]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/PiSmmCpuDxeSmm/SmmProfile.c
UefiCpuPkg: Change use of EFI_D_* to DEBUG_*
[mirror_edk2.git] / UefiCpuPkg / PiSmmCpuDxeSmm / SmmProfile.c
1 /** @file
2 Enable SMM profile.
3
4 Copyright (c) 2012 - 2019, Intel Corporation. All rights reserved.<BR>
5 Copyright (c) 2017 - 2020, AMD Incorporated. All rights reserved.<BR>
6
7 SPDX-License-Identifier: BSD-2-Clause-Patent
8
9 **/
10
11 #include "PiSmmCpuDxeSmm.h"
12 #include "SmmProfileInternal.h"
13
14 UINT32 mSmmProfileCr3;
15
16 SMM_PROFILE_HEADER *mSmmProfileBase;
17 MSR_DS_AREA_STRUCT *mMsrDsAreaBase;
18 //
19 // The buffer to store SMM profile data.
20 //
21 UINTN mSmmProfileSize;
22
23 //
24 // The buffer to enable branch trace store.
25 //
26 UINTN mMsrDsAreaSize = SMM_PROFILE_DTS_SIZE;
27
28 //
29 // The flag indicates if execute-disable is supported by processor.
30 //
31 BOOLEAN mXdSupported = TRUE;
32
33 //
34 // The flag indicates if execute-disable is enabled on processor.
35 //
36 BOOLEAN mXdEnabled = FALSE;
37
38 //
39 // The flag indicates if BTS is supported by processor.
40 //
41 BOOLEAN mBtsSupported = TRUE;
42
43 //
44 // The flag indicates if SMM profile starts to record data.
45 //
46 BOOLEAN mSmmProfileStart = FALSE;
47
48 //
49 // The flag indicates if #DB will be setup in #PF handler.
50 //
51 BOOLEAN mSetupDebugTrap = FALSE;
52
53 //
54 // Record the page fault exception count for one instruction execution.
55 //
56 UINTN *mPFEntryCount;
57
58 UINT64 (*mLastPFEntryValue)[MAX_PF_ENTRY_COUNT];
59 UINT64 *(*mLastPFEntryPointer)[MAX_PF_ENTRY_COUNT];
60
61 MSR_DS_AREA_STRUCT **mMsrDsArea;
62 BRANCH_TRACE_RECORD **mMsrBTSRecord;
63 UINTN mBTSRecordNumber;
64 PEBS_RECORD **mMsrPEBSRecord;
65
66 //
67 // These memory ranges are always present, they does not generate the access type of page fault exception,
68 // but they possibly generate instruction fetch type of page fault exception.
69 //
70 MEMORY_PROTECTION_RANGE *mProtectionMemRange = NULL;
71 UINTN mProtectionMemRangeCount = 0;
72
73 //
74 // Some predefined memory ranges.
75 //
76 MEMORY_PROTECTION_RANGE mProtectionMemRangeTemplate[] = {
77 //
78 // SMRAM range (to be fixed in runtime).
79 // It is always present and instruction fetches are allowed.
80 //
81 {{0x00000000, 0x00000000},TRUE,FALSE},
82
83 //
84 // SMM profile data range( to be fixed in runtime).
85 // It is always present and instruction fetches are not allowed.
86 //
87 {{0x00000000, 0x00000000},TRUE,TRUE},
88
89 //
90 // SMRAM ranges not covered by mCpuHotPlugData.SmrrBase/mCpuHotPlugData.SmrrSiz (to be fixed in runtime).
91 // It is always present and instruction fetches are allowed.
92 // {{0x00000000, 0x00000000},TRUE,FALSE},
93 //
94
95 //
96 // Future extended range could be added here.
97 //
98
99 //
100 // PCI MMIO ranges (to be added in runtime).
101 // They are always present and instruction fetches are not allowed.
102 //
103 };
104
105 //
106 // These memory ranges are mapped by 4KB-page instead of 2MB-page.
107 //
108 MEMORY_RANGE *mSplitMemRange = NULL;
109 UINTN mSplitMemRangeCount = 0;
110
111 //
112 // SMI command port.
113 //
114 UINT32 mSmiCommandPort;
115
116 /**
117 Disable branch trace store.
118
119 **/
120 VOID
121 DisableBTS (
122 VOID
123 )
124 {
125 AsmMsrAnd64 (MSR_DEBUG_CTL, ~((UINT64)(MSR_DEBUG_CTL_BTS | MSR_DEBUG_CTL_TR)));
126 }
127
128 /**
129 Enable branch trace store.
130
131 **/
132 VOID
133 EnableBTS (
134 VOID
135 )
136 {
137 AsmMsrOr64 (MSR_DEBUG_CTL, (MSR_DEBUG_CTL_BTS | MSR_DEBUG_CTL_TR));
138 }
139
140 /**
141 Get CPU Index from APIC ID.
142
143 **/
144 UINTN
145 GetCpuIndex (
146 VOID
147 )
148 {
149 UINTN Index;
150 UINT32 ApicId;
151
152 ApicId = GetApicId ();
153
154 for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
155 if (gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId == ApicId) {
156 return Index;
157 }
158 }
159 ASSERT (FALSE);
160 return 0;
161 }
162
163 /**
164 Get the source of IP after execute-disable exception is triggered.
165
166 @param CpuIndex The index of CPU.
167 @param DestinationIP The destination address.
168
169 **/
170 UINT64
171 GetSourceFromDestinationOnBts (
172 UINTN CpuIndex,
173 UINT64 DestinationIP
174 )
175 {
176 BRANCH_TRACE_RECORD *CurrentBTSRecord;
177 UINTN Index;
178 BOOLEAN FirstMatch;
179
180 FirstMatch = FALSE;
181
182 CurrentBTSRecord = (BRANCH_TRACE_RECORD *)mMsrDsArea[CpuIndex]->BTSIndex;
183 for (Index = 0; Index < mBTSRecordNumber; Index++) {
184 if ((UINTN)CurrentBTSRecord < (UINTN)mMsrBTSRecord[CpuIndex]) {
185 //
186 // Underflow
187 //
188 CurrentBTSRecord = (BRANCH_TRACE_RECORD *)((UINTN)mMsrDsArea[CpuIndex]->BTSAbsoluteMaximum - 1);
189 CurrentBTSRecord --;
190 }
191 if (CurrentBTSRecord->LastBranchTo == DestinationIP) {
192 //
193 // Good! find 1st one, then find 2nd one.
194 //
195 if (!FirstMatch) {
196 //
197 // The first one is DEBUG exception
198 //
199 FirstMatch = TRUE;
200 } else {
201 //
202 // Good find proper one.
203 //
204 return CurrentBTSRecord->LastBranchFrom;
205 }
206 }
207 CurrentBTSRecord--;
208 }
209
210 return 0;
211 }
212
213 /**
214 SMM profile specific INT 1 (single-step) exception handler.
215
216 @param InterruptType Defines the type of interrupt or exception that
217 occurred on the processor.This parameter is processor architecture specific.
218 @param SystemContext A pointer to the processor context when
219 the interrupt occurred on the processor.
