]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
kvm: Restrict configure check to Linux
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
fad6cb1a 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
54936004 19 */
67b915a5 20#include "config.h"
d5a8f07c
FB
21#ifdef _WIN32
22#include <windows.h>
23#else
a98d49b1 24#include <sys/types.h>
d5a8f07c
FB
25#include <sys/mman.h>
26#endif
54936004
FB
27#include <stdlib.h>
28#include <stdio.h>
29#include <stdarg.h>
30#include <string.h>
31#include <errno.h>
32#include <unistd.h>
33#include <inttypes.h>
34
6180a181
FB
35#include "cpu.h"
36#include "exec-all.h"
ca10f867 37#include "qemu-common.h"
b67d9a52 38#include "tcg.h"
b3c7724c 39#include "hw/hw.h"
74576198 40#include "osdep.h"
7ba1e619 41#include "kvm.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
44#endif
54936004 45
fd6ce8f6 46//#define DEBUG_TB_INVALIDATE
66e85a21 47//#define DEBUG_FLUSH
9fa3e853 48//#define DEBUG_TLB
67d3b957 49//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
50
51/* make various TB consistency checks */
5fafdf24
TS
52//#define DEBUG_TB_CHECK
53//#define DEBUG_TLB_CHECK
fd6ce8f6 54
1196be37 55//#define DEBUG_IOPORT
db7b5426 56//#define DEBUG_SUBPAGE
1196be37 57
99773bd4
PB
58#if !defined(CONFIG_USER_ONLY)
59/* TB consistency checks only implemented for usermode emulation. */
60#undef DEBUG_TB_CHECK
61#endif
62
9fa3e853
FB
63#define SMC_BITMAP_USE_THRESHOLD 10
64
108c49b8
FB
65#if defined(TARGET_SPARC64)
66#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
67#elif defined(TARGET_SPARC)
68#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
69#elif defined(TARGET_ALPHA)
70#define TARGET_PHYS_ADDR_SPACE_BITS 42
71#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
72#elif defined(TARGET_PPC64)
73#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 74#elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
00f82b8a 75#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 76#elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
00f82b8a 77#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
78#else
79/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
80#define TARGET_PHYS_ADDR_SPACE_BITS 32
81#endif
82
bdaf78e0 83static TranslationBlock *tbs;
26a5f13b 84int code_gen_max_blocks;
9fa3e853 85TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 86static int nb_tbs;
eb51d102
FB
87/* any access to the tbs or the page table must use this lock */
88spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 89
141ac468
BS
90#if defined(__arm__) || defined(__sparc_v9__)
91/* The prologue must be reachable with a direct jump. ARM and Sparc64
92 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
93 section close to code segment. */
94#define code_gen_section \
95 __attribute__((__section__(".gen_code"))) \
96 __attribute__((aligned (32)))
97#else
98#define code_gen_section \
99 __attribute__((aligned (32)))
100#endif
101
102uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
103static uint8_t *code_gen_buffer;
104static unsigned long code_gen_buffer_size;
26a5f13b 105/* threshold to flush the translated code buffer */
bdaf78e0 106static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
107uint8_t *code_gen_ptr;
108
e2eef170 109#if !defined(CONFIG_USER_ONLY)
9fa3e853 110int phys_ram_fd;
1ccde1cb 111uint8_t *phys_ram_dirty;
74576198 112static int in_migration;
94a6b54f
PB
113
114typedef struct RAMBlock {
115 uint8_t *host;
116 ram_addr_t offset;
117 ram_addr_t length;
118 struct RAMBlock *next;
119} RAMBlock;
120
121static RAMBlock *ram_blocks;
122/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 123 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f
PB
124 of this variable will break. */
125ram_addr_t last_ram_offset;
e2eef170 126#endif
9fa3e853 127
6a00d601
FB
128CPUState *first_cpu;
129/* current CPU in the current thread. It is only valid inside
130 cpu_exec() */
5fafdf24 131CPUState *cpu_single_env;
2e70f6ef 132/* 0 = Do not count executed instructions.
bf20dc07 133 1 = Precise instruction counting.
2e70f6ef
PB
134 2 = Adaptive rate instruction counting. */
135int use_icount = 0;
136/* Current instruction counter. While executing translated code this may
137 include some instructions that have not yet been executed. */
138int64_t qemu_icount;
6a00d601 139
54936004 140typedef struct PageDesc {
92e873b9 141 /* list of TBs intersecting this ram page */
fd6ce8f6 142 TranslationBlock *first_tb;
9fa3e853
FB
143 /* in order to optimize self modifying code, we count the number
144 of lookups we do to a given page to use a bitmap */
145 unsigned int code_write_count;
146 uint8_t *code_bitmap;
147#if defined(CONFIG_USER_ONLY)
148 unsigned long flags;
149#endif
54936004
FB
150} PageDesc;
151
92e873b9 152typedef struct PhysPageDesc {
0f459d16 153 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 154 ram_addr_t phys_offset;
8da3ff18 155 ram_addr_t region_offset;
92e873b9
FB
156} PhysPageDesc;
157
54936004 158#define L2_BITS 10
bedb69ea
JM
159#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
160/* XXX: this is a temporary hack for alpha target.
161 * In the future, this is to be replaced by a multi-level table
162 * to actually be able to handle the complete 64 bits address space.
163 */
164#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
165#else
03875444 166#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 167#endif
54936004
FB
168
169#define L1_SIZE (1 << L1_BITS)
170#define L2_SIZE (1 << L2_BITS)
171
83fb7adf
FB
172unsigned long qemu_real_host_page_size;
173unsigned long qemu_host_page_bits;
174unsigned long qemu_host_page_size;
175unsigned long qemu_host_page_mask;
54936004 176
92e873b9 177/* XXX: for system emulation, it could just be an array */
54936004 178static PageDesc *l1_map[L1_SIZE];
bdaf78e0 179static PhysPageDesc **l1_phys_map;
54936004 180
e2eef170
PB
181#if !defined(CONFIG_USER_ONLY)
182static void io_mem_init(void);
183
33417e70 184/* io memory support */
33417e70
FB
185CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
186CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 187void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 188static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
189static int io_mem_watch;
190#endif
33417e70 191
34865134 192/* log support */
d9b630fd 193static const char *logfilename = "/tmp/qemu.log";
34865134
FB
194FILE *logfile;
195int loglevel;
e735b91c 196static int log_append = 0;
34865134 197
e3db7226
FB
198/* statistics */
199static int tlb_flush_count;
200static int tb_flush_count;
201static int tb_phys_invalidate_count;
202
db7b5426
BS
203#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
204typedef struct subpage_t {
205 target_phys_addr_t base;
3ee89922
BS
206 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
207 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
208 void *opaque[TARGET_PAGE_SIZE][2][4];
8da3ff18 209 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
210} subpage_t;
211
7cb69cae
FB
212#ifdef _WIN32
213static void map_exec(void *addr, long size)
214{
215 DWORD old_protect;
216 VirtualProtect(addr, size,
217 PAGE_EXECUTE_READWRITE, &old_protect);
218
219}
220#else
221static void map_exec(void *addr, long size)
222{
4369415f 223 unsigned long start, end, page_size;
7cb69cae 224
4369415f 225 page_size = getpagesize();
7cb69cae 226 start = (unsigned long)addr;
4369415f 227 start &= ~(page_size - 1);
7cb69cae
FB
228
229 end = (unsigned long)addr + size;
4369415f
FB
230 end += page_size - 1;
231 end &= ~(page_size - 1);
7cb69cae
FB
232
233 mprotect((void *)start, end - start,
234 PROT_READ | PROT_WRITE | PROT_EXEC);
235}
236#endif
237
b346ff46 238static void page_init(void)
54936004 239{
83fb7adf 240 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 241 TARGET_PAGE_SIZE */
c2b48b69
AL
242#ifdef _WIN32
243 {
244 SYSTEM_INFO system_info;
245
246 GetSystemInfo(&system_info);
247 qemu_real_host_page_size = system_info.dwPageSize;
248 }
249#else
250 qemu_real_host_page_size = getpagesize();
251#endif
83fb7adf
FB
252 if (qemu_host_page_size == 0)
253 qemu_host_page_size = qemu_real_host_page_size;
254 if (qemu_host_page_size < TARGET_PAGE_SIZE)
255 qemu_host_page_size = TARGET_PAGE_SIZE;
256 qemu_host_page_bits = 0;
257 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
258 qemu_host_page_bits++;
259 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
260 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
261 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
262
263#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
264 {
265 long long startaddr, endaddr;
266 FILE *f;
267 int n;
268
c8a706fe 269 mmap_lock();
0776590d 270 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
271 f = fopen("/proc/self/maps", "r");
272 if (f) {
273 do {
274 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
275 if (n == 2) {
e0b8d65a
BS
276 startaddr = MIN(startaddr,
277 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
278 endaddr = MIN(endaddr,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 280 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
281 TARGET_PAGE_ALIGN(endaddr),
282 PAGE_RESERVED);
283 }
284 } while (!feof(f));
285 fclose(f);
286 }
c8a706fe 287 mmap_unlock();
50a9569b
AZ
288 }
289#endif
54936004
FB
290}
291
434929bf 292static inline PageDesc **page_l1_map(target_ulong index)
54936004 293{
17e2377a
PB
294#if TARGET_LONG_BITS > 32
295 /* Host memory outside guest VM. For 32-bit targets we have already
296 excluded high addresses. */
d8173e0f 297 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
298 return NULL;
299#endif
434929bf
AL
300 return &l1_map[index >> L2_BITS];
301}
302
303static inline PageDesc *page_find_alloc(target_ulong index)
304{
305 PageDesc **lp, *p;
306 lp = page_l1_map(index);
307 if (!lp)
308 return NULL;
309
54936004
FB
310 p = *lp;
311 if (!p) {
312 /* allocate if not found */
17e2377a 313#if defined(CONFIG_USER_ONLY)
17e2377a
PB
314 size_t len = sizeof(PageDesc) * L2_SIZE;
315 /* Don't use qemu_malloc because it may recurse. */
316 p = mmap(0, len, PROT_READ | PROT_WRITE,
317 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 318 *lp = p;
fb1c2cd7
AJ
319 if (h2g_valid(p)) {
320 unsigned long addr = h2g(p);
17e2377a
PB
321 page_set_flags(addr & TARGET_PAGE_MASK,
322 TARGET_PAGE_ALIGN(addr + len),
323 PAGE_RESERVED);
324 }
325#else
326 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
327 *lp = p;
328#endif
54936004
FB
329 }
330 return p + (index & (L2_SIZE - 1));
331}
332
00f82b8a 333static inline PageDesc *page_find(target_ulong index)
54936004 334{
434929bf
AL
335 PageDesc **lp, *p;
336 lp = page_l1_map(index);
337 if (!lp)
338 return NULL;
54936004 339
434929bf 340 p = *lp;
54936004
FB
341 if (!p)
342 return 0;
fd6ce8f6
FB
343 return p + (index & (L2_SIZE - 1));
344}
345
108c49b8 346static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 347{
108c49b8 348 void **lp, **p;
e3f4e2a4 349 PhysPageDesc *pd;
92e873b9 350
108c49b8
FB
351 p = (void **)l1_phys_map;
352#if TARGET_PHYS_ADDR_SPACE_BITS > 32
353
354#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
355#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
356#endif
357 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
358 p = *lp;
359 if (!p) {
360 /* allocate if not found */
108c49b8
FB
361 if (!alloc)
362 return NULL;
363 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
364 memset(p, 0, sizeof(void *) * L1_SIZE);
365 *lp = p;
366 }
367#endif
368 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
369 pd = *lp;
370 if (!pd) {
371 int i;
108c49b8
FB
372 /* allocate if not found */
373 if (!alloc)
374 return NULL;
e3f4e2a4
PB
375 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
376 *lp = pd;
67c4d23c 377 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 378 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
379 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
380 }
92e873b9 381 }
e3f4e2a4 382 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
383}
384
108c49b8 385static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 386{
108c49b8 387 return phys_page_find_alloc(index, 0);
92e873b9
FB
388}
389
9fa3e853 390#if !defined(CONFIG_USER_ONLY)
6a00d601 391static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 392static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 393 target_ulong vaddr);
c8a706fe
PB
394#define mmap_lock() do { } while(0)
395#define mmap_unlock() do { } while(0)
9fa3e853 396#endif
fd6ce8f6 397
4369415f
FB
398#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
399
400#if defined(CONFIG_USER_ONLY)
ccbb4d44 401/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
402 user mode. It will change when a dedicated libc will be used */
403#define USE_STATIC_CODE_GEN_BUFFER
404#endif
405
406#ifdef USE_STATIC_CODE_GEN_BUFFER
407static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
408#endif
409
8fcd3692 410static void code_gen_alloc(unsigned long tb_size)
26a5f13b 411{
4369415f
FB
412#ifdef USE_STATIC_CODE_GEN_BUFFER
413 code_gen_buffer = static_code_gen_buffer;
414 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
415 map_exec(code_gen_buffer, code_gen_buffer_size);
416#else
26a5f13b
FB
417 code_gen_buffer_size = tb_size;
418 if (code_gen_buffer_size == 0) {
4369415f
FB
