]> git.proxmox.com Git - mirror_edk2.git/commitdiff
Fix coding style problem in RngDxe driver.
authorLong, Qin <qin.long@intel.com>
Thu, 21 Nov 2013 09:02:33 +0000 (09:02 +0000)
committersfu5 <sfu5@6f19259b-4bc3-4df7-8a09-765794883524>
Thu, 21 Nov 2013 09:02:33 +0000 (09:02 +0000)
Signed-off-by: Long, Qin <qin.long@intel.com>
Reviewed-by: Fu, Siyuan <siyuan.fu@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14878 6f19259b-4bc3-4df7-8a09-765794883524

SecurityPkg/Application/RngTest/RngTest.c
SecurityPkg/RandomNumberGenerator/RngDxe/AesCore.c
SecurityPkg/RandomNumberGenerator/RngDxe/RngDxe.inf

index 25edecefe3d27fbab9b24e327a991b5b8bda92bc..f501f806e93ce016d542e96e088fe74c55c82c18 100644 (file)
@@ -103,6 +103,9 @@ UefiMain (
   //\r
   RandSize = 32;\r
   Rand     = AllocatePool (RandSize);\r
+  if (Rand == NULL) {\r
+    goto Exit;\r
+  }\r
   \r
   //\r
   // RNG with default algorithm\r
index 46d82ac62b972c741fe873a3179ce5fefcac0b97..13b424dc2e7e4f96a6b48f8e7b28dce8d9245824 100644 (file)
@@ -23,11 +23,12 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
 #define AES_NB                     4\r
 \r
 //\r
-// Pre-computed AES Forward Table: AES_ETABLE[t] = AES_SBOX[t].[02, 01, 01, 03]\r
+// Pre-computed AES Forward Table: AesForwardTable[t] = AES_SBOX[t].[02, 01, 01, 03]\r
+// AES_SBOX (AES S-box) is defined in sec 5.1.1 of FIPS PUB 197.\r
 // This is to speed up execution of the cipher by combining SubBytes and\r
 // ShiftRows with MixColumns steps and transforming them into table lookups.\r
 //\r
-GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT32 AES_FTABLE[] = {\r
+GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT32 AesForwardTable[] = {\r
   0xc66363a5, 0xf87c7c84, 0xee777799, 0xf67b7b8d, 0xfff2f20d, 0xd66b6bbd, \r
   0xde6f6fb1, 0x91c5c554, 0x60303050, 0x02010103, 0xce6767a9, 0x562b2b7d,\r
   0xe7fefe19, 0xb5d7d762, 0x4dababe6, 0xec76769a, 0x8fcaca45, 0x1f82829d, \r
@@ -73,77 +74,6 @@ GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT32 AES_FTABLE[] = {
   0x7bb0b0cb, 0xa85454fc, 0x6dbbbbd6, 0x2c16163a\r
 };\r
 \r
-//\r
-// Pre-computed AES Reverse Table: AES_DTABLE[t] = AES_INV_SBOX[t].[0e, 09, 0d, 0b]\r
-//\r
-GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT32 AES_RTABLE[] = {\r
-  0x51f4a750, 0x7e416553, 0x1a17a4c3, 0x3a275e96, 0x3bab6bcb, 0x1f9d45f1, \r
-  0xacfa58ab, 0x4be30393, 0x2030fa55, 0xad766df6, 0x88cc7691, 0xf5024c25,\r
-  0x4fe5d7fc, 0xc52acbd7, 0x26354480, 0xb562a38f, 0xdeb15a49, 0x25ba1b67, \r
-  0x45ea0e98, 0x5dfec0e1, 0xc32f7502, 0x814cf012, 0x8d4697a3, 0x6bd3f9c6,\r
-  0x038f5fe7, 0x15929c95, 0xbf6d7aeb, 0x955259da, 0xd4be832d, 0x587421d3, \r
-  0x49e06929, 0x8ec9c844, 0x75c2896a, 0xf48e7978, 0x99583e6b, 0x27b971dd,\r
-  0xbee14fb6, 0xf088ad17, 0xc920ac66, 0x7dce3ab4, 0x63df4a18, 0xe51a3182, \r
-  0x97513360, 0x62537f45, 0xb16477e0, 0xbb6bae84, 0xfe81a01c, 0xf9082b94,\r
-  0x70486858, 0x8f45fd19, 0x94de6c87, 0x527bf8b7, 0xab73d323, 0x724b02e2, \r