220 **/
221 VOID
222 EFIAPI
223 DebugExceptionHandler (
224 IN EFI_EXCEPTION_TYPE InterruptType,
225 IN EFI_SYSTEM_CONTEXT SystemContext
226 )
227 {
228 UINTN CpuIndex;
229 UINTN PFEntry;
230
231 if (!mSmmProfileStart &&
232 !HEAP_GUARD_NONSTOP_MODE &&
233 !NULL_DETECTION_NONSTOP_MODE) {
234 return;
235 }
236 CpuIndex = GetCpuIndex ();
237
238 //
239 // Clear last PF entries
240 //
241 for (PFEntry = 0; PFEntry < mPFEntryCount[CpuIndex]; PFEntry++) {
242 *mLastPFEntryPointer[CpuIndex][PFEntry] = mLastPFEntryValue[CpuIndex][PFEntry];
243 }
244
245 //
246 // Reset page fault exception count for next page fault.
247 //
248 mPFEntryCount[CpuIndex] = 0;
249
250 //
251 // Flush TLB
252 //
253 CpuFlushTlb ();
254
255 //
256 // Clear TF in EFLAGS
257 //
258 ClearTrapFlag (SystemContext);
259 }
260
261 /**
262 Check if the input address is in SMM ranges.
263
264 @param[in] Address The input address.
265
266 @retval TRUE The input address is in SMM.
267 @retval FALSE The input address is not in SMM.
268 **/
269 BOOLEAN
270 IsInSmmRanges (
271 IN EFI_PHYSICAL_ADDRESS Address
272 )
273 {
274 UINTN Index;
275
276 if ((Address >= mCpuHotPlugData.SmrrBase) && (Address < mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize)) {
277 return TRUE;
278 }
279 for (Index = 0; Index < mSmmCpuSmramRangeCount; Index++) {
280 if (Address >= mSmmCpuSmramRanges[Index].CpuStart &&
281 Address < mSmmCpuSmramRanges[Index].CpuStart + mSmmCpuSmramRanges[Index].PhysicalSize) {
282 return TRUE;
283 }
284 }
285 return FALSE;
286 }
287
288 /**
289 Check if the memory address will be mapped by 4KB-page.
290
291 @param Address The address of Memory.
292 @param Nx The flag indicates if the memory is execute-disable.
293
294 **/
295 BOOLEAN
296 IsAddressValid (
297 IN EFI_PHYSICAL_ADDRESS Address,
298 IN BOOLEAN *Nx
299 )
300 {
301 UINTN Index;
302
303 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
304 //
305 // Check configuration
306 //
307 for (Index = 0; Index < mProtectionMemRangeCount; Index++) {
308 if ((Address >= mProtectionMemRange[Index].Range.Base) && (Address < mProtectionMemRange[Index].Range.Top)) {
309 *Nx = mProtectionMemRange[Index].Nx;
310 return mProtectionMemRange[Index].Present;
311 }
312 }
313 *Nx = TRUE;
314 return FALSE;
315
316 } else {
317 *Nx = TRUE;
318 if (IsInSmmRanges (Address)) {
319 *Nx = FALSE;
320 }
321 return TRUE;
322 }
323 }
324
325 /**
326 Check if the memory address will be mapped by 4KB-page.
327
328 @param Address The address of Memory.
329
330 **/
331 BOOLEAN
332 IsAddressSplit (
333 IN EFI_PHYSICAL_ADDRESS Address
334 )
335 {
336 UINTN Index;
337
338 if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
339 //
340 // Check configuration
341 //
342 for (Index = 0; Index < mSplitMemRangeCount; Index++) {
343 if ((Address >= mSplitMemRange[Index].Base) && (Address < mSplitMemRange[Index].Top)) {
344 return TRUE;
345 }
346 }
347 } else {
348 if (Address < mCpuHotPlugData.SmrrBase) {
349 if ((mCpuHotPlugData.SmrrBase - Address) < BASE_2MB) {
350 return TRUE;
351 }
352 } else if (Address > (mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize - BASE_2MB)) {
353 if ((Address - (mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize - BASE_2MB)) < BASE_2MB) {
354 return TRUE;
355 }
356 }
357 }
358 //
359 // Return default
360 //
361 return FALSE;
362 }
363
364 /**
365 Initialize the protected memory ranges and the 4KB-page mapped memory ranges.
366
367 **/
368 VOID
369 InitProtectedMemRange (
370 VOID
371 )
372 {
373 UINTN Index;
374 UINTN NumberOfDescriptors;
375 UINTN NumberOfAddedDescriptors;
376 UINTN NumberOfProtectRange;
377 UINTN NumberOfSpliteRange;
378 EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
379 UINTN TotalSize;
380 EFI_PHYSICAL_ADDRESS ProtectBaseAddress;
381 EFI_PHYSICAL_ADDRESS ProtectEndAddress;
382 EFI_PHYSICAL_ADDRESS Top2MBAlignedAddress;
383 EFI_PHYSICAL_ADDRESS Base2MBAlignedAddress;
384 UINT64 High4KBPageSize;
385 UINT64 Low4KBPageSize;
386
387 NumberOfDescriptors = 0;
388 NumberOfAddedDescriptors = mSmmCpuSmramRangeCount;
389 NumberOfSpliteRange = 0;
390 MemorySpaceMap = NULL;
391
392 //
393 // Get MMIO ranges from GCD and add them into protected memory ranges.
394 //
395 gDS->GetMemorySpaceMap (
396 &NumberOfDescriptors,
397 &MemorySpaceMap
398 );
399 for (Index = 0; Index < NumberOfDescriptors; Index++) {
400 if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) {
401 NumberOfAddedDescriptors++;
402 }
403 }
404
405 if (NumberOfAddedDescriptors != 0) {
406 TotalSize = NumberOfAddedDescriptors * sizeof (MEMORY_PROTECTION_RANGE) + sizeof (mProtectionMemRangeTemplate);
407 mProtectionMemRange = (MEMORY_PROTECTION_RANGE *) AllocateZeroPool (TotalSize);
408 ASSERT (mProtectionMemRange != NULL);
409 mProtectionMemRangeCount = TotalSize / sizeof (MEMORY_PROTECTION_RANGE);
410
411 //
412 // Copy existing ranges.
413 //
414 CopyMem (mProtectionMemRange, mProtectionMemRangeTemplate, sizeof (mProtectionMemRangeTemplate));
415
416 //
417 // Create split ranges which come from protected ranges.
418 //
419 TotalSize = (TotalSize / sizeof (MEMORY_PROTECTION_RANGE)) * sizeof (MEMORY_RANGE);
420 mSplitMemRange = (MEMORY_RANGE *) AllocateZeroPool (TotalSize);
421 ASSERT (mSplitMemRange != NULL);
422
423 //
424 // Create SMM ranges which are set to present and execution-enable.
425 //
426 NumberOfProtectRange = sizeof (mProtectionMemRangeTemplate) / sizeof (MEMORY_PROTECTION_RANGE);
427 for (Index = 0; Index < mSmmCpuSmramRangeCount; Index++) {
428 if (mSmmCpuSmramRanges[Index].CpuStart >= mProtectionMemRange[0].Range.Base &&
429 mSmmCpuSmramRanges[Index].CpuStart + mSmmCpuSmramRanges[Index].PhysicalSize < mProtectionMemRange[0].Range.Top) {
430 //
431 // If the address have been already covered by mCpuHotPlugData.SmrrBase/mCpuHotPlugData.SmrrSiz
432 //
433 break;
434 }
435 mProtectionMemRange[NumberOfProtectRange].Range.Base = mSmmCpuSmramRanges[Index].CpuStart;
436 mProtectionMemRange[NumberOfProtectRange].Range.Top = mSmmCpuSmramRanges[Index].CpuStart + mSmmCpuSmramRanges[Index].PhysicalSize;
437 mProtectionMemRange[NumberOfProtectRange].Present = TRUE;
438 mProtectionMemRange[NumberOfProtectRange].Nx = FALSE;
439 NumberOfProtectRange++;
440 }
441
442 //
443 // Create MMIO ranges which are set to present and execution-disable.
