]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
vl: add tcg_enabled() for tcg related code
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
777872e5 21#ifndef _WIN32
d5a8f07c 22#endif
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
b67d9a52 28#include "tcg.h"
741da0d3 29#include "hw/qdev-core.h"
4485bd26 30#if !defined(CONFIG_USER_ONLY)
47c8ca53 31#include "hw/boards.h"
33c11879 32#include "hw/xen/xen.h"
4485bd26 33#endif
9c17d615 34#include "sysemu/kvm.h"
2ff3de68 35#include "sysemu/sysemu.h"
1de7afc9
PB
36#include "qemu/timer.h"
37#include "qemu/config-file.h"
75a34036 38#include "qemu/error-report.h"
53a5960a 39#if defined(CONFIG_USER_ONLY)
a9c94277 40#include "qemu.h"
432d268c 41#else /* !CONFIG_USER_ONLY */
741da0d3
PB
42#include "hw/hw.h"
43#include "exec/memory.h"
df43d49c 44#include "exec/ioport.h"
741da0d3 45#include "sysemu/dma.h"
9c607668 46#include "sysemu/numa.h"
79ca7a1b 47#include "sysemu/hw_accel.h"
741da0d3 48#include "exec/address-spaces.h"
9c17d615 49#include "sysemu/xen-mapcache.h"
0ab8ed18 50#include "trace-root.h"
d3a5038c 51
e2fa71f5
DDAG
52#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53#include <fcntl.h>
54#include <linux/falloc.h>
55#endif
56
53a5960a 57#endif
0d6d3c87 58#include "exec/cpu-all.h"
0dc3f44a 59#include "qemu/rcu_queue.h"
4840f10e 60#include "qemu/main-loop.h"
5b6dd868 61#include "translate-all.h"
7615936e 62#include "sysemu/replay.h"
0cac1b66 63
022c62cb 64#include "exec/memory-internal.h"
220c3ebd 65#include "exec/ram_addr.h"
508127e2 66#include "exec/log.h"
67d95c15 67
9dfeca7c
BR
68#include "migration/vmstate.h"
69
b35ba30f 70#include "qemu/range.h"
794e8f30
MT
71#ifndef _WIN32
72#include "qemu/mmap-alloc.h"
73#endif
b35ba30f 74
be9b23c4
PX
75#include "monitor/monitor.h"
76
db7b5426 77//#define DEBUG_SUBPAGE
1196be37 78
e2eef170 79#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
80/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
0d53d9fe 83RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
84
85static MemoryRegion *system_memory;
309cb471 86static MemoryRegion *system_io;
62152b8a 87
f6790af6
AK
88AddressSpace address_space_io;
89AddressSpace address_space_memory;
2673a5da 90
0844e007 91MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 92static MemoryRegion io_mem_unassigned;
0e0df1e2 93
7bd4f430
PB
94/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95#define RAM_PREALLOC (1 << 0)
96
dbcb8981
PB
97/* RAM is mmap-ed with MAP_SHARED */
98#define RAM_SHARED (1 << 1)
99
62be4e3a
MT
100/* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
102 */
103#define RAM_RESIZEABLE (1 << 2)
104
e2eef170 105#endif
9fa3e853 106
20bccb82
PM
107#ifdef TARGET_PAGE_BITS_VARY
108int target_page_bits;
109bool target_page_bits_decided;
110#endif
111
bdc44640 112struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
113/* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
f240eb6f 115__thread CPUState *current_cpu;
2e70f6ef 116/* 0 = Do not count executed instructions.
bf20dc07 117 1 = Precise instruction counting.
2e70f6ef 118 2 = Adaptive rate instruction counting. */
5708fc66 119int use_icount;
6a00d601 120
20bccb82
PM
121bool set_preferred_target_page_bits(int bits)
122{
123 /* The target page size is the lowest common denominator for all
124 * the CPUs in the system, so we can only make it smaller, never
125 * larger. And we can't make it smaller once we've committed to
126 * a particular size.
127 */
128#ifdef TARGET_PAGE_BITS_VARY
129 assert(bits >= TARGET_PAGE_BITS_MIN);
130 if (target_page_bits == 0 || target_page_bits > bits) {
131 if (target_page_bits_decided) {
132 return false;
133 }
134 target_page_bits = bits;
135 }
136#endif
137 return true;
138}
139
e2eef170 140#if !defined(CONFIG_USER_ONLY)
4346ae3e 141
20bccb82
PM
142static void finalize_target_page_bits(void)
143{
144#ifdef TARGET_PAGE_BITS_VARY
145 if (target_page_bits == 0) {
146 target_page_bits = TARGET_PAGE_BITS_MIN;
147 }
148 target_page_bits_decided = true;
149#endif
150}
151
1db8abb1
PB
152typedef struct PhysPageEntry PhysPageEntry;
153
154struct PhysPageEntry {
9736e55b 155 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 156 uint32_t skip : 6;
9736e55b 157 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 158 uint32_t ptr : 26;
1db8abb1
PB
159};
160
8b795765
MT
161#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
162
03f49957 163/* Size of the L2 (and L3, etc) page tables. */
57271d63 164#define ADDR_SPACE_BITS 64
03f49957 165
026736ce 166#define P_L2_BITS 9
03f49957
PB
167#define P_L2_SIZE (1 << P_L2_BITS)
168
169#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
170
171typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 172
53cb28cb 173typedef struct PhysPageMap {
79e2b9ae
PB
174 struct rcu_head rcu;
175
53cb28cb
MA
176 unsigned sections_nb;
177 unsigned sections_nb_alloc;
178 unsigned nodes_nb;
179 unsigned nodes_nb_alloc;
180 Node *nodes;
181 MemoryRegionSection *sections;
182} PhysPageMap;
183
1db8abb1 184struct AddressSpaceDispatch {
79e2b9ae
PB
185 struct rcu_head rcu;
186
729633c2 187 MemoryRegionSection *mru_section;
1db8abb1
PB
188 /* This is a multi-level map on the physical address space.
189 * The bottom level has pointers to MemoryRegionSections.
190 */
191 PhysPageEntry phys_map;
53cb28cb 192 PhysPageMap map;
acc9d80b 193 AddressSpace *as;
1db8abb1
PB
194};
195
90260c6c
JK
196#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197typedef struct subpage_t {
198 MemoryRegion iomem;
acc9d80b 199 AddressSpace *as;
90260c6c 200 hwaddr base;
2615fabd 201 uint16_t sub_section[];
90260c6c
JK
202} subpage_t;
203
b41aac4f
LPF
204#define PHYS_SECTION_UNASSIGNED 0
205#define PHYS_SECTION_NOTDIRTY 1
206#define PHYS_SECTION_ROM 2
207#define PHYS_SECTION_WATCH 3
5312bd8b 208
e2eef170 209static void io_mem_init(void);
62152b8a 210static void memory_map_init(void);
09daed84 211static void tcg_commit(MemoryListener *listener);
e2eef170 212
1ec9b909 213static MemoryRegion io_mem_watch;
32857f4d
PM
214
215/**
216 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
217 * @cpu: the CPU whose AddressSpace this is
218 * @as: the AddressSpace itself
219 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
220 * @tcg_as_listener: listener for tracking changes to the AddressSpace
221 */
222struct CPUAddressSpace {
223 CPUState *cpu;
224 AddressSpace *as;
225 struct AddressSpaceDispatch *memory_dispatch;
226 MemoryListener tcg_as_listener;
227};
228
8deaf12c
GH
229struct DirtyBitmapSnapshot {
230 ram_addr_t start;
231 ram_addr_t end;
232 unsigned long dirty[];
233};
234
6658ffb8 235#endif
fd6ce8f6 236
6d9a1304 237#if !defined(CONFIG_USER_ONLY)
d6f2ea22 238
53cb28cb 239static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 240{
101420b8 241 static unsigned alloc_hint = 16;
53cb28cb 242 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 243 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
244 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
245 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 246 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 247 }
f7bf5461
AK
248}
249
db94604b 250static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
251{
252 unsigned i;
8b795765 253 uint32_t ret;
db94604b
PB
254 PhysPageEntry e;
255 PhysPageEntry *p;
f7bf5461 256
53cb28cb 257 ret = map->nodes_nb++;
db94604b 258 p = map->nodes[ret];
f7bf5461 259 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 260 assert(ret != map->nodes_nb_alloc);
db94604b
PB
261
262 e.skip = leaf ? 0 : 1;
263 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 264 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 265 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 266 }
f7bf5461 267 return ret;
d6f2ea22
AK
268}
269
53cb28cb
MA
270static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
271 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 272 int level)
f7bf5461
AK
273{
274 PhysPageEntry *p;
03f49957 275 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 276
9736e55b 277 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 278 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 279 }
db94604b 280 p = map->nodes[lp->ptr];
03f49957 281 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 282
03f49957 283 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 284 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 285 lp->skip = 0;
c19e8800 286 lp->ptr = leaf;
07f07b31
AK
287 *index += step;
288 *nb -= step;
2999097b 289 } else {
53cb28cb 290 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
291 }
292 ++lp;
f7bf5461
AK
293 }
294}
295
ac1970fb 296static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 297 hwaddr index, hwaddr nb,
2999097b 298 uint16_t leaf)
f7bf5461 299{
2999097b 300 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 301 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 302
53cb28cb 303 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
304}
305
b35ba30f
MT
306/* Compact a non leaf page entry. Simply detect that the entry has a single child,
307 * and update our entry so we can skip it and go directly to the destination.
308 */
efee678d 309static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
310{
311 unsigned valid_ptr = P_L2_SIZE;
312 int valid = 0;
313 PhysPageEntry *p;
314 int i;
315
316 if (lp->ptr == PHYS_MAP_NODE_NIL) {
317 return;
318 }
319
320 p = nodes[lp->ptr];
321 for (i = 0; i < P_L2_SIZE; i++) {
322 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
323 continue;
324 }
325
326 valid_ptr = i;
327 valid++;
328 if (p[i].skip) {
efee678d 329 phys_page_compact(&p[i], nodes);
b35ba30f
MT
330 }
331 }
332
333 /* We can only compress if there's only one child. */
334 if (valid != 1) {
335 return;
336 }
337
338 assert(valid_ptr < P_L2_SIZE);
339
340 /* Don't compress if it won't fit in the # of bits we have. */
341 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
342 return;
343 }
344
345 lp->ptr = p[valid_ptr].ptr;
346 if (!p[valid_ptr].skip) {
347 /* If our only child is a leaf, make this a leaf. */
348 /* By design, we should have made this node a leaf to begin with so we
349 * should never reach here.
350 * But since it's so simple to handle this, let's do it just in case we
351 * change this rule.
352 */
353 lp->skip = 0;
354 } else {
355 lp->skip += p[valid_ptr].skip;
356 }
357}
358
359static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
360{
b35ba30f 361 if (d->phys_map.skip) {
efee678d 362 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
363 }
364}
365
29cb533d
FZ
366static inline bool section_covers_addr(const MemoryRegionSection *section,
367 hwaddr addr)
368{
369 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
370 * the section must cover the entire address space.
371 */
258dfaaa 372 return int128_gethi(section->size) ||
29cb533d 373 range_covers_byte(section->offset_within_address_space,
258dfaaa 374 int128_getlo(section->size), addr);
29cb533d
FZ
375}
376
003a0cf2 377static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 378{
003a0cf2
PX
379 PhysPageEntry lp = d->phys_map, *p;
380 Node *nodes = d->map.nodes;
381 MemoryRegionSection *sections = d->map.sections;
97115a8d 382 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 383 int i;
f1f6e3b8 384
9736e55b 385 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 386 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 387 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 388 }
9affd6fc 389 p = nodes[lp.ptr];
03f49957 390 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 391 }
b35ba30f 392
29cb533d 393 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
394 return &sections[lp.ptr];
395 } else {
396 return &sections[PHYS_SECTION_UNASSIGNED];
397 }
f3705d53
AK
398}
399
e5548617
BS
400bool memory_region_is_unassigned(MemoryRegion *mr)
401{
2a8e7499 402 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 403 && mr != &io_mem_watch;
fd6ce8f6 404}
149f54b5 405
79e2b9ae 406/* Called from RCU critical section */
c7086b4a 407static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
408 hwaddr addr,
409 bool resolve_subpage)
9f029603 410{
729633c2 411 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 412 subpage_t *subpage;
729633c2 413 bool update;
90260c6c 414
729633c2
FZ
415 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
416 section_covers_addr(section, addr)) {
417 update = false;
418 } else {
003a0cf2 419 section = phys_page_find(d, addr);
729633c2
FZ
420 update = true;
421 }
90260c6c
JK
422 if (resolve_subpage && section->mr->subpage) {
423 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 424 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 425 }
729633c2
FZ
426 if (update) {
427 atomic_set(&d->mru_section, section);
428 }
90260c6c 429 return section;
9f029603
JK
430}
431
79e2b9ae 432/* Called from RCU critical section */
90260c6c 433static MemoryRegionSection *
c7086b4a 434address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 435 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
436{
437 MemoryRegionSection *section;
965eb2fc 438 MemoryRegion *mr;
a87f3954 439 Int128 diff;
149f54b5 440
c7086b4a 441 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
442 /* Compute offset within MemoryRegionSection */
443 addr -= section->offset_within_address_space;
444
445 /* Compute offset within MemoryRegion */
446 *xlat = addr + section->offset_within_region;
447
965eb2fc 448 mr = section->mr;
b242e0e0
PB
449
450 /* MMIO registers can be expected to perform full-width accesses based only
451 * on their address, without considering adjacent registers that could
452 * decode to completely different MemoryRegions. When such registers
453 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
454 * regions overlap wildly. For this reason we cannot clamp the accesses
455 * here.
456 *
457 * If the length is small (as is the case for address_space_ldl/stl),
458 * everything works fine. If the incoming length is large, however,
459 * the caller really has to do the clamping through memory_access_size.