419#if defined(CONFIG_USER_ONLY)
420 /* in user mode, phys_ram_size is not meaningful */
421 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
422#else
ccbb4d44 423 /* XXX: needs adjustments */
94a6b54f 424 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 425#endif
26a5f13b
FB
426 }
427 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
428 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
429 /* The code gen buffer location may have constraints depending on
430 the host cpu and OS */
431#if defined(__linux__)
432 {
433 int flags;
141ac468
BS
434 void *start = NULL;
435
26a5f13b
FB
436 flags = MAP_PRIVATE | MAP_ANONYMOUS;
437#if defined(__x86_64__)
438 flags |= MAP_32BIT;
439 /* Cannot map more than that */
440 if (code_gen_buffer_size > (800 * 1024 * 1024))
441 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
442#elif defined(__sparc_v9__)
443 // Map the buffer below 2G, so we can use direct calls and branches
444 flags |= MAP_FIXED;
445 start = (void *) 0x60000000UL;
446 if (code_gen_buffer_size > (512 * 1024 * 1024))
447 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 448#elif defined(__arm__)
63d41246 449 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
450 flags |= MAP_FIXED;
451 start = (void *) 0x01000000UL;
452 if (code_gen_buffer_size > 16 * 1024 * 1024)
453 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 454#endif
141ac468
BS
455 code_gen_buffer = mmap(start, code_gen_buffer_size,
456 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
457 flags, -1, 0);
458 if (code_gen_buffer == MAP_FAILED) {
459 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
460 exit(1);
461 }
462 }
c5e97233 463#elif defined(__FreeBSD__) || defined(__DragonFly__)
06e67a82
AL
464 {
465 int flags;
466 void *addr = NULL;
467 flags = MAP_PRIVATE | MAP_ANONYMOUS;
468#if defined(__x86_64__)
469 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
470 * 0x40000000 is free */
471 flags |= MAP_FIXED;
472 addr = (void *)0x40000000;
473 /* Cannot map more than that */
474 if (code_gen_buffer_size > (800 * 1024 * 1024))
475 code_gen_buffer_size = (800 * 1024 * 1024);
476#endif
477 code_gen_buffer = mmap(addr, code_gen_buffer_size,
478 PROT_WRITE | PROT_READ | PROT_EXEC,
479 flags, -1, 0);
480 if (code_gen_buffer == MAP_FAILED) {
481 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
482 exit(1);
483 }
484 }
26a5f13b
FB
485#else
486 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
487 map_exec(code_gen_buffer, code_gen_buffer_size);
488#endif
4369415f 489#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
490 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
491 code_gen_buffer_max_size = code_gen_buffer_size -
492 code_gen_max_block_size();
493 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
494 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
495}
496
497/* Must be called before using the QEMU cpus. 'tb_size' is the size
498 (in bytes) allocated to the translation buffer. Zero means default
499 size. */
500void cpu_exec_init_all(unsigned long tb_size)
501{
26a5f13b
FB
502 cpu_gen_init();
503 code_gen_alloc(tb_size);
504 code_gen_ptr = code_gen_buffer;
4369415f 505 page_init();
e2eef170 506#if !defined(CONFIG_USER_ONLY)
26a5f13b 507 io_mem_init();
e2eef170 508#endif
26a5f13b
FB
509}
510
9656f324
PB
511#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
512
513#define CPU_COMMON_SAVE_VERSION 1
514
515static void cpu_common_save(QEMUFile *f, void *opaque)
516{
517 CPUState *env = opaque;
518
b0a46a33
JK
519 cpu_synchronize_state(env, 0);
520
9656f324
PB
521 qemu_put_be32s(f, &env->halted);
522 qemu_put_be32s(f, &env->interrupt_request);
523}
524
525static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
526{
527 CPUState *env = opaque;
528
529 if (version_id != CPU_COMMON_SAVE_VERSION)
530 return -EINVAL;
531
532 qemu_get_be32s(f, &env->halted);
75f482ae 533 qemu_get_be32s(f, &env->interrupt_request);
3098dba0
AJ
534 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
535 version_id is increased. */
536 env->interrupt_request &= ~0x01;
9656f324 537 tlb_flush(env, 1);
b0a46a33 538 cpu_synchronize_state(env, 1);
9656f324
PB
539
540 return 0;
541}
542#endif
543
6a00d601 544void cpu_exec_init(CPUState *env)
fd6ce8f6 545{
6a00d601
FB
546 CPUState **penv;
547 int cpu_index;
548
c2764719
PB
549#if defined(CONFIG_USER_ONLY)
550 cpu_list_lock();
551#endif
6a00d601
FB
552 env->next_cpu = NULL;
553 penv = &first_cpu;
554 cpu_index = 0;
555 while (*penv != NULL) {
1e9fa730 556 penv = &(*penv)->next_cpu;
6a00d601
FB
557 cpu_index++;
558 }
559 env->cpu_index = cpu_index;
268a362c 560 env->numa_node = 0;
c0ce998e
AL
561 TAILQ_INIT(&env->breakpoints);
562 TAILQ_INIT(&env->watchpoints);
6a00d601 563 *penv = env;
c2764719
PB
564#if defined(CONFIG_USER_ONLY)
565 cpu_list_unlock();
566#endif
b3c7724c 567#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
568 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
569 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
570 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
571 cpu_save, cpu_load, env);
572#endif
fd6ce8f6
FB
573}
574
9fa3e853
FB
575static inline void invalidate_page_bitmap(PageDesc *p)
576{
577 if (p->code_bitmap) {
59817ccb 578 qemu_free(p->code_bitmap);
9fa3e853
FB
579 p->code_bitmap = NULL;
580 }
581 p->code_write_count = 0;
582}
583
fd6ce8f6
FB
584/* set to NULL all the 'first_tb' fields in all PageDescs */
585static void page_flush_tb(void)
586{
587 int i, j;
588 PageDesc *p;
589
590 for(i = 0; i < L1_SIZE; i++) {
591 p = l1_map[i];
592 if (p) {
9fa3e853
FB
593 for(j = 0; j < L2_SIZE; j++) {
594 p->first_tb = NULL;
595 invalidate_page_bitmap(p);
596 p++;
597 }
fd6ce8f6
FB
598 }
599 }
600}
601
602/* flush all the translation blocks */
d4e8164f 603/* XXX: tb_flush is currently not thread safe */
6a00d601 604void tb_flush(CPUState *env1)
fd6ce8f6 605{
6a00d601 606 CPUState *env;
0124311e 607#if defined(DEBUG_FLUSH)
ab3d1727
BS
608 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
609 (unsigned long)(code_gen_ptr - code_gen_buffer),
610 nb_tbs, nb_tbs > 0 ?
611 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 612#endif
26a5f13b 613 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
614 cpu_abort(env1, "Internal error: code buffer overflow\n");
615
fd6ce8f6 616 nb_tbs = 0;
3b46e624 617
6a00d601
FB
618 for(env = first_cpu; env != NULL; env = env->next_cpu) {
619 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
620 }
9fa3e853 621
8a8a608f 622 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 623 page_flush_tb();
9fa3e853 624
fd6ce8f6 625 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
626 /* XXX: flush processor icache at this point if cache flush is
627 expensive */
e3db7226 628 tb_flush_count++;
fd6ce8f6
FB
629}
630
631#ifdef DEBUG_TB_CHECK
632
bc98a7ef 633static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
634{
635 TranslationBlock *tb;
636 int i;
637 address &= TARGET_PAGE_MASK;
99773bd4
PB
638 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
639 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
640 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
641 address >= tb->pc + tb->size)) {
642 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 643 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
644 }
645 }
646 }
647}
648
649/* verify that all the pages have correct rights for code */
650static void tb_page_check(void)
651{
652 TranslationBlock *tb;
653 int i, flags1, flags2;
3b46e624 654
99773bd4
PB
655 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
656 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
657 flags1 = page_get_flags(tb->pc);
658 flags2 = page_get_flags(tb->pc + tb->size - 1);
659 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
660 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 661 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
662 }
663 }
664 }
665}
666
bdaf78e0 667static void tb_jmp_check(TranslationBlock *tb)
d4e8164f
FB
668{
669 TranslationBlock *tb1;
670 unsigned int n1;
671
672 /* suppress any remaining jumps to this TB */
673 tb1 = tb->jmp_first;
674 for(;;) {
675 n1 = (long)tb1 & 3;
676 tb1 = (TranslationBlock *)((long)tb1 & ~3);
677 if (n1 == 2)
678 break;
679 tb1 = tb1->jmp_next[n1];
680 }
681 /* check end of list */
682 if (tb1 != tb) {
683 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
684 }
685}
686
fd6ce8f6
FB
687#endif
688
689/* invalidate one TB */
690static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
691 int next_offset)
692{
693 TranslationBlock *tb1;
694 for(;;) {
695 tb1 = *ptb;
696 if (tb1 == tb) {
697 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
698 break;
699 }
700 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
701 }
702}
703
9fa3e853
FB
704static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
705{
706 TranslationBlock *tb1;
707 unsigned int n1;
708
709 for(;;) {
710 tb1 = *ptb;
711 n1 = (long)tb1 & 3;
712 tb1 = (TranslationBlock *)((long)tb1 & ~3);
713 if (tb1 == tb) {
714 *ptb = tb1->page_next[n1];
715 break;
716 }
717 ptb = &tb1->page_next[n1];
718 }
719}
720
d4e8164f
FB
721static inline void tb_jmp_remove(TranslationBlock *tb, int n)
722{
723 TranslationBlock *tb1, **ptb;
724 unsigned int n1;
725
726 ptb = &tb->jmp_next[n];
727 tb1 = *ptb;
728 if (tb1) {
729 /* find tb(n) in circular list */
730 for(;;) {
731 tb1 = *ptb;
732 n1 = (long)tb1 & 3;
733 tb1 = (TranslationBlock *)((long)tb1 & ~3);
734 if (n1 == n && tb1 == tb)
735 break;
736 if (n1 == 2) {
737 ptb = &tb1->jmp_first;
738 } else {
739 ptb = &tb1->jmp_next[n1];
740 }
741 }
742 /* now we can suppress tb(n) from the list */
743 *ptb = tb->jmp_next[n];
744
745 tb->jmp_next[n] = NULL;
746 }
747}
748
749/* reset the jump entry 'n' of a TB so that it is not chained to
750 another TB */
751static inline void tb_reset_jump(TranslationBlock *tb, int n)
752{
753 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
754}
755
2e70f6ef 756void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 757{
6a00d601 758 CPUState *env;
8a40a180 759 PageDesc *p;
d4e8164f 760 unsigned int h, n1;
00f82b8a 761 target_phys_addr_t phys_pc;
8a40a180 762 TranslationBlock *tb1, *tb2;
3b46e624 763
8a40a180
FB
764 /* remove the TB from the hash list */
765 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
766 h = tb_phys_hash_func(phys_pc);
5fafdf24 767 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
768 offsetof(TranslationBlock, phys_hash_next));
769
770 /* remove the TB from the page list */
771 if (tb->page_addr[0] != page_addr) {
772 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
773 tb_page_remove(&p->first_tb, tb);
774 invalidate_page_bitmap(p);
775 }
776 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
777 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
778 tb_page_remove(&p->first_tb, tb);
779 invalidate_page_bitmap(p);
780 }
781
36bdbe54 782 tb_invalidated_flag = 1;
59817ccb 783
fd6ce8f6 784 /* remove the TB from the hash list */
8a40a180 785 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
786 for(env = first_cpu; env != NULL; env = env->next_cpu) {
787 if (env->tb_jmp_cache[h] == tb)
788 env->tb_jmp_cache[h] = NULL;
789 }
d4e8164f
FB
790
791 /* suppress this TB from the two jump lists */
792 tb_jmp_remove(tb, 0);
793 tb_jmp_remove(tb, 1);
794
795 /* suppress any remaining jumps to this TB */
796 tb1 = tb->jmp_first;
797 for(;;) {
798 n1 = (long)tb1 & 3;
799 if (n1 == 2)
800 break;
801 tb1 = (TranslationBlock *)((long)tb1 & ~3);
802 tb2 = tb1->jmp_next[n1];
803 tb_reset_jump(tb1, n1);
804 tb1->jmp_next[n1] = NULL;
805 tb1 = tb2;
806 }
807 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 808
e3db7226 809 tb_phys_invalidate_count++;
9fa3e853
FB
810}
811
812static inline void set_bits(uint8_t *tab, int start, int len)
813{
814 int end, mask, end1;
815
816 end = start + len;
817 tab += start >> 3;
818 mask = 0xff << (start & 7);
819 if ((start & ~7) == (end & ~7)) {
820 if (start < end) {
821 mask &= ~(0xff << (end & 7));
822 *tab |= mask;
823 }
824 } else {
825 *tab++ |= mask;
826 start = (start + 8) & ~7;
827 end1 = end & ~7;
828 while (start < end1) {
829 *tab++ = 0xff;
830 start += 8;
831 }
832 if (start < end) {
833 mask = ~(0xff << (end & 7));
834 *tab |= mask;
835 }
836 }
837}
838
839static void build_page_bitmap(PageDesc *p)
840{
841 int n, tb_start, tb_end;
842 TranslationBlock *tb;
3b46e624 843
b2a7081a 844 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
845
846 tb = p->first_tb;
847 while (tb != NULL) {
848 n = (long)tb & 3;
849 tb = (TranslationBlock *)((long)tb & ~3);
850 /* NOTE: this is subtle as a TB may span two physical pages */
851 if (n == 0) {
852 /* NOTE: tb_end may be after the end of the page, but
853 it is not a problem */
854 tb_start = tb->pc & ~TARGET_PAGE_MASK;
855 tb_end = tb_start + tb->size;
856 if (tb_end > TARGET_PAGE_SIZE)
857 tb_end = TARGET_PAGE_SIZE;
858 } else {
859 tb_start = 0;
860 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
861 }
862 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
863 tb = tb->page_next[n];
864 }
865}
866
2e70f6ef
PB
867TranslationBlock *tb_gen_code(CPUState *env,
868 target_ulong pc, target_ulong cs_base,
869 int flags, int cflags)
d720b93d
FB
870{
871 TranslationBlock *tb;
872 uint8_t *tc_ptr;
873 target_ulong phys_pc, phys_page2, virt_page2;