-  0xe31f8f57, 0x6655ab2a, 0xb2eb2807, 0x2fb5c203, 0x86c57b9a, 0xd33708a5,\r
-  0x302887f2, 0x23bfa5b2, 0x02036aba, 0xed16825c, 0x8acf1c2b, 0xa779b492, \r
-  0xf307f2f0, 0x4e69e2a1, 0x65daf4cd, 0x0605bed5, 0xd134621f, 0xc4a6fe8a,\r
-  0x342e539d, 0xa2f355a0, 0x058ae132, 0xa4f6eb75, 0x0b83ec39, 0x4060efaa, \r
-  0x5e719f06, 0xbd6e1051, 0x3e218af9, 0x96dd063d, 0xdd3e05ae, 0x4de6bd46,\r
-  0x91548db5, 0x71c45d05, 0x0406d46f, 0x605015ff, 0x1998fb24, 0xd6bde997, \r
-  0x894043cc, 0x67d99e77, 0xb0e842bd, 0x07898b88, 0xe7195b38, 0x79c8eedb,\r
-  0xa17c0a47, 0x7c420fe9, 0xf8841ec9, 0x00000000, 0x09808683, 0x322bed48, \r
-  0x1e1170ac, 0x6c5a724e, 0xfd0efffb, 0x0f853856, 0x3daed51e, 0x362d3927,\r
-  0x0a0fd964, 0x685ca621, 0x9b5b54d1, 0x24362e3a, 0x0c0a67b1, 0x9357e70f, \r
-  0xb4ee96d2, 0x1b9b919e, 0x80c0c54f, 0x61dc20a2, 0x5a774b69, 0x1c121a16,\r
-  0xe293ba0a, 0xc0a02ae5, 0x3c22e043, 0x121b171d, 0x0e090d0b, 0xf28bc7ad, \r
-  0x2db6a8b9, 0x141ea9c8, 0x57f11985, 0xaf75074c, 0xee99ddbb, 0xa37f60fd,\r
-  0xf701269f, 0x5c72f5bc, 0x44663bc5, 0x5bfb7e34, 0x8b432976, 0xcb23c6dc, \r
-  0xb6edfc68, 0xb8e4f163, 0xd731dcca, 0x42638510, 0x13972240, 0x84c61120,\r
-  0x854a247d, 0xd2bb3df8, 0xaef93211, 0xc729a16d, 0x1d9e2f4b, 0xdcb230f3, \r
-  0x0d8652ec, 0x77c1e3d0, 0x2bb3166c, 0xa970b999, 0x119448fa, 0x47e96422,\r
-  0xa8fc8cc4, 0xa0f03f1a, 0x567d2cd8, 0x223390ef, 0x87494ec7, 0xd938d1c1, \r
-  0x8ccaa2fe, 0x98d40b36, 0xa6f581cf, 0xa57ade28, 0xdab78e26, 0x3fadbfa4,\r
-  0x2c3a9de4, 0x5078920d, 0x6a5fcc9b, 0x547e4662, 0xf68d13c2, 0x90d8b8e8, \r
-  0x2e39f75e, 0x82c3aff5, 0x9f5d80be, 0x69d0937c, 0x6fd52da9, 0xcf2512b3,\r
-  0xc8ac993b, 0x10187da7, 0xe89c636e, 0xdb3bbb7b, 0xcd267809, 0x6e5918f4, \r
-  0xec9ab701, 0x834f9aa8, 0xe6956e65, 0xaaffe67e, 0x21bccf08, 0xef15e8e6,\r
-  0xbae79bd9, 0x4a6f36ce, 0xea9f09d4, 0x29b07cd6, 0x31a4b2af, 0x2a3f2331, \r
-  0xc6a59430, 0x35a266c0, 0x744ebc37, 0xfc82caa6, 0xe090d0b0, 0x33a7d815,\r
-  0xf104984a, 0x41ecdaf7, 0x7fcd500e, 0x1791f62f, 0x764dd68d, 0x43efb04d, \r
-  0xccaa4d54, 0xe49604df, 0x9ed1b5e3, 0x4c6a881b, 0xc12c1fb8, 0x4665517f,\r
-  0x9d5eea04, 0x018c355d, 0xfa877473, 0xfb0b412e, 0xb3671d5a, 0x92dbd252, \r
-  0xe9105633, 0x6dd64713, 0x9ad7618c, 0x37a10c7a, 0x59f8148e, 0xeb133c89,\r
-  0xcea927ee, 0xb761c935, 0xe11ce5ed, 0x7a47b13c, 0x9cd2df59, 0x55f2733f, \r
-  0x1814ce79, 0x73c737bf, 0x53f7cdea, 0x5ffdaa5b, 0xdf3d6f14, 0x7844db86,\r
-  0xcaaff381, 0xb968c43e, 0x3824342c, 0xc2a3405f, 0x161dc372, 0xbce2250c, \r
-  0x283c498b, 0xff0d9541, 0x39a80171, 0x080cb3de, 0xd8b4e49c, 0x6456c190,\r
-  0x7bcb8461, 0xd532b670, 0x486c5c74, 0xd0b85742\r
-};\r
-\r
-//\r
-// AES Inverse S-Box (Defined in sec 5.3.2 of FIPS PUB 197).\r
-//\r
-GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT8 AES_INV_SBOX[256] = {\r
-  0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,\r
-  0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,\r
-  0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,\r
-  0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,\r