444 //
445 for (Index = 0; Index < NumberOfDescriptors; Index++) {
446 if (MemorySpaceMap[Index].GcdMemoryType != EfiGcdMemoryTypeMemoryMappedIo) {
447 continue;
448 }
449 mProtectionMemRange[NumberOfProtectRange].Range.Base = MemorySpaceMap[Index].BaseAddress;
450 mProtectionMemRange[NumberOfProtectRange].Range.Top = MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length;
451 mProtectionMemRange[NumberOfProtectRange].Present = TRUE;
452 mProtectionMemRange[NumberOfProtectRange].Nx = TRUE;
453 NumberOfProtectRange++;
454 }
455
456 //
457 // Check and updated actual protected memory ranges count
458 //
459 ASSERT (NumberOfProtectRange <= mProtectionMemRangeCount);
460 mProtectionMemRangeCount = NumberOfProtectRange;
461 }
462
463 //
464 // According to protected ranges, create the ranges which will be mapped by 2KB page.
465 //
466 NumberOfSpliteRange = 0;
467 NumberOfProtectRange = mProtectionMemRangeCount;
468 for (Index = 0; Index < NumberOfProtectRange; Index++) {
469 //
470 // If MMIO base address is not 2MB alignment, make 2MB alignment for create 4KB page in page table.
471 //
472 ProtectBaseAddress = mProtectionMemRange[Index].Range.Base;
473 ProtectEndAddress = mProtectionMemRange[Index].Range.Top;
474 if (((ProtectBaseAddress & (SIZE_2MB - 1)) != 0) || ((ProtectEndAddress & (SIZE_2MB - 1)) != 0)) {
475 //
476 // Check if it is possible to create 4KB-page for not 2MB-aligned range and to create 2MB-page for 2MB-aligned range.
477 // A mix of 4KB and 2MB page could save SMRAM space.
478 //
479 Top2MBAlignedAddress = ProtectEndAddress & ~(SIZE_2MB - 1);
480 Base2MBAlignedAddress = (ProtectBaseAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1);
481 if ((Top2MBAlignedAddress > Base2MBAlignedAddress) &&
482 ((Top2MBAlignedAddress - Base2MBAlignedAddress) >= SIZE_2MB)) {
483 //
484 // There is an range which could be mapped by 2MB-page.
485 //
486 High4KBPageSize = ((ProtectEndAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1)) - (ProtectEndAddress & ~(SIZE_2MB - 1));
487 Low4KBPageSize = ((ProtectBaseAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1)) - (ProtectBaseAddress & ~(SIZE_2MB - 1));
488 if (High4KBPageSize != 0) {
489 //
490 // Add not 2MB-aligned range to be mapped by 4KB-page.
491 //
492 mSplitMemRange[NumberOfSpliteRange].Base = ProtectEndAddress & ~(SIZE_2MB - 1);
493 mSplitMemRange[NumberOfSpliteRange].Top = (ProtectEndAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1);
494 NumberOfSpliteRange++;
495 }
496 if (Low4KBPageSize != 0) {
497 //
498 // Add not 2MB-aligned range to be mapped by 4KB-page.
499 //
500 mSplitMemRange[NumberOfSpliteRange].Base = ProtectBaseAddress & ~(SIZE_2MB - 1);
501 mSplitMemRange[NumberOfSpliteRange].Top = (ProtectBaseAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1);
502 NumberOfSpliteRange++;
503 }
504 } else {
505 //
506 // The range could only be mapped by 4KB-page.
507 //
508 mSplitMemRange[NumberOfSpliteRange].Base = ProtectBaseAddress & ~(SIZE_2MB - 1);
509 mSplitMemRange[NumberOfSpliteRange].Top = (ProtectEndAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1);
510 NumberOfSpliteRange++;
511 }
512 }
513 }
514
515 mSplitMemRangeCount = NumberOfSpliteRange;
516
517 DEBUG ((DEBUG_INFO, "SMM Profile Memory Ranges:\n"));
518 for (Index = 0; Index < mProtectionMemRangeCount; Index++) {
519 DEBUG ((DEBUG_INFO, "mProtectionMemRange[%d].Base = %lx\n", Index, mProtectionMemRange[Index].Range.Base));
520 DEBUG ((DEBUG_INFO, "mProtectionMemRange[%d].Top = %lx\n", Index, mProtectionMemRange[Index].Range.Top));
521 }
522 for (Index = 0; Index < mSplitMemRangeCount; Index++) {
523 DEBUG ((DEBUG_INFO, "mSplitMemRange[%d].Base = %lx\n", Index, mSplitMemRange[Index].Base));
524 DEBUG ((DEBUG_INFO, "mSplitMemRange[%d].Top = %lx\n", Index, mSplitMemRange[Index].Top));
525 }
526 }
527
528 /**
529 Update page table according to protected memory ranges and the 4KB-page mapped memory ranges.
530
531 **/
532 VOID
533 InitPaging (
534 VOID
535 )
536 {
537 UINT64 Pml5Entry;
538 UINT64 Pml4Entry;
539 UINT64 *Pml5;
540 UINT64 *Pml4;
541 UINT64 *Pdpt;
542 UINT64 *Pd;
543 UINT64 *Pt;
544 UINTN Address;
545 UINTN Pml5Index;
546 UINTN Pml4Index;
547 UINTN PdptIndex;
548 UINTN PdIndex;
549 UINTN PtIndex;
550 UINTN NumberOfPdptEntries;
551 UINTN NumberOfPml4Entries;
552 UINTN NumberOfPml5Entries;
553 UINTN SizeOfMemorySpace;
554 BOOLEAN Nx;
555 IA32_CR4 Cr4;
556 BOOLEAN Enable5LevelPaging;
557
558 Cr4.UintN = AsmReadCr4 ();
559 Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);
560
561 if (sizeof (UINTN) == sizeof (UINT64)) {
562 if (!Enable5LevelPaging) {
563 Pml5Entry = (UINTN) mSmmProfileCr3 | IA32_PG_P;
564 Pml5 = &Pml5Entry;
565 } else {
566 Pml5 = (UINT64*) (UINTN) mSmmProfileCr3;
567 }
568 SizeOfMemorySpace = HighBitSet64 (gPhyMask) + 1;
569 //
570 // Calculate the table entries of PML4E and PDPTE.