874 int code_gen_size;
875
c27004ec
FB
876 phys_pc = get_phys_addr_code(env, pc);
877 tb = tb_alloc(pc);
d720b93d
FB
878 if (!tb) {
879 /* flush must be done */
880 tb_flush(env);
881 /* cannot fail at this point */
c27004ec 882 tb = tb_alloc(pc);
2e70f6ef
PB
883 /* Don't forget to invalidate previous TB info. */
884 tb_invalidated_flag = 1;
d720b93d
FB
885 }
886 tc_ptr = code_gen_ptr;
887 tb->tc_ptr = tc_ptr;
888 tb->cs_base = cs_base;
889 tb->flags = flags;
890 tb->cflags = cflags;
d07bde88 891 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 892 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 893
d720b93d 894 /* check next page if needed */
c27004ec 895 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 896 phys_page2 = -1;
c27004ec 897 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
898 phys_page2 = get_phys_addr_code(env, virt_page2);
899 }
900 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 901 return tb;
d720b93d 902}
3b46e624 903
9fa3e853
FB
904/* invalidate all TBs which intersect with the target physical page
905 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
906 the same physical page. 'is_cpu_write_access' should be true if called
907 from a real cpu write access: the virtual CPU will exit the current
908 TB if code is modified inside this TB. */
00f82b8a 909void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
910 int is_cpu_write_access)
911{
6b917547 912 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 913 CPUState *env = cpu_single_env;
9fa3e853 914 target_ulong tb_start, tb_end;
6b917547
AL
915 PageDesc *p;
916 int n;
917#ifdef TARGET_HAS_PRECISE_SMC
918 int current_tb_not_found = is_cpu_write_access;
919 TranslationBlock *current_tb = NULL;
920 int current_tb_modified = 0;
921 target_ulong current_pc = 0;
922 target_ulong current_cs_base = 0;
923 int current_flags = 0;
924#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
925
926 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 927 if (!p)
9fa3e853 928 return;
5fafdf24 929 if (!p->code_bitmap &&
d720b93d
FB
930 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
931 is_cpu_write_access) {
9fa3e853
FB
932 /* build code bitmap */
933 build_page_bitmap(p);
934 }
935
936 /* we remove all the TBs in the range [start, end[ */
937 /* XXX: see if in some cases it could be faster to invalidate all the code */
938 tb = p->first_tb;
939 while (tb != NULL) {
940 n = (long)tb & 3;
941 tb = (TranslationBlock *)((long)tb & ~3);
942 tb_next = tb->page_next[n];
943 /* NOTE: this is subtle as a TB may span two physical pages */
944 if (n == 0) {
945 /* NOTE: tb_end may be after the end of the page, but
946 it is not a problem */
947 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
948 tb_end = tb_start + tb->size;
949 } else {
950 tb_start = tb->page_addr[1];
951 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
952 }
953 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
954#ifdef TARGET_HAS_PRECISE_SMC
955 if (current_tb_not_found) {
956 current_tb_not_found = 0;
957 current_tb = NULL;
2e70f6ef 958 if (env->mem_io_pc) {
d720b93d 959 /* now we have a real cpu fault */
2e70f6ef 960 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
961 }
962 }
963 if (current_tb == tb &&
2e70f6ef 964 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
965 /* If we are modifying the current TB, we must stop
966 its execution. We could be more precise by checking
967 that the modification is after the current PC, but it
968 would require a specialized function to partially
969 restore the CPU state */
3b46e624 970
d720b93d 971 current_tb_modified = 1;
5fafdf24 972 cpu_restore_state(current_tb, env,
2e70f6ef 973 env->mem_io_pc, NULL);
6b917547
AL
974 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
975 &current_flags);
d720b93d
FB
976 }
977#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
978 /* we need to do that to handle the case where a signal
979 occurs while doing tb_phys_invalidate() */
980 saved_tb = NULL;
981 if (env) {
982 saved_tb = env->current_tb;
983 env->current_tb = NULL;
984 }
9fa3e853 985 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
986 if (env) {
987 env->current_tb = saved_tb;
988 if (env->interrupt_request && env->current_tb)
989 cpu_interrupt(env, env->interrupt_request);
990 }
9fa3e853
FB
991 }
992 tb = tb_next;
993 }
994#if !defined(CONFIG_USER_ONLY)
995 /* if no code remaining, no need to continue to use slow writes */
996 if (!p->first_tb) {
997 invalidate_page_bitmap(p);
d720b93d 998 if (is_cpu_write_access) {
2e70f6ef 999 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1000 }
1001 }
1002#endif
1003#ifdef TARGET_HAS_PRECISE_SMC
1004 if (current_tb_modified) {
1005 /* we generate a block containing just the instruction
1006 modifying the memory. It will ensure that it cannot modify
1007 itself */
ea1c1802 1008 env->current_tb = NULL;
2e70f6ef 1009 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1010 cpu_resume_from_signal(env, NULL);
9fa3e853 1011 }
fd6ce8f6 1012#endif
9fa3e853 1013}
fd6ce8f6 1014
9fa3e853 1015/* len must be <= 8 and start must be a multiple of len */
00f82b8a 1016static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1017{
1018 PageDesc *p;
1019 int offset, b;
59817ccb 1020#if 0
a4193c8a 1021 if (1) {
93fcfe39
AL
1022 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1023 cpu_single_env->mem_io_vaddr, len,
1024 cpu_single_env->eip,
1025 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1026 }
1027#endif
9fa3e853 1028 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1029 if (!p)
9fa3e853
FB
1030 return;
1031 if (p->code_bitmap) {
1032 offset = start & ~TARGET_PAGE_MASK;
1033 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1034 if (b & ((1 << len) - 1))
1035 goto do_invalidate;
1036 } else {
1037 do_invalidate:
d720b93d 1038 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1039 }
1040}
1041
9fa3e853 1042#if !defined(CONFIG_SOFTMMU)
00f82b8a 1043static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1044 unsigned long pc, void *puc)
9fa3e853 1045{
6b917547 1046 TranslationBlock *tb;
9fa3e853 1047 PageDesc *p;
6b917547 1048 int n;
d720b93d 1049#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1050 TranslationBlock *current_tb = NULL;
d720b93d 1051 CPUState *env = cpu_single_env;
6b917547
AL
1052 int current_tb_modified = 0;
1053 target_ulong current_pc = 0;
1054 target_ulong current_cs_base = 0;
1055 int current_flags = 0;
d720b93d 1056#endif
9fa3e853
FB
1057
1058 addr &= TARGET_PAGE_MASK;
1059 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1060 if (!p)
9fa3e853
FB
1061 return;
1062 tb = p->first_tb;
d720b93d
FB
1063#ifdef TARGET_HAS_PRECISE_SMC
1064 if (tb && pc != 0) {
1065 current_tb = tb_find_pc(pc);
1066 }
1067#endif
9fa3e853
FB
1068 while (tb != NULL) {
1069 n = (long)tb & 3;
1070 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1071#ifdef TARGET_HAS_PRECISE_SMC
1072 if (current_tb == tb &&
2e70f6ef 1073 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1074 /* If we are modifying the current TB, we must stop
1075 its execution. We could be more precise by checking
1076 that the modification is after the current PC, but it
1077 would require a specialized function to partially
1078 restore the CPU state */
3b46e624 1079
d720b93d
FB
1080 current_tb_modified = 1;
1081 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1082 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1083 &current_flags);
d720b93d
FB
1084 }
1085#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1086 tb_phys_invalidate(tb, addr);
1087 tb = tb->page_next[n];
1088 }
fd6ce8f6 1089 p->first_tb = NULL;
d720b93d
FB
1090#ifdef TARGET_HAS_PRECISE_SMC
1091 if (current_tb_modified) {
1092 /* we generate a block containing just the instruction
1093 modifying the memory. It will ensure that it cannot modify
1094 itself */
ea1c1802 1095 env->current_tb = NULL;
2e70f6ef 1096 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1097 cpu_resume_from_signal(env, puc);
1098 }
1099#endif
fd6ce8f6 1100}
9fa3e853 1101#endif
fd6ce8f6
FB
1102
1103/* add the tb in the target page and protect it if necessary */
5fafdf24 1104static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1105 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1106{
1107 PageDesc *p;
9fa3e853
FB
1108 TranslationBlock *last_first_tb;
1109
1110 tb->page_addr[n] = page_addr;
3a7d929e 1111 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1112 tb->page_next[n] = p->first_tb;
1113 last_first_tb = p->first_tb;
1114 p->first_tb = (TranslationBlock *)((long)tb | n);
1115 invalidate_page_bitmap(p);
fd6ce8f6 1116
107db443 1117#if defined(TARGET_HAS_SMC) || 1
d720b93d 1118
9fa3e853 1119#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1120 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1121 target_ulong addr;
1122 PageDesc *p2;
9fa3e853
FB
1123 int prot;
1124
fd6ce8f6
FB
1125 /* force the host page as non writable (writes will have a
1126 page fault + mprotect overhead) */
53a5960a 1127 page_addr &= qemu_host_page_mask;
fd6ce8f6 1128 prot = 0;
53a5960a
PB
1129 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1130 addr += TARGET_PAGE_SIZE) {
1131
1132 p2 = page_find (addr >> TARGET_PAGE_BITS);
1133 if (!p2)
1134 continue;
1135 prot |= p2->flags;
1136 p2->flags &= ~PAGE_WRITE;
1137 page_get_flags(addr);
1138 }
5fafdf24 1139 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1140 (prot & PAGE_BITS) & ~PAGE_WRITE);
1141#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1142 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1143 page_addr);
fd6ce8f6 1144#endif
fd6ce8f6 1145 }
9fa3e853
FB
1146#else
1147 /* if some code is already present, then the pages are already
1148 protected. So we handle the case where only the first TB is
1149 allocated in a physical page */
1150 if (!last_first_tb) {
6a00d601 1151 tlb_protect_code(page_addr);
9fa3e853
FB
1152 }
1153#endif
d720b93d
FB
1154
1155#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1156}
1157
1158/* Allocate a new translation block. Flush the translation buffer if
1159 too many translation blocks or too much generated code. */
c27004ec 1160TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1161{
1162 TranslationBlock *tb;
fd6ce8f6 1163
26a5f13b
FB
1164 if (nb_tbs >= code_gen_max_blocks ||
1165 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1166 return NULL;
fd6ce8f6
FB
1167 tb = &tbs[nb_tbs++];
1168 tb->pc = pc;
b448f2f3 1169 tb->cflags = 0;
d4e8164f
FB
1170 return tb;
1171}
1172
2e70f6ef
PB
1173void tb_free(TranslationBlock *tb)
1174{
bf20dc07 1175 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1176 Ignore the hard cases and just back up if this TB happens to
1177 be the last one generated. */
1178 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1179 code_gen_ptr = tb->tc_ptr;
1180 nb_tbs--;
1181 }
1182}
1183
9fa3e853
FB
1184/* add a new TB and link it to the physical page tables. phys_page2 is
1185 (-1) to indicate that only one page contains the TB. */
5fafdf24 1186void tb_link_phys(TranslationBlock *tb,
9fa3e853 1187 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1188{
9fa3e853
FB
1189 unsigned int h;
1190 TranslationBlock **ptb;
1191
c8a706fe
PB
1192 /* Grab the mmap lock to stop another thread invalidating this TB
1193 before we are done. */
1194 mmap_lock();
9fa3e853
FB
1195 /* add in the physical hash table */
1196 h = tb_phys_hash_func(phys_pc);
1197 ptb = &tb_phys_hash[h];
1198 tb->phys_hash_next = *ptb;
1199 *ptb = tb;
fd6ce8f6
FB
1200
1201 /* add in the page list */
9fa3e853
FB
1202 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1203 if (phys_page2 != -1)
1204 tb_alloc_page(tb, 1, phys_page2);
1205 else
1206 tb->page_addr[1] = -1;
9fa3e853 1207
d4e8164f
FB
1208 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1209 tb->jmp_next[0] = NULL;
1210 tb->jmp_next[1] = NULL;
1211
1212 /* init original jump addresses */
1213 if (tb->tb_next_offset[0] != 0xffff)
1214 tb_reset_jump(tb, 0);
1215 if (tb->tb_next_offset[1] != 0xffff)
1216 tb_reset_jump(tb, 1);
8a40a180
FB
1217
1218#ifdef DEBUG_TB_CHECK
1219 tb_page_check();
1220#endif
c8a706fe 1221 mmap_unlock();
fd6ce8f6
FB
1222}
1223
9fa3e853
FB
1224/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1225 tb[1].tc_ptr. Return NULL if not found */
1226TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1227{
9fa3e853
FB
1228 int m_min, m_max, m;
1229 unsigned long v;
1230 TranslationBlock *tb;
a513fe19
FB
1231
1232 if (nb_tbs <= 0)
1233 return NULL;
1234 if (tc_ptr < (unsigned long)code_gen_buffer ||
1235 tc_ptr >= (unsigned long)code_gen_ptr)
1236 return NULL;
1237 /* binary search (cf Knuth) */
1238 m_min = 0;
1239 m_max = nb_tbs - 1;
1240 while (m_min <= m_max) {
1241 m = (m_min + m_max) >> 1;
1242 tb = &tbs[m];
1243 v = (unsigned long)tb->tc_ptr;
1244 if (v == tc_ptr)
1245 return tb;
1246 else if (tc_ptr < v) {
1247 m_max = m - 1;
1248 } else {
1249 m_min = m + 1;
1250 }
5fafdf24 1251 }
a513fe19
FB
1252 return &tbs[m_max];
1253}
7501267e 1254
ea041c0e
FB
1255static void tb_reset_jump_recursive(TranslationBlock *tb);
1256
1257static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1258{
1259 TranslationBlock *tb1, *tb_next, **ptb;
1260 unsigned int n1;
1261
1262 tb1 = tb->jmp_next[n];
1263 if (tb1 != NULL) {
