]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/PiSmmCpuDxeSmm/X64/SmmProfileArch.c
UefiCpuPkg: Replace BSD License with BSD+Patent License
[mirror_edk2.git] / UefiCpuPkg / PiSmmCpuDxeSmm / X64 / SmmProfileArch.c
1 /** @file
2 X64 processor specific functions to enable SMM profile.
3
4 Copyright (c) 2012 - 2016, Intel Corporation. All rights reserved.<BR>
5 Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>
6
7 SPDX-License-Identifier: BSD-2-Clause-Patent
8
9 **/
10
11 #include "PiSmmCpuDxeSmm.h"
12 #include "SmmProfileInternal.h"
13
14 //
15 // Current page index.
16 //
17 UINTN mPFPageIndex;
18
19 //
20 // Pool for dynamically creating page table in page fault handler.
21 //
22 UINT64 mPFPageBuffer;
23
24 //
25 // Store the uplink information for each page being used.
26 //
27 UINT64 *mPFPageUplink[MAX_PF_PAGE_COUNT];
28
29 /**
30 Create SMM page table for S3 path.
31
32 **/
33 VOID
34 InitSmmS3Cr3 (
35 VOID
36 )
37 {
38 EFI_PHYSICAL_ADDRESS Pages;
39 UINT64 *PTEntry;
40
41 //
42 // Generate PAE page table for the first 4GB memory space
43 //
44 Pages = Gen4GPageTable (FALSE);
45
46 //
47 // Fill Page-Table-Level4 (PML4) entry
48 //
49 PTEntry = (UINT64*)AllocatePageTableMemory (1);
50 ASSERT (PTEntry != NULL);
51 *PTEntry = Pages | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
52 ZeroMem (PTEntry + 1, EFI_PAGE_SIZE - sizeof (*PTEntry));
53
54 //
55 // Return the address of PML4 (to set CR3)
56 //
57 mSmmS3ResumeState->SmmS3Cr3 = (UINT32)(UINTN)PTEntry;
58
59 return ;
60 }
61
62 /**
63 Allocate pages for creating 4KB-page based on 2MB-page when page fault happens.
64
65 **/
66 VOID
67 InitPagesForPFHandler (
68 VOID
69 )
70 {
71 VOID *Address;
72
73 //
74 // Pre-Allocate memory for page fault handler
75 //
76 Address = NULL;
77 Address = AllocatePages (MAX_PF_PAGE_COUNT);
78 ASSERT (Address != NULL);
79
80 mPFPageBuffer = (UINT64)(UINTN) Address;
81 mPFPageIndex = 0;
82 ZeroMem ((VOID *) (UINTN) mPFPageBuffer, EFI_PAGE_SIZE * MAX_PF_PAGE_COUNT);
83 ZeroMem (mPFPageUplink, sizeof (mPFPageUplink));
84
85 return;
86 }
87
88 /**
89 Allocate one page for creating 4KB-page based on 2MB-page.
90
91 @param Uplink The address of Page-Directory entry.
92
93 **/
94 VOID
95 AcquirePage (
96 UINT64 *Uplink
97 )
98 {
99 UINT64 Address;
100
101 //
102 // Get the buffer
103 //
104 Address = mPFPageBuffer + EFI_PAGES_TO_SIZE (mPFPageIndex);
105 ZeroMem ((VOID *) (UINTN) Address, EFI_PAGE_SIZE);
106
107 //
108 // Cut the previous uplink if it exists and wasn't overwritten
109 //
110 if ((mPFPageUplink[mPFPageIndex] != NULL) && ((*mPFPageUplink[mPFPageIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK) == Address)) {
111 *mPFPageUplink[mPFPageIndex] = 0;
112 }
113
114 //
115 // Link & Record the current uplink
116 //
117 *Uplink = Address | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
118 mPFPageUplink[mPFPageIndex] = Uplink;
119
120 mPFPageIndex = (mPFPageIndex + 1) % MAX_PF_PAGE_COUNT;
121 }
122
123 /**
124 Update page table to map the memory correctly in order to make the instruction
125 which caused page fault execute successfully. And it also save the original page
126 table to be restored in single-step exception.
127
128 @param PageTable PageTable Address.
129 @param PFAddress The memory address which caused page fault exception.
130 @param CpuIndex The index of the processor.
131 @param ErrorCode The Error code of exception.
132 @param IsValidPFAddress The flag indicates if SMM profile data need be added.
133
134 **/
135 VOID
136 RestorePageTableAbove4G (
137 UINT64 *PageTable,
138 UINT64 PFAddress,
139 UINTN CpuIndex,
140 UINTN ErrorCode,
141 BOOLEAN *IsValidPFAddress
142 )
143 {
144 UINTN PTIndex;
145 UINT64 Address;
146 BOOLEAN Nx;
147 BOOLEAN Existed;
148 UINTN Index;
149 UINTN PFIndex;
150
151 ASSERT ((PageTable != NULL) && (IsValidPFAddress != NULL));
152
153 //
154 // If page fault address is 4GB above.
155 //
156
157 //
158 // Check if page fault address has existed in page table.
159 // If it exists in page table but page fault is generated,
160 // there are 2 possible reasons: 1. present flag is set to 0; 2. instruction fetch in protected memory range.
