 // is 32 KB, because the entry point is SMBASE + 32KB, and CPU save state area
616 // just below SMBASE + 64KB. If more than one CPU is present in the platform,
617 // then the SMI entry point and the CPU save state areas can be tiles to minimize
618 // the total amount SMRAM required for all the CPUs. The tile size can be computed
619 // by adding the // CPU save state size, any extra CPU specific context, and
620 // the size of code that must be placed at the SMI entry point to transfer
621 // control to a C function in the native SMM execution mode. This size is
622 // rounded up to the nearest power of 2 to give the tile size for a each CPU.
623 // The total amount of memory required is the maximum number of CPUs that
624 // platform supports times the tile size. The picture below shows the tiling,
625 // where m is the number of tiles that fit in 32KB.
626 //
627 // +-----------------------------+ <-- 2^n offset from Base of allocated buffer
628 // | CPU m+1 Save State |
629 // +-----------------------------+
630 // | CPU m+1 Extra Data |
631 // +-----------------------------+
632 // | Padding |
633 // +-----------------------------+
634 // | CPU 2m SMI Entry |
635 // +#############################+ <-- Base of allocated buffer + 64 KB
636 // | CPU m-1 Save State |
637 // +-----------------------------+
638 // | CPU m-1 Extra Data |
639 // +-----------------------------+
640 // | Padding |
641 // +-----------------------------+
642 // | CPU 2m-1 SMI Entry |
643 // +=============================+ <-- 2^n offset from Base of allocated buffer
644 // | . . . . . . . . . . . . |
645 // +=============================+ <-- 2^n offset from Base of allocated buffer
646 // | CPU 2 Save State |
647 // +-----------------------------+
648 // | CPU 2 Extra Data |
649 // +-----------------------------+
650 // | Padding |
651 // +-----------------------------+
652 // | CPU m+1 SMI Entry |
653 // +=============================+ <-- Base of allocated buffer + 32 KB
654 // | CPU 1 Save State |
655 // +-----------------------------+
656 // | CPU 1 Extra Data |
657 // +-----------------------------+
658 // | Padding |
659 // +-----------------------------+
660 // | CPU m SMI Entry |
661 // +#############################+ <-- Base of allocated buffer + 32 KB == CPU 0 SMBASE + 64 KB
662 // | CPU 0 Save State |
663 // +-----------------------------+
664 // | CPU 0 Extra Data |
665 // +-----------------------------+
666 // | Padding |
667 // +-----------------------------+
668 // | CPU m-1 SMI Entry |
669 // +=============================+ <-- 2^n offset from Base of allocated buffer
670 // | . . . . . . . . . . . . |
671 // +=============================+ <-- 2^n offset from Base of allocated buffer
672 // | Padding |
673 // +-----------------------------+
674 // | CPU 1 SMI Entry |
675 // +=============================+ <-- 2^n offset from Base of allocated buffer
676 // | Padding |
677 // +-----------------------------+
678 // | CPU 0 SMI Entry |
679 // +#############################+ <-- Base of allocated buffer == CPU 0 SMBASE + 32 KB
680 //
681
682 //
683 // Retrieve CPU Family
684 //
685 AsmCpuid (CPUID_VERSION_INFO, &RegEax, NULL, NULL, NULL);
686 FamilyId = (RegEax >> 8) & 0xf;
687 ModelId = (RegEax >> 4) & 0xf;
688 if (FamilyId == 0x06 || FamilyId == 0x0f) {
689 ModelId = ModelId | ((RegEax >> 12) & 0xf0);
690 }
691
692 RegEdx = 0;
693 AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);
694 if (RegEax >= CPUID_EXTENDED_CPU_SIG) {
695 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &RegEdx);
696 }
697 //
698 // Determine the mode of the CPU at the time an SMI occurs
699 // Intel(R) 64 and IA-32 Architectures Software Developer's Manual
700 // Volume 3C, Section 34.4.1.1
701 //
702 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT;
703 if ((RegEdx & BIT29) != 0) {
704 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;
705 }
706 if (FamilyId == 0x06) {
707 if (ModelId == 0x17 || ModelId == 0x0f || ModelId == 0x1c) {
708 mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;
709 }
710 }
711
712 //
713 // Compute tile size of buffer required to hold the CPU SMRAM Save State Map, extra CPU
714 // specific context in a PROCESSOR_SMM_DESCRIPTOR, and the SMI entry point. This size
715 // is rounded up to nearest power of 2.