1264 /* find head of list */
1265 for(;;) {
1266 n1 = (long)tb1 & 3;
1267 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1268 if (n1 == 2)
1269 break;
1270 tb1 = tb1->jmp_next[n1];
1271 }
1272 /* we are now sure now that tb jumps to tb1 */
1273 tb_next = tb1;
1274
1275 /* remove tb from the jmp_first list */
1276 ptb = &tb_next->jmp_first;
1277 for(;;) {
1278 tb1 = *ptb;
1279 n1 = (long)tb1 & 3;
1280 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1281 if (n1 == n && tb1 == tb)
1282 break;
1283 ptb = &tb1->jmp_next[n1];
1284 }
1285 *ptb = tb->jmp_next[n];
1286 tb->jmp_next[n] = NULL;
3b46e624 1287
ea041c0e
FB
1288 /* suppress the jump to next tb in generated code */
1289 tb_reset_jump(tb, n);
1290
0124311e 1291 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1292 tb_reset_jump_recursive(tb_next);
1293 }
1294}
1295
1296static void tb_reset_jump_recursive(TranslationBlock *tb)
1297{
1298 tb_reset_jump_recursive2(tb, 0);
1299 tb_reset_jump_recursive2(tb, 1);
1300}
1301
1fddef4b 1302#if defined(TARGET_HAS_ICE)
d720b93d
FB
1303static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1304{
9b3c35e0
JM
1305 target_phys_addr_t addr;
1306 target_ulong pd;
c2f07f81
PB
1307 ram_addr_t ram_addr;
1308 PhysPageDesc *p;
d720b93d 1309
c2f07f81
PB
1310 addr = cpu_get_phys_page_debug(env, pc);
1311 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1312 if (!p) {
1313 pd = IO_MEM_UNASSIGNED;
1314 } else {
1315 pd = p->phys_offset;
1316 }
1317 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1318 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1319}
c27004ec 1320#endif
d720b93d 1321
6658ffb8 1322/* Add a watchpoint. */
a1d1bb31
AL
1323int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1324 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1325{
b4051334 1326 target_ulong len_mask = ~(len - 1);
c0ce998e 1327 CPUWatchpoint *wp;
6658ffb8 1328
b4051334
AL
1329 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1330 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1331 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1332 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1333 return -EINVAL;
1334 }
a1d1bb31 1335 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1336
1337 wp->vaddr = addr;
b4051334 1338 wp->len_mask = len_mask;
a1d1bb31
AL
1339 wp->flags = flags;
1340
2dc9f411 1341 /* keep all GDB-injected watchpoints in front */
c0ce998e
AL
1342 if (flags & BP_GDB)
1343 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1344 else
1345 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1346
6658ffb8 1347 tlb_flush_page(env, addr);
a1d1bb31
AL
1348
1349 if (watchpoint)
1350 *watchpoint = wp;
1351 return 0;
6658ffb8
PB
1352}
1353
a1d1bb31
AL
1354/* Remove a specific watchpoint. */
1355int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1356 int flags)
6658ffb8 1357{
b4051334 1358 target_ulong len_mask = ~(len - 1);
a1d1bb31 1359 CPUWatchpoint *wp;
6658ffb8 1360
c0ce998e 1361 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1362 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1363 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1364 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1365 return 0;
1366 }
1367 }
a1d1bb31 1368 return -ENOENT;
6658ffb8
PB
1369}
1370
a1d1bb31
AL
1371/* Remove a specific watchpoint by reference. */
1372void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1373{
c0ce998e 1374 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1375
a1d1bb31
AL
1376 tlb_flush_page(env, watchpoint->vaddr);
1377
1378 qemu_free(watchpoint);
1379}
1380
1381/* Remove all matching watchpoints. */
1382void cpu_watchpoint_remove_all(CPUState *env, int mask)
1383{
c0ce998e 1384 CPUWatchpoint *wp, *next;
a1d1bb31 1385
c0ce998e 1386 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1387 if (wp->flags & mask)
1388 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1389 }
7d03f82f
EI
1390}
1391
a1d1bb31
AL
1392/* Add a breakpoint. */
1393int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1394 CPUBreakpoint **breakpoint)
4c3a88a2 1395{
1fddef4b 1396#if defined(TARGET_HAS_ICE)
c0ce998e 1397 CPUBreakpoint *bp;
3b46e624 1398
a1d1bb31 1399 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1400
a1d1bb31
AL
1401 bp->pc = pc;
1402 bp->flags = flags;
1403
2dc9f411 1404 /* keep all GDB-injected breakpoints in front */
c0ce998e
AL
1405 if (flags & BP_GDB)
1406 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1407 else
1408 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1409
d720b93d 1410 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1411
1412 if (breakpoint)
1413 *breakpoint = bp;
4c3a88a2
FB
1414 return 0;
1415#else
a1d1bb31 1416 return -ENOSYS;
4c3a88a2
FB
1417#endif
1418}
1419
a1d1bb31
AL
1420/* Remove a specific breakpoint. */
1421int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1422{
7d03f82f 1423#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1424 CPUBreakpoint *bp;
1425
c0ce998e 1426 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1427 if (bp->pc == pc && bp->flags == flags) {
1428 cpu_breakpoint_remove_by_ref(env, bp);
1429 return 0;
1430 }
7d03f82f 1431 }
a1d1bb31
AL
1432 return -ENOENT;
1433#else
1434 return -ENOSYS;
7d03f82f
EI
1435#endif
1436}
1437
a1d1bb31
AL
1438/* Remove a specific breakpoint by reference. */
1439void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1440{
1fddef4b 1441#if defined(TARGET_HAS_ICE)
c0ce998e 1442 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1443
a1d1bb31
AL
1444 breakpoint_invalidate(env, breakpoint->pc);
1445
1446 qemu_free(breakpoint);
1447#endif
1448}
1449
1450/* Remove all matching breakpoints. */
1451void cpu_breakpoint_remove_all(CPUState *env, int mask)
1452{
1453#if defined(TARGET_HAS_ICE)
c0ce998e 1454 CPUBreakpoint *bp, *next;
a1d1bb31 1455
c0ce998e 1456 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1457 if (bp->flags & mask)
1458 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1459 }
4c3a88a2
FB
1460#endif
1461}
1462
c33a346e
FB
1463/* enable or disable single step mode. EXCP_DEBUG is returned by the
1464 CPU loop after each instruction */
1465void cpu_single_step(CPUState *env, int enabled)
1466{
1fddef4b 1467#if defined(TARGET_HAS_ICE)
c33a346e
FB
1468 if (env->singlestep_enabled != enabled) {
1469 env->singlestep_enabled = enabled;
e22a25c9
AL
1470 if (kvm_enabled())
1471 kvm_update_guest_debug(env, 0);
1472 else {
ccbb4d44 1473 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1474 /* XXX: only flush what is necessary */
1475 tb_flush(env);
1476 }
c33a346e
FB
1477 }
1478#endif
1479}
1480
34865134
FB
1481/* enable or disable low levels log */
1482void cpu_set_log(int log_flags)
1483{
1484 loglevel = log_flags;
1485 if (loglevel && !logfile) {
11fcfab4 1486 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1487 if (!logfile) {
1488 perror(logfilename);
1489 _exit(1);
1490 }
9fa3e853
FB
1491#if !defined(CONFIG_SOFTMMU)
1492 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1493 {
b55266b5 1494 static char logfile_buf[4096];
9fa3e853
FB
1495 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1496 }
1497#else
34865134 1498 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1499#endif
e735b91c
PB
1500 log_append = 1;
1501 }
1502 if (!loglevel && logfile) {
1503 fclose(logfile);
1504 logfile = NULL;
34865134
FB
1505 }
1506}
1507
1508void cpu_set_log_filename(const char *filename)
1509{
1510 logfilename = strdup(filename);
e735b91c
PB
1511 if (logfile) {
1512 fclose(logfile);
1513 logfile = NULL;
1514 }
1515 cpu_set_log(loglevel);
34865134 1516}
c33a346e 1517
3098dba0 1518static void cpu_unlink_tb(CPUState *env)
ea041c0e 1519{
3098dba0
AJ
1520#if defined(USE_NPTL)
1521 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1522 problem and hope the cpu will stop of its own accord. For userspace
1523 emulation this often isn't actually as bad as it sounds. Often
1524 signals are used primarily to interrupt blocking syscalls. */
1525#else
ea041c0e 1526 TranslationBlock *tb;
15a51156 1527 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1528
3098dba0
AJ
1529 tb = env->current_tb;
1530 /* if the cpu is currently executing code, we must unlink it and
1531 all the potentially executing TB */
1532 if (tb && !testandset(&interrupt_lock)) {
1533 env->current_tb = NULL;
1534 tb_reset_jump_recursive(tb);
1535 resetlock(&interrupt_lock);
be214e6c 1536 }
3098dba0
AJ
1537#endif
1538}
1539
1540/* mask must never be zero, except for A20 change call */
1541void cpu_interrupt(CPUState *env, int mask)
1542{
1543 int old_mask;
be214e6c 1544
2e70f6ef 1545 old_mask = env->interrupt_request;
68a79315 1546 env->interrupt_request |= mask;
3098dba0 1547
8edac960
AL
1548#ifndef CONFIG_USER_ONLY
1549 /*
1550 * If called from iothread context, wake the target cpu in
1551 * case its halted.
1552 */
1553 if (!qemu_cpu_self(env)) {
1554 qemu_cpu_kick(env);
1555 return;
1556 }
1557#endif
1558
2e70f6ef 1559 if (use_icount) {
266910c4 1560 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1561#ifndef CONFIG_USER_ONLY
2e70f6ef 1562 if (!can_do_io(env)
be214e6c 1563 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1564 cpu_abort(env, "Raised interrupt while not in I/O function");
1565 }
1566#endif
1567 } else {
3098dba0 1568 cpu_unlink_tb(env);
ea041c0e
FB
1569 }
1570}
1571
b54ad049
FB
1572void cpu_reset_interrupt(CPUState *env, int mask)
1573{
1574 env->interrupt_request &= ~mask;
1575}
1576
3098dba0
AJ
1577void cpu_exit(CPUState *env)
1578{
1579 env->exit_request = 1;
1580 cpu_unlink_tb(env);
1581}
1582
c7cd6a37 1583const CPULogItem cpu_log_items[] = {
5fafdf24 1584 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1585 "show generated host assembly code for each compiled TB" },
1586 { CPU_LOG_TB_IN_ASM, "in_asm",
1587 "show target assembly code for each compiled TB" },
5fafdf24 1588 { CPU_LOG_TB_OP, "op",
57fec1fe 1589 "show micro ops for each compiled TB" },
f193c797 1590 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1591 "show micro ops "
1592#ifdef TARGET_I386
1593 "before eflags optimization and "
f193c797 1594#endif
e01a1157 1595 "after liveness analysis" },
f193c797
FB
1596 { CPU_LOG_INT, "int",
1597 "show interrupts/exceptions in short format" },
1598 { CPU_LOG_EXEC, "exec",
1599 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1600 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1601 "show CPU state before block translation" },
f193c797
FB
1602#ifdef TARGET_I386
1603 { CPU_LOG_PCALL, "pcall",
1604 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1605 { CPU_LOG_RESET, "cpu_reset",
1606 "show CPU state before CPU resets" },
f193c797 1607#endif
8e3a9fd2 1608#ifdef DEBUG_IOPORT
fd872598
FB
1609 { CPU_LOG_IOPORT, "ioport",
1610 "show all i/o ports accesses" },
8e3a9fd2 1611#endif
f193c797
FB
1612 { 0, NULL, NULL },
1613};
1614
1615static int cmp1(const char *s1, int n, const char *s2)
1616{
1617 if (strlen(s2) != n)
1618 return 0;
1619 return memcmp(s1, s2, n) == 0;
1620}
3b46e624 1621
f193c797
FB
1622/* takes a comma separated list of log masks. Return 0 if error. */
1623int cpu_str_to_log_mask(const char *str)
1624{
c7cd6a37 1625 const CPULogItem *item;
f193c797
FB
1626 int mask;
1627 const char *p, *p1;
1628
1629 p = str;
1630 mask = 0;
1631 for(;;) {
1632 p1 = strchr(p, ',');
1633 if (!p1)
1634 p1 = p + strlen(p);
8e3a9fd2
FB
1635 if(cmp1(p,p1-p,"all")) {
1636 for(item = cpu_log_items; item->mask != 0; item++) {
1637 mask |= item->mask;
1638 }
1639 } else {
f193c797
FB
1640 for(item = cpu_log_items; item->mask != 0; item++) {
1641 if (cmp1(p, p1 - p, item->name))
1642 goto found;
1643 }
1644 return 0;
8e3a9fd2 1645 }
f193c797
FB
1646 found:
1647 mask |= item->mask;
1648 if (*p1 != ',')
1649 break;
1650 p = p1 + 1;
1651 }
1652 return mask;
1653}
ea041c0e 1654
7501267e
FB
1655void cpu_abort(CPUState *env, const char *fmt, ...)
1656{
1657 va_list ap;
493ae1f0 1658 va_list ap2;
7501267e
FB
1659
1660 va_start(ap, fmt);
493ae1f0 1661 va_copy(ap2, ap);
7501267e
FB
1662 fprintf(stderr, "qemu: fatal: ");
1663 vfprintf(stderr, fmt, ap);
1664 fprintf(stderr, "\n");
1665#ifdef TARGET_I386
7fe48483
FB
1666 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1667#else
1668 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1669#endif
93fcfe39
AL
1670 if (qemu_log_enabled()) {
1671 qemu_log("qemu: fatal: ");
1672 qemu_log_vprintf(fmt, ap2);
1673 qemu_log("\n");
f9373291 1674#ifdef TARGET_I386
93fcfe39 1675 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1676#else
93fcfe39 1677 log_cpu_state(env, 0);
f9373291 1678#endif
31b1a7b4 1679 qemu_log_flush();
93fcfe39 1680 qemu_log_close();
924edcae 1681 }
493ae1f0 1682 va_end(ap2);
f9373291 1683 va_end(ap);
7501267e
FB
1684 abort();
1685}
1686
c5be9f08
TS
1687CPUState *cpu_copy(CPUState *env)
1688{
01ba9816 1689 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1690 CPUState *next_cpu = new_env->next_cpu;
1691 int cpu_index = new_env->cpu_index;
5a38f081
AL
1692#if defined(TARGET_HAS_ICE)
1693 CPUBreakpoint *bp;
1694 CPUWatchpoint *wp;
1695#endif
1696
c5be9f08 1697 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1698
1699 /* Preserve chaining and index. */
c5be9f08
TS
1700 new_env->next_cpu = next_cpu;
1701 new_env->cpu_index = cpu_index;
5a38f081
AL
1702
1703 /* Clone all break/watchpoints.