460 */
965eb2fc 461 if (memory_region_is_ram(mr)) {
e4a511f8 462 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
463 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
464 }
149f54b5
PB
465 return section;
466}
90260c6c 467
41063e1e 468/* Called from RCU critical section */
a764040c
PX
469static MemoryRegionSection address_space_do_translate(AddressSpace *as,
470 hwaddr addr,
471 hwaddr *xlat,
472 hwaddr *plen,
473 bool is_write,
474 bool is_mmio)
052c8fa9 475{
a764040c 476 IOMMUTLBEntry iotlb;
052c8fa9
JW
477 MemoryRegionSection *section;
478 MemoryRegion *mr;
479
480 for (;;) {
481 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
a764040c 482 section = address_space_translate_internal(d, addr, &addr, plen, is_mmio);
052c8fa9
JW
483 mr = section->mr;
484
485 if (!mr->iommu_ops) {
486 break;
487 }
488
bf55b7af
PX
489 iotlb = mr->iommu_ops->translate(mr, addr, is_write ?
490 IOMMU_WO : IOMMU_RO);
a764040c
PX
491 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
492 | (addr & iotlb.addr_mask));
493 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
052c8fa9 494 if (!(iotlb.perm & (1 << is_write))) {
a764040c 495 goto translate_fail;
052c8fa9
JW
496 }
497
052c8fa9
JW
498 as = iotlb.target_as;
499 }
500
a764040c
PX
501 *xlat = addr;
502
503 return *section;
504
505translate_fail:
506 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
052c8fa9
JW
507}
508
509/* Called from RCU critical section */
a764040c
PX
510IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
511 bool is_write)
90260c6c 512{
a764040c
PX
513 MemoryRegionSection section;
514 hwaddr xlat, plen;
30951157 515
a764040c
PX
516 /* Try to get maximum page mask during translation. */
517 plen = (hwaddr)-1;
30951157 518
a764040c
PX
519 /* This can never be MMIO. */
520 section = address_space_do_translate(as, addr, &xlat, &plen,
521 is_write, false);
30951157 522
a764040c
PX
523 /* Illegal translation */
524 if (section.mr == &io_mem_unassigned) {
525 goto iotlb_fail;
526 }
30951157 527
a764040c
PX
528 /* Convert memory region offset into address space offset */
529 xlat += section.offset_within_address_space -
530 section.offset_within_region;
531
532 if (plen == (hwaddr)-1) {
533 /*
534 * We use default page size here. Logically it only happens
535 * for identity mappings.
536 */
537 plen = TARGET_PAGE_SIZE;
30951157
AK
538 }
539
a764040c
PX
540 /* Convert to address mask */
541 plen -= 1;
542
543 return (IOMMUTLBEntry) {
544 .target_as = section.address_space,
545 .iova = addr & ~plen,
546 .translated_addr = xlat & ~plen,
547 .addr_mask = plen,
548 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
549 .perm = IOMMU_RW,
550 };
551
552iotlb_fail:
553 return (IOMMUTLBEntry) {0};
554}
555
556/* Called from RCU critical section */
557MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
558 hwaddr *xlat, hwaddr *plen,
559 bool is_write)
560{
561 MemoryRegion *mr;
562 MemoryRegionSection section;
563
564 /* This can be MMIO, so setup MMIO bit. */
565 section = address_space_do_translate(as, addr, xlat, plen, is_write, true);
566 mr = section.mr;
567
fe680d0d 568 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 569 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 570 *plen = MIN(page, *plen);
a87f3954
PB
571 }
572
30951157 573 return mr;
90260c6c
JK
574}
575
79e2b9ae 576/* Called from RCU critical section */
90260c6c 577MemoryRegionSection *
d7898cda 578address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 579 hwaddr *xlat, hwaddr *plen)
90260c6c 580{
30951157 581 MemoryRegionSection *section;
f35e44e7 582 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
583
584 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
585
586 assert(!section->mr->iommu_ops);
587 return section;
90260c6c 588}
5b6dd868 589#endif
fd6ce8f6 590
b170fce3 591#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
592
593static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 594{
259186a7 595 CPUState *cpu = opaque;
a513fe19 596
5b6dd868
BS
597 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
598 version_id is increased. */
259186a7 599 cpu->interrupt_request &= ~0x01;
d10eb08f 600 tlb_flush(cpu);
5b6dd868
BS
601
602 return 0;
a513fe19 603}
7501267e 604
6c3bff0e
PD
605static int cpu_common_pre_load(void *opaque)
606{
607 CPUState *cpu = opaque;
608
adee6424 609 cpu->exception_index = -1;
6c3bff0e
PD
610
611 return 0;
612}
613
614static bool cpu_common_exception_index_needed(void *opaque)
615{
616 CPUState *cpu = opaque;
617
adee6424 618 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
619}
620
621static const VMStateDescription vmstate_cpu_common_exception_index = {
622 .name = "cpu_common/exception_index",
623 .version_id = 1,
624 .minimum_version_id = 1,
5cd8cada 625 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
626 .fields = (VMStateField[]) {
627 VMSTATE_INT32(exception_index, CPUState),
628 VMSTATE_END_OF_LIST()
629 }
630};
631
bac05aa9
AS
632static bool cpu_common_crash_occurred_needed(void *opaque)
633{
634 CPUState *cpu = opaque;
635
636 return cpu->crash_occurred;
637}
638
639static const VMStateDescription vmstate_cpu_common_crash_occurred = {
640 .name = "cpu_common/crash_occurred",
641 .version_id = 1,
642 .minimum_version_id = 1,
643 .needed = cpu_common_crash_occurred_needed,
644 .fields = (VMStateField[]) {
645 VMSTATE_BOOL(crash_occurred, CPUState),
646 VMSTATE_END_OF_LIST()
647 }
648};
649
1a1562f5 650const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
651 .name = "cpu_common",
652 .version_id = 1,
653 .minimum_version_id = 1,
6c3bff0e 654 .pre_load = cpu_common_pre_load,
5b6dd868 655 .post_load = cpu_common_post_load,
35d08458 656 .fields = (VMStateField[]) {
259186a7
AF
657 VMSTATE_UINT32(halted, CPUState),
658 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 659 VMSTATE_END_OF_LIST()
6c3bff0e 660 },
5cd8cada
JQ
661 .subsections = (const VMStateDescription*[]) {
662 &vmstate_cpu_common_exception_index,
bac05aa9 663 &vmstate_cpu_common_crash_occurred,
5cd8cada 664 NULL
5b6dd868
BS
665 }
666};
1a1562f5 667
5b6dd868 668#endif
ea041c0e 669
38d8f5c8 670CPUState *qemu_get_cpu(int index)
ea041c0e 671{
bdc44640 672 CPUState *cpu;
ea041c0e 673
bdc44640 674 CPU_FOREACH(cpu) {
55e5c285 675 if (cpu->cpu_index == index) {
bdc44640 676 return cpu;
55e5c285 677 }
ea041c0e 678 }
5b6dd868 679
bdc44640 680 return NULL;
ea041c0e
FB
681}
682
09daed84 683#if !defined(CONFIG_USER_ONLY)
56943e8c 684void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 685{
12ebc9a7
PM
686 CPUAddressSpace *newas;
687
688 /* Target code should have set num_ases before calling us */
689 assert(asidx < cpu->num_ases);
690
56943e8c
PM
691 if (asidx == 0) {
692 /* address space 0 gets the convenience alias */
693 cpu->as = as;
694 }
695
12ebc9a7
PM
696 /* KVM cannot currently support multiple address spaces. */
697 assert(asidx == 0 || !kvm_enabled());
09daed84 698
12ebc9a7
PM
699 if (!cpu->cpu_ases) {
700 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 701 }
32857f4d 702
12ebc9a7
PM
703 newas = &cpu->cpu_ases[asidx];
704 newas->cpu = cpu;
705 newas->as = as;
56943e8c 706 if (tcg_enabled()) {
12ebc9a7
PM
707 newas->tcg_as_listener.commit = tcg_commit;
708 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 709 }
09daed84 710}
651a5bc0
PM
711
712AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
713{
714 /* Return the AddressSpace corresponding to the specified index */
715 return cpu->cpu_ases[asidx].as;
716}
09daed84
EI
717#endif
718
7bbc124e 719void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 720{
9dfeca7c
BR
721 CPUClass *cc = CPU_GET_CLASS(cpu);
722
267f685b 723 cpu_list_remove(cpu);
9dfeca7c
BR
724
725 if (cc->vmsd != NULL) {
726 vmstate_unregister(NULL, cc->vmsd, cpu);
727 }
728 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
729 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
730 }
1c59eb39
BR
731}
732
39e329e3 733void cpu_exec_initfn(CPUState *cpu)
ea041c0e 734{
56943e8c 735 cpu->as = NULL;
12ebc9a7 736 cpu->num_ases = 0;
56943e8c 737
291135b5 738#ifndef CONFIG_USER_ONLY
291135b5 739 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
740
741 /* This is a softmmu CPU object, so create a property for it
742 * so users can wire up its memory. (This can't go in qom/cpu.c
743 * because that file is compiled only once for both user-mode
744 * and system builds.) The default if no link is set up is to use
745 * the system address space.
746 */
747 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
748 (Object **)&cpu->memory,
749 qdev_prop_allow_set_link_before_realize,
750 OBJ_PROP_LINK_UNREF_ON_RELEASE,
751 &error_abort);
752 cpu->memory = system_memory;
753 object_ref(OBJECT(cpu->memory));
291135b5 754#endif
39e329e3
LV
755}
756
ce5b1bbf 757void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3
LV
758{
759 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
291135b5 760
267f685b 761 cpu_list_add(cpu);
1bc7e522
IM
762
763#ifndef CONFIG_USER_ONLY
e0d47944 764 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 765 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 766 }
b170fce3 767 if (cc->vmsd != NULL) {
741da0d3 768 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 769 }
741da0d3 770#endif
ea041c0e
FB
771}
772
00b941e5 773static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 774{
a9353fe8
PM
775 /* Flush the whole TB as this will not have race conditions
776 * even if we don't have proper locking yet.
777 * Ideally we would just invalidate the TBs for the
778 * specified PC.
779 */
780 tb_flush(cpu);
1e7855a5 781}
d720b93d 782
c527ee8f 783#if defined(CONFIG_USER_ONLY)
75a34036 784void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
785
786{
787}
788
3ee887e8
PM
789int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
790 int flags)
791{
792 return -ENOSYS;
793}
794
795void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
796{
797}
798
75a34036 799int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
800 int flags, CPUWatchpoint **watchpoint)
801{
802 return -ENOSYS;
803}
804#else
6658ffb8 805/* Add a watchpoint. */
75a34036 806int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 807 int flags, CPUWatchpoint **watchpoint)
6658ffb8 808{
c0ce998e 809 CPUWatchpoint *wp;
6658ffb8 810
05068c0d 811 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 812 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
813 error_report("tried to set invalid watchpoint at %"
814 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
815 return -EINVAL;
816 }
7267c094 817 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
818
819 wp->vaddr = addr;
05068c0d 820 wp->len = len;
a1d1bb31
AL
821 wp->flags = flags;
822
2dc9f411 823 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
824 if (flags & BP_GDB) {
825 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
826 } else {
827 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
828 }
6658ffb8 829
31b030d4 830 tlb_flush_page(cpu, addr);
a1d1bb31
AL
831
832 if (watchpoint)
833 *watchpoint = wp;
834 return 0;
6658ffb8
PB
835}
836
a1d1bb31 837/* Remove a specific watchpoint. */
75a34036 838int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 839 int flags)
6658ffb8 840{
a1d1bb31 841 CPUWatchpoint *wp;
6658ffb8 842
ff4700b0 843 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 844 if (addr == wp->vaddr && len == wp->len
6e140f28 845 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 846 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
847 return 0;
848 }
849 }
a1d1bb31 850 return -ENOENT;
6658ffb8
PB
851}
852
a1d1bb31 853/* Remove a specific watchpoint by reference. */
75a34036 854void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 855{
ff4700b0 856 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 857
31b030d4 858 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 859
7267c094 860 g_free(watchpoint);
a1d1bb31
AL
861}
862
863/* Remove all matching watchpoints. */
75a34036 864void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 865{
c0ce998e 866 CPUWatchpoint *wp, *next;
a1d1bb31 867
ff4700b0 868 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
869 if (wp->flags & mask) {
870 cpu_watchpoint_remove_by_ref(cpu, wp);
871 }
c0ce998e 872 }
7d03f82f 873}
05068c0d
PM
874
875/* Return true if this watchpoint address matches the specified
876 * access (ie the address range covered by the watchpoint overlaps
877 * partially or completely with the address range covered by the
878 * access).
879 */
880static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
881 vaddr addr,
882 vaddr len)
883{
884 /* We know the lengths are non-zero, but a little caution is
885 * required to avoid errors in the case where the range ends
886 * exactly at the top of the address space and so addr + len
887 * wraps round to zero.