-  0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,\r
-  0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,\r
-  0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,\r
-  0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,\r
-  0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,\r
-  0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,\r
-  0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,\r
-  0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,\r
-  0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,\r
-  0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,\r
-  0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,\r
-  0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d\r
-};\r
-\r
 //\r
 // Round constant word array used in AES key expansion.\r
 //\r
@@ -166,25 +96,20 @@ GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT32 Rcon[] = {
                            (y)[2] = (UINT8)(((x) >>  8) & 0xFF); (y)[3] = (UINT8)((x)         & 0xFF); }\r
 \r
 //\r
-// Wrap macros for AES forward and reverse tables lookups\r
+// Wrap macros for AES forward tables lookups\r
 //\r
-#define AES_FT0(x)  AES_FTABLE[x]\r
-#define AES_FT1(x)  ROTATE_RIGHT32(AES_FTABLE[x],  8)\r
-#define AES_FT2(x)  ROTATE_RIGHT32(AES_FTABLE[x], 16)\r
-#define AES_FT3(x)  ROTATE_RIGHT32(AES_FTABLE[x], 24)\r
-\r
-#define AES_RT0(x)  AES_RTABLE[x]\r
-#define AES_RT1(x)  ROTATE_RIGHT32(AES_RTABLE[x],  8)\r
-#define AES_RT2(x)  ROTATE_RIGHT32(AES_RTABLE[x], 16)\r
-#define AES_RT3(x)  ROTATE_RIGHT32(AES_RTABLE[x], 24)\r
+#define AES_FT0(x)  AesForwardTable[x]\r
+#define AES_FT1(x)  ROTATE_RIGHT32(AesForwardTable[x],  8)\r
+#define AES_FT2(x)  ROTATE_RIGHT32(AesForwardTable[x], 16)\r
+#define AES_FT3(x)  ROTATE_RIGHT32(AesForwardTable[x], 24)\r
 \r
 ///\r
 /// AES Key Schedule which is expanded from symmetric key [Size 60 = 4 * ((Max AES Round, 14) + 1)].\r
 ///\r
 typedef struct {\r
   UINTN     Nk;            // Number of Cipher Key (in 32-bit words);\r
-  UINT32    eKey[60];      // Expanded AES encryption key\r
-  UINT32    dKey[60];      // Expanded AES decryption key (Not used here)\r
+  UINT32    EncKey[60];    // Expanded AES encryption key\r
+  UINT32    DecKey[60];    // Expanded AES decryption key (Not used here)\r
 } AES_KEY;\r
 \r
 /**\r
@@ -207,8 +132,12 @@ AesExpandKey (
   OUT AES_KEY      *AesKey\r
   )\r
 {\r
-  UINTN       Nk, Nr, NW;\r
-  UINTN       i, j, k;\r
+  UINTN       Nk;\r
+  UINTN       Nr;\r
+  UINTN       Nw;\r
+  UINTN       Index1;\r
+  UINTN       Index2;\r
+  UINTN       Index3;\r
   UINT32      *Ek;\r
   UINT32      Temp;\r
 \r
@@ -221,52 +150,52 @@ AesExpandKey (
     return EFI_INVALID_PARAMETER;\r
   }\r
   Nr = Nk + 6;\r
-  NW = AES_NB * (Nr + 1);    // Key Expansion generates a total of Nb * (Nr + 1) words\r
+  Nw = AES_NB * (Nr + 1);    // Key Expansion generates a total of Nb * (Nr + 1) words\r
   AesKey->Nk = Nk;\r
 \r
   //\r
   // Load initial symmetric AES key;\r