1704 Note: Once we support ptrace with hw-debug register access, make sure
1705 BP_CPU break/watchpoints are handled correctly on clone. */
1706 TAILQ_INIT(&env->breakpoints);
1707 TAILQ_INIT(&env->watchpoints);
1708#if defined(TARGET_HAS_ICE)
1709 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1710 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1711 }
1712 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1713 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1714 wp->flags, NULL);
1715 }
1716#endif
1717
c5be9f08
TS
1718 return new_env;
1719}
1720
0124311e
FB
1721#if !defined(CONFIG_USER_ONLY)
1722
5c751e99
EI
1723static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1724{
1725 unsigned int i;
1726
1727 /* Discard jump cache entries for any tb which might potentially
1728 overlap the flushed page. */
1729 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1730 memset (&env->tb_jmp_cache[i], 0,
1731 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1732
1733 i = tb_jmp_cache_hash_page(addr);
1734 memset (&env->tb_jmp_cache[i], 0,
1735 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1736}
1737
ee8b7021
FB
1738/* NOTE: if flush_global is true, also flush global entries (not
1739 implemented yet) */
1740void tlb_flush(CPUState *env, int flush_global)
33417e70 1741{
33417e70 1742 int i;
0124311e 1743
9fa3e853
FB
1744#if defined(DEBUG_TLB)
1745 printf("tlb_flush:\n");
1746#endif
0124311e
FB
1747 /* must reset current TB so that interrupts cannot modify the
1748 links while we are modifying them */
1749 env->current_tb = NULL;
1750
33417e70 1751 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1752 env->tlb_table[0][i].addr_read = -1;
1753 env->tlb_table[0][i].addr_write = -1;
1754 env->tlb_table[0][i].addr_code = -1;
1755 env->tlb_table[1][i].addr_read = -1;
1756 env->tlb_table[1][i].addr_write = -1;
1757 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1758#if (NB_MMU_MODES >= 3)
1759 env->tlb_table[2][i].addr_read = -1;
1760 env->tlb_table[2][i].addr_write = -1;
1761 env->tlb_table[2][i].addr_code = -1;
e37e6ee6
AJ
1762#endif
1763#if (NB_MMU_MODES >= 4)
6fa4cea9
JM
1764 env->tlb_table[3][i].addr_read = -1;
1765 env->tlb_table[3][i].addr_write = -1;
1766 env->tlb_table[3][i].addr_code = -1;
1767#endif
e37e6ee6
AJ
1768#if (NB_MMU_MODES >= 5)
1769 env->tlb_table[4][i].addr_read = -1;
1770 env->tlb_table[4][i].addr_write = -1;
1771 env->tlb_table[4][i].addr_code = -1;
6fa4cea9 1772#endif
e37e6ee6 1773
33417e70 1774 }
9fa3e853 1775
8a40a180 1776 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1777
640f42e4 1778#ifdef CONFIG_KQEMU
0a962c02
FB
1779 if (env->kqemu_enabled) {
1780 kqemu_flush(env, flush_global);
1781 }
9fa3e853 1782#endif
e3db7226 1783 tlb_flush_count++;
33417e70
FB
1784}
1785
274da6b2 1786static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1787{
5fafdf24 1788 if (addr == (tlb_entry->addr_read &
84b7b8e7 1789 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1790 addr == (tlb_entry->addr_write &
84b7b8e7 1791 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1792 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1793 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1794 tlb_entry->addr_read = -1;
1795 tlb_entry->addr_write = -1;
1796 tlb_entry->addr_code = -1;
1797 }
61382a50
FB
1798}
1799
2e12669a 1800void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1801{
8a40a180 1802 int i;
0124311e 1803
9fa3e853 1804#if defined(DEBUG_TLB)
108c49b8 1805 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1806#endif
0124311e
FB
1807 /* must reset current TB so that interrupts cannot modify the
1808 links while we are modifying them */
1809 env->current_tb = NULL;
61382a50
FB
1810
1811 addr &= TARGET_PAGE_MASK;
1812 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1813 tlb_flush_entry(&env->tlb_table[0][i], addr);
1814 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1815#if (NB_MMU_MODES >= 3)
1816 tlb_flush_entry(&env->tlb_table[2][i], addr);
e37e6ee6
AJ
1817#endif
1818#if (NB_MMU_MODES >= 4)
6fa4cea9
JM
1819 tlb_flush_entry(&env->tlb_table[3][i], addr);
1820#endif
e37e6ee6
AJ
1821#if (NB_MMU_MODES >= 5)
1822 tlb_flush_entry(&env->tlb_table[4][i], addr);
6fa4cea9 1823#endif
0124311e 1824
5c751e99 1825 tlb_flush_jmp_cache(env, addr);
9fa3e853 1826
640f42e4 1827#ifdef CONFIG_KQEMU
0a962c02
FB
1828 if (env->kqemu_enabled) {
1829 kqemu_flush_page(env, addr);
1830 }
1831#endif
9fa3e853
FB
1832}
1833
9fa3e853
FB
1834/* update the TLBs so that writes to code in the virtual page 'addr'
1835 can be detected */
6a00d601 1836static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1837{
5fafdf24 1838 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1839 ram_addr + TARGET_PAGE_SIZE,
1840 CODE_DIRTY_FLAG);
9fa3e853
FB
1841}
1842
9fa3e853 1843/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1844 tested for self modifying code */
5fafdf24 1845static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1846 target_ulong vaddr)
9fa3e853 1847{
3a7d929e 1848 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1849}
1850
5fafdf24 1851static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1852 unsigned long start, unsigned long length)
1853{
1854 unsigned long addr;
84b7b8e7
FB
1855 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1856 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1857 if ((addr - start) < length) {
0f459d16 1858 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1859 }
1860 }
1861}
1862
5579c7f3 1863/* Note: start and end must be within the same ram block. */
3a7d929e 1864void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1865 int dirty_flags)
1ccde1cb
FB
1866{
1867 CPUState *env;
4f2ac237 1868 unsigned long length, start1;
0a962c02
FB
1869 int i, mask, len;
1870 uint8_t *p;
1ccde1cb
FB
1871
1872 start &= TARGET_PAGE_MASK;
1873 end = TARGET_PAGE_ALIGN(end);
1874
1875 length = end - start;
1876 if (length == 0)
1877 return;
0a962c02 1878 len = length >> TARGET_PAGE_BITS;
640f42e4 1879#ifdef CONFIG_KQEMU
6a00d601
FB
1880 /* XXX: should not depend on cpu context */
1881 env = first_cpu;
3a7d929e 1882 if (env->kqemu_enabled) {
f23db169
FB
1883 ram_addr_t addr;
1884 addr = start;
1885 for(i = 0; i < len; i++) {
1886 kqemu_set_notdirty(env, addr);
1887 addr += TARGET_PAGE_SIZE;
1888 }
3a7d929e
FB
1889 }
1890#endif
f23db169
FB
1891 mask = ~dirty_flags;
1892 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1893 for(i = 0; i < len; i++)
1894 p[i] &= mask;
1895
1ccde1cb
FB
1896 /* we modify the TLB cache so that the dirty bit will be set again
1897 when accessing the range */
5579c7f3
PB
1898 start1 = (unsigned long)qemu_get_ram_ptr(start);
1899 /* Chek that we don't span multiple blocks - this breaks the
1900 address comparisons below. */
1901 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1902 != (end - 1) - start) {
1903 abort();
1904 }
1905
6a00d601
FB
1906 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1907 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1908 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1909 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1910 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1911#if (NB_MMU_MODES >= 3)
1912 for(i = 0; i < CPU_TLB_SIZE; i++)
1913 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
e37e6ee6
AJ
1914#endif
1915#if (NB_MMU_MODES >= 4)
6fa4cea9
JM
1916 for(i = 0; i < CPU_TLB_SIZE; i++)
1917 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1918#endif
e37e6ee6
AJ
1919#if (NB_MMU_MODES >= 5)
1920 for(i = 0; i < CPU_TLB_SIZE; i++)
1921 tlb_reset_dirty_range(&env->tlb_table[4][i], start1, length);
6fa4cea9 1922#endif
6a00d601 1923 }
1ccde1cb
FB
1924}
1925
74576198
AL
1926int cpu_physical_memory_set_dirty_tracking(int enable)
1927{
1928 in_migration = enable;
b0a46a33
JK
1929 if (kvm_enabled()) {
1930 return kvm_set_migration_log(enable);
1931 }
74576198
AL
1932 return 0;
1933}
1934
1935int cpu_physical_memory_get_dirty_tracking(void)
1936{
1937 return in_migration;
1938}
1939
151f7749
JK
1940int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1941 target_phys_addr_t end_addr)
2bec46dc 1942{
151f7749
JK
1943 int ret = 0;
1944
2bec46dc 1945 if (kvm_enabled())
151f7749
JK
1946 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1947 return ret;
2bec46dc
AL
1948}
1949
3a7d929e
FB
1950static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1951{
1952 ram_addr_t ram_addr;
5579c7f3 1953 void *p;
3a7d929e 1954
84b7b8e7 1955 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
1956 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1957 + tlb_entry->addend);
1958 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 1959 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1960 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1961 }
1962 }
1963}
1964
1965/* update the TLB according to the current state of the dirty bits */
1966void cpu_tlb_update_dirty(CPUState *env)
1967{
1968 int i;
1969 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1970 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1971 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1972 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1973#if (NB_MMU_MODES >= 3)
1974 for(i = 0; i < CPU_TLB_SIZE; i++)
1975 tlb_update_dirty(&env->tlb_table[2][i]);
e37e6ee6
AJ
1976#endif
1977#if (NB_MMU_MODES >= 4)
6fa4cea9
JM
1978 for(i = 0; i < CPU_TLB_SIZE; i++)
1979 tlb_update_dirty(&env->tlb_table[3][i]);
1980#endif
e37e6ee6
AJ
1981#if (NB_MMU_MODES >= 5)
1982 for(i = 0; i < CPU_TLB_SIZE; i++)
1983 tlb_update_dirty(&env->tlb_table[4][i]);
6fa4cea9 1984#endif
3a7d929e
FB
1985}
1986
0f459d16 1987static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1988{
0f459d16
PB
1989 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1990 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1991}
1992
0f459d16
PB
1993/* update the TLB corresponding to virtual page vaddr
1994 so that it is no longer dirty */
1995static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1996{
1ccde1cb
FB
1997 int i;
1998
0f459d16 1999 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2000 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
0f459d16
PB
2001 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
2002 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
6fa4cea9 2003#if (NB_MMU_MODES >= 3)
0f459d16 2004 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
e37e6ee6
AJ
2005#endif
2006#if (NB_MMU_MODES >= 4)
0f459d16 2007 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
6fa4cea9 2008#endif
e37e6ee6
AJ
2009#if (NB_MMU_MODES >= 5)
2010 tlb_set_dirty1(&env->tlb_table[4][i], vaddr);
6fa4cea9 2011#endif
9fa3e853
FB
2012}
2013
59817ccb
FB
2014/* add a new TLB entry. At most one entry for a given virtual address
2015 is permitted. Return 0 if OK or 2 if the page could not be mapped
2016 (can only happen in non SOFTMMU mode for I/O pages or pages
2017 conflicting with the host address space). */
5fafdf24
TS
2018int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2019 target_phys_addr_t paddr, int prot,
6ebbf390 2020 int mmu_idx, int is_softmmu)
9fa3e853 2021{
92e873b9 2022 PhysPageDesc *p;
4f2ac237 2023 unsigned long pd;
9fa3e853 2024 unsigned int index;
4f2ac237 2025 target_ulong address;
0f459d16 2026 target_ulong code_address;
108c49b8 2027 target_phys_addr_t addend;
9fa3e853 2028 int ret;
84b7b8e7 2029 CPUTLBEntry *te;
a1d1bb31 2030 CPUWatchpoint *wp;
0f459d16 2031 target_phys_addr_t iotlb;
9fa3e853 2032
92e873b9 2033 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2034 if (!p) {
2035 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2036 } else {
2037 pd = p->phys_offset;
9fa3e853
FB
2038 }
2039#if defined(DEBUG_TLB)
6ebbf390
JM
2040 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2041 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2042#endif
2043
2044 ret = 0;
0f459d16
PB
2045 address = vaddr;
2046 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2047 /* IO memory case (romd handled later) */
2048 address |= TLB_MMIO;
2049 }
5579c7f3 2050 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2051 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2052 /* Normal RAM. */
2053 iotlb = pd & TARGET_PAGE_MASK;
2054 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2055 iotlb |= IO_MEM_NOTDIRTY;
2056 else
2057 iotlb |= IO_MEM_ROM;
2058 } else {
ccbb4d44 2059 /* IO handlers are currently passed a physical address.
0f459d16
PB
2060 It would be nice to pass an offset from the base address
2061 of that region. This would avoid having to special case RAM,
2062 and avoid full address decoding in every device.
2063 We can't use the high bits of pd for this because
2064 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2065 iotlb = (pd & ~TARGET_PAGE_MASK);
2066 if (p) {
8da3ff18
PB
2067 iotlb += p->region_offset;
2068 } else {
2069 iotlb += paddr;
2070 }
0f459d16
PB
2071 }
2072
2073 code_address = address;
2074 /* Make accesses to pages with watchpoints go via the
2075 watchpoint trap routines. */
c0ce998e 2076 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2077 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2078 iotlb = io_mem_watch + paddr;
2079 /* TODO: The memory case can be optimized by not trapping
2080 reads of pages with a write breakpoint. */
2081 address |= TLB_MMIO;
6658ffb8 2082 }
0f459d16 2083 }
d79acba4 2084
0f459d16
PB
2085 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2086 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2087 te = &env->tlb_table[mmu_idx][index];
2088 te->addend = addend - vaddr;
2089 if (prot & PAGE_READ) {
2090 te->addr_read = address;
2091 } else {
2092 te->addr_read = -1;
2093 }
5c751e99 2094
0f459d16
PB
2095 if (prot & PAGE_EXEC) {
2096 te->addr_code = code_address;
2097 } else {
2098 te->addr_code = -1;
2099 }
2100 if (prot & PAGE_WRITE) {
2101 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2102 (pd & IO_MEM_ROMD)) {
2103 /* Write access calls the I/O callback. */
2104 te->addr_write = address | TLB_MMIO;
2105 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2106 !cpu_physical_memory_is_dirty(pd)) {
2107 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2108 } else {
0f459d16 2109 te->addr_write = address;
9fa3e853 2110 }
0f459d16
PB
2111 } else {
2112 te->addr_write = -1;
9fa3e853 2113 }
9fa3e853
FB
2114 return ret;
2115}
2116
0124311e
FB
2117#else
2118
ee8b7021 2119void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2120{
2121}
2122
2e12669a 2123void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2124{
2125}
2126
5fafdf24
TS
2127int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2128 target_phys_addr_t paddr, int prot,
6ebbf390 2129 int mmu_idx, int is_softmmu)
9fa3e853
FB
2130{
2131 return 0;
2132}
0124311e 2133
edf8e2af
MW
2134/*
2135 * Walks guest process memory "regions" one by one
2136 * and calls callback function 'fn' for each region.
2137 */
2138int walk_memory_regions(void *priv,
2139 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2140{
9fa3e853 2141 unsigned long start, end;
edf8e2af 2142 PageDesc *p = NULL;
9fa3e853 2143 int i, j, prot, prot1;
edf8e2af 2144 int rc = 0;
33417e70 2145
edf8e2af 2146 start = end = -1;
9fa3e853 2147 prot = 0;
edf8e2af
MW
2148
2149 for (i = 0; i <= L1_SIZE; i++) {
2150 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2151 for (j = 0; j < L2_SIZE; j++) {
2152 prot1 = (p == NULL) ? 0 : p[j].flags;
2153 /*
2154 * "region" is one continuous chunk of memory
2155 * that has same protection flags set.