571 //
572 NumberOfPml5Entries = 1;
573 if (SizeOfMemorySpace > 48) {
574 NumberOfPml5Entries = (UINTN) LShiftU64 (1, SizeOfMemorySpace - 48);
575 SizeOfMemorySpace = 48;
576 }
577
578 NumberOfPml4Entries = 1;
579 if (SizeOfMemorySpace > 39) {
580 NumberOfPml4Entries = (UINTN) LShiftU64 (1, SizeOfMemorySpace - 39);
581 SizeOfMemorySpace = 39;
582 }
583
584 NumberOfPdptEntries = 1;
585 ASSERT (SizeOfMemorySpace > 30);
586 NumberOfPdptEntries = (UINTN) LShiftU64 (1, SizeOfMemorySpace - 30);
587 } else {
588 Pml4Entry = (UINTN) mSmmProfileCr3 | IA32_PG_P;
589 Pml4 = &Pml4Entry;
590 Pml5Entry = (UINTN) Pml4 | IA32_PG_P;
591 Pml5 = &Pml5Entry;
592 NumberOfPml5Entries = 1;
593 NumberOfPml4Entries = 1;
594 NumberOfPdptEntries = 4;
595 }
596
597 //
598 // Go through page table and change 2MB-page into 4KB-page.
599 //
600 for (Pml5Index = 0; Pml5Index < NumberOfPml5Entries; Pml5Index++) {
601 if ((Pml5[Pml5Index] & IA32_PG_P) == 0) {
602 //
603 // If PML5 entry does not exist, skip it
604 //
605 continue;
606 }
607 Pml4 = (UINT64 *) (UINTN) (Pml5[Pml5Index] & PHYSICAL_ADDRESS_MASK);
608 for (Pml4Index = 0; Pml4Index < NumberOfPml4Entries; Pml4Index++) {
609 if ((Pml4[Pml4Index] & IA32_PG_P) == 0) {
610 //
611 // If PML4 entry does not exist, skip it
612 //
613 continue;
614 }
615 Pdpt = (UINT64 *)(UINTN)(Pml4[Pml4Index] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
616 for (PdptIndex = 0; PdptIndex < NumberOfPdptEntries; PdptIndex++, Pdpt++) {
617 if ((*Pdpt & IA32_PG_P) == 0) {
618 //
619 // If PDPT entry does not exist, skip it
620 //
621 continue;
622 }
623 if ((*Pdpt & IA32_PG_PS) != 0) {
624 //
625 // This is 1G entry, skip it
626 //
627 continue;
628 }
629 Pd = (UINT64 *)(UINTN)(*Pdpt & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
630 if (Pd == 0) {
631 continue;
632 }
633 for (PdIndex = 0; PdIndex < SIZE_4KB / sizeof (*Pd); PdIndex++, Pd++) {
634 if ((*Pd & IA32_PG_P) == 0) {
635 //
636 // If PD entry does not exist, skip it
637 //
638 continue;
639 }
640 Address = (UINTN) LShiftU64 (
641 LShiftU64 (
642 LShiftU64 ((Pml5Index << 9) + Pml4Index, 9) + PdptIndex,
643 9
644 ) + PdIndex,
645 21
646 );
647
648 //
649 // If it is 2M page, check IsAddressSplit()
650 //
651 if (((*Pd & IA32_PG_PS) != 0) && IsAddressSplit (Address)) {
652 //
653 // Based on current page table, create 4KB page table for split area.
654 //
655 ASSERT (Address == (*Pd & PHYSICAL_ADDRESS_MASK));
656
657 Pt = AllocatePageTableMemory (1);
658 ASSERT (Pt != NULL);
659
660 // Split it
661 for (PtIndex = 0; PtIndex < SIZE_4KB / sizeof(*Pt); PtIndex++) {
662 Pt[PtIndex] = Address + ((PtIndex << 12) | mAddressEncMask | PAGE_ATTRIBUTE_BITS);
663 } // end for PT
664 *Pd = (UINT64)(UINTN)Pt | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
665 } // end if IsAddressSplit
666 } // end for PD
667 } // end for PDPT
668 } // end for PML4
669 } // end for PML5
670
671 //
672 // Go through page table and set several page table entries to absent or execute-disable.
673 //
674 DEBUG ((DEBUG_INFO, "Patch page table start ...\n"));
675 for (Pml5Index = 0; Pml5Index < NumberOfPml5Entries; Pml5Index++) {
676 if ((Pml5[Pml5Index] & IA32_PG_P) == 0) {
677 //
678 // If PML5 entry does not exist, skip it
679 //
680 continue;
681 }
682 Pml4 = (UINT64 *) (UINTN) (Pml5[Pml5Index] & PHYSICAL_ADDRESS_MASK);
683 for (Pml4Index = 0; Pml4Index < NumberOfPml4Entries; Pml4Index++) {
684 if ((Pml4[Pml4Index] & IA32_PG_P) == 0) {
685 //
686 // If PML4 entry does not exist, skip it
687 //
688 continue;
689 }
690 Pdpt = (UINT64 *)(UINTN)(Pml4[Pml4Index] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
691 for (PdptIndex = 0; PdptIndex < NumberOfPdptEntries; PdptIndex++, Pdpt++) {
692 if ((*Pdpt & IA32_PG_P) == 0) {
693 //
694 // If PDPT entry does not exist, skip it
695 //
696 continue;
697 }
698 if ((*Pdpt & IA32_PG_PS) != 0) {
699 //
700 // This is 1G entry, set NX bit and skip it
701 //
702 if (mXdSupported) {
703 *Pdpt = *Pdpt | IA32_PG_NX;
704 }
705 continue;
706 }
707 Pd = (UINT64 *)(UINTN)(*Pdpt & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
708 if (Pd == 0) {
709 continue;
710 }
711 for (PdIndex = 0; PdIndex < SIZE_4KB / sizeof (*Pd); PdIndex++, Pd++) {
712 if ((*Pd & IA32_PG_P) == 0) {
713 //
714 // If PD entry does not exist, skip it
715 //
716 continue;
717 }
718 Address = (UINTN) LShiftU64 (
719 LShiftU64 (
720 LShiftU64 ((Pml5Index << 9) + Pml4Index, 9) + PdptIndex,
721 9
722 ) + PdIndex,
723 21
724 );
725
726 if ((*Pd & IA32_PG_PS) != 0) {
727 // 2MB page
728
729 if (!IsAddressValid (Address, &Nx)) {
730 //
731 // Patch to remove Present flag and RW flag
732 //
733 *Pd = *Pd & (INTN)(INT32)(~PAGE_ATTRIBUTE_BITS);
734 }
735 if (Nx && mXdSupported) {
736 *Pd = *Pd | IA32_PG_NX;
737 }
738 } else {
739 // 4KB page
740 Pt = (UINT64 *)(UINTN)(*Pd & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
741 if (Pt == 0) {
742 continue;
743 }
744 for (PtIndex = 0; PtIndex < SIZE_4KB / sizeof(*Pt); PtIndex++, Pt++) {
745 if (!IsAddressValid (Address, &Nx)) {
746 *Pt = *Pt & (INTN)(INT32)(~PAGE_ATTRIBUTE_BITS);
747 }
748 if (Nx && mXdSupported) {
749 *Pt = *Pt | IA32_PG_NX;
750 }
751 Address += SIZE_4KB;
752 } // end for PT
753 } // end if PS
754 } // end for PD
755 } // end for PDPT
756 } // end for PML4
757 } // end for PML5
758
759 //
760 // Flush TLB
761 //
762 CpuFlushTlb ();
763 DEBUG ((DEBUG_INFO, "Patch page table done!\n"));
764 //
765 // Set execute-disable flag
766 //
767 mXdEnabled = TRUE;
768
769 return ;
770 }
771
772 /**
773 To get system port address of the SMI Command Port in FADT table.
774
775 **/
776 VOID
777 GetSmiCommandPort (
778 VOID
779 )
780 {
781 EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *Fadt;
782
783 Fadt = (EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE *) EfiLocateFirstAcpiTable (
784 EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE
785 );
786 ASSERT (Fadt != NULL);
787
788 mSmiCommandPort = Fadt->SmiCmd;
789 DEBUG ((DEBUG_INFO, "mSmiCommandPort = %x\n", mSmiCommandPort));
790 }
791
792 /**
793 Updates page table to make some memory ranges (like system memory) absent
794 and make some memory ranges (like MMIO) present and execute disable. It also
795 update 2MB-page to 4KB-page for some memory ranges.