716 //
717 TileCodeSize = GetSmiHandlerSize ();
718 TileCodeSize = ALIGN_VALUE(TileCodeSize, SIZE_4KB);
719 TileDataSize = sizeof (SMRAM_SAVE_STATE_MAP) + sizeof (PROCESSOR_SMM_DESCRIPTOR);
720 TileDataSize = ALIGN_VALUE(TileDataSize, SIZE_4KB);
721 TileSize = TileDataSize + TileCodeSize - 1;
722 TileSize = 2 * GetPowerOfTwo32 ((UINT32)TileSize);
723 DEBUG ((EFI_D_INFO, "SMRAM TileSize = 0x%08x (0x%08x, 0x%08x)\n", TileSize, TileCodeSize, TileDataSize));
724
725 //
726 // If the TileSize is larger than space available for the SMI Handler of CPU[i],
727 // the PROCESSOR_SMM_DESCRIPTOR of CPU[i+1] and the SMRAM Save State Map of CPU[i+1],
728 // the ASSERT(). If this ASSERT() is triggered, then the SMI Handler size must be
729 // reduced.
730 //
731 ASSERT (TileSize <= (SMRAM_SAVE_STATE_MAP_OFFSET + sizeof (SMRAM_SAVE_STATE_MAP) - SMM_HANDLER_OFFSET));
732
733 //
734 // Allocate buffer for all of the tiles.
735 //
736 // Intel(R) 64 and IA-32 Architectures Software Developer's Manual
737 // Volume 3C, Section 34.11 SMBASE Relocation
738 // For Pentium and Intel486 processors, the SMBASE values must be
739 // aligned on a 32-KByte boundary or the processor will enter shutdown
740 // state during the execution of a RSM instruction.
741 //
742 // Intel486 processors: FamilyId is 4
743 // Pentium processors : FamilyId is 5
744 //
745 BufferPages = EFI_SIZE_TO_PAGES (SIZE_32KB + TileSize * (mMaxNumberOfCpus - 1));
746 if ((FamilyId == 4) || (FamilyId == 5)) {
747 Buffer = AllocateAlignedCodePages (BufferPages, SIZE_32KB);
748 } else {
749 Buffer = AllocateAlignedCodePages (BufferPages, SIZE_4KB);
750 }
751 ASSERT (Buffer != NULL);
752 DEBUG ((EFI_D_INFO, "SMRAM SaveState Buffer (0x%08x, 0x%08x)\n", Buffer, EFI_PAGES_TO_SIZE(BufferPages)));
753
754 //
755 // Allocate buffer for pointers to array in SMM_CPU_PRIVATE_DATA.
756 //
757 gSmmCpuPrivate->ProcessorInfo = (EFI_PROCESSOR_INFORMATION *)AllocatePool (sizeof (EFI_PROCESSOR_INFORMATION) * mMaxNumberOfCpus);
758 ASSERT (gSmmCpuPrivate->ProcessorInfo != NULL);
759
760 gSmmCpuPrivate->Operation = (SMM_CPU_OPERATION *)AllocatePool (sizeof (SMM_CPU_OPERATION) * mMaxNumberOfCpus);
761 ASSERT (gSmmCpuPrivate->Operation != NULL);
762
763 gSmmCpuPrivate->CpuSaveStateSize = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);
764 ASSERT (gSmmCpuPrivate->CpuSaveStateSize != NULL);
765
766 gSmmCpuPrivate->CpuSaveState = (VOID **)AllocatePool (sizeof (VOID *) * mMaxNumberOfCpus);
767 ASSERT (gSmmCpuPrivate->CpuSaveState != NULL);
768
769 mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveStateSize = gSmmCpuPrivate->CpuSaveStateSize;
770 mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveState = gSmmCpuPrivate->CpuSaveState;
771
772 //
773 // Allocate buffer for pointers to array in CPU_HOT_PLUG_DATA.
774 //
775 mCpuHotPlugData.ApicId = (UINT64 *)AllocatePool (sizeof (UINT64) * mMaxNumberOfCpus);
776 ASSERT (mCpuHotPlugData.ApicId != NULL);
777 mCpuHotPlugData.SmBase = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);
778 ASSERT (mCpuHotPlugData.SmBase != NULL);
779 mCpuHotPlugData.ArrayLength = (UINT32)mMaxNumberOfCpus;
780
781 //
782 // Retrieve APIC ID of each enabled processor from the MP Services protocol.