2156 */
9fa3e853
FB
2157 if (prot1 != prot) {
2158 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2159 if (start != -1) {
edf8e2af
MW
2160 rc = (*fn)(priv, start, end, prot);
2161 /* callback can stop iteration by returning != 0 */
2162 if (rc != 0)
2163 return (rc);
9fa3e853
FB
2164 }
2165 if (prot1 != 0)
2166 start = end;
2167 else
2168 start = -1;
2169 prot = prot1;
2170 }
edf8e2af 2171 if (p == NULL)
9fa3e853
FB
2172 break;
2173 }
33417e70 2174 }
edf8e2af
MW
2175 return (rc);
2176}
2177
2178static int dump_region(void *priv, unsigned long start,
2179 unsigned long end, unsigned long prot)
2180{
2181 FILE *f = (FILE *)priv;
2182
2183 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2184 start, end, end - start,
2185 ((prot & PAGE_READ) ? 'r' : '-'),
2186 ((prot & PAGE_WRITE) ? 'w' : '-'),
2187 ((prot & PAGE_EXEC) ? 'x' : '-'));
2188
2189 return (0);
2190}
2191
2192/* dump memory mappings */
2193void page_dump(FILE *f)
2194{
2195 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2196 "start", "end", "size", "prot");
2197 walk_memory_regions(f, dump_region);
33417e70
FB
2198}
2199
53a5960a 2200int page_get_flags(target_ulong address)
33417e70 2201{
9fa3e853
FB
2202 PageDesc *p;
2203
2204 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2205 if (!p)
9fa3e853
FB
2206 return 0;
2207 return p->flags;
2208}
2209
2210/* modify the flags of a page and invalidate the code if
ccbb4d44 2211 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2212 depending on PAGE_WRITE */
53a5960a 2213void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2214{
2215 PageDesc *p;
53a5960a 2216 target_ulong addr;
9fa3e853 2217
c8a706fe 2218 /* mmap_lock should already be held. */
9fa3e853
FB
2219 start = start & TARGET_PAGE_MASK;
2220 end = TARGET_PAGE_ALIGN(end);
2221 if (flags & PAGE_WRITE)
2222 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2223 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2224 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2225 /* We may be called for host regions that are outside guest
2226 address space. */
2227 if (!p)
2228 return;
9fa3e853
FB
2229 /* if the write protection is set, then we invalidate the code
2230 inside */
5fafdf24 2231 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2232 (flags & PAGE_WRITE) &&
2233 p->first_tb) {
d720b93d 2234 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2235 }
2236 p->flags = flags;
2237 }
33417e70
FB
2238}
2239
3d97b40b
TS
2240int page_check_range(target_ulong start, target_ulong len, int flags)
2241{
2242 PageDesc *p;
2243 target_ulong end;
2244 target_ulong addr;
2245
55f280c9
AZ
2246 if (start + len < start)
2247 /* we've wrapped around */
2248 return -1;
2249
3d97b40b
TS
2250 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2251 start = start & TARGET_PAGE_MASK;
2252
3d97b40b
TS
2253 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2254 p = page_find(addr >> TARGET_PAGE_BITS);
2255 if( !p )
2256 return -1;
2257 if( !(p->flags & PAGE_VALID) )
2258 return -1;
2259
dae3270c 2260 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2261 return -1;
dae3270c
FB
2262 if (flags & PAGE_WRITE) {
2263 if (!(p->flags & PAGE_WRITE_ORG))
2264 return -1;
2265 /* unprotect the page if it was put read-only because it
2266 contains translated code */
2267 if (!(p->flags & PAGE_WRITE)) {
2268 if (!page_unprotect(addr, 0, NULL))
2269 return -1;
2270 }
2271 return 0;
2272 }
3d97b40b
TS
2273 }
2274 return 0;
2275}
2276
9fa3e853 2277/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2278 page. Return TRUE if the fault was successfully handled. */
53a5960a 2279int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2280{
2281 unsigned int page_index, prot, pindex;
2282 PageDesc *p, *p1;
53a5960a 2283 target_ulong host_start, host_end, addr;
9fa3e853 2284
c8a706fe
PB
2285 /* Technically this isn't safe inside a signal handler. However we
2286 know this only ever happens in a synchronous SEGV handler, so in
2287 practice it seems to be ok. */
2288 mmap_lock();
2289
83fb7adf 2290 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2291 page_index = host_start >> TARGET_PAGE_BITS;
2292 p1 = page_find(page_index);
c8a706fe
PB
2293 if (!p1) {
2294 mmap_unlock();
9fa3e853 2295 return 0;
c8a706fe 2296 }
83fb7adf 2297 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2298 p = p1;
2299 prot = 0;
2300 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2301 prot |= p->flags;
2302 p++;
2303 }
2304 /* if the page was really writable, then we change its
2305 protection back to writable */
2306 if (prot & PAGE_WRITE_ORG) {
2307 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2308 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2309 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2310 (prot & PAGE_BITS) | PAGE_WRITE);
2311 p1[pindex].flags |= PAGE_WRITE;
2312 /* and since the content will be modified, we must invalidate
2313 the corresponding translated code. */
d720b93d 2314 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2315#ifdef DEBUG_TB_CHECK
2316 tb_invalidate_check(address);
2317#endif
c8a706fe 2318 mmap_unlock();
9fa3e853
FB
2319 return 1;
2320 }
2321 }
c8a706fe 2322 mmap_unlock();
9fa3e853
FB
2323 return 0;
2324}
2325
6a00d601
FB
2326static inline void tlb_set_dirty(CPUState *env,
2327 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2328{
2329}
9fa3e853
FB
2330#endif /* defined(CONFIG_USER_ONLY) */
2331
e2eef170 2332#if !defined(CONFIG_USER_ONLY)
8da3ff18 2333
db7b5426 2334static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2335 ram_addr_t memory, ram_addr_t region_offset);
00f82b8a 2336static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2337 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2338#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2339 need_subpage) \
2340 do { \
2341 if (addr > start_addr) \
2342 start_addr2 = 0; \
2343 else { \
2344 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2345 if (start_addr2 > 0) \
2346 need_subpage = 1; \
2347 } \
2348 \
49e9fba2 2349 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2350 end_addr2 = TARGET_PAGE_SIZE - 1; \
2351 else { \
2352 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2353 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2354 need_subpage = 1; \
2355 } \
2356 } while (0)
2357
33417e70
FB
2358/* register physical memory. 'size' must be a multiple of the target
2359 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2360 io memory page. The address used when calling the IO function is
2361 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2362 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2363 before calculating this offset. This should not be a problem unless
2364 the low bits of start_addr and region_offset differ. */
2365void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2366 ram_addr_t size,
2367 ram_addr_t phys_offset,
2368 ram_addr_t region_offset)
33417e70 2369{
108c49b8 2370 target_phys_addr_t addr, end_addr;
92e873b9 2371 PhysPageDesc *p;
9d42037b 2372 CPUState *env;
00f82b8a 2373 ram_addr_t orig_size = size;
db7b5426 2374 void *subpage;
33417e70 2375
640f42e4 2376#ifdef CONFIG_KQEMU
da260249
FB
2377 /* XXX: should not depend on cpu context */
2378 env = first_cpu;
2379 if (env->kqemu_enabled) {
2380 kqemu_set_phys_mem(start_addr, size, phys_offset);
2381 }
2382#endif
7ba1e619
AL
2383 if (kvm_enabled())
2384 kvm_set_phys_mem(start_addr, size, phys_offset);
2385
67c4d23c
PB
2386 if (phys_offset == IO_MEM_UNASSIGNED) {
2387 region_offset = start_addr;
2388 }
8da3ff18 2389 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2390 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2391 end_addr = start_addr + (target_phys_addr_t)size;
2392 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2393 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2394 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2395 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2396 target_phys_addr_t start_addr2, end_addr2;
2397 int need_subpage = 0;
2398
2399 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2400 need_subpage);
4254fab8 2401 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2402 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2403 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2404 &p->phys_offset, orig_memory,
2405 p->region_offset);
db7b5426
BS
2406 } else {
2407 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2408 >> IO_MEM_SHIFT];
2409 }
8da3ff18
PB
2410 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2411 region_offset);
2412 p->region_offset = 0;
db7b5426
BS
2413 } else {
2414 p->phys_offset = phys_offset;
2415 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2416 (phys_offset & IO_MEM_ROMD))
2417 phys_offset += TARGET_PAGE_SIZE;
2418 }
2419 } else {
2420 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2421 p->phys_offset = phys_offset;
8da3ff18 2422 p->region_offset = region_offset;
db7b5426 2423 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2424 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2425 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2426 } else {
db7b5426
BS
2427 target_phys_addr_t start_addr2, end_addr2;
2428 int need_subpage = 0;
2429
2430 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2431 end_addr2, need_subpage);
2432
4254fab8 2433 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2434 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2435 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2436 addr & TARGET_PAGE_MASK);
db7b5426 2437 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2438 phys_offset, region_offset);
2439 p->region_offset = 0;
db7b5426
BS
2440 }
2441 }
2442 }
8da3ff18 2443 region_offset += TARGET_PAGE_SIZE;
33417e70 2444 }
3b46e624 2445
9d42037b
FB
2446 /* since each CPU stores ram addresses in its TLB cache, we must
2447 reset the modified entries */
2448 /* XXX: slow ! */
2449 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2450 tlb_flush(env, 1);
2451 }
33417e70
FB
2452}
2453
ba863458 2454/* XXX: temporary until new memory mapping API */
00f82b8a 2455ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2456{
2457 PhysPageDesc *p;
2458
2459 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2460 if (!p)
2461 return IO_MEM_UNASSIGNED;
2462 return p->phys_offset;
2463}
2464
f65ed4c1
AL
2465void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2466{
2467 if (kvm_enabled())
2468 kvm_coalesce_mmio_region(addr, size);
2469}
2470
2471void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2472{
2473 if (kvm_enabled())
2474 kvm_uncoalesce_mmio_region(addr, size);
2475}
2476
640f42e4 2477#ifdef CONFIG_KQEMU
e9a1ab19 2478/* XXX: better than nothing */
94a6b54f 2479static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2480{
2481 ram_addr_t addr;
94a6b54f 2482 if ((last_ram_offset + size) > kqemu_phys_ram_size) {
012a7045 2483 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
94a6b54f 2484 (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
e9a1ab19
FB
2485 abort();
2486 }
94a6b54f
PB
2487 addr = last_ram_offset;
2488 last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
e9a1ab19
FB
2489 return addr;
2490}
94a6b54f
PB
2491#endif
2492
2493ram_addr_t qemu_ram_alloc(ram_addr_t size)
2494{
2495 RAMBlock *new_block;
2496
640f42e4 2497#ifdef CONFIG_KQEMU
94a6b54f
PB
2498 if (kqemu_phys_ram_base) {
2499 return kqemu_ram_alloc(size);
2500 }
2501#endif
2502
2503 size = TARGET_PAGE_ALIGN(size);
2504 new_block = qemu_malloc(sizeof(*new_block));
2505
2506 new_block->host = qemu_vmalloc(size);
2507 new_block->offset = last_ram_offset;
2508 new_block->length = size;
2509
2510 new_block->next = ram_blocks;
2511 ram_blocks = new_block;
2512
2513 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2514 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2515 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2516 0xff, size >> TARGET_PAGE_BITS);
2517
2518 last_ram_offset += size;
2519
6f0437e8
JK
2520 if (kvm_enabled())
2521 kvm_setup_guest_memory(new_block->host, size);
2522
94a6b54f
PB
2523 return new_block->offset;
2524}
e9a1ab19
FB
2525
2526void qemu_ram_free(ram_addr_t addr)
2527{
94a6b54f 2528 /* TODO: implement this. */
e9a1ab19
FB
2529}
2530
dc828ca1 2531/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2532 With the exception of the softmmu code in this file, this should
2533 only be used for local memory (e.g. video ram) that the device owns,
2534 and knows it isn't going to access beyond the end of the block.
2535
2536 It should not be used for general purpose DMA.
2537 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2538 */
dc828ca1
PB
2539void *qemu_get_ram_ptr(ram_addr_t addr)
2540{
94a6b54f
PB
2541 RAMBlock *prev;
2542 RAMBlock **prevp;
2543 RAMBlock *block;
2544
640f42e4 2545#ifdef CONFIG_KQEMU
94a6b54f
PB
2546 if (kqemu_phys_ram_base) {
2547 return kqemu_phys_ram_base + addr;
2548 }
2549#endif
2550
2551 prev = NULL;
2552 prevp = &ram_blocks;
2553 block = ram_blocks;
2554 while (block && (block->offset > addr
2555 || block->offset + block->length <= addr)) {
2556 if (prev)
2557 prevp = &prev->next;
2558 prev = block;
2559 block = block->next;
2560 }
2561 if (!block) {
2562 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2563 abort();
2564 }
2565 /* Move this entry to to start of the list. */
2566 if (prev) {
2567 prev->next = block->next;
2568 block->next = *prevp;
2569 *prevp = block;
2570 }
2571 return block->host + (addr - block->offset);
dc828ca1
PB
2572}
2573
5579c7f3
PB
2574/* Some of the softmmu routines need to translate from a host pointer
2575 (typically a TLB entry) back to a ram offset. */
2576ram_addr_t qemu_ram_addr_from_host(void *ptr)
2577{
94a6b54f
PB
2578 RAMBlock *prev;
2579 RAMBlock **prevp;
2580 RAMBlock *block;
2581 uint8_t *host = ptr;
2582
640f42e4 2583#ifdef CONFIG_KQEMU
94a6b54f
PB
2584 if (kqemu_phys_ram_base) {
2585 return host - kqemu_phys_ram_base;
2586 }
2587#endif
2588
2589 prev = NULL;
2590 prevp = &ram_blocks;
2591 block = ram_blocks;
2592 while (block && (block->host > host
2593 || block->host + block->length <= host)) {
2594 if (prev)
2595 prevp = &prev->next;
2596 prev = block;
2597 block = block->next;
2598 }
2599 if (!block) {
2600 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2601 abort();
2602 }
2603 return block->offset + (host - block->host);
5579c7f3
PB
2604}
2605
a4193c8a 2606static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2607{
67d3b957 2608#ifdef DEBUG_UNASSIGNED
ab3d1727 2609 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2610#endif
0a6f8a6d 2611#if defined(TARGET_SPARC)
e18231a3
BS
2612 do_unassigned_access(addr, 0, 0, 0, 1);
2613#endif
2614 return 0;
2615}
2616
2617static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2618{
2619#ifdef DEBUG_UNASSIGNED
2620 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2621#endif
0a6f8a6d 2622#if defined(TARGET_SPARC)
e18231a3
BS
2623 do_unassigned_access(addr, 0, 0, 0, 2);
2624#endif
2625 return 0;
2626}
2627
2628static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2629{
2630#ifdef DEBUG_UNASSIGNED
2631 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2632#endif
0a6f8a6d 2633#if defined(TARGET_SPARC)
e18231a3 2634 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2635#endif
33417e70
FB
2636 return 0;
2637}
2638
a4193c8a 2639static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2640{
67d3b957 2641#ifdef DEBUG_UNASSIGNED
ab3d1727 2642 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2643#endif
0a6f8a6d 2644#if defined(TARGET_SPARC)
e18231a3
BS
2645 do_unassigned_access(addr, 1, 0, 0, 1);
2646#endif
2647}
2648
2649static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2650{
2651#ifdef DEBUG_UNASSIGNED
2652 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2653#endif
0a6f8a6d 2654#if defined(TARGET_SPARC)
e18231a3
BS
2655 do_unassigned_access(addr, 1, 0, 0, 2);
2656#endif
2657}
2658
2659static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2660{
2661#ifdef DEBUG_UNASSIGNED
2662 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2663#endif
0a6f8a6d 2664#if defined(TARGET_SPARC)
e18231a3 2665 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2666#endif
33417e70
FB
2667}
2668
2669static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2670 unassigned_mem_readb,
e18231a3
BS
2671 unassigned_mem_readw,
2672 unassigned_mem_readl,
33417e70
FB
2673};
2674
2675static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2676 unassigned_mem_writeb,
e18231a3
BS
2677 unassigned_mem_writew,
2678 unassigned_mem_writel,
33417e70
FB
2679};
2680
0f459d16
PB
2681static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2682 uint32_t val)
9fa3e853 2683{
3a7d929e 2684 int dirty_flags;
3a7d929e
FB
2685 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2686 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2687#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2688 tb_invalidate_phys_page_fast(ram_addr, 1);
2689 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2690#endif
3a7d929e 2691 }
5579c7f3 2692 stb_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2693#ifdef CONFIG_KQEMU
f32fc648
FB
2694 if (cpu_single_env->kqemu_enabled &&
2695 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2696 kqemu_modify_page(cpu_single_env, ram_addr);
2697#endif
f23db169
FB
2698 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2699 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2700 /* we remove the notdirty callback only if the code has been
2701 flushed */
2702 if (dirty_flags == 0xff)
2e70f6ef 2703 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2704}
2705
0f459d16
PB
2706static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2707 uint32_t val)
9fa3e853 2708{
3a7d929e 2709 int dirty_flags;
3a7d929e
FB
2710 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2711 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2712#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2713 tb_invalidate_phys_page_fast(ram_addr, 2);
2714 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2715#endif
3a7d929e 2716 }
5579c7f3 2717 stw_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2718#ifdef CONFIG_KQEMU
f32fc648
FB
2719 if (cpu_single_env->kqemu_enabled &&
2720 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2721 kqemu_modify_page(cpu_single_env, ram_addr);
2722#endif
f23db169
FB
2723 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2724 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2725 /* we remove the notdirty callback only if the code has been
2726 flushed */
2727 if (dirty_flags == 0xff)
2e70f6ef 2728 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2729}