   // Note that AES was designed on big-endian systems.\r
   //\r
-  Ek = AesKey->eKey;\r
-  for (i = j = 0; i < Nk; i++, j+=4) {\r
-    LOAD32H (Ek[i], Key + j);\r
+  Ek = AesKey->EncKey;\r
+  for (Index1 = Index2 = 0; Index1 < Nk; Index1++, Index2 += 4) {\r
+    LOAD32H (Ek[Index1], Key + Index2);\r
   }\r
   \r
   //\r
   // Initialize the encryption key scheduler\r
   //\r
-  for (j = Nk, k = 0; j < NW; j+=Nk, k++) {\r
-    Temp  = Ek[j - 1];\r
-    Ek[j] = Ek[j - Nk] ^ (AES_FT2((Temp >> 16) & 0xFF) & 0xFF000000) ^\r
-                         (AES_FT3((Temp >>  8) & 0xFF) & 0x00FF0000) ^\r
-                         (AES_FT0((Temp)       & 0xFF) & 0x0000FF00) ^\r
-                         (AES_FT1((Temp >> 24) & 0xFF) & 0x000000FF) ^\r
-                         Rcon[k];\r
+  for (Index2 = Nk, Index3 = 0; Index2 < Nw; Index2 += Nk, Index3++) {\r
+    Temp       = Ek[Index2 - 1];\r
+    Ek[Index2] = Ek[Index2 - Nk] ^ (AES_FT2((Temp >> 16) & 0xFF) & 0xFF000000) ^\r
+                                   (AES_FT3((Temp >>  8) & 0xFF) & 0x00FF0000) ^\r
+                                   (AES_FT0((Temp)       & 0xFF) & 0x0000FF00) ^\r
+                                   (AES_FT1((Temp >> 24) & 0xFF) & 0x000000FF) ^\r
+                                   Rcon[Index3];\r
     if (Nk <= 6) {\r
       //\r
       // If AES Cipher Key is 128 or 192 bits\r
       //\r
-      for (i = 1; i < Nk && (i + j) < NW; i++) {\r
-        Ek [i + j] = Ek [i + j - Nk] ^ Ek[i + j - 1];\r
+      for (Index1 = 1; Index1 < Nk && (Index1 + Index2) < Nw; Index1++) {\r
+        Ek [Index1 + Index2] = Ek [Index1 + Index2 - Nk] ^ Ek[Index1 + Index2 - 1];\r
       }\r
     } else {\r
       //\r
       // Different routine for key expansion If Cipher Key is 256 bits, \r
       //\r
-      for (i = 1; i < 4 && (i + j) < NW; i++) {\r
-        Ek [i + j] = Ek[i + j - Nk] ^ Ek[i + j - 1];\r
+      for (Index1 = 1; Index1 < 4 && (Index1 + Index2) < Nw; Index1++) {\r
+        Ek [Index1 + Index2] = Ek[Index1 + Index2 - Nk] ^ Ek[Index1 + Index2 - 1];\r
       }\r
-      if (j + 4 < NW) {\r
-        Temp      = Ek[j + 3];\r
-        Ek[j + 4] = Ek[j + 4 - Nk] ^ (AES_FT2((Temp >> 24) & 0xFF) & 0xFF000000) ^\r
-                                     (AES_FT3((Temp >> 16) & 0xFF) & 0x00FF0000) ^\r
-                                     (AES_FT0((Temp >>  8) & 0xFF) & 0x0000FF00) ^\r
-                                     (AES_FT1((Temp)       & 0xFF) & 0x000000FF);\r
+      if (Index2 + 4 < Nw) {\r
+        Temp           = Ek[Index2 + 3];\r
+        Ek[Index2 + 4] = Ek[Index2 + 4 - Nk] ^ (AES_FT2((Temp >> 24) & 0xFF) & 0xFF000000) ^\r
+                                               (AES_FT3((Temp >> 16) & 0xFF) & 0x00FF0000) ^\r
+                                               (AES_FT0((Temp >>  8) & 0xFF) & 0x0000FF00) ^\r
+                                               (AES_FT1((Temp)       & 0xFF) & 0x000000FF);\r
       }\r
       \r