783 // Also compute the SMBASE address, CPU Save State address, and CPU Save state
784 // size for each CPU in the platform
785 //
786 for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
787 mCpuHotPlugData.SmBase[Index] = (UINTN)Buffer + Index * TileSize - SMM_HANDLER_OFFSET;
788 gSmmCpuPrivate->CpuSaveStateSize[Index] = sizeof(SMRAM_SAVE_STATE_MAP);
789 gSmmCpuPrivate->CpuSaveState[Index] = (VOID *)(mCpuHotPlugData.SmBase[Index] + SMRAM_SAVE_STATE_MAP_OFFSET);
790 gSmmCpuPrivate->Operation[Index] = SmmCpuNone;
791
792 if (Index < mNumberOfCpus) {
793 Status = MpServices->GetProcessorInfo (MpServices, Index, &gSmmCpuPrivate->ProcessorInfo[Index]);
794 ASSERT_EFI_ERROR (Status);
795 mCpuHotPlugData.ApicId[Index] = gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId;
796
797 DEBUG ((EFI_D_INFO, "CPU[%03x] APIC ID=%04x SMBASE=%08x SaveState=%08x Size=%08x\n",
798 Index,
799 (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId,
800 mCpuHotPlugData.SmBase[Index],
801 gSmmCpuPrivate->CpuSaveState[Index],
802 gSmmCpuPrivate->CpuSaveStateSize[Index]
803 ));
804 } else {
805 gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId = INVALID_APIC_ID;
806 mCpuHotPlugData.ApicId[Index] = INVALID_APIC_ID;
807 }
808 }
809
810 //
811 // Allocate SMI stacks for all processors.
812 //
813 if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
814 //
815 // 2 more pages is allocated for each processor.
816 // one is guard page and the other is known good stack.
817 //
818 // +-------------------------------------------+-----+-------------------------------------------+
819 // | Known Good Stack | Guard Page | SMM Stack | ... | Known Good Stack | Guard Page | SMM Stack |
820 // +-------------------------------------------+-----+-------------------------------------------+
821 // | | | |
822 // |<-------------- Processor 0 -------------->| |<-------------- Processor n -------------->|
823 //
824 mSmmStackSize = EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStackSize)) + 2);
825 Stacks = (UINT8 *) AllocatePages (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStackSize)) + 2));
826 ASSERT (Stacks != NULL);
827 mSmmStackArrayBase = (UINTN)Stacks;
828 mSmmStackArrayEnd = mSmmStackArrayBase + gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * mSmmStackSize - 1;
829 } else {
830 mSmmStackSize = PcdGet32 (PcdCpuSmmStackSize);
831 Stacks = (UINT8 *) AllocatePages (EFI_SIZE_TO_PAGES (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * mSmmStackSize));
832 ASSERT (Stacks != NULL);
833 }
834
835 //
836 // Set SMI stack for SMM base relocation
837 //
838 gSmmInitStack = (UINTN) (Stacks + mSmmStackSize - sizeof (UINTN));
839
840 //
841 // Initialize IDT
842 //
843 InitializeSmmIdt ();
844
845 //
846 // Relocate SMM Base addresses to the ones allocated from SMRAM
847 //
848 mRebased = (BOOLEAN *)AllocateZeroPool (sizeof (BOOLEAN) * mMaxNumberOfCpus);
849 ASSERT (mRebased != NULL);
850 SmmRelocateBases ();
851
852 //
853 // Call hook for BSP to perform extra actions in normal mode after all
854 // SMM base addresses have been relocated on all CPUs
855 //
856 SmmCpuFeaturesSmmRelocationComplete ();
857
858 DEBUG ((DEBUG_INFO, "mXdSupported - 0x%x\n", mXdSupported));
859
860 //
861 // SMM Time initialization
862 //
863 InitializeSmmTimer ();
864
865 //
866 // Initialize MP globals
867 //
868 Cr3 = InitializeMpServiceData (Stacks, mSmmStackSize);
869
870 //
871 // Fill in SMM Reserved Regions
872 //
873 gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedStart = 0;
874 gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedSize = 0;
875
876 //
877 // Install the SMM Configuration Protocol onto a new handle on the handle database.