888 */
889 vaddr wpend = wp->vaddr + wp->len - 1;
890 vaddr addrend = addr + len - 1;
891
892 return !(addr > wpend || wp->vaddr > addrend);
893}
894
c527ee8f 895#endif
7d03f82f 896
a1d1bb31 897/* Add a breakpoint. */
b3310ab3 898int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 899 CPUBreakpoint **breakpoint)
4c3a88a2 900{
c0ce998e 901 CPUBreakpoint *bp;
3b46e624 902
7267c094 903 bp = g_malloc(sizeof(*bp));
4c3a88a2 904
a1d1bb31
AL
905 bp->pc = pc;
906 bp->flags = flags;
907
2dc9f411 908 /* keep all GDB-injected breakpoints in front */
00b941e5 909 if (flags & BP_GDB) {
f0c3c505 910 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 911 } else {
f0c3c505 912 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 913 }
3b46e624 914
f0c3c505 915 breakpoint_invalidate(cpu, pc);
a1d1bb31 916
00b941e5 917 if (breakpoint) {
a1d1bb31 918 *breakpoint = bp;
00b941e5 919 }
4c3a88a2 920 return 0;
4c3a88a2
FB
921}
922
a1d1bb31 923/* Remove a specific breakpoint. */
b3310ab3 924int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 925{
a1d1bb31
AL
926 CPUBreakpoint *bp;
927
f0c3c505 928 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 929 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 930 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
931 return 0;
932 }
7d03f82f 933 }
a1d1bb31 934 return -ENOENT;
7d03f82f
EI
935}
936
a1d1bb31 937/* Remove a specific breakpoint by reference. */
b3310ab3 938void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 939{
f0c3c505
AF
940 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
941
942 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 943
7267c094 944 g_free(breakpoint);
a1d1bb31
AL
945}
946
947/* Remove all matching breakpoints. */
b3310ab3 948void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 949{
c0ce998e 950 CPUBreakpoint *bp, *next;
a1d1bb31 951
f0c3c505 952 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
953 if (bp->flags & mask) {
954 cpu_breakpoint_remove_by_ref(cpu, bp);
955 }
c0ce998e 956 }
4c3a88a2
FB
957}
958
c33a346e
FB
959/* enable or disable single step mode. EXCP_DEBUG is returned by the
960 CPU loop after each instruction */
3825b28f 961void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 962{
ed2803da
AF
963 if (cpu->singlestep_enabled != enabled) {
964 cpu->singlestep_enabled = enabled;
965 if (kvm_enabled()) {
38e478ec 966 kvm_update_guest_debug(cpu, 0);
ed2803da 967 } else {
ccbb4d44 968 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 969 /* XXX: only flush what is necessary */
bbd77c18 970 tb_flush(cpu);
e22a25c9 971 }
c33a346e 972 }
c33a346e
FB
973}
974
a47dddd7 975void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
976{
977 va_list ap;
493ae1f0 978 va_list ap2;
7501267e
FB
979
980 va_start(ap, fmt);
493ae1f0 981 va_copy(ap2, ap);
7501267e
FB
982 fprintf(stderr, "qemu: fatal: ");
983 vfprintf(stderr, fmt, ap);
984 fprintf(stderr, "\n");
878096ee 985 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 986 if (qemu_log_separate()) {
1ee73216 987 qemu_log_lock();
93fcfe39
AL
988 qemu_log("qemu: fatal: ");
989 qemu_log_vprintf(fmt, ap2);
990 qemu_log("\n");
a0762859 991 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 992 qemu_log_flush();
1ee73216 993 qemu_log_unlock();
93fcfe39 994 qemu_log_close();
924edcae 995 }
493ae1f0 996 va_end(ap2);
f9373291 997 va_end(ap);
7615936e 998 replay_finish();
fd052bf6
RV
999#if defined(CONFIG_USER_ONLY)
1000 {
1001 struct sigaction act;
1002 sigfillset(&act.sa_mask);
1003 act.sa_handler = SIG_DFL;
1004 sigaction(SIGABRT, &act, NULL);
1005 }
1006#endif
7501267e
FB
1007 abort();
1008}
1009
0124311e 1010#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1011/* Called from RCU critical section */
041603fe
PB
1012static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1013{
1014 RAMBlock *block;
1015
43771539 1016 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1017 if (block && addr - block->offset < block->max_length) {
68851b98 1018 return block;
041603fe 1019 }
99e15582 1020 RAMBLOCK_FOREACH(block) {
9b8424d5 1021 if (addr - block->offset < block->max_length) {
041603fe
PB
1022 goto found;
1023 }
1024 }
1025
1026 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1027 abort();
1028
1029found:
43771539
PB
1030 /* It is safe to write mru_block outside the iothread lock. This
1031 * is what happens:
1032 *
1033 * mru_block = xxx
1034 * rcu_read_unlock()
1035 * xxx removed from list
1036 * rcu_read_lock()
1037 * read mru_block
1038 * mru_block = NULL;
1039 * call_rcu(reclaim_ramblock, xxx);
1040 * rcu_read_unlock()
1041 *
1042 * atomic_rcu_set is not needed here. The block was already published
1043 * when it was placed into the list. Here we're just making an extra
1044 * copy of the pointer.
1045 */
041603fe
PB
1046 ram_list.mru_block = block;
1047 return block;
1048}
1049
a2f4d5be 1050static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1051{
9a13565d 1052 CPUState *cpu;
041603fe 1053 ram_addr_t start1;
a2f4d5be
JQ
1054 RAMBlock *block;
1055 ram_addr_t end;
1056
1057 end = TARGET_PAGE_ALIGN(start + length);
1058 start &= TARGET_PAGE_MASK;
d24981d3 1059
0dc3f44a 1060 rcu_read_lock();
041603fe
PB
1061 block = qemu_get_ram_block(start);
1062 assert(block == qemu_get_ram_block(end - 1));
1240be24 1063 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1064 CPU_FOREACH(cpu) {
1065 tlb_reset_dirty(cpu, start1, length);
1066 }
0dc3f44a 1067 rcu_read_unlock();
d24981d3
JQ
1068}
1069
5579c7f3 1070/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1071bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1072 ram_addr_t length,
1073 unsigned client)
1ccde1cb 1074{
5b82b703 1075 DirtyMemoryBlocks *blocks;
03eebc9e 1076 unsigned long end, page;
5b82b703 1077 bool dirty = false;
03eebc9e
SH
1078
1079 if (length == 0) {
1080 return false;
1081 }
f23db169 1082
03eebc9e
SH
1083 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1084 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1085
1086 rcu_read_lock();
1087
1088 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1089
1090 while (page < end) {
1091 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1092 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1093 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1094
1095 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1096 offset, num);
1097 page += num;
1098 }
1099
1100 rcu_read_unlock();
03eebc9e
SH
1101
1102 if (dirty && tcg_enabled()) {
a2f4d5be 1103 tlb_reset_dirty_range_all(start, length);
5579c7f3 1104 }
03eebc9e
SH
1105
1106 return dirty;
1ccde1cb
FB
1107}
1108
8deaf12c
GH
1109DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1110 (ram_addr_t start, ram_addr_t length, unsigned client)
1111{
1112 DirtyMemoryBlocks *blocks;
1113 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1114 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1115 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1116 DirtyBitmapSnapshot *snap;
1117 unsigned long page, end, dest;
1118
1119 snap = g_malloc0(sizeof(*snap) +
1120 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1121 snap->start = first;
1122 snap->end = last;
1123
1124 page = first >> TARGET_PAGE_BITS;
1125 end = last >> TARGET_PAGE_BITS;
1126 dest = 0;
1127
1128 rcu_read_lock();
1129
1130 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1131
1132 while (page < end) {
1133 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1134 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1135 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1136
1137 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1138 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1139 offset >>= BITS_PER_LEVEL;
1140
1141 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1142 blocks->blocks[idx] + offset,
1143 num);
1144 page += num;
1145 dest += num >> BITS_PER_LEVEL;
1146 }
1147
1148 rcu_read_unlock();
1149
1150 if (tcg_enabled()) {
1151 tlb_reset_dirty_range_all(start, length);
1152 }
1153
1154 return snap;
1155}
1156
1157bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1158 ram_addr_t start,
1159 ram_addr_t length)
1160{
1161 unsigned long page, end;
1162
1163 assert(start >= snap->start);
1164 assert(start + length <= snap->end);
1165
1166 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1167 page = (start - snap->start) >> TARGET_PAGE_BITS;
1168
1169 while (page < end) {
1170 if (test_bit(page, snap->dirty)) {
1171 return true;
1172 }
1173 page++;
1174 }
1175 return false;
1176}
1177
79e2b9ae 1178/* Called from RCU critical section */
bb0e627a 1179hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1180 MemoryRegionSection *section,
1181 target_ulong vaddr,
1182 hwaddr paddr, hwaddr xlat,
1183 int prot,
1184 target_ulong *address)
e5548617 1185{
a8170e5e 1186 hwaddr iotlb;
e5548617
BS
1187 CPUWatchpoint *wp;
1188
cc5bea60 1189 if (memory_region_is_ram(section->mr)) {
e5548617 1190 /* Normal RAM. */
e4e69794 1191 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1192 if (!section->readonly) {
b41aac4f 1193 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1194 } else {
b41aac4f 1195 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1196 }
1197 } else {
0b8e2c10
PM
1198 AddressSpaceDispatch *d;
1199
1200 d = atomic_rcu_read(&section->address_space->dispatch);
1201 iotlb = section - d->map.sections;
149f54b5 1202 iotlb += xlat;
e5548617
BS
1203 }
1204
1205 /* Make accesses to pages with watchpoints go via the
1206 watchpoint trap routines. */
ff4700b0 1207 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1208 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1209 /* Avoid trapping reads of pages with a write breakpoint. */
1210 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1211 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1212 *address |= TLB_MMIO;
1213 break;
1214 }
1215 }
1216 }
1217
1218 return iotlb;
1219}
9fa3e853
FB
1220#endif /* defined(CONFIG_USER_ONLY) */
1221
e2eef170 1222#if !defined(CONFIG_USER_ONLY)
8da3ff18 1223
c227f099 1224static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1225 uint16_t section);
acc9d80b 1226static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1227
a2b257d6
IM
1228static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1229 qemu_anon_ram_alloc;
91138037
MA
1230
1231/*
1232 * Set a custom physical guest memory alloator.
1233 * Accelerators with unusual needs may need this. Hopefully, we can
1234 * get rid of it eventually.
1235 */
a2b257d6 1236void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1237{
1238 phys_mem_alloc = alloc;
1239}
1240
53cb28cb
MA
1241static uint16_t phys_section_add(PhysPageMap *map,
1242 MemoryRegionSection *section)
5312bd8b 1243{
68f3f65b
PB
1244 /* The physical section number is ORed with a page-aligned
1245 * pointer to produce the iotlb entries. Thus it should
1246 * never overflow into the page-aligned value.
1247 */
53cb28cb 1248 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1249
53cb28cb
MA
1250 if (map->sections_nb == map->sections_nb_alloc) {
1251 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1252 map->sections = g_renew(MemoryRegionSection, map->sections,
1253 map->sections_nb_alloc);
5312bd8b 1254 }
53cb28cb 1255 map->sections[map->sections_nb] = *section;
dfde4e6e 1256 memory_region_ref(section->mr);
53cb28cb 1257 return map->sections_nb++;
5312bd8b
AK
1258}
1259
058bc4b5
PB
1260static void phys_section_destroy(MemoryRegion *mr)
1261{
55b4e80b
DS
1262 bool have_sub_page = mr->subpage;
1263
dfde4e6e
PB
1264 memory_region_unref(mr);
1265
55b4e80b 1266 if (have_sub_page) {
058bc4b5 1267 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1268 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1269 g_free(subpage);
1270 }
1271}
1272
6092666e 1273static void phys_sections_free(PhysPageMap *map)
5312bd8b 1274{
9affd6fc
PB
1275 while (map->sections_nb > 0) {
1276 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1277 phys_section_destroy(section->mr);
1278 }
9affd6fc
PB
1279 g_free(map->sections);
1280 g_free(map->nodes);
5312bd8b
AK
1281}
1282
ac1970fb 1283static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1284{
1285 subpage_t *subpage;
a8170e5e 1286 hwaddr base = section->offset_within_address_space
0f0cb164 1287 & TARGET_PAGE_MASK;
003a0cf2 1288 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1289 MemoryRegionSection subsection = {
1290 .offset_within_address_space = base,
052e87b0 1291 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1292 };
a8170e5e 1293 hwaddr start, end;
0f0cb164 1294
f3705d53 1295 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1296
f3705d53 1297 if (!(existing->mr->subpage)) {
acc9d80b 1298 subpage = subpage_init(d->as, base);
3be91e86 1299 subsection.address_space = d->as;
0f0cb164 1300 subsection.mr = &subpage->iomem;
ac1970fb 1301 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1302 phys_section_add(&d->map, &subsection));
0f0cb164 1303 } else {
f3705d53 1304 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1305 }
1306 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1307 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1308 subpage_register(subpage, start, end,
1309 phys_section_add(&d->map, section));
0f0cb164
AK
1310}
1311
1312
052e87b0
PB
1313static void register_multipage(AddressSpaceDispatch *d,
1314 MemoryRegionSection *section)
33417e70 1315{
a8170e5e 1316 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1317 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1318 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1319 TARGET_PAGE_BITS));
dd81124b 1320
733d5ef5
PB
1321 assert(num_pages);
1322 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1323}
1324
ac1970fb 1325static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1326{
89ae337a 1327 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1328 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1329 MemoryRegionSection now = *section, remain = *section;
052e87b0 1330 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1331
733d5ef5
PB
1332 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1333 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1334 - now.offset_within_address_space;
1335
052e87b0 1336 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1337 register_subpage(d, &now);
733d5ef5 1338 } else {
052e87b0 1339 now.size = int128_zero();
733d5ef5 1340 }
052e87b0
PB
1341 while (int128_ne(remain.size, now.size)) {
1342 remain.size = int128_sub(remain.size, now.size);
1343 remain.offset_within_address_space += int128_get64(now.size);
1344 remain.offset_within_region += int128_get64(now.size);
69b67646 1345 now = remain;
052e87b0 1346 if (int128_lt(remain.size, page_size)) {
733d5ef5 1347 register_subpage(d, &now);
88266249 1348 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1349 now.size = page_size;
ac1970fb 1350 register_subpage(d, &now);
69b67646 1351 } else {
052e87b0 1352 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1353 register_multipage(d, &now);
69b67646 1354 }
0f0cb164
AK
1355 }
1356}
1357
62a2744c
SY
1358void qemu_flush_coalesced_mmio_buffer(void)
1359{
1360 if (kvm_enabled())
1361 kvm_flush_coalesced_mmio_buffer();
1362}
1363
b2a8658e
UD
1364void qemu_mutex_lock_ramlist(void)
1365{
1366 qemu_mutex_lock(&ram_list.mutex);
1367}
1368
1369void qemu_mutex_unlock_ramlist(void)
1370{
1371 qemu_mutex_unlock(&ram_list.mutex);
1372}
1373
be9b23c4
PX
1374void ram_block_dump(Monitor *mon)
1375{
1376 RAMBlock *block;
1377 char *psize;
1378
1379 rcu_read_lock();
1380 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1381 "Block Name", "PSize", "Offset", "Used", "Total");
1382 RAMBLOCK_FOREACH(block) {
1383 psize = size_to_str(block->page_size);
1384 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1385 " 0x%016" PRIx64 "\n", block->idstr, psize,
1386 (uint64_t)block->offset,
1387 (uint64_t)block->used_length,
1388 (uint64_t)block->max_length);
1389 g_free(psize);
1390 }
1391 rcu_read_unlock();
1392}
1393
9c607668
AK
1394#ifdef __linux__
1395/*
1396 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1397 * may or may not name the same files / on the same filesystem now as
1398 * when we actually open and map them. Iterate over the file
1399 * descriptors instead, and use qemu_fd_getpagesize().