796
797 **/
798 VOID
799 SmmProfileStart (
800 VOID
801 )
802 {
803 //
804 // The flag indicates SMM profile starts to work.
805 //
806 mSmmProfileStart = TRUE;
807 }
808
809 /**
810 Initialize SMM profile in SmmReadyToLock protocol callback function.
811
812 @param Protocol Points to the protocol's unique identifier.
813 @param Interface Points to the interface instance.
814 @param Handle The handle on which the interface was installed.
815
816 @retval EFI_SUCCESS SmmReadyToLock protocol callback runs successfully.
817 **/
818 EFI_STATUS
819 EFIAPI
820 InitSmmProfileCallBack (
821 IN CONST EFI_GUID *Protocol,
822 IN VOID *Interface,
823 IN EFI_HANDLE Handle
824 )
825 {
826 //
827 // Save to variable so that SMM profile data can be found.
828 //
829 gRT->SetVariable (
830 SMM_PROFILE_NAME,
831 &gEfiCallerIdGuid,
832 EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
833 sizeof(mSmmProfileBase),
834 &mSmmProfileBase
835 );
836
837 //
838 // Get Software SMI from FADT
839 //
840 GetSmiCommandPort ();
841
842 //
843 // Initialize protected memory range for patching page table later.
844 //
845 InitProtectedMemRange ();
846
847 return EFI_SUCCESS;
848 }
849
850 /**
851 Initialize SMM profile data structures.
852
853 **/
854 VOID
855 InitSmmProfileInternal (
856 VOID
857 )
858 {
859 EFI_STATUS Status;
860 EFI_PHYSICAL_ADDRESS Base;
861 VOID *Registration;
862 UINTN Index;
863 UINTN MsrDsAreaSizePerCpu;
864 UINTN TotalSize;
865
866 mPFEntryCount = (UINTN *)AllocateZeroPool (sizeof (UINTN) * mMaxNumberOfCpus);
867 ASSERT (mPFEntryCount != NULL);
868 mLastPFEntryValue = (UINT64 (*)[MAX_PF_ENTRY_COUNT])AllocateZeroPool (
869 sizeof (mLastPFEntryValue[0]) * mMaxNumberOfCpus);
870 ASSERT (mLastPFEntryValue != NULL);
871 mLastPFEntryPointer = (UINT64 *(*)[MAX_PF_ENTRY_COUNT])AllocateZeroPool (
872 sizeof (mLastPFEntryPointer[0]) * mMaxNumberOfCpus);
873 ASSERT (mLastPFEntryPointer != NULL);
874
875 //
876 // Allocate memory for SmmProfile below 4GB.
877 // The base address
878 //
879 mSmmProfileSize = PcdGet32 (PcdCpuSmmProfileSize);
880 ASSERT ((mSmmProfileSize & 0xFFF) == 0);
881
882 if (mBtsSupported) {
883 TotalSize = mSmmProfileSize + mMsrDsAreaSize;
884 } else {
885 TotalSize = mSmmProfileSize;
886 }
887
888 Base = 0xFFFFFFFF;
889 Status = gBS->AllocatePages (
890 AllocateMaxAddress,
891 EfiReservedMemoryType,
892 EFI_SIZE_TO_PAGES (TotalSize),
893 &Base
894 );
895 ASSERT_EFI_ERROR (Status);
896 ZeroMem ((VOID *)(UINTN)Base, TotalSize);
897 mSmmProfileBase = (SMM_PROFILE_HEADER *)(UINTN)Base;
898
899 //
900 // Initialize SMM profile data header.
901 //
902 mSmmProfileBase->HeaderSize = sizeof (SMM_PROFILE_HEADER);
903 mSmmProfileBase->MaxDataEntries = (UINT64)((mSmmProfileSize - sizeof(SMM_PROFILE_HEADER)) / sizeof (SMM_PROFILE_ENTRY));
904 mSmmProfileBase->MaxDataSize = MultU64x64 (mSmmProfileBase->MaxDataEntries, sizeof(SMM_PROFILE_ENTRY));
905 mSmmProfileBase->CurDataEntries = 0;
906 mSmmProfileBase->CurDataSize = 0;
907 mSmmProfileBase->TsegStart = mCpuHotPlugData.SmrrBase;
908 mSmmProfileBase->TsegSize = mCpuHotPlugData.SmrrSize;
909 mSmmProfileBase->NumSmis = 0;
910 mSmmProfileBase->NumCpus = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
911
912 if (mBtsSupported) {
913 mMsrDsArea = (MSR_DS_AREA_STRUCT **)AllocateZeroPool (sizeof (MSR_DS_AREA_STRUCT *) * mMaxNumberOfCpus);
914 ASSERT (mMsrDsArea != NULL);
915 mMsrBTSRecord = (BRANCH_TRACE_RECORD **)AllocateZeroPool (sizeof (BRANCH_TRACE_RECORD *) * mMaxNumberOfCpus);
916 ASSERT (mMsrBTSRecord != NULL);
917 mMsrPEBSRecord = (PEBS_RECORD **)AllocateZeroPool (sizeof (PEBS_RECORD *) * mMaxNumberOfCpus);
918 ASSERT (mMsrPEBSRecord != NULL);
919
920 mMsrDsAreaBase = (MSR_DS_AREA_STRUCT *)((UINTN)Base + mSmmProfileSize);
921 MsrDsAreaSizePerCpu = mMsrDsAreaSize / mMaxNumberOfCpus;
922 mBTSRecordNumber = (MsrDsAreaSizePerCpu - sizeof(PEBS_RECORD) * PEBS_RECORD_NUMBER - sizeof(MSR_DS_AREA_STRUCT)) / sizeof(BRANCH_TRACE_RECORD);
923 for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
924 mMsrDsArea[Index] = (MSR_DS_AREA_STRUCT *)((UINTN)mMsrDsAreaBase + MsrDsAreaSizePerCpu * Index);
925 mMsrBTSRecord[Index] = (BRANCH_TRACE_RECORD *)((UINTN)mMsrDsArea[Index] + sizeof(MSR_DS_AREA_STRUCT));
926 mMsrPEBSRecord[Index] = (PEBS_RECORD *)((UINTN)mMsrDsArea[Index] + MsrDsAreaSizePerCpu - sizeof(PEBS_RECORD) * PEBS_RECORD_NUMBER);
927
928 mMsrDsArea[Index]->BTSBufferBase = (UINTN)mMsrBTSRecord[Index];
929 mMsrDsArea[Index]->BTSIndex = mMsrDsArea[Index]->BTSBufferBase;
930 mMsrDsArea[Index]->BTSAbsoluteMaximum = mMsrDsArea[Index]->BTSBufferBase + mBTSRecordNumber * sizeof(BRANCH_TRACE_RECORD) + 1;
931 mMsrDsArea[Index]->BTSInterruptThreshold = mMsrDsArea[Index]->BTSAbsoluteMaximum + 1;
932
933 mMsrDsArea[Index]->PEBSBufferBase = (UINTN)mMsrPEBSRecord[Index];
934 mMsrDsArea[Index]->PEBSIndex = mMsrDsArea[Index]->PEBSBufferBase;
935 mMsrDsArea[Index]->PEBSAbsoluteMaximum = mMsrDsArea[Index]->PEBSBufferBase + PEBS_RECORD_NUMBER * sizeof(PEBS_RECORD) + 1;
936 mMsrDsArea[Index]->PEBSInterruptThreshold = mMsrDsArea[Index]->PEBSAbsoluteMaximum + 1;
937 }
938 }
939
940 mProtectionMemRange = mProtectionMemRangeTemplate;
941 mProtectionMemRangeCount = sizeof (mProtectionMemRangeTemplate) / sizeof (MEMORY_PROTECTION_RANGE);
942
943 //
944 // Update TSeg entry.
