]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/PiSmmCpuDxeSmm/X64/SmmProfileArch.c
UefiCpuPkg: Move AsmRelocateApLoopStart from Mpfuncs.nasm to AmdSev.nasm
[mirror_edk2.git] / UefiCpuPkg / PiSmmCpuDxeSmm / X64 / SmmProfileArch.c
1 /** @file
2 X64 processor specific functions to enable SMM profile.
3
4 Copyright (c) 2012 - 2019, Intel Corporation. All rights reserved.<BR>
5 Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>
6
7 SPDX-License-Identifier: BSD-2-Clause-Patent
8
9 **/
10
11 #include "PiSmmCpuDxeSmm.h"
12 #include "SmmProfileInternal.h"
13
14 //
15 // Current page index.
16 //
17 UINTN mPFPageIndex;
18
19 //
20 // Pool for dynamically creating page table in page fault handler.
21 //
22 UINT64 mPFPageBuffer;
23
24 //
25 // Store the uplink information for each page being used.
26 //
27 UINT64 *mPFPageUplink[MAX_PF_PAGE_COUNT];
28
29 /**
30 Create SMM page table for S3 path.
31
32 **/
33 VOID
34 InitSmmS3Cr3 (
35 VOID
36 )
37 {
38 EFI_PHYSICAL_ADDRESS Pages;
39 UINT64 *PTEntry;
40
41 //
42 // Generate PAE page table for the first 4GB memory space
43 //
44 Pages = Gen4GPageTable (FALSE);
45
46 //
47 // Fill Page-Table-Level4 (PML4) entry
48 //
49 PTEntry = (UINT64 *)AllocatePageTableMemory (1);
50 ASSERT (PTEntry != NULL);
51 *PTEntry = Pages | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
52 ZeroMem (PTEntry + 1, EFI_PAGE_SIZE - sizeof (*PTEntry));
53
54 //
55 // Return the address of PML4 (to set CR3)
56 //
57 mSmmS3ResumeState->SmmS3Cr3 = (UINT32)(UINTN)PTEntry;
58
59 return;
60 }
61
62 /**
63 Allocate pages for creating 4KB-page based on 2MB-page when page fault happens.
64
65 **/
66 VOID
67 InitPagesForPFHandler (
68 VOID
69 )
70 {
71 VOID *Address;
72
73 //
74 // Pre-Allocate memory for page fault handler
75 //
76 Address = NULL;
77 Address = AllocatePages (MAX_PF_PAGE_COUNT);
78 ASSERT (Address != NULL);
79
80 mPFPageBuffer = (UINT64)(UINTN)Address;
81 mPFPageIndex = 0;
82 ZeroMem ((VOID *)(UINTN)mPFPageBuffer, EFI_PAGE_SIZE * MAX_PF_PAGE_COUNT);
83 ZeroMem (mPFPageUplink, sizeof (mPFPageUplink));
84
85 return;
86 }
87
88 /**
89 Allocate one page for creating 4KB-page based on 2MB-page.
90
91 @param Uplink The address of Page-Directory entry.
92
93 **/
94 VOID
95 AcquirePage (
96 UINT64 *Uplink
97 )
98 {
99 UINT64 Address;
100
101 //
102 // Get the buffer
103 //
104 Address = mPFPageBuffer + EFI_PAGES_TO_SIZE (mPFPageIndex);
105 ZeroMem ((VOID *)(UINTN)Address, EFI_PAGE_SIZE);
106
107 //
108 // Cut the previous uplink if it exists and wasn't overwritten
109 //
110 if ((mPFPageUplink[mPFPageIndex] != NULL) && ((*mPFPageUplink[mPFPageIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK) == Address)) {
111 *mPFPageUplink[mPFPageIndex] = 0;
112 }
113
114 //
115 // Link & Record the current uplink
116 //
117 *Uplink = Address | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
118 mPFPageUplink[mPFPageIndex] = Uplink;
119
120 mPFPageIndex = (mPFPageIndex + 1) % MAX_PF_PAGE_COUNT;
121 }
122
123 /**
124 Update page table to map the memory correctly in order to make the instruction
125 which caused page fault execute successfully. And it also save the original page
126 table to be restored in single-step exception.