1400 */
1401static int find_max_supported_pagesize(Object *obj, void *opaque)
1402{
1403 char *mem_path;
1404 long *hpsize_min = opaque;
1405
1406 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1407 mem_path = object_property_get_str(obj, "mem-path", NULL);
1408 if (mem_path) {
1409 long hpsize = qemu_mempath_getpagesize(mem_path);
1410 if (hpsize < *hpsize_min) {
1411 *hpsize_min = hpsize;
1412 }
1413 } else {
1414 *hpsize_min = getpagesize();
1415 }
1416 }
1417
1418 return 0;
1419}
1420
1421long qemu_getrampagesize(void)
1422{
1423 long hpsize = LONG_MAX;
1424 long mainrampagesize;
1425 Object *memdev_root;
1426
1427 if (mem_path) {
1428 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1429 } else {
1430 mainrampagesize = getpagesize();
1431 }
1432
1433 /* it's possible we have memory-backend objects with
1434 * hugepage-backed RAM. these may get mapped into system
1435 * address space via -numa parameters or memory hotplug
1436 * hooks. we want to take these into account, but we
1437 * also want to make sure these supported hugepage
1438 * sizes are applicable across the entire range of memory
1439 * we may boot from, so we take the min across all
1440 * backends, and assume normal pages in cases where a
1441 * backend isn't backed by hugepages.
1442 */
1443 memdev_root = object_resolve_path("/objects", NULL);
1444 if (memdev_root) {
1445 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1446 }
1447 if (hpsize == LONG_MAX) {
1448 /* No additional memory regions found ==> Report main RAM page size */
1449 return mainrampagesize;
1450 }
1451
1452 /* If NUMA is disabled or the NUMA nodes are not backed with a
1453 * memory-backend, then there is at least one node using "normal" RAM,
1454 * so if its page size is smaller we have got to report that size instead.
1455 */
1456 if (hpsize > mainrampagesize &&
1457 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1458 static bool warned;
1459 if (!warned) {
1460 error_report("Huge page support disabled (n/a for main memory).");
1461 warned = true;
1462 }
1463 return mainrampagesize;
1464 }
1465
1466 return hpsize;
1467}
1468#else
1469long qemu_getrampagesize(void)
1470{
1471 return getpagesize();
1472}
1473#endif
1474
e1e84ba0 1475#ifdef __linux__
d6af99c9
HZ
1476static int64_t get_file_size(int fd)
1477{
1478 int64_t size = lseek(fd, 0, SEEK_END);
1479 if (size < 0) {
1480 return -errno;
1481 }
1482 return size;
1483}
1484
8d37b030
MAL
1485static int file_ram_open(const char *path,
1486 const char *region_name,
1487 bool *created,
1488 Error **errp)
c902760f
MT
1489{
1490 char *filename;
8ca761f6
PF
1491 char *sanitized_name;
1492 char *c;
5c3ece79 1493 int fd = -1;
c902760f 1494
8d37b030 1495 *created = false;
fd97fd44
MA
1496 for (;;) {
1497 fd = open(path, O_RDWR);
1498 if (fd >= 0) {
1499 /* @path names an existing file, use it */
1500 break;
8d31d6b6 1501 }
fd97fd44
MA
1502 if (errno == ENOENT) {
1503 /* @path names a file that doesn't exist, create it */
1504 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1505 if (fd >= 0) {
8d37b030 1506 *created = true;
fd97fd44
MA
1507 break;
1508 }
1509 } else if (errno == EISDIR) {
1510 /* @path names a directory, create a file there */
1511 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1512 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1513 for (c = sanitized_name; *c != '\0'; c++) {
1514 if (*c == '/') {
1515 *c = '_';
1516 }
1517 }
8ca761f6 1518
fd97fd44
MA
1519 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1520 sanitized_name);
1521 g_free(sanitized_name);
8d31d6b6 1522
fd97fd44
MA
1523 fd = mkstemp(filename);
1524 if (fd >= 0) {
1525 unlink(filename);
1526 g_free(filename);
1527 break;
1528 }
1529 g_free(filename);
8d31d6b6 1530 }
fd97fd44
MA
1531 if (errno != EEXIST && errno != EINTR) {
1532 error_setg_errno(errp, errno,
1533 "can't open backing store %s for guest RAM",
1534 path);
8d37b030 1535 return -1;
fd97fd44
MA
1536 }
1537 /*
1538 * Try again on EINTR and EEXIST. The latter happens when
1539 * something else creates the file between our two open().
1540 */
8d31d6b6 1541 }
c902760f 1542
8d37b030
MAL
1543 return fd;
1544}
1545
1546static void *file_ram_alloc(RAMBlock *block,
1547 ram_addr_t memory,
1548 int fd,
1549 bool truncate,
1550 Error **errp)
1551{
1552 void *area;
1553
863e9621 1554 block->page_size = qemu_fd_getpagesize(fd);
8360668e
HZ
1555 block->mr->align = block->page_size;
1556#if defined(__s390x__)
1557 if (kvm_enabled()) {
1558 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1559 }
1560#endif
fd97fd44 1561
863e9621 1562 if (memory < block->page_size) {
fd97fd44 1563 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1564 "or larger than page size 0x%zx",
1565 memory, block->page_size);
8d37b030 1566 return NULL;
1775f111
HZ
1567 }
1568
863e9621 1569 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1570
1571 /*
1572 * ftruncate is not supported by hugetlbfs in older
1573 * hosts, so don't bother bailing out on errors.
1574 * If anything goes wrong with it under other filesystems,
1575 * mmap will fail.
d6af99c9
HZ
1576 *
1577 * Do not truncate the non-empty backend file to avoid corrupting
1578 * the existing data in the file. Disabling shrinking is not
1579 * enough. For example, the current vNVDIMM implementation stores
1580 * the guest NVDIMM labels at the end of the backend file. If the
1581 * backend file is later extended, QEMU will not be able to find
1582 * those labels. Therefore, extending the non-empty backend file
1583 * is disabled as well.
c902760f 1584 */
8d37b030 1585 if (truncate && ftruncate(fd, memory)) {
9742bf26 1586 perror("ftruncate");
7f56e740 1587 }
c902760f 1588
d2f39add
DD
1589 area = qemu_ram_mmap(fd, memory, block->mr->align,
1590 block->flags & RAM_SHARED);
c902760f 1591 if (area == MAP_FAILED) {
7f56e740 1592 error_setg_errno(errp, errno,
fd97fd44 1593 "unable to map backing store for guest RAM");
8d37b030 1594 return NULL;
c902760f 1595 }
ef36fa14
MT
1596
1597 if (mem_prealloc) {
1e356fc1 1598 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1599 if (errp && *errp) {
8d37b030
MAL
1600 qemu_ram_munmap(area, memory);
1601 return NULL;
056b68af 1602 }
ef36fa14
MT
1603 }
1604
04b16653 1605 block->fd = fd;
c902760f
MT
1606 return area;
1607}
1608#endif
1609
0dc3f44a 1610/* Called with the ramlist lock held. */
d17b5288 1611static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1612{
1613 RAMBlock *block, *next_block;
3e837b2c 1614 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1615
49cd9ac6
SH
1616 assert(size != 0); /* it would hand out same offset multiple times */
1617
0dc3f44a 1618 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1619 return 0;
0d53d9fe 1620 }
04b16653 1621
99e15582 1622 RAMBLOCK_FOREACH(block) {
f15fbc4b 1623 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1624
62be4e3a 1625 end = block->offset + block->max_length;
04b16653 1626
99e15582 1627 RAMBLOCK_FOREACH(next_block) {
04b16653
AW
1628 if (next_block->offset >= end) {
1629 next = MIN(next, next_block->offset);
1630 }
1631 }
1632 if (next - end >= size && next - end < mingap) {
3e837b2c 1633 offset = end;
04b16653
AW
1634 mingap = next - end;
1635 }
1636 }
3e837b2c
AW
1637
1638 if (offset == RAM_ADDR_MAX) {
1639 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1640 (uint64_t)size);
1641 abort();
1642 }
1643
04b16653
AW
1644 return offset;
1645}
1646
b8c48993 1647unsigned long last_ram_page(void)
d17b5288
AW
1648{
1649 RAMBlock *block;
1650 ram_addr_t last = 0;
1651
0dc3f44a 1652 rcu_read_lock();
99e15582 1653 RAMBLOCK_FOREACH(block) {
62be4e3a 1654 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1655 }
0dc3f44a 1656 rcu_read_unlock();
b8c48993 1657 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1658}
1659
ddb97f1d
JB
1660static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1661{
1662 int ret;
ddb97f1d
JB
1663
1664 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1665 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1666 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1667 if (ret) {
1668 perror("qemu_madvise");
1669 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1670 "but dump_guest_core=off specified\n");
1671 }
1672 }
1673}
1674
422148d3
DDAG
1675const char *qemu_ram_get_idstr(RAMBlock *rb)
1676{
1677 return rb->idstr;
1678}
1679
463a4ac2
DDAG
1680bool qemu_ram_is_shared(RAMBlock *rb)
1681{
1682 return rb->flags & RAM_SHARED;
1683}
1684
ae3a7047 1685/* Called with iothread lock held. */
fa53a0e5 1686void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1687{
fa53a0e5 1688 RAMBlock *block;
20cfe881 1689
c5705a77
AK
1690 assert(new_block);
1691 assert(!new_block->idstr[0]);
84b89d78 1692
09e5ab63
AL
1693 if (dev) {
1694 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1695 if (id) {
1696 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1697 g_free(id);
84b89d78
CM
1698 }
1699 }
1700 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1701
ab0a9956 1702 rcu_read_lock();
99e15582 1703 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1704 if (block != new_block &&
1705 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1706 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1707 new_block->idstr);
1708 abort();
1709 }
1710 }
0dc3f44a 1711 rcu_read_unlock();
c5705a77
AK
1712}
1713
ae3a7047 1714/* Called with iothread lock held. */
fa53a0e5 1715void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1716{
ae3a7047
MD
1717 /* FIXME: arch_init.c assumes that this is not called throughout
1718 * migration. Ignore the problem since hot-unplug during migration
1719 * does not work anyway.
1720 */
20cfe881
HT
1721 if (block) {
1722 memset(block->idstr, 0, sizeof(block->idstr));
1723 }
1724}
1725
863e9621
DDAG
1726size_t qemu_ram_pagesize(RAMBlock *rb)
1727{
1728 return rb->page_size;
1729}
1730
67f11b5c
DDAG
1731/* Returns the largest size of page in use */
1732size_t qemu_ram_pagesize_largest(void)
1733{
1734 RAMBlock *block;
1735 size_t largest = 0;
1736
99e15582 1737 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1738 largest = MAX(largest, qemu_ram_pagesize(block));
1739 }
1740
1741 return largest;
1742}
1743
8490fc78
LC
1744static int memory_try_enable_merging(void *addr, size_t len)
1745{
75cc7f01 1746 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1747 /* disabled by the user */
1748 return 0;
1749 }
1750
1751 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1752}
1753
62be4e3a
MT
1754/* Only legal before guest might have detected the memory size: e.g. on
1755 * incoming migration, or right after reset.
1756 *
1757 * As memory core doesn't know how is memory accessed, it is up to
1758 * resize callback to update device state and/or add assertions to detect
1759 * misuse, if necessary.