945 //
946 mProtectionMemRange[0].Range.Base = mCpuHotPlugData.SmrrBase;
947 mProtectionMemRange[0].Range.Top = mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize;
948
949 //
950 // Update SMM profile entry.
951 //
952 mProtectionMemRange[1].Range.Base = (EFI_PHYSICAL_ADDRESS)(UINTN)mSmmProfileBase;
953 mProtectionMemRange[1].Range.Top = (EFI_PHYSICAL_ADDRESS)(UINTN)mSmmProfileBase + TotalSize;
954
955 //
956 // Allocate memory reserved for creating 4KB pages.
957 //
958 InitPagesForPFHandler ();
959
960 //
961 // Start SMM profile when SmmReadyToLock protocol is installed.
962 //
963 Status = gSmst->SmmRegisterProtocolNotify (
964 &gEfiSmmReadyToLockProtocolGuid,
965 InitSmmProfileCallBack,
966 &Registration
967 );
968 ASSERT_EFI_ERROR (Status);
969
970 return ;
971 }
972
973 /**
974 Check if feature is supported by a processor.
975
976 **/
977 VOID
978 CheckFeatureSupported (
979 VOID
980 )
981 {
982 UINT32 RegEax;
983 UINT32 RegEcx;
984 UINT32 RegEdx;
985 MSR_IA32_MISC_ENABLE_REGISTER MiscEnableMsr;
986
987 if ((PcdGet32 (PcdControlFlowEnforcementPropertyMask) != 0) && mCetSupported) {
988 AsmCpuid (CPUID_SIGNATURE, &RegEax, NULL, NULL, NULL);
989 if (RegEax >= CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS) {
990 AsmCpuidEx (CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS, CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO, NULL, NULL, &RegEcx, NULL);
991 if ((RegEcx & CPUID_CET_SS) == 0) {
992 mCetSupported = FALSE;
993 PatchInstructionX86 (mPatchCetSupported, mCetSupported, 1);
994 }
995 } else {
996 mCetSupported = FALSE;
997 PatchInstructionX86 (mPatchCetSupported, mCetSupported, 1);
998 }
999 }
1000
1001 if (mXdSupported) {
1002 AsmCpuid (CPUID_EXTENDED_FUNCTION, &RegEax, NULL, NULL, NULL);
1003 if (RegEax <= CPUID_EXTENDED_FUNCTION) {
1004 //
1005 // Extended CPUID functions are not supported on this processor.
1006 //
1007 mXdSupported = FALSE;
1008 PatchInstructionX86 (gPatchXdSupported, mXdSupported, 1);
1009 }
1010
1011 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &RegEdx);
1012 if ((RegEdx & CPUID1_EDX_XD_SUPPORT) == 0) {
1013 //
1014 // Execute Disable Bit feature is not supported on this processor.
1015 //
1016 mXdSupported = FALSE;
1017 PatchInstructionX86 (gPatchXdSupported, mXdSupported, 1);
1018 }
1019
1020 if (StandardSignatureIsAuthenticAMD ()) {
1021 //
1022 // AMD processors do not support MSR_IA32_MISC_ENABLE
1023 //
1024 PatchInstructionX86 (gPatchMsrIa32MiscEnableSupported, FALSE, 1);
1025 }
1026 }
1027
1028 if (mBtsSupported) {
1029 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &RegEdx);
1030 if ((RegEdx & CPUID1_EDX_BTS_AVAILABLE) != 0) {
1031 //
1032 // Per IA32 manuals:
1033 // When CPUID.1:EDX[21] is set, the following BTS facilities are available:
1034 // 1. The BTS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates the
1035 // availability of the BTS facilities, including the ability to set the BTS and
1036 // BTINT bits in the MSR_DEBUGCTLA MSR.
1037 // 2. The IA32_DS_AREA MSR can be programmed to point to the DS save area.
1038 //
1039 MiscEnableMsr.Uint64 = AsmReadMsr64 (MSR_IA32_MISC_ENABLE);
1040 if (MiscEnableMsr.Bits.BTS == 1) {
1041 //
1042 // BTS facilities is not supported if MSR_IA32_MISC_ENABLE.BTS bit is set.
1043 //
1044 mBtsSupported = FALSE;
1045 }
1046 }
1047 }
1048 }
1049
1050 /**
1051 Enable single step.
1052
1053 **/
1054 VOID
1055 ActivateSingleStepDB (
1056 VOID
1057 )
1058 {
1059 UINTN Dr6;
1060
1061 Dr6 = AsmReadDr6 ();
1062 if ((Dr6 & DR6_SINGLE_STEP) != 0) {
1063 return;
1064 }
1065 Dr6 |= DR6_SINGLE_STEP;
1066 AsmWriteDr6 (Dr6);
1067 }
1068
1069 /**
1070 Enable last branch.
1071
1072 **/
1073 VOID
1074 ActivateLBR (
1075 VOID
1076 )
1077 {
1078 UINT64 DebugCtl;
1079
1080 DebugCtl = AsmReadMsr64 (MSR_DEBUG_CTL);
1081 if ((DebugCtl & MSR_DEBUG_CTL_LBR) != 0) {
1082 return ;
1083 }
1084 DebugCtl |= MSR_DEBUG_CTL_LBR;
1085 AsmWriteMsr64 (MSR_DEBUG_CTL, DebugCtl);
1086 }
1087
1088 /**
1089 Enable branch trace store.
1090
1091 @param CpuIndex The index of the processor.
1092
1093 **/
1094 VOID
1095 ActivateBTS (
1096 IN UINTN CpuIndex
1097 )
1098 {
1099 UINT64 DebugCtl;
1100
1101 DebugCtl = AsmReadMsr64 (MSR_DEBUG_CTL);
1102 if ((DebugCtl & MSR_DEBUG_CTL_BTS) != 0) {
1103 return ;
1104 }
1105
1106 AsmWriteMsr64 (MSR_DS_AREA, (UINT64)(UINTN)mMsrDsArea[CpuIndex]);
1107 DebugCtl |= (UINT64)(MSR_DEBUG_CTL_BTS | MSR_DEBUG_CTL_TR);
1108 DebugCtl &= ~((UINT64)MSR_DEBUG_CTL_BTINT);
1109 AsmWriteMsr64 (MSR_DEBUG_CTL, DebugCtl);
1110 }
1111
1112 /**
1113 Increase SMI number in each SMI entry.
1114
1115 **/
1116 VOID
1117 SmmProfileRecordSmiNum (
1118 VOID
1119 )
1120 {
1121 if (mSmmProfileStart) {
1122 mSmmProfileBase->NumSmis++;
1123 }
1124 }
1125
1126 /**
1127 Initialize processor environment for SMM profile.
1128
1129 @param CpuIndex The index of the processor.