-      for (i = 5; i < Nk && (i + j) < NW; i++) {\r
-        Ek[i + j] = Ek[i + j - Nk] ^ Ek[i + j - 1];\r
+      for (Index1 = 5; Index1 < Nk && (Index1 + Index2) < Nw; Index1++) {\r
+        Ek[Index1 + Index2] = Ek[Index1 + Index2 - Nk] ^ Ek[Index1 + Index2 - 1];\r
       }\r
     }\r
   }\r
@@ -295,8 +224,15 @@ AesEncrypt (
 {\r
   AES_KEY  AesKey;\r
   UINTN    Nr;\r
-  UINT32   *Ek, s[4], t[4], *x, *y, *Temp;\r
-  UINTN    Index, k, Round;\r
+  UINT32   *Ek;\r
+  UINT32   State[4];\r
+  UINT32   TempState[4];\r
+  UINT32   *StateX;\r
+  UINT32   *StateY;\r
+  UINT32   *Temp;\r
+  UINTN    Index;\r
+  UINTN    NbIndex;\r
+  UINTN    Round;\r
 \r
   if ((Key == NULL) || (InData == NULL) || (OutData == NULL)) {\r
     return EFI_INVALID_PARAMETER;\r
@@ -308,59 +244,60 @@ AesEncrypt (
   AesExpandKey (Key, 128, &AesKey);\r
 \r
   Nr = AesKey.Nk + 6;\r
-  Ek = AesKey.eKey;\r
+  Ek = AesKey.EncKey;\r
 \r
   //\r
   // Initialize the cipher State array with the initial round key\r
   //\r
   for (Index = 0; Index < AES_NB; Index++) {\r
-    LOAD32H (s[Index], InData + 4 * Index);\r
-    s[Index] ^= Ek[Index];\r
+    LOAD32H (State[Index], InData + 4 * Index);\r
+    State[Index] ^= Ek[Index];\r
   }\r
 \r
-  k = AES_NB;\r
-  x = s; \r
-  y = t;\r
+  NbIndex = AES_NB;\r
+  StateX  = State;\r
+  StateY  = TempState;\r
+\r
   //\r
   // AES Cipher transformation rounds (Nr - 1 rounds), in which SubBytes(), \r
   // ShiftRows() and MixColumns() operations were combined by a sequence of \r
   // table lookups to speed up the execution.\r
   //\r
   for (Round = 1; Round < Nr; Round++) {\r
-    y[0] = AES_FT0 ((x[0] >> 24)       ) ^ AES_FT1 ((x[1] >> 16) & 0xFF) ^\r
-           AES_FT2 ((x[2] >>  8) & 0xFF) ^ AES_FT3 ((x[3]      ) & 0xFF) ^ Ek[k];\r
-    y[1] = AES_FT0 ((x[1] >> 24)       ) ^ AES_FT1 ((x[2] >> 16) & 0xFF) ^\r
-           AES_FT2 ((x[3] >>  8) & 0xFF) ^ AES_FT3 ((x[0]      ) & 0xFF) ^ Ek[k + 1];\r
-    y[2] = AES_FT0 ((x[2] >> 24)       ) ^ AES_FT1 ((x[3] >> 16) & 0xFF) ^\r
-           AES_FT2 ((x[0] >>  8) & 0xFF) ^ AES_FT3 ((x[1]      ) & 0xFF) ^ Ek[k + 2];\r
-    y[3] = AES_FT0 ((x[3] >> 24)       ) ^ AES_FT1 ((x[0] >> 16) & 0xFF) ^\r
-           AES_FT2 ((x[1] >>  8) & 0xFF) ^ AES_FT3 ((x[2]      ) & 0xFF) ^ Ek[k + 3];\r
-\r
-    k += 4;\r
-    Temp = x; x = y; y = Temp;  \r
+    StateY[0] = AES_FT0 ((StateX[0] >> 24)       ) ^ AES_FT1 ((StateX[1] >> 16) & 0xFF) ^\r
+                AES_FT2 ((StateX[2] >>  8) & 0xFF) ^ AES_FT3 ((StateX[3]      ) & 0xFF) ^ Ek[NbIndex];\r
+    StateY[1] = AES_FT0 ((StateX[1] >> 24)       ) ^ AES_FT1 ((StateX[2] >> 16) & 0xFF) ^\r
+                AES_FT2 ((StateX[3] >>  8) & 0xFF) ^ AES_FT3 ((StateX[0]      ) & 0xFF) ^ Ek[NbIndex + 1];\r
+    StateY[2] = AES_FT0 ((StateX[2] >> 24)       ) ^ AES_FT1 ((StateX[3] >> 16) & 0xFF) ^\r
+                AES_FT2 ((StateX[0] >>  8) & 0xFF) ^ AES_FT3 ((StateX[1]      ) & 0xFF) ^ Ek[NbIndex + 2];\r
+    StateY[3] = AES_FT0 ((StateX[3] >> 24)       ) ^ AES_FT1 ((StateX[0] >> 16) & 0xFF) ^\r