127
128 @param PageTable PageTable Address.
129 @param PFAddress The memory address which caused page fault exception.
130 @param CpuIndex The index of the processor.
131 @param ErrorCode The Error code of exception.
132 @param IsValidPFAddress The flag indicates if SMM profile data need be added.
133
134 **/
135 VOID
136 RestorePageTableAbove4G (
137 UINT64 *PageTable,
138 UINT64 PFAddress,
139 UINTN CpuIndex,
140 UINTN ErrorCode,
141 BOOLEAN *IsValidPFAddress
142 )
143 {
144 UINTN PTIndex;
145 UINT64 Address;
146 BOOLEAN Nx;
147 BOOLEAN Existed;
148 UINTN Index;
149 UINTN PFIndex;
150 IA32_CR4 Cr4;
151 BOOLEAN Enable5LevelPaging;
152
153 ASSERT ((PageTable != NULL) && (IsValidPFAddress != NULL));
154
155 Cr4.UintN = AsmReadCr4 ();
156 Enable5LevelPaging = (BOOLEAN)(Cr4.Bits.LA57 == 1);
157
158 //
159 // If page fault address is 4GB above.
160 //
161
162 //
163 // Check if page fault address has existed in page table.
164 // If it exists in page table but page fault is generated,
165 // there are 2 possible reasons: 1. present flag is set to 0; 2. instruction fetch in protected memory range.
166 //
167 Existed = FALSE;
168 PageTable = (UINT64 *)(AsmReadCr3 () & PHYSICAL_ADDRESS_MASK);
169 PTIndex = 0;
170 if (Enable5LevelPaging) {
171 PTIndex = BitFieldRead64 (PFAddress, 48, 56);
172 }
173
174 if ((!Enable5LevelPaging) || ((PageTable[PTIndex] & IA32_PG_P) != 0)) {
175 // PML5E
176 if (Enable5LevelPaging) {
177 PageTable = (UINT64 *)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
178 }
179
180 PTIndex = BitFieldRead64 (PFAddress, 39, 47);
181 if ((PageTable[PTIndex] & IA32_PG_P) != 0) {
182 // PML4E
183 PageTable = (UINT64 *)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
184 PTIndex = BitFieldRead64 (PFAddress, 30, 38);
185 if ((PageTable[PTIndex] & IA32_PG_P) != 0) {
186 // PDPTE
187 PageTable = (UINT64 *)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
188 PTIndex = BitFieldRead64 (PFAddress, 21, 29);
189 // PD
190 if ((PageTable[PTIndex] & IA32_PG_PS) != 0) {
191 //
192 // 2MB page
193 //
194 Address = (UINT64)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
195 if ((Address & ~((1ull << 21) - 1)) == ((PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 21) - 1)))) {
196 Existed = TRUE;
197 }
198 } else {
199 //
200 // 4KB page
201 //
202 PageTable = (UINT64 *)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask& PHYSICAL_ADDRESS_MASK);
203 if (PageTable != 0) {
204 //
205 // When there is a valid entry to map to 4KB page, need not create a new entry to map 2MB.
206 //
207 PTIndex = BitFieldRead64 (PFAddress, 12, 20);
208 Address = (UINT64)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
209 if ((Address & ~((1ull << 12) - 1)) == (PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 12) - 1))) {
210 Existed = TRUE;
211 }
212 }
213 }
214 }
215 }
216 }
217
218 //
219 // If page entry does not existed in page table at all, create a new entry.
220 //
221 if (!Existed) {
222 if (IsAddressValid (PFAddress, &Nx)) {
223 //
224 // If page fault address above 4GB is in protected range but it causes a page fault exception,
225 // Will create a page entry for this page fault address, make page table entry as present/rw and execution-disable.