161 //
162 Existed = FALSE;
163 PageTable = (UINT64*)(AsmReadCr3 () & PHYSICAL_ADDRESS_MASK);
164 PTIndex = BitFieldRead64 (PFAddress, 39, 47);
165 if ((PageTable[PTIndex] & IA32_PG_P) != 0) {
166 // PML4E
167 PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
168 PTIndex = BitFieldRead64 (PFAddress, 30, 38);
169 if ((PageTable[PTIndex] & IA32_PG_P) != 0) {
170 // PDPTE
171 PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
172 PTIndex = BitFieldRead64 (PFAddress, 21, 29);
173 // PD
174 if ((PageTable[PTIndex] & IA32_PG_PS) != 0) {
175 //
176 // 2MB page
177 //
178 Address = (UINT64)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
179 if ((Address & ~((1ull << 21) - 1)) == ((PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 21) - 1)))) {
180 Existed = TRUE;
181 }
182 } else {
183 //
184 // 4KB page
185 //
186 PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask& PHYSICAL_ADDRESS_MASK);
187 if (PageTable != 0) {
188 //
189 // When there is a valid entry to map to 4KB page, need not create a new entry to map 2MB.
190 //
191 PTIndex = BitFieldRead64 (PFAddress, 12, 20);
192 Address = (UINT64)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
193 if ((Address & ~((1ull << 12) - 1)) == (PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 12) - 1))) {
194 Existed = TRUE;
195 }
196 }
197 }
198 }
199 }
200
201 //
202 // If page entry does not existed in page table at all, create a new entry.
203 //
204 if (!Existed) {
205
206 if (IsAddressValid (PFAddress, &Nx)) {
207 //
208 // If page fault address above 4GB is in protected range but it causes a page fault exception,
209 // Will create a page entry for this page fault address, make page table entry as present/rw and execution-disable.
210 // this access is not saved into SMM profile data.
211 //
212 *IsValidPFAddress = TRUE;
213 }
214
215 //
216 // Create one entry in page table for page fault address.
217 //
218 SmiDefaultPFHandler ();
219 //
220 // Find the page table entry created just now.
221 //
222 PageTable = (UINT64*)(AsmReadCr3 () & PHYSICAL_ADDRESS_MASK);
223 PFAddress = AsmReadCr2 ();
224 // PML4E
225 PTIndex = BitFieldRead64 (PFAddress, 39, 47);
226 PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
227 // PDPTE
228 PTIndex = BitFieldRead64 (PFAddress, 30, 38);
229 PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
230 // PD
231 PTIndex = BitFieldRead64 (PFAddress, 21, 29);
232 Address = PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK;
233 //
234 // Check if 2MB-page entry need be changed to 4KB-page entry.
235 //
236 if (IsAddressSplit (Address)) {
237 AcquirePage (&PageTable[PTIndex]);
238
239 // PTE
240 PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & PHYSICAL_ADDRESS_MASK);
241 for (Index = 0; Index < 512; Index++) {
242 PageTable[Index] = Address | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
243 if (!IsAddressValid (Address, &Nx)) {
244 PageTable[Index] = PageTable[Index] & (INTN)(INT32)(~PAGE_ATTRIBUTE_BITS);
245 }
246 if (Nx && mXdSupported) {
247 PageTable[Index] = PageTable[Index] | IA32_PG_NX;
248 }
249 if (Address == (PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 12) - 1))) {
250 PTIndex = Index;
251 }
252 Address += SIZE_4KB;
253 } // end for PT
254 } else {
255 //
256 // Update 2MB page entry.
257 //
258 if (!IsAddressValid (Address, &Nx)) {
259 //
260 // Patch to remove present flag and rw flag.
261 //
262 PageTable[PTIndex] = PageTable[PTIndex] & (INTN)(INT32)(~PAGE_ATTRIBUTE_BITS);
263 }
264 //
265 // Set XD bit to 1
266 //
267 if (Nx && mXdSupported) {
268 PageTable[PTIndex] = PageTable[PTIndex] | IA32_PG_NX;
269 }
270 }
271 }
272
273 //
274 // Record old entries with non-present status
275 // Old entries include the memory which instruction is at and the memory which instruction access.
276 //
277 //
278 ASSERT (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT);
279 if (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT) {
280 PFIndex = mPFEntryCount[CpuIndex];
281 mLastPFEntryValue[CpuIndex][PFIndex] = PageTable[PTIndex];
282 mLastPFEntryPointer[CpuIndex][PFIndex] = &PageTable[PTIndex];
283 mPFEntryCount[CpuIndex]++;
284 }
285
286 //
287 // Add present flag or clear XD flag to make page fault handler succeed.
288 //
289 PageTable[PTIndex] |= (UINT64)(PAGE_ATTRIBUTE_BITS);
290 if ((ErrorCode & IA32_PF_EC_ID) != 0) {
291 //
292 // If page fault is caused by instruction fetch, clear XD bit in the entry.
293 //
294 PageTable[PTIndex] &= ~IA32_PG_NX;
295 }
296
297 return;
298 }
299
300 /**
301 Clear TF in FLAGS.
302
303 @param SystemContext A pointer to the processor context when
304 the interrupt occurred on the processor.
305
306 **/
307 VOID
308 ClearTrapFlag (
309 IN OUT EFI_SYSTEM_CONTEXT SystemContext
310 )
311 {
312 SystemContext.SystemContextX64->Rflags &= (UINTN) ~BIT8;
313 }