1130
1131 **/
1132 VOID
1133 ActivateSmmProfile (
1134 IN UINTN CpuIndex
1135 )
1136 {
1137 //
1138 // Enable Single Step DB#
1139 //
1140 ActivateSingleStepDB ();
1141
1142 if (mBtsSupported) {
1143 //
1144 // We can not get useful information from LER, so we have to use BTS.
1145 //
1146 ActivateLBR ();
1147
1148 //
1149 // Enable BTS
1150 //
1151 ActivateBTS (CpuIndex);
1152 }
1153 }
1154
1155 /**
1156 Initialize SMM profile in SMM CPU entry point.
1157
1158 @param[in] Cr3 The base address of the page tables to use in SMM.
1159
1160 **/
1161 VOID
1162 InitSmmProfile (
1163 UINT32 Cr3
1164 )
1165 {
1166 //
1167 // Save Cr3
1168 //
1169 mSmmProfileCr3 = Cr3;
1170
1171 //
1172 // Skip SMM profile initialization if feature is disabled
1173 //
1174 if (!FeaturePcdGet (PcdCpuSmmProfileEnable) &&
1175 !HEAP_GUARD_NONSTOP_MODE &&
1176 !NULL_DETECTION_NONSTOP_MODE) {
1177 return;
1178 }
1179
1180 //
1181 // Initialize SmmProfile here
1182 //
1183 InitSmmProfileInternal ();
1184
1185 //
1186 // Initialize profile IDT.
1187 //
1188 InitIdtr ();
1189
1190 //
1191 // Tell #PF handler to prepare a #DB subsequently.
1192 //
1193 mSetupDebugTrap = TRUE;
1194 }
1195
1196 /**
1197 Update page table to map the memory correctly in order to make the instruction
1198 which caused page fault execute successfully. And it also save the original page
1199 table to be restored in single-step exception.
1200
1201 @param PageTable PageTable Address.
1202 @param PFAddress The memory address which caused page fault exception.
1203 @param CpuIndex The index of the processor.
1204 @param ErrorCode The Error code of exception.
1205
1206 **/
1207 VOID
1208 RestorePageTableBelow4G (
1209 UINT64 *PageTable,
1210 UINT64 PFAddress,
1211 UINTN CpuIndex,
1212 UINTN ErrorCode
1213 )
1214 {
1215 UINTN PTIndex;
1216 UINTN PFIndex;
1217 IA32_CR4 Cr4;
1218 BOOLEAN Enable5LevelPaging;
1219
1220 Cr4.UintN = AsmReadCr4 ();
1221 Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);
1222
1223 //
1224 // PML5
1225 //
1226 if (Enable5LevelPaging) {
1227 PTIndex = (UINTN)BitFieldRead64 (PFAddress, 48, 56);
1228 ASSERT (PageTable[PTIndex] != 0);
1229 PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
1230 }
1231
1232 //
1233 // PML4
1234 //
1235 if (sizeof(UINT64) == sizeof(UINTN)) {
1236 PTIndex = (UINTN)BitFieldRead64 (PFAddress, 39, 47);
1237 ASSERT (PageTable[PTIndex] != 0);
1238 PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
1239 }
1240
1241 //
1242 // PDPTE
1243 //
1244 PTIndex = (UINTN)BitFieldRead64 (PFAddress, 30, 38);
1245 ASSERT (PageTable[PTIndex] != 0);
1246 PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
1247
1248 //
1249 // PD
1250 //
1251 PTIndex = (UINTN)BitFieldRead64 (PFAddress, 21, 29);
1252 if ((PageTable[PTIndex] & IA32_PG_PS) != 0) {
1253 //
1254 // Large page
1255 //
1256
1257 //
1258 // Record old entries with non-present status
1259 // Old entries include the memory which instruction is at and the memory which instruction access.
1260 //
1261 //
1262 ASSERT (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT);
1263 if (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT) {
1264 PFIndex = mPFEntryCount[CpuIndex];
1265 mLastPFEntryValue[CpuIndex][PFIndex] = PageTable[PTIndex];
1266 mLastPFEntryPointer[CpuIndex][PFIndex] = &PageTable[PTIndex];
1267 mPFEntryCount[CpuIndex]++;
1268 }
1269
1270 //
1271 // Set new entry
1272 //
1273 PageTable[PTIndex] = (PFAddress & ~((1ull << 21) - 1));
1274 PageTable[PTIndex] |= (UINT64)IA32_PG_PS;
1275 PageTable[PTIndex] |= (UINT64)PAGE_ATTRIBUTE_BITS;
1276 if ((ErrorCode & IA32_PF_EC_ID) != 0) {
1277 PageTable[PTIndex] &= ~IA32_PG_NX;
1278 }
1279 } else {
1280 //
1281 // Small page
1282 //
1283 ASSERT (PageTable[PTIndex] != 0);
1284 PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
1285
1286 //
1287 // 4K PTE
1288 //
1289 PTIndex = (UINTN)BitFieldRead64 (PFAddress, 12, 20);
1290
1291 //
1292 // Record old entries with non-present status
1293 // Old entries include the memory which instruction is at and the memory which instruction access.
1294 //
1295 //
1296 ASSERT (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT);
1297 if (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT) {
1298 PFIndex = mPFEntryCount[CpuIndex];
1299 mLastPFEntryValue[CpuIndex][PFIndex] = PageTable[PTIndex];
1300 mLastPFEntryPointer[CpuIndex][PFIndex] = &PageTable[PTIndex];
1301 mPFEntryCount[CpuIndex]++;
1302 }
1303
1304 //
1305 // Set new entry
1306 //
1307 PageTable[PTIndex] = (PFAddress & ~((1ull << 12) - 1));
1308 PageTable[PTIndex] |= (UINT64)PAGE_ATTRIBUTE_BITS;
1309 if ((ErrorCode & IA32_PF_EC_ID) != 0) {
1310 PageTable[PTIndex] &= ~IA32_PG_NX;
1311 }
1312 }
1313 }
1314
1315 /**
1316 Handler for Page Fault triggered by Guard page.
1317
1318 @param ErrorCode The Error code of exception.
1319
1320 **/
1321 VOID
1322 GuardPagePFHandler (
1323 UINTN ErrorCode
1324 )
1325 {
1326 UINT64 *PageTable;
1327 UINT64 PFAddress;
1328 UINT64 RestoreAddress;
1329 UINTN RestorePageNumber;
1330 UINTN CpuIndex;
1331
1332 PageTable = (UINT64 *)AsmReadCr3 ();
1333 PFAddress = AsmReadCr2 ();
1334 CpuIndex = GetCpuIndex ();
1335
1336 //
1337 // Memory operation cross pages, like "rep mov" instruction, will cause
1338 // infinite loop between this and Debug Trap handler. We have to make sure
1339 // that current page and the page followed are both in PRESENT state.