878 // The entire SMM Configuration Protocol is allocated from SMRAM, so only a pointer
879 // to an SMRAM address will be present in the handle database
880 //
881 Status = SystemTable->BootServices->InstallMultipleProtocolInterfaces (
882 &gSmmCpuPrivate->SmmCpuHandle,
883 &gEfiSmmConfigurationProtocolGuid, &gSmmCpuPrivate->SmmConfiguration,
884 NULL
885 );
886 ASSERT_EFI_ERROR (Status);
887
888 //
889 // Install the SMM CPU Protocol into SMM protocol database
890 //
891 Status = gSmst->SmmInstallProtocolInterface (
892 &mSmmCpuHandle,
893 &gEfiSmmCpuProtocolGuid,
894 EFI_NATIVE_INTERFACE,
895 &mSmmCpu
896 );
897 ASSERT_EFI_ERROR (Status);
898
899 //
900 // Expose address of CPU Hot Plug Data structure if CPU hot plug is supported.
901 //
902 if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
903 Status = PcdSet64S (PcdCpuHotPlugDataAddress, (UINT64)(UINTN)&mCpuHotPlugData);
904 ASSERT_EFI_ERROR (Status);
905 }
906
907 //
908 // Initialize SMM CPU Services Support
909 //
910 Status = InitializeSmmCpuServices (mSmmCpuHandle);
911 ASSERT_EFI_ERROR (Status);
912
913 //
914 // register SMM Ready To Lock Protocol notification
915 //
916 Status = gSmst->SmmRegisterProtocolNotify (
917 &gEfiSmmReadyToLockProtocolGuid,
918 SmmReadyToLockEventNotify,
919 &Registration
920 );
921 ASSERT_EFI_ERROR (Status);
922
923 //
924 // Initialize SMM Profile feature
925 //
926 InitSmmProfile (Cr3);
927
928 GetAcpiS3EnableFlag ();
929 InitSmmS3ResumeState (Cr3);
930
931 DEBUG ((EFI_D_INFO, "SMM CPU Module exit from SMRAM with EFI_SUCCESS\n"));
932
933 return EFI_SUCCESS;
934 }
935
936 /**
937
938 Find out SMRAM information including SMRR base and SMRR size.
939
940 @param SmrrBase SMRR base
941 @param SmrrSize SMRR size
942
943 **/
944 VOID
945 FindSmramInfo (
946 OUT UINT32 *SmrrBase,
947 OUT UINT32 *SmrrSize
948 )
949 {
950 EFI_STATUS Status;
951 UINTN Size;
952 EFI_SMM_ACCESS2_PROTOCOL *SmmAccess;
953 EFI_SMRAM_DESCRIPTOR *CurrentSmramRange;
954 EFI_SMRAM_DESCRIPTOR *SmramRanges;
955 UINTN SmramRangeCount;
956 UINTN Index;
957 UINT64 MaxSize;
958 BOOLEAN Found;
959
960 //
961 // Get SMM Access Protocol
962 //
963 Status = gBS->LocateProtocol (&gEfiSmmAccess2ProtocolGuid, NULL, (VOID **)&SmmAccess);
964 ASSERT_EFI_ERROR (Status);
965
966 //
967 // Get SMRAM information
968 //
969 Size = 0;
970 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, NULL);
971 ASSERT (Status == EFI_BUFFER_TOO_SMALL);
972
973 SmramRanges = (EFI_SMRAM_DESCRIPTOR *)AllocatePool (Size);
974 ASSERT (SmramRanges != NULL);
975
976 Status = SmmAccess->GetCapabilities (SmmAccess, &Size, SmramRanges);
977 ASSERT_EFI_ERROR (Status);
978
979 SmramRangeCount = Size / sizeof (EFI_SMRAM_DESCRIPTOR);
980
981 //
982 // Find the largest SMRAM range between 1MB and 4GB that is at least 256K - 4K in size
983 //
984 CurrentSmramRange = NULL;
985 for (Index = 0, MaxSize = SIZE_256KB - EFI_PAGE_SIZE; Index < SmramRangeCount; Index++) {