2730
0f459d16
PB
2731static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2732 uint32_t val)
9fa3e853 2733{
3a7d929e 2734 int dirty_flags;
3a7d929e
FB
2735 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2736 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2737#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2738 tb_invalidate_phys_page_fast(ram_addr, 4);
2739 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2740#endif
3a7d929e 2741 }
5579c7f3 2742 stl_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2743#ifdef CONFIG_KQEMU
f32fc648
FB
2744 if (cpu_single_env->kqemu_enabled &&
2745 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2746 kqemu_modify_page(cpu_single_env, ram_addr);
2747#endif
f23db169
FB
2748 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2749 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2750 /* we remove the notdirty callback only if the code has been
2751 flushed */
2752 if (dirty_flags == 0xff)
2e70f6ef 2753 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2754}
2755
3a7d929e 2756static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2757 NULL, /* never used */
2758 NULL, /* never used */
2759 NULL, /* never used */
2760};
2761
1ccde1cb
FB
2762static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2763 notdirty_mem_writeb,
2764 notdirty_mem_writew,
2765 notdirty_mem_writel,
2766};
2767
0f459d16 2768/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2769static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2770{
2771 CPUState *env = cpu_single_env;
06d55cc1
AL
2772 target_ulong pc, cs_base;
2773 TranslationBlock *tb;
0f459d16 2774 target_ulong vaddr;
a1d1bb31 2775 CPUWatchpoint *wp;
06d55cc1 2776 int cpu_flags;
0f459d16 2777
06d55cc1
AL
2778 if (env->watchpoint_hit) {
2779 /* We re-entered the check after replacing the TB. Now raise
2780 * the debug interrupt so that is will trigger after the
2781 * current instruction. */
2782 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2783 return;
2784 }
2e70f6ef 2785 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
c0ce998e 2786 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2787 if ((vaddr == (wp->vaddr & len_mask) ||
2788 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2789 wp->flags |= BP_WATCHPOINT_HIT;
2790 if (!env->watchpoint_hit) {
2791 env->watchpoint_hit = wp;
2792 tb = tb_find_pc(env->mem_io_pc);
2793 if (!tb) {
2794 cpu_abort(env, "check_watchpoint: could not find TB for "
2795 "pc=%p", (void *)env->mem_io_pc);
2796 }
2797 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2798 tb_phys_invalidate(tb, -1);
2799 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2800 env->exception_index = EXCP_DEBUG;
2801 } else {
2802 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2803 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2804 }
2805 cpu_resume_from_signal(env, NULL);
06d55cc1 2806 }
6e140f28
AL
2807 } else {
2808 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2809 }
2810 }
2811}
2812
6658ffb8
PB
2813/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2814 so these check for a hit then pass through to the normal out-of-line
2815 phys routines. */
2816static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2817{
b4051334 2818 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2819 return ldub_phys(addr);
2820}
2821
2822static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2823{
b4051334 2824 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2825 return lduw_phys(addr);
2826}
2827
2828static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2829{
b4051334 2830 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2831 return ldl_phys(addr);
2832}
2833
6658ffb8
PB
2834static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2835 uint32_t val)
2836{
b4051334 2837 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2838 stb_phys(addr, val);
2839}
2840
2841static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2842 uint32_t val)
2843{
b4051334 2844 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2845 stw_phys(addr, val);
2846}
2847
2848static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2849 uint32_t val)
2850{
b4051334 2851 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2852 stl_phys(addr, val);
2853}
2854
2855static CPUReadMemoryFunc *watch_mem_read[3] = {
2856 watch_mem_readb,
2857 watch_mem_readw,
2858 watch_mem_readl,
2859};
2860
2861static CPUWriteMemoryFunc *watch_mem_write[3] = {
2862 watch_mem_writeb,
2863 watch_mem_writew,
2864 watch_mem_writel,
2865};
6658ffb8 2866
db7b5426
BS
2867static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2868 unsigned int len)
2869{
db7b5426
BS
2870 uint32_t ret;
2871 unsigned int idx;
2872
8da3ff18 2873 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2874#if defined(DEBUG_SUBPAGE)
2875 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2876 mmio, len, addr, idx);
2877#endif
8da3ff18
PB
2878 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2879 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2880
2881 return ret;
2882}
2883
2884static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2885 uint32_t value, unsigned int len)
2886{
db7b5426
BS
2887 unsigned int idx;
2888
8da3ff18 2889 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2890#if defined(DEBUG_SUBPAGE)
2891 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2892 mmio, len, addr, idx, value);
2893#endif
8da3ff18
PB
2894 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2895 addr + mmio->region_offset[idx][1][len],
2896 value);
db7b5426
BS
2897}
2898
2899static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2900{
2901#if defined(DEBUG_SUBPAGE)
2902 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2903#endif
2904
2905 return subpage_readlen(opaque, addr, 0);
2906}
2907
2908static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2909 uint32_t value)
2910{
2911#if defined(DEBUG_SUBPAGE)
2912 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2913#endif
2914 subpage_writelen(opaque, addr, value, 0);
2915}
2916
2917static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2918{
2919#if defined(DEBUG_SUBPAGE)
2920 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2921#endif
2922
2923 return subpage_readlen(opaque, addr, 1);
2924}
2925
2926static void subpage_writew (void *opaque, target_phys_addr_t addr,
2927 uint32_t value)
2928{
2929#if defined(DEBUG_SUBPAGE)
2930 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2931#endif
2932 subpage_writelen(opaque, addr, value, 1);
2933}
2934
2935static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2936{
2937#if defined(DEBUG_SUBPAGE)
2938 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2939#endif
2940
2941 return subpage_readlen(opaque, addr, 2);
2942}
2943
2944static void subpage_writel (void *opaque,
2945 target_phys_addr_t addr, uint32_t value)
2946{
2947#if defined(DEBUG_SUBPAGE)
2948 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2949#endif
2950 subpage_writelen(opaque, addr, value, 2);
2951}
2952
2953static CPUReadMemoryFunc *subpage_read[] = {
2954 &subpage_readb,
2955 &subpage_readw,
2956 &subpage_readl,
2957};
2958
2959static CPUWriteMemoryFunc *subpage_write[] = {
2960 &subpage_writeb,
2961 &subpage_writew,
2962 &subpage_writel,
2963};
2964
2965static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2966 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2967{
2968 int idx, eidx;
4254fab8 2969 unsigned int i;
db7b5426
BS
2970
2971 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2972 return -1;
2973 idx = SUBPAGE_IDX(start);
2974 eidx = SUBPAGE_IDX(end);
2975#if defined(DEBUG_SUBPAGE)
2976 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2977 mmio, start, end, idx, eidx, memory);
2978#endif
2979 memory >>= IO_MEM_SHIFT;
2980 for (; idx <= eidx; idx++) {
4254fab8 2981 for (i = 0; i < 4; i++) {
3ee89922
BS
2982 if (io_mem_read[memory][i]) {
2983 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2984 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2985 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2986 }
2987 if (io_mem_write[memory][i]) {
2988 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2989 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2990 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2991 }
4254fab8 2992 }
db7b5426
BS
2993 }
2994
2995 return 0;
2996}
2997
00f82b8a 2998static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2999 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426
BS
3000{
3001 subpage_t *mmio;
3002 int subpage_memory;
3003
3004 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3005
3006 mmio->base = base;
3007 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
db7b5426 3008#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3009 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3010 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3011#endif
1eec614b
AL
3012 *phys = subpage_memory | IO_MEM_SUBPAGE;
3013 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 3014 region_offset);
db7b5426
BS
3015
3016 return mmio;
3017}
3018
88715657
AL
3019static int get_free_io_mem_idx(void)
3020{
3021 int i;
3022
3023 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3024 if (!io_mem_used[i]) {
3025 io_mem_used[i] = 1;
3026 return i;
3027 }
3028
3029 return -1;
3030}
3031
33417e70
FB
3032static void io_mem_init(void)
3033{
88715657
AL
3034 int i;
3035
3a7d929e 3036 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 3037 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 3038 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
88715657
AL
3039 for (i=0; i<5; i++)
3040 io_mem_used[i] = 1;
1ccde1cb 3041
0f459d16 3042 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
6658ffb8 3043 watch_mem_write, NULL);
640f42e4 3044#ifdef CONFIG_KQEMU
94a6b54f
PB
3045 if (kqemu_phys_ram_base) {
3046 /* alloc dirty bits array */
3047 phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3048 memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3049 }
3050#endif
33417e70
FB
3051}
3052
3053/* mem_read and mem_write are arrays of functions containing the
3054 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3055 2). Functions can be omitted with a NULL function pointer.
3ee89922 3056 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3057 modified. If it is zero, a new io zone is allocated. The return
3058 value can be used with cpu_register_physical_memory(). (-1) is
3059 returned if error. */
33417e70
FB
3060int cpu_register_io_memory(int io_index,
3061 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
3062 CPUWriteMemoryFunc **mem_write,
3063 void *opaque)
33417e70 3064{
4254fab8 3065 int i, subwidth = 0;
33417e70
FB
3066
3067 if (io_index <= 0) {
88715657
AL
3068 io_index = get_free_io_mem_idx();
3069 if (io_index == -1)
3070 return io_index;
33417e70
FB
3071 } else {
3072 if (io_index >= IO_MEM_NB_ENTRIES)
3073 return -1;
3074 }
b5ff1b31 3075
33417e70 3076 for(i = 0;i < 3; i++) {
4254fab8
BS
3077 if (!mem_read[i] || !mem_write[i])
3078 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3079 io_mem_read[io_index][i] = mem_read[i];
3080 io_mem_write[io_index][i] = mem_write[i];
3081 }
a4193c8a 3082 io_mem_opaque[io_index] = opaque;
4254fab8 3083 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3084}
61382a50 3085
88715657
AL
3086void cpu_unregister_io_memory(int io_table_address)
3087{
3088 int i;
3089 int io_index = io_table_address >> IO_MEM_SHIFT;
3090
3091 for (i=0;i < 3; i++) {
3092 io_mem_read[io_index][i] = unassigned_mem_read[i];
3093 io_mem_write[io_index][i] = unassigned_mem_write[i];
3094 }
3095 io_mem_opaque[io_index] = NULL;
3096 io_mem_used[io_index] = 0;
3097}
3098
e2eef170
PB
3099#endif /* !defined(CONFIG_USER_ONLY) */
3100
13eb76e0
FB
3101/* physical memory access (slow version, mainly for debug) */
3102#if defined(CONFIG_USER_ONLY)
5fafdf24 3103void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3104 int len, int is_write)
3105{
3106 int l, flags;
3107 target_ulong page;
53a5960a 3108 void * p;
13eb76e0
FB
3109
3110 while (len > 0) {
3111 page = addr & TARGET_PAGE_MASK;
3112 l = (page + TARGET_PAGE_SIZE) - addr;
3113 if (l > len)
3114 l = len;
3115 flags = page_get_flags(page);
3116 if (!(flags & PAGE_VALID))
3117 return;
3118 if (is_write) {
3119 if (!(flags & PAGE_WRITE))
3120 return;
579a97f7 3121 /* XXX: this code should not depend on lock_user */
72fb7daa 3122 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3123 /* FIXME - should this return an error rather than just fail? */
3124 return;
72fb7daa
AJ
3125 memcpy(p, buf, l);
3126 unlock_user(p, addr, l);
13eb76e0
FB
3127 } else {
3128 if (!(flags & PAGE_READ))
3129 return;
579a97f7 3130 /* XXX: this code should not depend on lock_user */
72fb7daa 3131 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3132 /* FIXME - should this return an error rather than just fail? */
3133 return;
72fb7daa 3134 memcpy(buf, p, l);
5b257578 3135 unlock_user(p, addr, 0);
13eb76e0
FB
3136 }
3137 len -= l;
3138 buf += l;
3139 addr += l;
3140 }
3141}
8df1cd07 3142
13eb76e0 3143#else
5fafdf24 3144void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3145 int len, int is_write)
3146{
3147 int l, io_index;
3148 uint8_t *ptr;
3149 uint32_t val;
2e12669a
FB
3150 target_phys_addr_t page;
3151 unsigned long pd;
92e873b9 3152 PhysPageDesc *p;
3b46e624 3153
13eb76e0
FB
3154 while (len > 0) {
3155 page = addr & TARGET_PAGE_MASK;
3156 l = (page + TARGET_PAGE_SIZE) - addr;
3157 if (l > len)
3158 l = len;
92e873b9 3159 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3160 if (!p) {
3161 pd = IO_MEM_UNASSIGNED;
3162 } else {
3163 pd = p->phys_offset;
3164 }
3b46e624 3165
13eb76e0 3166 if (is_write) {
3a7d929e 3167 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
6c2934db 3168 target_phys_addr_t addr1 = addr;
13eb76e0 3169 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3170 if (p)
6c2934db 3171 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3172 /* XXX: could force cpu_single_env to NULL to avoid
3173 potential bugs */
6c2934db 3174 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3175 /* 32 bit write access */
c27004ec 3176 val = ldl_p(buf);
6c2934db 3177 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3178 l = 4;
6c2934db 3179 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3180 /* 16 bit write access */
c27004ec 3181 val = lduw_p(buf);
6c2934db 3182 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3183 l = 2;
3184 } else {
1c213d19 3185 /* 8 bit write access */
c27004ec 3186 val = ldub_p(buf);
6c2934db 3187 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3188 l = 1;
3189 }
3190 } else {
b448f2f3
FB
3191 unsigned long addr1;
3192 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3193 /* RAM case */
5579c7f3 3194 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3195 memcpy(ptr, buf, l);
3a7d929e
FB
3196 if (!cpu_physical_memory_is_dirty(addr1)) {
3197 /* invalidate code */
3198 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3199 /* set dirty bit */
5fafdf24 3200 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3201 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3202 }
13eb76e0
FB
3203 }
3204 } else {
5fafdf24 3205 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3206 !(pd & IO_MEM_ROMD)) {
6c2934db 3207 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3208 /* I/O case */
3209 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3210 if (p)
6c2934db
AJ
3211 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3212 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3213 /* 32 bit read access */
6c2934db 3214 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3215 stl_p(buf, val);
13eb76e0 3216 l = 4;
6c2934db 3217 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3218 /* 16 bit read access */
6c2934db 3219 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3220 stw_p(buf, val);
13eb76e0
FB
3221 l = 2;
3222 } else {
1c213d19 3223 /* 8 bit read access */
6c2934db 3224 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3225 stb_p(buf, val);
13eb76e0
FB
3226 l = 1;
3227 }
3228 } else {
3229 /* RAM case */
5579c7f3 3230 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3231 (addr & ~TARGET_PAGE_MASK);
3232 memcpy(buf, ptr, l);
3233 }
3234 }
3235 len -= l;
3236 buf += l;
3237 addr += l;
3238 }
3239}
8df1cd07 3240
d0ecd2aa 3241/* used for ROM loading : can write in RAM and ROM */
5fafdf24 3242void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3243 const uint8_t *buf, int len)
3244{
3245 int l;
3246 uint8_t *ptr;
3247 target_phys_addr_t page;
3248 unsigned long pd;
3249 PhysPageDesc *p;
3b46e624 3250
d0ecd2aa
FB
3251 while (len > 0) {
3252 page = addr & TARGET_PAGE_MASK;
3253 l = (page + TARGET_PAGE_SIZE) - addr;
3254 if (l > len)
3255 l = len;
3256 p = phys_page_find(page >> TARGET_PAGE_BITS);
3257 if (!p) {
3258 pd = IO_MEM_UNASSIGNED;
3259 } else {
3260 pd = p->phys_offset;
3261 }
3b46e624 3262
d0ecd2aa 3263 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3264 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3265 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3266 /* do nothing */
3267 } else {
3268 unsigned long addr1;
3269 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3270 /* ROM/RAM case */
5579c7f3 3271 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3272 memcpy(ptr, buf, l);
3273 }
3274 len -= l;
3275 buf += l;
3276 addr += l;
3277 }
3278}
3279
6d16c2f8
AL
3280typedef struct {
3281 void *buffer;
3282 target_phys_addr_t addr;
3283 target_phys_addr_t len;
3284} BounceBuffer;
3285
3286static BounceBuffer bounce;
3287
ba223c29
AL
3288typedef struct MapClient {
3289 void *opaque;
3290 void (*callback)(void *opaque);
3291 LIST_ENTRY(MapClient) link;
3292} MapClient;
3293
3294static LIST_HEAD(map_client_list, MapClient) map_client_list
3295 = LIST_HEAD_INITIALIZER(map_client_list);
3296
3297void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3298{
3299 MapClient *client = qemu_malloc(sizeof(*client));
3300
3301 client->opaque = opaque;
3302 client->callback = callback;
3303 LIST_INSERT_HEAD(&map_client_list, client, link);
3304 return client;
3305}
3306
3307void cpu_unregister_map_client(void *_client)
3308{
3309 MapClient *client = (MapClient *)_client;
3310
3311 LIST_REMOVE(client, link);
3312}
3313
3314static void cpu_notify_map_clients(void)
3315{
3316 MapClient *client;
3317
3318 while (!LIST_EMPTY(&map_client_list)) {
3319 client = LIST_FIRST(&map_client_list);
3320 client->callback(client->opaque);
3321 LIST_REMOVE(client, link);
3322 }
3323}
3324
6d16c2f8
AL
3325/* Map a physical memory region into a host virtual address.