+                AES_FT2 ((StateX[1] >>  8) & 0xFF) ^ AES_FT3 ((StateX[2]      ) & 0xFF) ^ Ek[NbIndex + 3];\r
+\r
+    NbIndex += 4;\r
+    Temp = StateX; StateX = StateY; StateY = Temp;\r
   }\r
 \r
   //\r
   // Apply the final round, which does not include MixColumns() transformation\r
   //\r
-  y[0] = (AES_FT2 ((x[0] >> 24)       ) & 0xFF000000) ^ (AES_FT3 ((x[1] >> 16) & 0xFF) & 0x00FF0000) ^\r
-         (AES_FT0 ((x[2] >>  8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((x[3]      ) & 0xFF) & 0x000000FF) ^\r
-         Ek[k];\r
-  y[1] = (AES_FT2 ((x[1] >> 24)       ) & 0xFF000000) ^ (AES_FT3 ((x[2] >> 16) & 0xFF) & 0x00FF0000) ^\r
-         (AES_FT0 ((x[3] >>  8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((x[0]      ) & 0xFF) & 0x000000FF) ^\r
-         Ek[k + 1];\r
-  y[2] = (AES_FT2 ((x[2] >> 24)       ) & 0xFF000000) ^ (AES_FT3 ((x[3] >> 16) & 0xFF) & 0x00FF0000) ^\r
-         (AES_FT0 ((x[0] >>  8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((x[1]      ) & 0xFF) & 0x000000FF) ^\r
-         Ek[k + 2];\r
-  y[3] = (AES_FT2 ((x[3] >> 24)       ) & 0xFF000000) ^ (AES_FT3 ((x[0] >> 16) & 0xFF) & 0x00FF0000) ^\r
-         (AES_FT0 ((x[1] >>  8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((x[2]      ) & 0xFF) & 0x000000FF) ^\r
-         Ek[k + 3];\r
+  StateY[0] = (AES_FT2 ((StateX[0] >> 24)       ) & 0xFF000000) ^ (AES_FT3 ((StateX[1] >> 16) & 0xFF) & 0x00FF0000) ^\r
+              (AES_FT0 ((StateX[2] >>  8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[3]      ) & 0xFF) & 0x000000FF) ^\r
+              Ek[NbIndex];\r
+  StateY[1] = (AES_FT2 ((StateX[1] >> 24)       ) & 0xFF000000) ^ (AES_FT3 ((StateX[2] >> 16) & 0xFF) & 0x00FF0000) ^\r
+              (AES_FT0 ((StateX[3] >>  8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[0]      ) & 0xFF) & 0x000000FF) ^\r
+              Ek[NbIndex + 1];\r
+  StateY[2] = (AES_FT2 ((StateX[2] >> 24)       ) & 0xFF000000) ^ (AES_FT3 ((StateX[3] >> 16) & 0xFF) & 0x00FF0000) ^\r
+              (AES_FT0 ((StateX[0] >>  8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[1]      ) & 0xFF) & 0x000000FF) ^\r
+              Ek[NbIndex + 2];\r
+  StateY[3] = (AES_FT2 ((StateX[3] >> 24)       ) & 0xFF000000) ^ (AES_FT3 ((StateX[0] >> 16) & 0xFF) & 0x00FF0000) ^\r
+              (AES_FT0 ((StateX[1] >>  8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[2]      ) & 0xFF) & 0x000000FF) ^\r
+              Ek[NbIndex + 3];\r
 \r
   //\r
   // Output the transformed result;\r
   //\r
   for (Index = 0; Index < AES_NB; Index++) {\r
-    STORE32H (y[Index], OutData + 4 * Index);\r
+    STORE32H (StateY[Index], OutData + 4 * Index);\r
   }\r
 \r
   return EFI_SUCCESS;\r
index c84ab369bc311eff9be70653c0659812849ce7dc..12cb2fc3eef8efc9721479d619ab7ec482b7c417 100644 (file)
@@ -36,7 +36,9 @@
 [Sources.common]\r
   RngDxe.c\r
   RdRand.c\r
+  RdRand.h\r
   AesCore.c\r
+  AesCore.h\r
 \r
 [Sources.IA32]\r
   IA32/RdRandWord.c\r