986 //
987 // Skip any SMRAM region that is already allocated, needs testing, or needs ECC initialization
988 //
989 if ((SmramRanges[Index].RegionState & (EFI_ALLOCATED | EFI_NEEDS_TESTING | EFI_NEEDS_ECC_INITIALIZATION)) != 0) {
990 continue;
991 }
992
993 if (SmramRanges[Index].CpuStart >= BASE_1MB) {
994 if ((SmramRanges[Index].CpuStart + SmramRanges[Index].PhysicalSize) <= BASE_4GB) {
995 if (SmramRanges[Index].PhysicalSize >= MaxSize) {
996 MaxSize = SmramRanges[Index].PhysicalSize;
997 CurrentSmramRange = &SmramRanges[Index];
998 }
999 }
1000 }
1001 }
1002
1003 ASSERT (CurrentSmramRange != NULL);
1004
1005 *SmrrBase = (UINT32)CurrentSmramRange->CpuStart;
1006 *SmrrSize = (UINT32)CurrentSmramRange->PhysicalSize;
1007
1008 do {
1009 Found = FALSE;
1010 for (Index = 0; Index < SmramRangeCount; Index++) {
1011 if (SmramRanges[Index].CpuStart < *SmrrBase && *SmrrBase == (SmramRanges[Index].CpuStart + SmramRanges[Index].PhysicalSize)) {
1012 *SmrrBase = (UINT32)SmramRanges[Index].CpuStart;
1013 *SmrrSize = (UINT32)(*SmrrSize + SmramRanges[Index].PhysicalSize);
1014 Found = TRUE;
1015 } else if ((*SmrrBase + *SmrrSize) == SmramRanges[Index].CpuStart && SmramRanges[Index].PhysicalSize > 0) {
1016 *SmrrSize = (UINT32)(*SmrrSize + SmramRanges[Index].PhysicalSize);
1017 Found = TRUE;
1018 }
1019 }
1020 } while (Found);
1021
1022 FreePool (SmramRanges);
1023 DEBUG ((EFI_D_INFO, "SMRR Base: 0x%x, SMRR Size: 0x%x\n", *SmrrBase, *SmrrSize));
1024 }
1025
1026 /**
1027 Configure SMM Code Access Check feature on an AP.
1028 SMM Feature Control MSR will be locked after configuration.
1029
1030 @param[in,out] Buffer Pointer to private data buffer.
1031 **/
1032 VOID
1033 EFIAPI
1034 ConfigSmmCodeAccessCheckOnCurrentProcessor (
1035 IN OUT VOID *Buffer
1036 )
1037 {
1038 UINTN CpuIndex;
1039 UINT64 SmmFeatureControlMsr;
1040 UINT64 NewSmmFeatureControlMsr;
1041
1042 //
1043 // Retrieve the CPU Index from the context passed in
1044 //
1045 CpuIndex = *(UINTN *)Buffer;
1046
1047 //
1048 // Get the current SMM Feature Control MSR value
1049 //
1050 SmmFeatureControlMsr = SmmCpuFeaturesGetSmmRegister (CpuIndex, SmmRegFeatureControl);
1051
1052 //
1053 // Compute the new SMM Feature Control MSR value
1054 //
1055 NewSmmFeatureControlMsr = SmmFeatureControlMsr;
1056 if (mSmmCodeAccessCheckEnable) {
1057 NewSmmFeatureControlMsr |= SMM_CODE_CHK_EN_BIT;
1058 if (FeaturePcdGet (PcdCpuSmmFeatureControlMsrLock)) {
1059 NewSmmFeatureControlMsr |= SMM_FEATURE_CONTROL_LOCK_BIT;
1060 }
1061 }
1062
1063 //
1064 // Only set the SMM Feature Control MSR value if the new value is different than the current value
1065 //
1066 if (NewSmmFeatureControlMsr != SmmFeatureControlMsr) {
1067 SmmCpuFeaturesSetSmmRegister (CpuIndex, SmmRegFeatureControl, NewSmmFeatureControlMsr);
1068 }
1069
1070 //
1071 // Release the spin lock user to serialize the updates to the SMM Feature Control MSR