226 // this access is not saved into SMM profile data.
227 //
228 *IsValidPFAddress = TRUE;
229 }
230
231 //
232 // Create one entry in page table for page fault address.
233 //
234 SmiDefaultPFHandler ();
235 //
236 // Find the page table entry created just now.
237 //
238 PageTable = (UINT64 *)(AsmReadCr3 () & PHYSICAL_ADDRESS_MASK);
239 PFAddress = AsmReadCr2 ();
240 // PML5E
241 if (Enable5LevelPaging) {
242 PTIndex = BitFieldRead64 (PFAddress, 48, 56);
243 PageTable = (UINT64 *)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
244 }
245
246 // PML4E
247 PTIndex = BitFieldRead64 (PFAddress, 39, 47);
248 PageTable = (UINT64 *)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
249 // PDPTE
250 PTIndex = BitFieldRead64 (PFAddress, 30, 38);
251 PageTable = (UINT64 *)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
252 // PD
253 PTIndex = BitFieldRead64 (PFAddress, 21, 29);
254 Address = PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK;
255 //
256 // Check if 2MB-page entry need be changed to 4KB-page entry.
257 //
258 if (IsAddressSplit (Address)) {
259 AcquirePage (&PageTable[PTIndex]);
260
261 // PTE
262 PageTable = (UINT64 *)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
263 for (Index = 0; Index < 512; Index++) {
264 PageTable[Index] = Address | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
265 if (!IsAddressValid (Address, &Nx)) {
266 PageTable[Index] = PageTable[Index] & (INTN)(INT32)(~PAGE_ATTRIBUTE_BITS);
267 }
268
269 if (Nx && mXdSupported) {
270 PageTable[Index] = PageTable[Index] | IA32_PG_NX;
271 }
272
273 if (Address == (PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 12) - 1))) {
274 PTIndex = Index;
275 }
276
277 Address += SIZE_4KB;
278 } // end for PT
279 } else {
280 //
281 // Update 2MB page entry.
282 //
283 if (!IsAddressValid (Address, &Nx)) {
284 //
285 // Patch to remove present flag and rw flag.
286 //
287 PageTable[PTIndex] = PageTable[PTIndex] & (INTN)(INT32)(~PAGE_ATTRIBUTE_BITS);
288 }
289
290 //
291 // Set XD bit to 1
292 //
293 if (Nx && mXdSupported) {
294 PageTable[PTIndex] = PageTable[PTIndex] | IA32_PG_NX;
295 }
296 }
297 }
298
299 //
300 // Record old entries with non-present status
301 // Old entries include the memory which instruction is at and the memory which instruction access.
302 //
303 //
304 ASSERT (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT);
305 if (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT) {
306 PFIndex = mPFEntryCount[CpuIndex];
307 mLastPFEntryValue[CpuIndex][PFIndex] = PageTable[PTIndex];
308 mLastPFEntryPointer[CpuIndex][PFIndex] = &PageTable[PTIndex];
309 mPFEntryCount[CpuIndex]++;
310 }
311
312 //
313 // Add present flag or clear XD flag to make page fault handler succeed.
314 //
315 PageTable[PTIndex] |= (UINT64)(PAGE_ATTRIBUTE_BITS);
316 if ((ErrorCode & IA32_PF_EC_ID) != 0) {
317 //
318 // If page fault is caused by instruction fetch, clear XD bit in the entry.
319 //
320 PageTable[PTIndex] &= ~IA32_PG_NX;
321 }
322
323 return;
324 }
325
326 /**
327 Clear TF in FLAGS.
328
329 @param SystemContext A pointer to the processor context when
330 the interrupt occurred on the processor.
331
332 **/
333 VOID
334 ClearTrapFlag (
335 IN OUT EFI_SYSTEM_CONTEXT SystemContext
336 )
337 {
338 SystemContext.SystemContextX64->Rflags &= (UINTN) ~BIT8;
339 }