1340 //
1341 RestorePageNumber = 2;
1342 RestoreAddress = PFAddress;
1343 while (RestorePageNumber > 0) {
1344 RestorePageTableBelow4G (PageTable, RestoreAddress, CpuIndex, ErrorCode);
1345 RestoreAddress += EFI_PAGE_SIZE;
1346 RestorePageNumber--;
1347 }
1348
1349 //
1350 // Flush TLB
1351 //
1352 CpuFlushTlb ();
1353 }
1354
1355 /**
1356 The Page fault handler to save SMM profile data.
1357
1358 @param Rip The RIP when exception happens.
1359 @param ErrorCode The Error code of exception.
1360
1361 **/
1362 VOID
1363 SmmProfilePFHandler (
1364 UINTN Rip,
1365 UINTN ErrorCode
1366 )
1367 {
1368 UINT64 *PageTable;
1369 UINT64 PFAddress;
1370 UINT64 RestoreAddress;
1371 UINTN RestorePageNumber;
1372 UINTN CpuIndex;
1373 UINTN Index;
1374 UINT64 InstructionAddress;
1375 UINTN MaxEntryNumber;
1376 UINTN CurrentEntryNumber;
1377 BOOLEAN IsValidPFAddress;
1378 SMM_PROFILE_ENTRY *SmmProfileEntry;
1379 UINT64 SmiCommand;
1380 EFI_STATUS Status;
1381 UINT8 SoftSmiValue;
1382 EFI_SMM_SAVE_STATE_IO_INFO IoInfo;
1383
1384 if (!mSmmProfileStart) {
1385 //
1386 // If SMM profile does not start, call original page fault handler.
1387 //
1388 SmiDefaultPFHandler ();
1389 return;
1390 }
1391
1392 if (mBtsSupported) {
1393 DisableBTS ();
1394 }
1395
1396 IsValidPFAddress = FALSE;
1397 PageTable = (UINT64 *)AsmReadCr3 ();
1398 PFAddress = AsmReadCr2 ();
1399 CpuIndex = GetCpuIndex ();
1400
1401 //
1402 // Memory operation cross pages, like "rep mov" instruction, will cause
1403 // infinite loop between this and Debug Trap handler. We have to make sure
1404 // that current page and the page followed are both in PRESENT state.
1405 //
1406 RestorePageNumber = 2;
1407 RestoreAddress = PFAddress;
1408 while (RestorePageNumber > 0) {
1409 if (RestoreAddress <= 0xFFFFFFFF) {
1410 RestorePageTableBelow4G (PageTable, RestoreAddress, CpuIndex, ErrorCode);
1411 } else {
1412 RestorePageTableAbove4G (PageTable, RestoreAddress, CpuIndex, ErrorCode, &IsValidPFAddress);
1413 }
1414 RestoreAddress += EFI_PAGE_SIZE;
1415 RestorePageNumber--;
1416 }
1417
1418 if (!IsValidPFAddress) {
1419 InstructionAddress = Rip;
1420 if ((ErrorCode & IA32_PF_EC_ID) != 0 && (mBtsSupported)) {
1421 //
1422 // If it is instruction fetch failure, get the correct IP from BTS.
1423 //
1424 InstructionAddress = GetSourceFromDestinationOnBts (CpuIndex, Rip);
1425 if (InstructionAddress == 0) {
1426 //
1427 // It indicates the instruction which caused page fault is not a jump instruction,
1428 // set instruction address same as the page fault address.
1429 //
1430 InstructionAddress = PFAddress;
1431 }
1432 }
1433
1434 //
1435 // Indicate it is not software SMI
1436 //
1437 SmiCommand = 0xFFFFFFFFFFFFFFFFULL;
1438 for (Index = 0; Index < gSmst->NumberOfCpus; Index++) {
1439 Status = SmmReadSaveState(&mSmmCpu, sizeof(IoInfo), EFI_SMM_SAVE_STATE_REGISTER_IO, Index, &IoInfo);
1440 if (EFI_ERROR (Status)) {
1441 continue;
1442 }
1443 if (IoInfo.IoPort == mSmiCommandPort) {
1444 //
1445 // A software SMI triggered by SMI command port has been found, get SmiCommand from SMI command port.
1446 //
1447 SoftSmiValue = IoRead8 (mSmiCommandPort);
1448 SmiCommand = (UINT64)SoftSmiValue;
1449 break;
1450 }
1451 }
1452
1453 SmmProfileEntry = (SMM_PROFILE_ENTRY *)(UINTN)(mSmmProfileBase + 1);
1454 //
1455 // Check if there is already a same entry in profile data.
1456 //
1457 for (Index = 0; Index < (UINTN) mSmmProfileBase->CurDataEntries; Index++) {
1458 if ((SmmProfileEntry[Index].ErrorCode == (UINT64)ErrorCode) &&
1459 (SmmProfileEntry[Index].Address == PFAddress) &&
1460 (SmmProfileEntry[Index].CpuNum == (UINT64)CpuIndex) &&
1461 (SmmProfileEntry[Index].Instruction == InstructionAddress) &&
1462 (SmmProfileEntry[Index].SmiCmd == SmiCommand)) {
1463 //
1464 // Same record exist, need not save again.
1465 //
1466 break;
1467 }
1468 }
1469 if (Index == mSmmProfileBase->CurDataEntries) {
1470 CurrentEntryNumber = (UINTN) mSmmProfileBase->CurDataEntries;
1471 MaxEntryNumber = (UINTN) mSmmProfileBase->MaxDataEntries;
1472 if (FeaturePcdGet (PcdCpuSmmProfileRingBuffer)) {
1473 CurrentEntryNumber = CurrentEntryNumber % MaxEntryNumber;
1474 }
1475 if (CurrentEntryNumber < MaxEntryNumber) {
1476 //
1477 // Log the new entry
1478 //
1479 SmmProfileEntry[CurrentEntryNumber].SmiNum = mSmmProfileBase->NumSmis;
1480 SmmProfileEntry[CurrentEntryNumber].ErrorCode = (UINT64)ErrorCode;
1481 SmmProfileEntry[CurrentEntryNumber].ApicId = (UINT64)GetApicId ();
1482 SmmProfileEntry[CurrentEntryNumber].CpuNum = (UINT64)CpuIndex;
1483 SmmProfileEntry[CurrentEntryNumber].Address = PFAddress;
1484 SmmProfileEntry[CurrentEntryNumber].Instruction = InstructionAddress;
1485 SmmProfileEntry[CurrentEntryNumber].SmiCmd = SmiCommand;
1486 //
1487 // Update current entry index and data size in the header.
1488 //
1489 mSmmProfileBase->CurDataEntries++;
1490 mSmmProfileBase->CurDataSize = MultU64x64 (mSmmProfileBase->CurDataEntries, sizeof (SMM_PROFILE_ENTRY));
1491 }
1492 }
1493 }
1494 //
1495 // Flush TLB
1496 //
1497 CpuFlushTlb ();
1498
1499 if (mBtsSupported) {
1500 EnableBTS ();
1501 }
1502 }
1503
1504 /**
1505 Replace INT1 exception handler to restore page table to absent/execute-disable state
1506 in order to trigger page fault again to save SMM profile data..
1507
1508 **/
1509 VOID
1510 InitIdtr (
1511 VOID
1512 )
1513 {
1514 EFI_STATUS Status;
1515
1516 Status = SmmRegisterExceptionHandler (&mSmmCpuService, EXCEPT_IA32_DEBUG, DebugExceptionHandler);
1517 ASSERT_EFI_ERROR (Status);
1518 }