1072 //
1073 ReleaseSpinLock (mConfigSmmCodeAccessCheckLock);
1074 }
1075
1076 /**
1077 Configure SMM Code Access Check feature for all processors.
1078 SMM Feature Control MSR will be locked after configuration.
1079 **/
1080 VOID
1081 ConfigSmmCodeAccessCheck (
1082 VOID
1083 )
1084 {
1085 UINTN Index;
1086 EFI_STATUS Status;
1087
1088 //
1089 // Check to see if the Feature Control MSR is supported on this CPU
1090 //
1091 Index = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;
1092 if (!SmmCpuFeaturesIsSmmRegisterSupported (Index, SmmRegFeatureControl)) {
1093 mSmmCodeAccessCheckEnable = FALSE;
1094 return;
1095 }
1096
1097 //
1098 // Check to see if the CPU supports the SMM Code Access Check feature
1099 // Do not access this MSR unless the CPU supports the SmmRegFeatureControl
1100 //
1101 if ((AsmReadMsr64 (EFI_MSR_SMM_MCA_CAP) & SMM_CODE_ACCESS_CHK_BIT) == 0) {
1102 mSmmCodeAccessCheckEnable = FALSE;
1103 return;
1104 }
1105
1106 //
1107 // Initialize the lock used to serialize the MSR programming in BSP and all APs
1108 //
1109 InitializeSpinLock (mConfigSmmCodeAccessCheckLock);
1110
1111 //
1112 // Acquire Config SMM Code Access Check spin lock. The BSP will release the
1113 // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().
1114 //
1115 AcquireSpinLock (mConfigSmmCodeAccessCheckLock);
1116
1117 //
1118 // Enable SMM Code Access Check feature on the BSP.
1119 //
1120 ConfigSmmCodeAccessCheckOnCurrentProcessor (&Index);
1121
1122 //
1123 // Enable SMM Code Access Check feature for the APs.
1124 //
1125 for (Index = 0; Index < gSmst->NumberOfCpus; Index++) {
1126 if (Index != gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) {
1127
1128 //
1129 // Acquire Config SMM Code Access Check spin lock. The AP will release the
1130 // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().
1131 //
1132 AcquireSpinLock (mConfigSmmCodeAccessCheckLock);
1133
1134 //
1135 // Call SmmStartupThisAp() to enable SMM Code Access Check on an AP.
1136 //
1137 Status = gSmst->SmmStartupThisAp (ConfigSmmCodeAccessCheckOnCurrentProcessor, Index, &Index);
1138 ASSERT_EFI_ERROR (Status);
1139
1140 //
1141 // Wait for the AP to release the Config SMM Code Access Check spin lock.
1142 //
1143 while (!AcquireSpinLockOrFail (mConfigSmmCodeAccessCheckLock)) {
1144 CpuPause ();
1145 }
1146
1147 //
1148 // Release the Config SMM Code Access Check spin lock.
1149 //
1150 ReleaseSpinLock (mConfigSmmCodeAccessCheckLock);
1151 }
1152 }
1153 }
1154
1155 /**
1156 Set code region to be read only and data region to be execute disable.
1157 **/
1158 VOID
1159 SetRegionAttributes (
1160 VOID
1161 )
1162 {
1163 SetMemMapAttributes ();
1164 }
1165
1166 /**
1167 This API provides a way to allocate memory for page table.
1168
1169 This API can be called more once to allocate memory for page tables.
1170
1171 Allocates the number of 4KB pages of type EfiRuntimeServicesData and returns a pointer to the
1172 allocated buffer. The buffer returned is aligned on a 4KB boundary. If Pages is 0, then NULL
1173 is returned. If there is not enough memory remaining to satisfy the request, then NULL is
1174 returned.
1175
1176 @param Pages The number of 4 KB pages to allocate.
1177
1178 @return A pointer to the allocated buffer or NULL if allocation fails.
1179
1180 **/
1181 VOID *
1182 AllocatePageTableMemory (
1183 IN UINTN Pages
1184 )
1185 {
1186 VOID *Buffer;
1187
1188 Buffer = SmmCpuFeaturesAllocatePageTableMemory (Pages);
1189 if (Buffer != NULL) {
1190 return Buffer;
1191 }
1192 return AllocatePages (Pages);
1193 }
1194
1195 /**
1196 Allocate pages for code.
1197
1198 @param[in] Pages Number of pages to be allocated.
1199
1200 @return Allocated memory.
1201 **/
1202 VOID *
1203 AllocateCodePages (
1204 IN UINTN Pages
1205 )
1206 {
1207 EFI_STATUS Status;
1208 EFI_PHYSICAL_ADDRESS Memory;
1209
1210 if (Pages == 0) {
1211 return NULL;
1212 }
1213
1214 Status = gSmst->SmmAllocatePages (AllocateAnyPages, EfiRuntimeServicesCode, Pages, &Memory);
1215 if (EFI_ERROR (Status)) {
1216 return NULL;
1217 }
1218 return (VOID *) (UINTN) Memory;
1219 }
1220
1221 /**
1222 Allocate aligned pages for code.
1223
1224 @param[in] Pages Number of pages to be allocated.