1760 */
fa53a0e5 1761int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1762{
62be4e3a
MT
1763 assert(block);
1764
4ed023ce 1765 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1766
62be4e3a
MT
1767 if (block->used_length == newsize) {
1768 return 0;
1769 }
1770
1771 if (!(block->flags & RAM_RESIZEABLE)) {
1772 error_setg_errno(errp, EINVAL,
1773 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1774 " in != 0x" RAM_ADDR_FMT, block->idstr,
1775 newsize, block->used_length);
1776 return -EINVAL;
1777 }
1778
1779 if (block->max_length < newsize) {
1780 error_setg_errno(errp, EINVAL,
1781 "Length too large: %s: 0x" RAM_ADDR_FMT
1782 " > 0x" RAM_ADDR_FMT, block->idstr,
1783 newsize, block->max_length);
1784 return -EINVAL;
1785 }
1786
1787 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1788 block->used_length = newsize;
58d2707e
PB
1789 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1790 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1791 memory_region_set_size(block->mr, newsize);
1792 if (block->resized) {
1793 block->resized(block->idstr, newsize, block->host);
1794 }
1795 return 0;
1796}
1797
5b82b703
SH
1798/* Called with ram_list.mutex held */
1799static void dirty_memory_extend(ram_addr_t old_ram_size,
1800 ram_addr_t new_ram_size)
1801{
1802 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1803 DIRTY_MEMORY_BLOCK_SIZE);
1804 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1805 DIRTY_MEMORY_BLOCK_SIZE);
1806 int i;
1807
1808 /* Only need to extend if block count increased */
1809 if (new_num_blocks <= old_num_blocks) {
1810 return;
1811 }
1812
1813 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1814 DirtyMemoryBlocks *old_blocks;
1815 DirtyMemoryBlocks *new_blocks;
1816 int j;
1817
1818 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1819 new_blocks = g_malloc(sizeof(*new_blocks) +
1820 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1821
1822 if (old_num_blocks) {
1823 memcpy(new_blocks->blocks, old_blocks->blocks,
1824 old_num_blocks * sizeof(old_blocks->blocks[0]));
1825 }
1826
1827 for (j = old_num_blocks; j < new_num_blocks; j++) {
1828 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1829 }
1830
1831 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1832
1833 if (old_blocks) {
1834 g_free_rcu(old_blocks, rcu);
1835 }
1836 }
1837}
1838
528f46af 1839static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1840{
e1c57ab8 1841 RAMBlock *block;
0d53d9fe 1842 RAMBlock *last_block = NULL;
2152f5ca 1843 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1844 Error *err = NULL;
2152f5ca 1845
b8c48993 1846 old_ram_size = last_ram_page();
c5705a77 1847
b2a8658e 1848 qemu_mutex_lock_ramlist();
9b8424d5 1849 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1850
1851 if (!new_block->host) {
1852 if (xen_enabled()) {
9b8424d5 1853 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1854 new_block->mr, &err);
1855 if (err) {
1856 error_propagate(errp, err);
1857 qemu_mutex_unlock_ramlist();
39c350ee 1858 return;
37aa7a0e 1859 }
e1c57ab8 1860 } else {
9b8424d5 1861 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1862 &new_block->mr->align);
39228250 1863 if (!new_block->host) {
ef701d7b
HT
1864 error_setg_errno(errp, errno,
1865 "cannot set up guest memory '%s'",
1866 memory_region_name(new_block->mr));
1867 qemu_mutex_unlock_ramlist();
39c350ee 1868 return;
39228250 1869 }
9b8424d5 1870 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1871 }
c902760f 1872 }
94a6b54f 1873
dd631697
LZ
1874 new_ram_size = MAX(old_ram_size,
1875 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1876 if (new_ram_size > old_ram_size) {
5b82b703 1877 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1878 }
0d53d9fe
MD
1879 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1880 * QLIST (which has an RCU-friendly variant) does not have insertion at
1881 * tail, so save the last element in last_block.
1882 */
99e15582 1883 RAMBLOCK_FOREACH(block) {
0d53d9fe 1884 last_block = block;
9b8424d5 1885 if (block->max_length < new_block->max_length) {
abb26d63
PB
1886 break;
1887 }
1888 }
1889 if (block) {
0dc3f44a 1890 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1891 } else if (last_block) {
0dc3f44a 1892 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1893 } else { /* list is empty */
0dc3f44a 1894 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1895 }
0d6d3c87 1896 ram_list.mru_block = NULL;
94a6b54f 1897
0dc3f44a
MD
1898 /* Write list before version */
1899 smp_wmb();
f798b07f 1900 ram_list.version++;
b2a8658e 1901 qemu_mutex_unlock_ramlist();
f798b07f 1902
9b8424d5 1903 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1904 new_block->used_length,
1905 DIRTY_CLIENTS_ALL);
94a6b54f 1906
a904c911
PB
1907 if (new_block->host) {
1908 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1909 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1910 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1911 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 1912 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 1913 }
94a6b54f 1914}
e9a1ab19 1915
0b183fc8 1916#ifdef __linux__
38b3362d
MAL
1917RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1918 bool share, int fd,
1919 Error **errp)
e1c57ab8
PB
1920{
1921 RAMBlock *new_block;
ef701d7b 1922 Error *local_err = NULL;
8d37b030 1923 int64_t file_size;
e1c57ab8
PB
1924
1925 if (xen_enabled()) {
7f56e740 1926 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1927 return NULL;
e1c57ab8
PB
1928 }
1929
e45e7ae2
MAL
1930 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1931 error_setg(errp,
1932 "host lacks kvm mmu notifiers, -mem-path unsupported");
1933 return NULL;
1934 }
1935
e1c57ab8
PB
1936 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1937 /*
1938 * file_ram_alloc() needs to allocate just like
1939 * phys_mem_alloc, but we haven't bothered to provide
1940 * a hook there.
1941 */
7f56e740
PB
1942 error_setg(errp,
1943 "-mem-path not supported with this accelerator");
528f46af 1944 return NULL;
e1c57ab8
PB
1945 }
1946
4ed023ce 1947 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
1948 file_size = get_file_size(fd);
1949 if (file_size > 0 && file_size < size) {
1950 error_setg(errp, "backing store %s size 0x%" PRIx64
1951 " does not match 'size' option 0x" RAM_ADDR_FMT,
1952 mem_path, file_size, size);
8d37b030
MAL
1953 return NULL;
1954 }
1955
e1c57ab8
PB
1956 new_block = g_malloc0(sizeof(*new_block));
1957 new_block->mr = mr;
9b8424d5
MT
1958 new_block->used_length = size;
1959 new_block->max_length = size;
dbcb8981 1960 new_block->flags = share ? RAM_SHARED : 0;
8d37b030 1961 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
1962 if (!new_block->host) {
1963 g_free(new_block);
528f46af 1964 return NULL;
7f56e740
PB
1965 }
1966
528f46af 1967 ram_block_add(new_block, &local_err);
ef701d7b
HT
1968 if (local_err) {
1969 g_free(new_block);
1970 error_propagate(errp, local_err);
528f46af 1971 return NULL;
ef701d7b 1972 }
528f46af 1973 return new_block;
38b3362d
MAL
1974
1975}
1976
1977
1978RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1979 bool share, const char *mem_path,
1980 Error **errp)
1981{
1982 int fd;
1983 bool created;
1984 RAMBlock *block;
1985
1986 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
1987 if (fd < 0) {
1988 return NULL;
1989 }
1990
1991 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
1992 if (!block) {
1993 if (created) {
1994 unlink(mem_path);
1995 }
1996 close(fd);
1997 return NULL;
1998 }
1999
2000 return block;
e1c57ab8 2001}
0b183fc8 2002#endif
e1c57ab8 2003
62be4e3a 2004static
528f46af
FZ
2005RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2006 void (*resized)(const char*,
2007 uint64_t length,
2008 void *host),
2009 void *host, bool resizeable,
2010 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2011{
2012 RAMBlock *new_block;
ef701d7b 2013 Error *local_err = NULL;
e1c57ab8 2014
4ed023ce
DDAG
2015 size = HOST_PAGE_ALIGN(size);
2016 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2017 new_block = g_malloc0(sizeof(*new_block));
2018 new_block->mr = mr;
62be4e3a 2019 new_block->resized = resized;
9b8424d5
MT
2020 new_block->used_length = size;
2021 new_block->max_length = max_size;
62be4e3a 2022 assert(max_size >= size);
e1c57ab8 2023 new_block->fd = -1;
863e9621 2024 new_block->page_size = getpagesize();
e1c57ab8
PB
2025 new_block->host = host;
2026 if (host) {
7bd4f430 2027 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2028 }
62be4e3a
MT
2029 if (resizeable) {
2030 new_block->flags |= RAM_RESIZEABLE;
2031 }
528f46af 2032 ram_block_add(new_block, &local_err);
ef701d7b
HT
2033 if (local_err) {
2034 g_free(new_block);
2035 error_propagate(errp, local_err);
528f46af 2036 return NULL;
ef701d7b 2037 }
528f46af 2038 return new_block;
e1c57ab8
PB
2039}
2040
528f46af 2041RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2042 MemoryRegion *mr, Error **errp)
2043{
2044 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2045}
2046
528f46af 2047RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 2048{
62be4e3a
MT
2049 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2050}
2051
528f46af 2052RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2053 void (*resized)(const char*,
2054 uint64_t length,
2055 void *host),
2056 MemoryRegion *mr, Error **errp)
2057{
2058 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
2059}
2060
43771539
PB
2061static void reclaim_ramblock(RAMBlock *block)
2062{
2063 if (block->flags & RAM_PREALLOC) {
2064 ;
2065 } else if (xen_enabled()) {
2066 xen_invalidate_map_cache_entry(block->host);
2067#ifndef _WIN32
2068 } else if (block->fd >= 0) {
2f3a2bb1 2069 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
2070 close(block->fd);
2071#endif
2072 } else {
2073 qemu_anon_ram_free(block->host, block->max_length);
2074 }
2075 g_free(block);
2076}
2077
f1060c55 2078void qemu_ram_free(RAMBlock *block)
e9a1ab19 2079{
85bc2a15
MAL
2080 if (!block) {
2081 return;
2082 }
2083
0987d735
PB
2084 if (block->host) {
2085 ram_block_notify_remove(block->host, block->max_length);
2086 }
2087
b2a8658e 2088 qemu_mutex_lock_ramlist();
f1060c55
FZ
2089 QLIST_REMOVE_RCU(block, next);
2090 ram_list.mru_block = NULL;
2091 /* Write list before version */
2092 smp_wmb();
2093 ram_list.version++;
2094 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2095 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2096}
2097
cd19cfa2
HY
2098#ifndef _WIN32
2099void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2100{
2101 RAMBlock *block;
2102 ram_addr_t offset;
2103 int flags;
2104 void *area, *vaddr;
2105
99e15582 2106 RAMBLOCK_FOREACH(block) {
cd19cfa2 2107 offset = addr - block->offset;
9b8424d5 2108 if (offset < block->max_length) {
1240be24 2109 vaddr = ramblock_ptr(block, offset);
7bd4f430 2110 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2111 ;
dfeaf2ab
MA
2112 } else if (xen_enabled()) {
2113 abort();
cd19cfa2
HY
2114 } else {
2115 flags = MAP_FIXED;
3435f395 2116 if (block->fd >= 0) {
dbcb8981
PB
2117 flags |= (block->flags & RAM_SHARED ?
2118 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2119 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2120 flags, block->fd, offset);
cd19cfa2 2121 } else {
2eb9fbaa
MA
2122 /*
2123 * Remap needs to match alloc. Accelerators that
2124 * set phys_mem_alloc never remap. If they did,
2125 * we'd need a remap hook here.
2126 */
2127 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2128
cd19cfa2
HY
2129 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2130 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2131 flags, -1, 0);
cd19cfa2
HY
2132 }
2133 if (area != vaddr) {
f15fbc4b
AP
2134 fprintf(stderr, "Could not remap addr: "
2135 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
2136 length, addr);
2137 exit(1);
2138 }
8490fc78 2139 memory_try_enable_merging(vaddr, length);
ddb97f1d 2140 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2141 }
cd19cfa2
HY
2142 }
2143 }
2144}
2145#endif /* !_WIN32 */
2146
1b5ec234 2147/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2148 * This should not be used for general purpose DMA. Use address_space_map
2149 * or address_space_rw instead. For local memory (e.g. video ram) that the
2150 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2151 *
49b24afc 2152 * Called within RCU critical section.
1b5ec234 2153 */
0878d0e1 2154void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2155{
3655cb9c
GA
2156 RAMBlock *block = ram_block;
2157
2158 if (block == NULL) {
2159 block = qemu_get_ram_block(addr);
0878d0e1 2160 addr -= block->offset;
3655cb9c 2161 }
ae3a7047
MD
2162
2163 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2164 /* We need to check if the requested address is in the RAM
2165 * because we don't want to map the entire memory in QEMU.
2166 * In that case just map until the end of the page.
2167 */
2168 if (block->offset == 0) {
1ff7c598 2169 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2170 }
ae3a7047 2171
1ff7c598 2172 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2173 }
0878d0e1 2174 return ramblock_ptr(block, addr);
dc828ca1
PB
2175}
2176
0878d0e1 2177/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2178 * but takes a size argument.
0dc3f44a 2179 *
e81bcda5 2180 * Called within RCU critical section.
ae3a7047 2181 */
3655cb9c
GA
2182static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2183 hwaddr *size)
38bee5dc 2184{
3655cb9c 2185 RAMBlock *block = ram_block;
8ab934f9
SS
2186 if (*size == 0) {
2187 return NULL;
2188 }
e81bcda5 2189
3655cb9c
GA
2190 if (block == NULL) {
2191 block = qemu_get_ram_block(addr);
0878d0e1 2192 addr -= block->offset;
3655cb9c 2193 }
0878d0e1 2194 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2195
2196 if (xen_enabled() && block->host == NULL) {
2197 /* We need to check if the requested address is in the RAM
2198 * because we don't want to map the entire memory in QEMU.
2199 * In that case just map the requested area.
2200 */
2201 if (block->offset == 0) {
1ff7c598 2202 return xen_map_cache(addr, *size, 1, true);
38bee5dc
SS
2203 }
2204
1ff7c598 2205 block->host = xen_map_cache(block->offset, block->max_length, 1, true);
38bee5dc 2206 }
e81bcda5 2207
0878d0e1 2208 return ramblock_ptr(block, addr);
38bee5dc
SS
2209}
2210
422148d3
DDAG
2211/*
2212 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2213 * in that RAMBlock.
2214 *
2215 * ptr: Host pointer to look up
2216 * round_offset: If true round the result offset down to a page boundary
2217 * *ram_addr: set to result ram_addr
2218 * *offset: set to result offset within the RAMBlock
2219 *
2220 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2221 *
2222 * By the time this function returns, the returned pointer is not protected
2223 * by RCU anymore. If the caller is not within an RCU critical section and
2224 * does not hold the iothread lock, it must have other means of protecting the
2225 * pointer, such as a reference to the region that includes the incoming
2226 * ram_addr_t.