3326 * May map a subset of the requested range, given by and returned in *plen.
3327 * May return NULL if resources needed to perform the mapping are exhausted.
3328 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3329 * Use cpu_register_map_client() to know when retrying the map operation is
3330 * likely to succeed.
6d16c2f8
AL
3331 */
3332void *cpu_physical_memory_map(target_phys_addr_t addr,
3333 target_phys_addr_t *plen,
3334 int is_write)
3335{
3336 target_phys_addr_t len = *plen;
3337 target_phys_addr_t done = 0;
3338 int l;
3339 uint8_t *ret = NULL;
3340 uint8_t *ptr;
3341 target_phys_addr_t page;
3342 unsigned long pd;
3343 PhysPageDesc *p;
3344 unsigned long addr1;
3345
3346 while (len > 0) {
3347 page = addr & TARGET_PAGE_MASK;
3348 l = (page + TARGET_PAGE_SIZE) - addr;
3349 if (l > len)
3350 l = len;
3351 p = phys_page_find(page >> TARGET_PAGE_BITS);
3352 if (!p) {
3353 pd = IO_MEM_UNASSIGNED;
3354 } else {
3355 pd = p->phys_offset;
3356 }
3357
3358 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3359 if (done || bounce.buffer) {
3360 break;
3361 }
3362 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3363 bounce.addr = addr;
3364 bounce.len = l;
3365 if (!is_write) {
3366 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3367 }
3368 ptr = bounce.buffer;
3369 } else {
3370 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3371 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3372 }
3373 if (!done) {
3374 ret = ptr;
3375 } else if (ret + done != ptr) {
3376 break;
3377 }
3378
3379 len -= l;
3380 addr += l;
3381 done += l;
3382 }
3383 *plen = done;
3384 return ret;
3385}
3386
3387/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3388 * Will also mark the memory as dirty if is_write == 1. access_len gives
3389 * the amount of memory that was actually read or written by the caller.
3390 */
3391void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3392 int is_write, target_phys_addr_t access_len)
3393{
3394 if (buffer != bounce.buffer) {
3395 if (is_write) {
5579c7f3 3396 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3397 while (access_len) {
3398 unsigned l;
3399 l = TARGET_PAGE_SIZE;
3400 if (l > access_len)
3401 l = access_len;
3402 if (!cpu_physical_memory_is_dirty(addr1)) {
3403 /* invalidate code */
3404 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3405 /* set dirty bit */
3406 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3407 (0xff & ~CODE_DIRTY_FLAG);
3408 }
3409 addr1 += l;
3410 access_len -= l;
3411 }
3412 }
3413 return;
3414 }
3415 if (is_write) {
3416 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3417 }
3418 qemu_free(bounce.buffer);
3419 bounce.buffer = NULL;
ba223c29 3420 cpu_notify_map_clients();
6d16c2f8 3421}
d0ecd2aa 3422
8df1cd07
FB
3423/* warning: addr must be aligned */
3424uint32_t ldl_phys(target_phys_addr_t addr)
3425{
3426 int io_index;
3427 uint8_t *ptr;
3428 uint32_t val;
3429 unsigned long pd;
3430 PhysPageDesc *p;
3431
3432 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3433 if (!p) {
3434 pd = IO_MEM_UNASSIGNED;
3435 } else {
3436 pd = p->phys_offset;
3437 }
3b46e624 3438
5fafdf24 3439 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3440 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3441 /* I/O case */
3442 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3443 if (p)
3444 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3445 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3446 } else {
3447 /* RAM case */
5579c7f3 3448 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3449 (addr & ~TARGET_PAGE_MASK);
3450 val = ldl_p(ptr);
3451 }
3452 return val;
3453}
3454
84b7b8e7
FB
3455/* warning: addr must be aligned */
3456uint64_t ldq_phys(target_phys_addr_t addr)
3457{
3458 int io_index;
3459 uint8_t *ptr;
3460 uint64_t val;
3461 unsigned long pd;
3462 PhysPageDesc *p;
3463
3464 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3465 if (!p) {
3466 pd = IO_MEM_UNASSIGNED;
3467 } else {
3468 pd = p->phys_offset;
3469 }
3b46e624 3470
2a4188a3
FB
3471 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3472 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3473 /* I/O case */
3474 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3475 if (p)
3476 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3477#ifdef TARGET_WORDS_BIGENDIAN
3478 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3479 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3480#else
3481 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3482 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3483#endif
3484 } else {
3485 /* RAM case */
5579c7f3 3486 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3487 (addr & ~TARGET_PAGE_MASK);
3488 val = ldq_p(ptr);
3489 }
3490 return val;
3491}
3492
aab33094
FB
3493/* XXX: optimize */
3494uint32_t ldub_phys(target_phys_addr_t addr)
3495{
3496 uint8_t val;
3497 cpu_physical_memory_read(addr, &val, 1);
3498 return val;
3499}
3500
3501/* XXX: optimize */
3502uint32_t lduw_phys(target_phys_addr_t addr)
3503{
3504 uint16_t val;
3505 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3506 return tswap16(val);
3507}
3508
8df1cd07
FB
3509/* warning: addr must be aligned. The ram page is not masked as dirty
3510 and the code inside is not invalidated. It is useful if the dirty
3511 bits are used to track modified PTEs */
3512void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3513{
3514 int io_index;
3515 uint8_t *ptr;
3516 unsigned long pd;
3517 PhysPageDesc *p;
3518
3519 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3520 if (!p) {
3521 pd = IO_MEM_UNASSIGNED;
3522 } else {
3523 pd = p->phys_offset;
3524 }
3b46e624 3525
3a7d929e 3526 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3527 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3528 if (p)
3529 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3530 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3531 } else {
74576198 3532 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3533 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3534 stl_p(ptr, val);
74576198
AL
3535
3536 if (unlikely(in_migration)) {
3537 if (!cpu_physical_memory_is_dirty(addr1)) {
3538 /* invalidate code */
3539 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3540 /* set dirty bit */
3541 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3542 (0xff & ~CODE_DIRTY_FLAG);
3543 }
3544 }
8df1cd07
FB
3545 }
3546}
3547
bc98a7ef
JM
3548void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3549{
3550 int io_index;
3551 uint8_t *ptr;
3552 unsigned long pd;
3553 PhysPageDesc *p;
3554
3555 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3556 if (!p) {
3557 pd = IO_MEM_UNASSIGNED;
3558 } else {
3559 pd = p->phys_offset;
3560 }
3b46e624 3561
bc98a7ef
JM
3562 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3563 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3564 if (p)
3565 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3566#ifdef TARGET_WORDS_BIGENDIAN
3567 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3568 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3569#else
3570 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3571 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3572#endif
3573 } else {
5579c7f3 3574 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3575 (addr & ~TARGET_PAGE_MASK);
3576 stq_p(ptr, val);
3577 }
3578}
3579
8df1cd07 3580/* warning: addr must be aligned */
8df1cd07
FB
3581void stl_phys(target_phys_addr_t addr, uint32_t val)
3582{
3583 int io_index;
3584 uint8_t *ptr;
3585 unsigned long pd;
3586 PhysPageDesc *p;
3587
3588 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3589 if (!p) {
3590 pd = IO_MEM_UNASSIGNED;
3591 } else {
3592 pd = p->phys_offset;
3593 }
3b46e624 3594
3a7d929e 3595 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3596 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3597 if (p)
3598 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3599 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3600 } else {
3601 unsigned long addr1;
3602 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3603 /* RAM case */
5579c7f3 3604 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3605 stl_p(ptr, val);
3a7d929e
FB
3606 if (!cpu_physical_memory_is_dirty(addr1)) {
3607 /* invalidate code */
3608 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3609 /* set dirty bit */
f23db169
FB
3610 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3611 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3612 }
8df1cd07
FB
3613 }
3614}
3615
aab33094
FB
3616/* XXX: optimize */
3617void stb_phys(target_phys_addr_t addr, uint32_t val)
3618{
3619 uint8_t v = val;
3620 cpu_physical_memory_write(addr, &v, 1);
3621}
3622
3623/* XXX: optimize */
3624void stw_phys(target_phys_addr_t addr, uint32_t val)
3625{
3626 uint16_t v = tswap16(val);
3627 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3628}
3629
3630/* XXX: optimize */
3631void stq_phys(target_phys_addr_t addr, uint64_t val)
3632{
3633 val = tswap64(val);
3634 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3635}
3636
13eb76e0
FB
3637#endif
3638
5e2972fd 3639/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3640int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3641 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3642{
3643 int l;
9b3c35e0
JM
3644 target_phys_addr_t phys_addr;
3645 target_ulong page;
13eb76e0
FB
3646
3647 while (len > 0) {
3648 page = addr & TARGET_PAGE_MASK;
3649 phys_addr = cpu_get_phys_page_debug(env, page);
3650 /* if no physical page mapped, return an error */
3651 if (phys_addr == -1)
3652 return -1;
3653 l = (page + TARGET_PAGE_SIZE) - addr;
3654 if (l > len)
3655 l = len;
5e2972fd
AL
3656 phys_addr += (addr & ~TARGET_PAGE_MASK);
3657#if !defined(CONFIG_USER_ONLY)
3658 if (is_write)
3659 cpu_physical_memory_write_rom(phys_addr, buf, l);
3660 else
3661#endif
3662 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3663 len -= l;
3664 buf += l;
3665 addr += l;
3666 }
3667 return 0;
3668}
3669
2e70f6ef
PB
3670/* in deterministic execution mode, instructions doing device I/Os
3671 must be at the end of the TB */
3672void cpu_io_recompile(CPUState *env, void *retaddr)
3673{
3674 TranslationBlock *tb;
3675 uint32_t n, cflags;
3676 target_ulong pc, cs_base;
3677 uint64_t flags;
3678
3679 tb = tb_find_pc((unsigned long)retaddr);
3680 if (!tb) {
3681 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3682 retaddr);
3683 }
3684 n = env->icount_decr.u16.low + tb->icount;
3685 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3686 /* Calculate how many instructions had been executed before the fault
bf20dc07 3687 occurred. */
2e70f6ef
PB
3688 n = n - env->icount_decr.u16.low;
3689 /* Generate a new TB ending on the I/O insn. */
3690 n++;
3691 /* On MIPS and SH, delay slot instructions can only be restarted if
3692 they were already the first instruction in the TB. If this is not
bf20dc07 3693 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3694 branch. */
3695#if defined(TARGET_MIPS)
3696 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3697 env->active_tc.PC -= 4;
3698 env->icount_decr.u16.low++;
3699 env->hflags &= ~MIPS_HFLAG_BMASK;
3700 }
3701#elif defined(TARGET_SH4)
3702 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3703 && n > 1) {
3704 env->pc -= 2;
3705 env->icount_decr.u16.low++;
3706 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3707 }
3708#endif
3709 /* This should never happen. */
3710 if (n > CF_COUNT_MASK)
3711 cpu_abort(env, "TB too big during recompile");
3712
3713 cflags = n | CF_LAST_IO;
3714 pc = tb->pc;
3715 cs_base = tb->cs_base;
3716 flags = tb->flags;
3717 tb_phys_invalidate(tb, -1);
3718 /* FIXME: In theory this could raise an exception. In practice
3719 we have already translated the block once so it's probably ok. */
3720 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3721 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3722 the first in the TB) then we end up generating a whole new TB and
3723 repeating the fault, which is horribly inefficient.
3724 Better would be to execute just this insn uncached, or generate a
3725 second new TB. */
3726 cpu_resume_from_signal(env, NULL);
3727}
3728
e3db7226
FB
3729void dump_exec_info(FILE *f,
3730 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3731{
3732 int i, target_code_size, max_target_code_size;
3733 int direct_jmp_count, direct_jmp2_count, cross_page;
3734 TranslationBlock *tb;
3b46e624 3735
e3db7226
FB
3736 target_code_size = 0;
3737 max_target_code_size = 0;
3738 cross_page = 0;
3739 direct_jmp_count = 0;
3740 direct_jmp2_count = 0;
3741 for(i = 0; i < nb_tbs; i++) {
3742 tb = &tbs[i];
3743 target_code_size += tb->size;
3744 if (tb->size > max_target_code_size)
3745 max_target_code_size = tb->size;
3746 if (tb->page_addr[1] != -1)
3747 cross_page++;
3748 if (tb->tb_next_offset[0] != 0xffff) {
3749 direct_jmp_count++;
3750 if (tb->tb_next_offset[1] != 0xffff) {
3751 direct_jmp2_count++;
3752 }
3753 }
3754 }
3755 /* XXX: avoid using doubles ? */
57fec1fe 3756 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3757 cpu_fprintf(f, "gen code size %ld/%ld\n",
3758 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3759 cpu_fprintf(f, "TB count %d/%d\n",
3760 nb_tbs, code_gen_max_blocks);
5fafdf24 3761 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3762 nb_tbs ? target_code_size / nb_tbs : 0,
3763 max_target_code_size);
5fafdf24 3764 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3765 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3766 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3767 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3768 cross_page,
e3db7226
FB
3769 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3770 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3771 direct_jmp_count,
e3db7226
FB
3772 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3773 direct_jmp2_count,
3774 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3775 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3776 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3777 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3778 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3779 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3780}
3781
5fafdf24 3782#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3783
3784#define MMUSUFFIX _cmmu
3785#define GETPC() NULL
3786#define env cpu_single_env
b769d8fe 3787#define SOFTMMU_CODE_ACCESS
61382a50
FB
3788
3789#define SHIFT 0
3790#include "softmmu_template.h"
3791
3792#define SHIFT 1
3793#include "softmmu_template.h"
3794
3795#define SHIFT 2
3796#include "softmmu_template.h"
3797
3798#define SHIFT 3
3799#include "softmmu_template.h"
3800
3801#undef env
3802
3803#endif