1225 @param[in] Alignment The requested alignment of the allocation.
1226 Must be a power of two.
1227 If Alignment is zero, then byte alignment is used.
1228
1229 @return Allocated memory.
1230 **/
1231 VOID *
1232 AllocateAlignedCodePages (
1233 IN UINTN Pages,
1234 IN UINTN Alignment
1235 )
1236 {
1237 EFI_STATUS Status;
1238 EFI_PHYSICAL_ADDRESS Memory;
1239 UINTN AlignedMemory;
1240 UINTN AlignmentMask;
1241 UINTN UnalignedPages;
1242 UINTN RealPages;
1243
1244 //
1245 // Alignment must be a power of two or zero.
1246 //
1247 ASSERT ((Alignment & (Alignment - 1)) == 0);
1248
1249 if (Pages == 0) {
1250 return NULL;
1251 }
1252 if (Alignment > EFI_PAGE_SIZE) {
1253 //
1254 // Calculate the total number of pages since alignment is larger than page size.
1255 //
1256 AlignmentMask = Alignment - 1;
1257 RealPages = Pages + EFI_SIZE_TO_PAGES (Alignment);
1258 //
1259 // Make sure that Pages plus EFI_SIZE_TO_PAGES (Alignment) does not overflow.
1260 //
1261 ASSERT (RealPages > Pages);
1262
1263 Status = gSmst->SmmAllocatePages (AllocateAnyPages, EfiRuntimeServicesCode, RealPages, &Memory);
1264 if (EFI_ERROR (Status)) {
1265 return NULL;
1266 }
1267 AlignedMemory = ((UINTN) Memory + AlignmentMask) & ~AlignmentMask;
1268 UnalignedPages = EFI_SIZE_TO_PAGES (AlignedMemory - (UINTN) Memory);
1269 if (UnalignedPages > 0) {
1270 //
1271 // Free first unaligned page(s).
1272 //
1273 Status = gSmst->SmmFreePages (Memory, UnalignedPages);
1274 ASSERT_EFI_ERROR (Status);
1275 }
1276 Memory = (EFI_PHYSICAL_ADDRESS) (AlignedMemory + EFI_PAGES_TO_SIZE (Pages));
1277 UnalignedPages = RealPages - Pages - UnalignedPages;
1278 if (UnalignedPages > 0) {
1279 //
1280 // Free last unaligned page(s).
1281 //
1282 Status = gSmst->SmmFreePages (Memory, UnalignedPages);
1283 ASSERT_EFI_ERROR (Status);
1284 }
1285 } else {
1286 //
1287 // Do not over-allocate pages in this case.
1288 //
1289 Status = gSmst->SmmAllocatePages (AllocateAnyPages, EfiRuntimeServicesCode, Pages, &Memory);
1290 if (EFI_ERROR (Status)) {
1291 return NULL;
1292 }
1293 AlignedMemory = (UINTN) Memory;
1294 }
1295 return (VOID *) AlignedMemory;
1296 }
1297
1298 /**
1299 Perform the remaining tasks.
1300
1301 **/
1302 VOID
1303 PerformRemainingTasks (
1304 VOID
1305 )
1306 {
1307 if (mSmmReadyToLock) {
1308 //
1309 // Start SMM Profile feature
1310 //
1311 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
1312 SmmProfileStart ();
1313 }
1314 //
1315 // Create a mix of 2MB and 4KB page table. Update some memory ranges absent and execute-disable.
1316 //
1317 InitPaging ();
1318
1319 //
1320 // Mark critical region to be read-only in page table
1321 //
1322 SetRegionAttributes ();
1323
1324 //
1325 // Set page table itself to be read-only
1326 //
1327 SetPageTableAttributes ();
1328
1329 //
1330 // Configure SMM Code Access Check feature if available.
1331 //
1332 ConfigSmmCodeAccessCheck ();
1333
1334 SmmCpuFeaturesCompleteSmmReadyToLock ();
1335
1336 //
1337 // Clean SMM ready to lock flag
1338 //
1339 mSmmReadyToLock = FALSE;
1340 }
1341 }
1342
1343 /**
1344 Perform the pre tasks.
1345
1346 **/
1347 VOID
1348 PerformPreTasks (
1349 VOID
1350 )
1351 {
1352 RestoreSmmConfigurationInS3 ();
1353 }