2227 */
422148d3 2228RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2229 ram_addr_t *offset)
5579c7f3 2230{
94a6b54f
PB
2231 RAMBlock *block;
2232 uint8_t *host = ptr;
2233
868bb33f 2234 if (xen_enabled()) {
f615f396 2235 ram_addr_t ram_addr;
0dc3f44a 2236 rcu_read_lock();
f615f396
PB
2237 ram_addr = xen_ram_addr_from_mapcache(ptr);
2238 block = qemu_get_ram_block(ram_addr);
422148d3 2239 if (block) {
d6b6aec4 2240 *offset = ram_addr - block->offset;
422148d3 2241 }
0dc3f44a 2242 rcu_read_unlock();
422148d3 2243 return block;
712c2b41
SS
2244 }
2245
0dc3f44a
MD
2246 rcu_read_lock();
2247 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2248 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2249 goto found;
2250 }
2251
99e15582 2252 RAMBLOCK_FOREACH(block) {
432d268c
JN
2253 /* This case append when the block is not mapped. */
2254 if (block->host == NULL) {
2255 continue;
2256 }
9b8424d5 2257 if (host - block->host < block->max_length) {
23887b79 2258 goto found;
f471a17e 2259 }
94a6b54f 2260 }
432d268c 2261
0dc3f44a 2262 rcu_read_unlock();
1b5ec234 2263 return NULL;
23887b79
PB
2264
2265found:
422148d3
DDAG
2266 *offset = (host - block->host);
2267 if (round_offset) {
2268 *offset &= TARGET_PAGE_MASK;
2269 }
0dc3f44a 2270 rcu_read_unlock();
422148d3
DDAG
2271 return block;
2272}
2273
e3dd7493
DDAG
2274/*
2275 * Finds the named RAMBlock
2276 *
2277 * name: The name of RAMBlock to find
2278 *
2279 * Returns: RAMBlock (or NULL if not found)
2280 */
2281RAMBlock *qemu_ram_block_by_name(const char *name)
2282{
2283 RAMBlock *block;
2284
99e15582 2285 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2286 if (!strcmp(name, block->idstr)) {
2287 return block;
2288 }
2289 }
2290
2291 return NULL;
2292}
2293
422148d3
DDAG
2294/* Some of the softmmu routines need to translate from a host pointer
2295 (typically a TLB entry) back to a ram offset. */
07bdaa41 2296ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2297{
2298 RAMBlock *block;
f615f396 2299 ram_addr_t offset;
422148d3 2300
f615f396 2301 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2302 if (!block) {
07bdaa41 2303 return RAM_ADDR_INVALID;
422148d3
DDAG
2304 }
2305
07bdaa41 2306 return block->offset + offset;
e890261f 2307}
f471a17e 2308
49b24afc 2309/* Called within RCU critical section. */
a8170e5e 2310static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2311 uint64_t val, unsigned size)
9fa3e853 2312{
ba051fb5
AB
2313 bool locked = false;
2314
52159192 2315 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
ba051fb5
AB
2316 locked = true;
2317 tb_lock();
0e0df1e2 2318 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2319 }
0e0df1e2
AK
2320 switch (size) {
2321 case 1:
0878d0e1 2322 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2323 break;
2324 case 2:
0878d0e1 2325 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2326 break;
2327 case 4:
0878d0e1 2328 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2329 break;
2330 default:
2331 abort();
3a7d929e 2332 }
ba051fb5
AB
2333
2334 if (locked) {
2335 tb_unlock();
2336 }
2337
58d2707e
PB
2338 /* Set both VGA and migration bits for simplicity and to remove
2339 * the notdirty callback faster.
2340 */
2341 cpu_physical_memory_set_dirty_range(ram_addr, size,
2342 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2343 /* we remove the notdirty callback only if the code has been
2344 flushed */
a2cd8c85 2345 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2346 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2347 }
9fa3e853
FB
2348}
2349
b018ddf6
PB
2350static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2351 unsigned size, bool is_write)
2352{
2353 return is_write;
2354}
2355
0e0df1e2 2356static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2357 .write = notdirty_mem_write,
b018ddf6 2358 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2359 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2360};
2361
0f459d16 2362/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2363static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2364{
93afeade 2365 CPUState *cpu = current_cpu;
568496c0 2366 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2367 CPUArchState *env = cpu->env_ptr;
06d55cc1 2368 target_ulong pc, cs_base;
0f459d16 2369 target_ulong vaddr;
a1d1bb31 2370 CPUWatchpoint *wp;
89fee74a 2371 uint32_t cpu_flags;
0f459d16 2372
ff4700b0 2373 if (cpu->watchpoint_hit) {
06d55cc1
AL
2374 /* We re-entered the check after replacing the TB. Now raise
2375 * the debug interrupt so that is will trigger after the
2376 * current instruction. */
93afeade 2377 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2378 return;
2379 }
93afeade 2380 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2381 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2382 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2383 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2384 && (wp->flags & flags)) {
08225676
PM
2385 if (flags == BP_MEM_READ) {
2386 wp->flags |= BP_WATCHPOINT_HIT_READ;
2387 } else {
2388 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2389 }
2390 wp->hitaddr = vaddr;
66b9b43c 2391 wp->hitattrs = attrs;
ff4700b0 2392 if (!cpu->watchpoint_hit) {
568496c0
SF
2393 if (wp->flags & BP_CPU &&
2394 !cc->debug_check_watchpoint(cpu, wp)) {
2395 wp->flags &= ~BP_WATCHPOINT_HIT;
2396 continue;
2397 }
ff4700b0 2398 cpu->watchpoint_hit = wp;
a5e99826 2399
8d04fb55
JK
2400 /* Both tb_lock and iothread_mutex will be reset when
2401 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2402 * back into the cpu_exec main loop.
a5e99826
FK
2403 */
2404 tb_lock();
239c51a5 2405 tb_check_watchpoint(cpu);
6e140f28 2406 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2407 cpu->exception_index = EXCP_DEBUG;
5638d180 2408 cpu_loop_exit(cpu);
6e140f28
AL
2409 } else {
2410 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2411 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
6886b980 2412 cpu_loop_exit_noexc(cpu);
6e140f28 2413 }
06d55cc1 2414 }
6e140f28
AL
2415 } else {
2416 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2417 }
2418 }
2419}
2420
6658ffb8
PB
2421/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2422 so these check for a hit then pass through to the normal out-of-line
2423 phys routines. */
66b9b43c
PM
2424static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2425 unsigned size, MemTxAttrs attrs)
6658ffb8 2426{
66b9b43c
PM
2427 MemTxResult res;
2428 uint64_t data;
79ed0416
PM
2429 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2430 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2431
2432 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2433 switch (size) {
66b9b43c 2434 case 1:
79ed0416 2435 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2436 break;
2437 case 2:
79ed0416 2438 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2439 break;
2440 case 4:
79ed0416 2441 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2442 break;
1ec9b909
AK
2443 default: abort();
2444 }
66b9b43c
PM
2445 *pdata = data;
2446 return res;
6658ffb8
PB
2447}
2448
66b9b43c
PM
2449static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2450 uint64_t val, unsigned size,
2451 MemTxAttrs attrs)
6658ffb8 2452{
66b9b43c 2453 MemTxResult res;
79ed0416
PM
2454 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2455 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2456
2457 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2458 switch (size) {
67364150 2459 case 1:
79ed0416 2460 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2461 break;
2462 case 2:
79ed0416 2463 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2464 break;
2465 case 4:
79ed0416 2466 address_space_stl(as, addr, val, attrs, &res);
67364150 2467 break;
1ec9b909
AK
2468 default: abort();
2469 }
66b9b43c 2470 return res;
6658ffb8
PB
2471}
2472
1ec9b909 2473static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2474 .read_with_attrs = watch_mem_read,
2475 .write_with_attrs = watch_mem_write,
1ec9b909 2476 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2477};
6658ffb8 2478
f25a49e0
PM
2479static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2480 unsigned len, MemTxAttrs attrs)
db7b5426 2481{
acc9d80b 2482 subpage_t *subpage = opaque;
ff6cff75 2483 uint8_t buf[8];
5c9eb028 2484 MemTxResult res;
791af8c8 2485
db7b5426 2486#if defined(DEBUG_SUBPAGE)
016e9d62 2487 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2488 subpage, len, addr);
db7b5426 2489#endif
5c9eb028
PM
2490 res = address_space_read(subpage->as, addr + subpage->base,
2491 attrs, buf, len);
2492 if (res) {
2493 return res;
f25a49e0 2494 }
acc9d80b
JK
2495 switch (len) {
2496 case 1:
f25a49e0
PM
2497 *data = ldub_p(buf);
2498 return MEMTX_OK;
acc9d80b 2499 case 2:
f25a49e0
PM
2500 *data = lduw_p(buf);
2501 return MEMTX_OK;
acc9d80b 2502 case 4:
f25a49e0
PM
2503 *data = ldl_p(buf);
2504 return MEMTX_OK;
ff6cff75 2505 case 8:
f25a49e0
PM
2506 *data = ldq_p(buf);
2507 return MEMTX_OK;
acc9d80b
JK
2508 default:
2509 abort();
2510 }
db7b5426
BS
2511}
2512
f25a49e0
PM
2513static MemTxResult subpage_write(void *opaque, hwaddr addr,
2514 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2515{
acc9d80b 2516 subpage_t *subpage = opaque;
ff6cff75 2517 uint8_t buf[8];
acc9d80b 2518
db7b5426 2519#if defined(DEBUG_SUBPAGE)
016e9d62 2520 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2521 " value %"PRIx64"\n",
2522 __func__, subpage, len, addr, value);
db7b5426 2523#endif
acc9d80b
JK
2524 switch (len) {
2525 case 1:
2526 stb_p(buf, value);
2527 break;
2528 case 2:
2529 stw_p(buf, value);
2530 break;
2531 case 4:
2532 stl_p(buf, value);
2533 break;
ff6cff75
PB
2534 case 8:
2535 stq_p(buf, value);
2536 break;
acc9d80b
JK
2537 default:
2538 abort();
2539 }
5c9eb028
PM
2540 return address_space_write(subpage->as, addr + subpage->base,
2541 attrs, buf, len);
db7b5426
BS
2542}
2543
c353e4cc 2544static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2545 unsigned len, bool is_write)
c353e4cc 2546{
acc9d80b 2547 subpage_t *subpage = opaque;
c353e4cc 2548#if defined(DEBUG_SUBPAGE)
016e9d62 2549 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2550 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2551#endif
2552
acc9d80b 2553 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2554 len, is_write);
c353e4cc
PB
2555}
2556
70c68e44 2557static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2558 .read_with_attrs = subpage_read,
2559 .write_with_attrs = subpage_write,
ff6cff75
PB
2560 .impl.min_access_size = 1,
2561 .impl.max_access_size = 8,
2562 .valid.min_access_size = 1,
2563 .valid.max_access_size = 8,
c353e4cc 2564 .valid.accepts = subpage_accepts,
70c68e44 2565 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2566};
2567
c227f099 2568static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2569 uint16_t section)
db7b5426
BS
2570{
2571 int idx, eidx;
2572
2573 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2574 return -1;
2575 idx = SUBPAGE_IDX(start);
2576 eidx = SUBPAGE_IDX(end);
2577#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2578 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2579 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2580#endif
db7b5426 2581 for (; idx <= eidx; idx++) {
5312bd8b 2582 mmio->sub_section[idx] = section;
db7b5426
BS
2583 }
2584
2585 return 0;
2586}
2587
acc9d80b 2588static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2589{
c227f099 2590 subpage_t *mmio;
db7b5426 2591
2615fabd 2592 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
acc9d80b 2593 mmio->as = as;
1eec614b 2594 mmio->base = base;
2c9b15ca 2595 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2596 NULL, TARGET_PAGE_SIZE);
b3b00c78 2597 mmio->iomem.subpage = true;
db7b5426 2598#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2599 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2600 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2601#endif
b41aac4f 2602 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2603
2604 return mmio;
2605}
2606
a656e22f
PC
2607static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2608 MemoryRegion *mr)
5312bd8b 2609{
a656e22f 2610 assert(as);
5312bd8b 2611 MemoryRegionSection section = {
a656e22f 2612 .address_space = as,
5312bd8b
AK
2613 .mr = mr,
2614 .offset_within_address_space = 0,
2615 .offset_within_region = 0,
052e87b0 2616 .size = int128_2_64(),
5312bd8b
AK
2617 };
2618
53cb28cb 2619 return phys_section_add(map, &section);
5312bd8b
AK
2620}
2621
a54c87b6 2622MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2623{
a54c87b6
PM
2624 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2625 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2626 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2627 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2628
2629 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2630}
2631
e9179ce1
AK
2632static void io_mem_init(void)
2633{
1f6245e5 2634 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2635 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2636 NULL, UINT64_MAX);
8d04fb55
JK
2637
2638 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2639 * which can be called without the iothread mutex.
2640 */
2c9b15ca 2641 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2642 NULL, UINT64_MAX);
8d04fb55
JK
2643 memory_region_clear_global_locking(&io_mem_notdirty);
2644
2c9b15ca 2645 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2646 NULL, UINT64_MAX);
e9179ce1
AK
2647}
2648
ac1970fb 2649static void mem_begin(MemoryListener *listener)
00752703
PB
2650{
2651 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2652 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2653 uint16_t n;
2654
a656e22f 2655 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2656 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2657 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2658 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2659 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2660 assert(n == PHYS_SECTION_ROM);
a656e22f 2661 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2662 assert(n == PHYS_SECTION_WATCH);
00752703 2663
9736e55b 2664 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2665 d->as = as;
2666 as->next_dispatch = d;
2667}
2668
79e2b9ae
PB
2669static void address_space_dispatch_free(AddressSpaceDispatch *d)
2670{
2671 phys_sections_free(&d->map);
2672 g_free(d);
2673}
2674
00752703 2675static void mem_commit(MemoryListener *listener)
ac1970fb 2676{
89ae337a 2677 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2678 AddressSpaceDispatch *cur = as->dispatch;
2679 AddressSpaceDispatch *next = as->next_dispatch;
2680
53cb28cb 2681 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2682
79e2b9ae 2683 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2684 if (cur) {
79e2b9ae 2685 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2686 }
9affd6fc
PB
2687}
2688
1d71148e 2689static void tcg_commit(MemoryListener *listener)
50c1e149 2690{
32857f4d
PM
2691 CPUAddressSpace *cpuas;
2692 AddressSpaceDispatch *d;
117712c3
AK
2693
2694 /* since each CPU stores ram addresses in its TLB cache, we must
2695 reset the modified entries */
32857f4d
PM
2696 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2697 cpu_reloading_memory_map();
2698 /* The CPU and TLB are protected by the iothread lock.
2699 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2700 * may have split the RCU critical section.
2701 */
2702 d = atomic_rcu_read(&cpuas->as->dispatch);
f35e44e7 2703 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2704 tlb_flush(cpuas->cpu);
50c1e149
AK
2705}
2706
ac1970fb
AK
2707void address_space_init_dispatch(AddressSpace *as)
2708{
00752703 2709 as->dispatch = NULL;
89ae337a 2710 as->dispatch_listener = (MemoryListener) {
ac1970fb 2711 .begin = mem_begin,
00752703 2712 .commit = mem_commit,
ac1970fb
AK
2713 .region_add = mem_add,
2714 .region_nop = mem_add,
2715 .priority = 0,
2716 };
89ae337a 2717 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2718}
2719
6e48e8f9
PB
2720void address_space_unregister(AddressSpace *as)
2721{
2722 memory_listener_unregister(&as->dispatch_listener);
2723}
2724
83f3c251
AK
2725void address_space_destroy_dispatch(AddressSpace *as)
2726{
2727 AddressSpaceDispatch *d = as->dispatch;
2728
79e2b9ae
PB
2729 atomic_rcu_set(&as->dispatch, NULL);
2730 if (d) {
2731 call_rcu(d, address_space_dispatch_free, rcu);
2732 }
83f3c251
AK
2733}
2734
62152b8a
AK
2735static void memory_map_init(void)
2736{
7267c094 2737 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2738
57271d63 2739 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2740 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2741
7267c094 2742 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2743 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2744 65536);
7dca8043 2745 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2746}
2747
2748MemoryRegion *get_system_memory(void)
2749{
2750 return system_memory;
2751}
2752
309cb471
AK
2753MemoryRegion *get_system_io(void)
2754{
2755 return system_io;
2756}
2757
e2eef170
PB
2758#endif /* !defined(CONFIG_USER_ONLY) */
2759
13eb76e0
FB
2760/* physical memory access (slow version, mainly for debug) */
2761#if defined(CONFIG_USER_ONLY)
f17ec444 2762int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2763 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2764{
2765 int l, flags;
2766 target_ulong page;
53a5960a 2767 void * p;
13eb76e0
FB
2768
2769 while (len > 0) {
2770 page = addr & TARGET_PAGE_MASK;
2771 l = (page + TARGET_PAGE_SIZE) - addr;
2772 if (l > len)
2773 l = len;
2774 flags = page_get_flags(page);
2775 if (!(flags & PAGE_VALID))
a68fe89c 2776 return -1;
13eb76e0
FB
2777 if (is_write) {
2778 if (!(flags & PAGE_WRITE))
a68fe89c 2779 return -1;
579a97f7 2780 /* XXX: this code should not depend on lock_user */
72fb7daa 2781 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2782 return -1;
72fb7daa
AJ
2783 memcpy(p, buf, l);
2784 unlock_user(p, addr, l);
13eb76e0
FB
2785 } else {
2786 if (!(flags & PAGE_READ))
a68fe89c 2787 return -1;
579a97f7 2788 /* XXX: this code should not depend on lock_user */
72fb7daa 2789 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2790 return -1;
72fb7daa 2791 memcpy(buf, p, l);
5b257578 2792 unlock_user(p, addr, 0);
13eb76e0
FB
2793 }
2794 len -= l;
2795 buf += l;
2796 addr += l;
2797 }
a68fe89c 2798 return 0;
13eb76e0 2799}
8df1cd07 2800
13eb76e0 2801#else
51d7a9eb 2802
845b6214 2803static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2804 hwaddr length)
51d7a9eb 2805{
e87f7778 2806 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2807 addr += memory_region_get_ram_addr(mr);
2808
e87f7778
PB
2809 /* No early return if dirty_log_mask is or becomes 0, because
2810 * cpu_physical_memory_set_dirty_range will still call
2811 * xen_modified_memory.
2812 */
2813 if (dirty_log_mask) {
2814 dirty_log_mask =
2815 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2816 }
2817 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
ba051fb5 2818 tb_lock();
e87f7778 2819 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 2820 tb_unlock();
e87f7778 2821 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2822 }
e87f7778 2823 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2824}
2825
23326164 2826static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2827{
e1622f4b 2828 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2829
2830 /* Regions are assumed to support 1-4 byte accesses unless
2831 otherwise specified. */
23326164
RH
2832 if (access_size_max == 0) {
2833 access_size_max = 4;
2834 }
2835
2836 /* Bound the maximum access by the alignment of the address. */
2837 if (!mr->ops->impl.unaligned) {
2838 unsigned align_size_max = addr & -addr;
2839 if (align_size_max != 0 && align_size_max < access_size_max) {
2840 access_size_max = align_size_max;
2841 }
82f2563f 2842 }
23326164
RH
2843
2844 /* Don't attempt accesses larger than the maximum. */
2845 if (l > access_size_max) {
2846 l = access_size_max;
82f2563f 2847 }
6554f5c0 2848 l = pow2floor(l);
23326164
RH
2849
2850 return l;
82f2563f
PB
2851}
2852
4840f10e 2853static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2854{
4840f10e
JK
2855 bool unlocked = !qemu_mutex_iothread_locked();
2856 bool release_lock = false;
2857
2858 if (unlocked && mr->global_locking) {
2859 qemu_mutex_lock_iothread();
2860 unlocked = false;
2861 release_lock = true;
2862 }
125b3806 2863 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2864 if (unlocked) {
2865 qemu_mutex_lock_iothread();
2866 }
125b3806 2867 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2868 if (unlocked) {
2869 qemu_mutex_unlock_iothread();
2870 }
125b3806 2871 }
4840f10e
JK
2872
2873 return release_lock;
125b3806
PB
2874}
2875
a203ac70
PB
2876/* Called within RCU critical section. */
2877static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2878 MemTxAttrs attrs,
2879 const uint8_t *buf,
2880 int len, hwaddr addr1,
2881 hwaddr l, MemoryRegion *mr)
13eb76e0 2882{
13eb76e0 2883 uint8_t *ptr;
791af8c8 2884 uint64_t val;
3b643495 2885 MemTxResult result = MEMTX_OK;
4840f10e 2886 bool release_lock = false;
3b46e624 2887
a203ac70 2888 for (;;) {
eb7eeb88
PB
2889 if (!memory_access_is_direct(mr, true)) {
2890 release_lock |= prepare_mmio_access(mr);
2891 l = memory_access_size(mr, l, addr1);
2892 /* XXX: could force current_cpu to NULL to avoid
2893 potential bugs */
2894 switch (l) {
2895 case 8:
2896 /* 64 bit write access */
2897 val = ldq_p(buf);
2898 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2899 attrs);
2900 break;
2901 case 4:
2902 /* 32 bit write access */
6da67de6 2903 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
2904 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2905 attrs);
2906 break;
2907 case 2:
2908 /* 16 bit write access */
2909 val = lduw_p(buf);
2910 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2911 attrs);
2912 break;
2913 case 1:
2914 /* 8 bit write access */
2915 val = ldub_p(buf);
2916 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2917 attrs);
2918 break;
2919 default:
2920 abort();
13eb76e0
FB
2921 }
2922 } else {
eb7eeb88 2923 /* RAM case */
0878d0e1 2924 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2925 memcpy(ptr, buf, l);
2926 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2927 }
4840f10e
JK
2928
2929 if (release_lock) {
2930 qemu_mutex_unlock_iothread();
2931 release_lock = false;
2932 }
2933
13eb76e0
FB
2934 len -= l;
2935 buf += l;
2936 addr += l;
a203ac70
PB
2937
2938 if (!len) {
2939 break;
2940 }
2941
2942 l = len;
2943 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2944 }
fd8aaa76 2945
3b643495 2946 return result;
13eb76e0 2947}
8df1cd07 2948
a203ac70
PB
2949MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2950 const uint8_t *buf, int len)
ac1970fb 2951{
eb7eeb88 2952 hwaddr l;
eb7eeb88
PB
2953 hwaddr addr1;
2954 MemoryRegion *mr;
2955 MemTxResult result = MEMTX_OK;
eb7eeb88 2956
a203ac70
PB
2957 if (len > 0) {
2958 rcu_read_lock();
eb7eeb88 2959 l = len;
a203ac70
PB
2960 mr = address_space_translate(as, addr, &addr1, &l, true);
2961 result = address_space_write_continue(as, addr, attrs, buf, len,
2962 addr1, l, mr);
2963 rcu_read_unlock();
2964 }
2965
2966 return result;
2967}
2968
2969/* Called within RCU critical section. */
2970MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2971 MemTxAttrs attrs, uint8_t *buf,
2972 int len, hwaddr addr1, hwaddr l,
2973 MemoryRegion *mr)
2974{
2975 uint8_t *ptr;
2976 uint64_t val;
2977 MemTxResult result = MEMTX_OK;
2978 bool release_lock = false;
eb7eeb88 2979
a203ac70 2980 for (;;) {
eb7eeb88
PB
2981 if (!memory_access_is_direct(mr, false)) {
2982 /* I/O case */
2983 release_lock |= prepare_mmio_access(mr);
2984 l = memory_access_size(mr, l, addr1);
2985 switch (l) {
2986 case 8:
2987 /* 64 bit read access */
2988 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2989 attrs);
2990 stq_p(buf, val);
2991 break;
2992 case 4:
2993 /* 32 bit read access */
2994 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2995 attrs);
2996 stl_p(buf, val);
2997 break;
2998 case 2:
2999 /* 16 bit read access */
3000 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3001 attrs);
3002 stw_p(buf, val);
3003 break;
3004 case 1:
3005 /* 8 bit read access */
3006 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3007 attrs);
3008 stb_p(buf, val);
3009 break;
3010 default:
3011 abort();
3012 }
3013 } else {
3014 /* RAM case */
0878d0e1 3015 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
3016 memcpy(buf, ptr, l);
3017 }
3018
3019 if (release_lock) {
3020 qemu_mutex_unlock_iothread();
3021 release_lock = false;
3022 }
3023
3024 len -= l;
3025 buf += l;
3026 addr += l;
a203ac70
PB
3027
3028 if (!len) {
3029 break;
3030 }
3031
3032 l = len;
3033 mr = address_space_translate(as, addr, &addr1, &l, false);
3034 }
3035
3036 return result;
3037}
3038
3cc8f884
PB
3039MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3040 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
3041{
3042 hwaddr l;
3043 hwaddr addr1;
3044 MemoryRegion *mr;
3045 MemTxResult result = MEMTX_OK;
3046
3047 if (len > 0) {
3048 rcu_read_lock();
3049 l = len;
3050 mr = address_space_translate(as, addr, &addr1, &l, false);
3051 result = address_space_read_continue(as, addr, attrs, buf, len,
3052 addr1, l, mr);
3053 rcu_read_unlock();
eb7eeb88 3054 }
eb7eeb88
PB
3055
3056 return result;
ac1970fb
AK
3057}
3058
eb7eeb88
PB
3059MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3060 uint8_t *buf, int len, bool is_write)
3061{
3062 if (is_write) {
3063 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
3064 } else {
3065 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
3066 }
3067}
ac1970fb 3068
a8170e5e 3069void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
3070 int len, int is_write)
3071{
5c9eb028
PM
3072 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3073 buf, len, is_write);
ac1970fb
AK
3074}
3075
582b55a9
AG
3076enum write_rom_type {
3077 WRITE_DATA,
3078 FLUSH_CACHE,
3079};
3080
2a221651 3081static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 3082 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 3083{
149f54b5 3084 hwaddr l;
d0ecd2aa 3085 uint8_t *ptr;
149f54b5 3086 hwaddr addr1;
5c8a00ce 3087 MemoryRegion *mr;
3b46e624 3088
41063e1e 3089 rcu_read_lock();
d0ecd2aa 3090 while (len > 0) {
149f54b5 3091 l = len;
2a221651 3092 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 3093
5c8a00ce
PB
3094 if (!(memory_region_is_ram(mr) ||
3095 memory_region_is_romd(mr))) {
b242e0e0 3096 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3097 } else {
d0ecd2aa 3098 /* ROM/RAM case */
0878d0e1 3099 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3100 switch (type) {
3101 case WRITE_DATA:
3102 memcpy(ptr, buf, l);
845b6214 3103 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3104 break;
3105 case FLUSH_CACHE:
3106 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3107 break;
3108 }
d0ecd2aa
FB
3109 }
3110 len -= l;
3111 buf += l;
3112 addr += l;
3113 }
41063e1e 3114 rcu_read_unlock();
d0ecd2aa
FB
3115}
3116
582b55a9 3117/* used for ROM loading : can write in RAM and ROM */
2a221651 3118void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
3119 const uint8_t *buf, int len)
3120{
2a221651 3121 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
3122}
3123
3124void cpu_flush_icache_range(hwaddr start, int len)
3125{
3126 /*
3127 * This function should do the same thing as an icache flush that was
3128 * triggered from within the guest. For TCG we are always cache coherent,
3129 * so there is no need to flush anything. For KVM / Xen we need to flush
3130 * the host's instruction cache at least.
3131 */
3132 if (tcg_enabled()) {
3133 return;
3134 }
3135
2a221651
EI
3136 cpu_physical_memory_write_rom_internal(&address_space_memory,
3137 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
3138}
3139
6d16c2f8 3140typedef struct {
d3e71559 3141 MemoryRegion *mr;
6d16c2f8 3142 void *buffer;
a8170e5e
AK
3143 hwaddr addr;
3144 hwaddr len;
c2cba0ff 3145 bool in_use;
6d16c2f8
AL
3146} BounceBuffer;
3147
3148static BounceBuffer bounce;
3149
ba223c29 3150typedef struct MapClient {
e95205e1 3151 QEMUBH *bh;
72cf2d4f 3152 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3153} MapClient;
3154
38e047b5 3155QemuMutex map_client_list_lock;
72cf2d4f
BS
3156static QLIST_HEAD(map_client_list, MapClient) map_client_list
3157 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3158
e95205e1
FZ
3159static void cpu_unregister_map_client_do(MapClient *client)
3160{
3161 QLIST_REMOVE(client, link);
3162 g_free(client);
3163}
3164
33b6c2ed
FZ
3165static void cpu_notify_map_clients_locked(void)
3166{
3167 MapClient *client;
3168
3169 while (!QLIST_EMPTY(&map_client_list)) {
3170 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3171 qemu_bh_schedule(client->bh);
3172 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3173 }
3174}
3175
e95205e1 3176void cpu_register_map_client(QEMUBH *bh)
ba223c29 3177{
7267c094 3178 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3179
38e047b5 3180 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3181 client->bh = bh;
72cf2d4f 3182 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3183 if (!atomic_read(&bounce.in_use)) {
3184 cpu_notify_map_clients_locked();
3185 }
38e047b5 3186 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3187}
3188
38e047b5 3189void cpu_exec_init_all(void)
ba223c29 3190{
38e047b5 3191 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3192 /* The data structures we set up here depend on knowing the page size,
3193 * so no more changes can be made after this point.
3194 * In an ideal world, nothing we did before we had finished the
3195 * machine setup would care about the target page size, and we could
3196 * do this much later, rather than requiring board models to state
3197 * up front what their requirements are.
3198 */
3199 finalize_target_page_bits();
38e047b5 3200 io_mem_init();
680a4783 3201 memory_map_init();
38e047b5 3202 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3203}
3204
e95205e1 3205void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3206{
3207 MapClient *client;
3208
e95205e1
FZ
3209 qemu_mutex_lock(&map_client_list_lock);
3210 QLIST_FOREACH(client, &map_client_list, link) {
3211 if (client->bh == bh) {
3212 cpu_unregister_map_client_do(client);
3213 break;
3214 }
ba223c29 3215 }
e95205e1 3216 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3217}
3218
3219static void cpu_notify_map_clients(void)
3220{
38e047b5 3221 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3222 cpu_notify_map_clients_locked();
38e047b5 3223 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3224}
3225
51644ab7
PB
3226bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
3227{
5c8a00ce 3228 MemoryRegion *mr;
51644ab7
PB
3229 hwaddr l, xlat;
3230
41063e1e 3231 rcu_read_lock();
51644ab7
PB
3232 while (len > 0) {
3233 l = len;
5c8a00ce
PB
3234 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3235 if (!memory_access_is_direct(mr, is_write)) {
3236 l = memory_access_size(mr, l, addr);
3237 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
5ad4a2b7 3238 rcu_read_unlock();
51644ab7
PB
3239 return false;
3240 }
3241 }
3242
3243 len -= l;
3244 addr += l;
3245 }
41063e1e 3246 rcu_read_unlock();
51644ab7
PB
3247 return true;
3248}
3249
715c31ec
PB
3250static hwaddr
3251address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
3252 MemoryRegion *mr, hwaddr base, hwaddr len,
3253 bool is_write)
3254{
3255 hwaddr done = 0;
3256 hwaddr xlat;
3257 MemoryRegion *this_mr;
3258
3259 for (;;) {
3260 target_len -= len;
3261 addr += len;
3262 done += len;
3263 if (target_len == 0) {
3264 return done;
3265 }
3266
3267 len = target_len;
3268 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
3269 if (this_mr != mr || xlat != base + done) {
3270 return done;
3271 }
3272 }
3273}
3274
6d16c2f8
AL
3275/* Map a physical memory region into a host virtual address.
3276 * May map a subset of the requested range, given by and returned in *plen.
3277 * May return NULL if resources needed to perform the mapping are exhausted.
3278 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3279 * Use cpu_register_map_client() to know when retrying the map operation is
3280 * likely to succeed.
6d16c2f8 3281 */
ac1970fb 3282void *address_space_map(AddressSpace *as,
a8170e5e
AK
3283 hwaddr addr,
3284 hwaddr *plen,
ac1970fb 3285 bool is_write)
6d16c2f8 3286{
a8170e5e 3287 hwaddr len = *plen;
715c31ec
PB
3288 hwaddr l, xlat;
3289 MemoryRegion *mr;
e81bcda5 3290 void *ptr;
6d16c2f8 3291
e3127ae0
PB
3292 if (len == 0) {
3293 return NULL;
3294 }
38bee5dc 3295
e3127ae0 3296 l = len;
41063e1e 3297 rcu_read_lock();
e3127ae0 3298 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 3299
e3127ae0 3300 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3301 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3302 rcu_read_unlock();
e3127ae0 3303 return NULL;
6d16c2f8 3304 }
e85d9db5
KW
3305 /* Avoid unbounded allocations */
3306 l = MIN(l, TARGET_PAGE_SIZE);
3307 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3308 bounce.addr = addr;
3309 bounce.len = l;
d3e71559
PB
3310
3311 memory_region_ref(mr);
3312 bounce.mr = mr;
e3127ae0 3313 if (!is_write) {
5c9eb028
PM
3314 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3315 bounce.buffer, l);
8ab934f9 3316 }
6d16c2f8 3317
41063e1e 3318 rcu_read_unlock();
e3127ae0
PB
3319 *plen = l;
3320 return bounce.buffer;
3321 }
3322
e3127ae0 3323
d3e71559 3324 memory_region_ref(mr);
715c31ec
PB
3325 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3326 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
e81bcda5
PB
3327 rcu_read_unlock();
3328
3329 return ptr;
6d16c2f8
AL
3330}
3331
ac1970fb 3332/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3333 * Will also mark the memory as dirty if is_write == 1. access_len gives
3334 * the amount of memory that was actually read or written by the caller.
3335 */
a8170e5e
AK
3336void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3337 int is_write, hwaddr access_len)
6d16c2f8
AL
3338{
3339 if (buffer != bounce.buffer) {
d3e71559
PB
3340 MemoryRegion *mr;
3341 ram_addr_t addr1;
3342
07bdaa41 3343 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3344 assert(mr != NULL);
6d16c2f8 3345 if (is_write) {
845b6214 3346 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3347 }
868bb33f 3348 if (xen_enabled()) {
e41d7c69 3349 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3350 }
d3e71559 3351 memory_region_unref(mr);
6d16c2f8
AL
3352 return;
3353 }
3354 if (is_write) {
5c9eb028
PM
3355 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3356 bounce.buffer, access_len);
6d16c2f8 3357 }
f8a83245 3358 qemu_vfree(bounce.buffer);
6d16c2f8 3359 bounce.buffer = NULL;
d3e71559 3360 memory_region_unref(bounce.mr);
c2cba0ff 3361 atomic_mb_set(&bounce.in_use, false);
ba223c29 3362 cpu_notify_map_clients();
6d16c2f8 3363}
d0ecd2aa 3364
a8170e5e
AK
3365void *cpu_physical_memory_map(hwaddr addr,
3366 hwaddr *plen,
ac1970fb
AK
3367 int is_write)
3368{
3369 return address_space_map(&address_space_memory, addr, plen, is_write);
3370}
3371
a8170e5e
AK
3372void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3373 int is_write, hwaddr access_len)
ac1970fb
AK
3374{
3375 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3376}
3377
0ce265ff
PB
3378#define ARG1_DECL AddressSpace *as
3379#define ARG1 as
3380#define SUFFIX
3381#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3382#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3383#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3384#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3385#define RCU_READ_LOCK(...) rcu_read_lock()
3386#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3387#include "memory_ldst.inc.c"
1e78bcc1 3388
1f4e496e
PB
3389int64_t address_space_cache_init(MemoryRegionCache *cache,
3390 AddressSpace *as,
3391 hwaddr addr,
3392 hwaddr len,
3393 bool is_write)
3394{
90c4fe5f
PB
3395 cache->len = len;
3396 cache->as = as;
3397 cache->xlat = addr;
3398 return len;
1f4e496e
PB
3399}
3400
3401void address_space_cache_invalidate(MemoryRegionCache *cache,
3402 hwaddr addr,
3403 hwaddr access_len)
3404{
1f4e496e
PB
3405}
3406
3407void address_space_cache_destroy(MemoryRegionCache *cache)
3408{
90c4fe5f 3409 cache->as = NULL;
1f4e496e
PB
3410}
3411
3412#define ARG1_DECL MemoryRegionCache *cache
3413#define ARG1 cache
3414#define SUFFIX _cached
90c4fe5f
PB
3415#define TRANSLATE(addr, ...) \
3416 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
1f4e496e 3417#define IS_DIRECT(mr, is_write) true
90c4fe5f
PB
3418#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3419#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3420#define RCU_READ_LOCK() rcu_read_lock()
3421#define RCU_READ_UNLOCK() rcu_read_unlock()
1f4e496e
PB
3422#include "memory_ldst.inc.c"
3423
5e2972fd 3424/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3425int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3426 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3427{
3428 int l;
a8170e5e 3429 hwaddr phys_addr;
9b3c35e0 3430 target_ulong page;
13eb76e0 3431
79ca7a1b 3432 cpu_synchronize_state(cpu);
13eb76e0 3433 while (len > 0) {
5232e4c7
PM
3434 int asidx;
3435 MemTxAttrs attrs;
3436
13eb76e0 3437 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3438 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3439 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3440 /* if no physical page mapped, return an error */
3441 if (phys_addr == -1)
3442 return -1;
3443 l = (page + TARGET_PAGE_SIZE) - addr;
3444 if (l > len)
3445 l = len;
5e2972fd 3446 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3447 if (is_write) {
5232e4c7
PM
3448 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3449 phys_addr, buf, l);
2e38847b 3450 } else {
5232e4c7
PM
3451 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3452 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3453 buf, l, 0);
2e38847b 3454 }
13eb76e0
FB
3455 len -= l;
3456 buf += l;
3457 addr += l;
3458 }
3459 return 0;
3460}
038629a6
DDAG
3461
3462/*
3463 * Allows code that needs to deal with migration bitmaps etc to still be built
3464 * target independent.
3465 */
20afaed9 3466size_t qemu_target_page_size(void)
038629a6 3467{
20afaed9 3468 return TARGET_PAGE_SIZE;
038629a6
DDAG
3469}
3470
46d702b1
JQ
3471int qemu_target_page_bits(void)
3472{
3473 return TARGET_PAGE_BITS;
3474}
3475
3476int qemu_target_page_bits_min(void)
3477{
3478 return TARGET_PAGE_BITS_MIN;
3479}
a68fe89c 3480#endif
13eb76e0 3481
8e4a424b
BS
3482/*
3483 * A helper function for the _utterly broken_ virtio device model to find out if
3484 * it's running on a big endian machine. Don't do this at home kids!
3485 */
98ed8ecf
GK
3486bool target_words_bigendian(void);
3487bool target_words_bigendian(void)
8e4a424b
BS
3488{
3489#if defined(TARGET_WORDS_BIGENDIAN)
3490 return true;
3491#else
3492 return false;
3493#endif
3494}
3495
76f35538 3496#ifndef CONFIG_USER_ONLY
a8170e5e 3497bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3498{
5c8a00ce 3499 MemoryRegion*mr;
149f54b5 3500 hwaddr l = 1;
41063e1e 3501 bool res;
76f35538 3502
41063e1e 3503 rcu_read_lock();
5c8a00ce
PB
3504 mr = address_space_translate(&address_space_memory,
3505 phys_addr, &phys_addr, &l, false);
76f35538 3506
41063e1e
PB
3507 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3508 rcu_read_unlock();
3509 return res;
76f35538 3510}
bd2fa51f 3511
e3807054 3512int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3513{
3514 RAMBlock *block;
e3807054 3515 int ret = 0;
bd2fa51f 3516
0dc3f44a 3517 rcu_read_lock();
99e15582 3518 RAMBLOCK_FOREACH(block) {
e3807054
DDAG
3519 ret = func(block->idstr, block->host, block->offset,
3520 block->used_length, opaque);
3521 if (ret) {
3522 break;
3523 }
bd2fa51f 3524 }
0dc3f44a 3525 rcu_read_unlock();
e3807054 3526 return ret;
bd2fa51f 3527}
d3a5038c
DDAG
3528
3529/*
3530 * Unmap pages of memory from start to start+length such that
3531 * they a) read as 0, b) Trigger whatever fault mechanism
3532 * the OS provides for postcopy.
3533 * The pages must be unmapped by the end of the function.
3534 * Returns: 0 on success, none-0 on failure
3535 *
3536 */
3537int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3538{
3539 int ret = -1;
3540
3541 uint8_t *host_startaddr = rb->host + start;
3542
3543 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3544 error_report("ram_block_discard_range: Unaligned start address: %p",
3545 host_startaddr);
3546 goto err;
3547 }
3548
3549 if ((start + length) <= rb->used_length) {
3550 uint8_t *host_endaddr = host_startaddr + length;
3551 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3552 error_report("ram_block_discard_range: Unaligned end address: %p",
3553 host_endaddr);
3554 goto err;
3555 }
3556
3557 errno = ENOTSUP; /* If we are missing MADVISE etc */
3558
e2fa71f5 3559 if (rb->page_size == qemu_host_page_size) {
d3a5038c 3560#if defined(CONFIG_MADVISE)
e2fa71f5
DDAG
3561 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3562 * freeing the page.
3563 */
3564 ret = madvise(host_startaddr, length, MADV_DONTNEED);
d3a5038c 3565#endif
e2fa71f5
DDAG
3566 } else {
3567 /* Huge page case - unfortunately it can't do DONTNEED, but
3568 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3569 * huge page file.
3570 */
3571#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3572 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3573 start, length);
3574#endif
3575 }
d3a5038c
DDAG
3576 if (ret) {
3577 ret = -errno;
3578 error_report("ram_block_discard_range: Failed to discard range "
3579 "%s:%" PRIx64 " +%zx (%d)",
3580 rb->idstr, start, length, ret);
3581 }
3582 } else {
3583 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3584 "/%zx/" RAM_ADDR_FMT")",
3585 rb->idstr, start, length, rb->used_length);
3586 }
3587
3588err:
3589 return ret;
3590}
3591
ec3f8c99 3592#endif