]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
block/nfs: fix QMP to match debug option
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
debc7065
FB
35* QEMU PC System emulator::
36* QEMU System emulator for non PC targets::
83195237 37* QEMU User space emulator::
78e87797 38* Implementation notes::
7544a042 39* License::
debc7065
FB
40* Index::
41@end menu
42@end ifnottex
43
44@contents
45
46@node Introduction
386405f7
FB
47@chapter Introduction
48
debc7065
FB
49@menu
50* intro_features:: Features
51@end menu
52
53@node intro_features
322d0c66 54@section Features
386405f7 55
1f673135
FB
56QEMU is a FAST! processor emulator using dynamic translation to
57achieve good emulation speed.
1eb20527 58
1f3e7e41 59@cindex operating modes
1eb20527 60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex system emulation
1f3e7e41 64@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
65example a PC), including one or several processors and various
66peripherals. It can be used to launch different Operating Systems
67without rebooting the PC or to debug system code.
1eb20527 68
7544a042 69@cindex user mode emulation
1f3e7e41 70@item User mode emulation. In this mode, QEMU can launch
83195237 71processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
72launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
73to ease cross-compilation and cross-debugging.
1eb20527
FB
74
75@end itemize
76
1f3e7e41
PB
77QEMU has the following features:
78
79@itemize
80@item QEMU can run without a host kernel driver and yet gives acceptable
81performance. It uses dynamic translation to native code for reasonable speed,
82with support for self-modifying code and precise exceptions.
83
84@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
85Windows) and architectures.
86
87@item It performs accurate software emulation of the FPU.
88@end itemize
322d0c66 89
1f3e7e41 90QEMU user mode emulation has the following features:
52c00a5f 91@itemize
1f3e7e41
PB
92@item Generic Linux system call converter, including most ioctls.
93
94@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
95
96@item Accurate signal handling by remapping host signals to target signals.
97@end itemize
98
99QEMU full system emulation has the following features:
100@itemize
101@item
102QEMU uses a full software MMU for maximum portability.
103
104@item
105QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
106execute most of the guest code natively, while
107continuing to emulate the rest of the machine.
108
109@item
110Various hardware devices can be emulated and in some cases, host
111devices (e.g. serial and parallel ports, USB, drives) can be used
112transparently by the guest Operating System. Host device passthrough
113can be used for talking to external physical peripherals (e.g. a
114webcam, modem or tape drive).
115
116@item
117Symmetric multiprocessing (SMP) support. Currently, an in-kernel
118accelerator is required to use more than one host CPU for emulation.
119
52c00a5f 120@end itemize
386405f7 121
0806e3f6 122
debc7065 123@node QEMU PC System emulator
3f9f3aa1 124@chapter QEMU PC System emulator
7544a042 125@cindex system emulation (PC)
1eb20527 126
debc7065
FB
127@menu
128* pcsys_introduction:: Introduction
129* pcsys_quickstart:: Quick Start
130* sec_invocation:: Invocation
a40db1b3
PM
131* pcsys_keys:: Keys in the graphical frontends
132* mux_keys:: Keys in the character backend multiplexer
debc7065
FB
133* pcsys_monitor:: QEMU Monitor
134* disk_images:: Disk Images
135* pcsys_network:: Network emulation
576fd0a1 136* pcsys_other_devs:: Other Devices
debc7065
FB
137* direct_linux_boot:: Direct Linux Boot
138* pcsys_usb:: USB emulation
f858dcae 139* vnc_security:: VNC security
debc7065
FB
140* gdb_usage:: GDB usage
141* pcsys_os_specific:: Target OS specific information
142@end menu
143
144@node pcsys_introduction
0806e3f6
FB
145@section Introduction
146
147@c man begin DESCRIPTION
148
3f9f3aa1
FB
149The QEMU PC System emulator simulates the
150following peripherals:
0806e3f6
FB
151
152@itemize @minus
5fafdf24 153@item
15a34c63 154i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 155@item
15a34c63
FB
156Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
157extensions (hardware level, including all non standard modes).
0806e3f6
FB
158@item
159PS/2 mouse and keyboard
5fafdf24 160@item
15a34c63 1612 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
162@item
163Floppy disk
5fafdf24 164@item
3a2eeac0 165PCI and ISA network adapters
0806e3f6 166@item
05d5818c
FB
167Serial ports
168@item
23076bb3
CM
169IPMI BMC, either and internal or external one
170@item
c0fe3827
FB
171Creative SoundBlaster 16 sound card
172@item
173ENSONIQ AudioPCI ES1370 sound card
174@item
e5c9a13e
AZ
175Intel 82801AA AC97 Audio compatible sound card
176@item
7d72e762
GH
177Intel HD Audio Controller and HDA codec
178@item
2d983446 179Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 180@item
26463dbc
AZ
181Gravis Ultrasound GF1 sound card
182@item
cc53d26d 183CS4231A compatible sound card
184@item
b389dbfb 185PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
186@end itemize
187
3f9f3aa1
FB
188SMP is supported with up to 255 CPUs.
189
a8ad4159 190QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
191VGA BIOS.
192
c0fe3827
FB
193QEMU uses YM3812 emulation by Tatsuyuki Satoh.
194
2d983446 195QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 196by Tibor "TS" Schütz.
423d65f4 197
1a1a0e20 198Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 199QEMU must be told to not have parallel ports to have working GUS.
720036a5 200
201@example
3804da9d 202qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 203@end example
204
205Alternatively:
206@example
3804da9d 207qemu-system-i386 dos.img -device gus,irq=5
720036a5 208@end example
209
210Or some other unclaimed IRQ.
211
cc53d26d 212CS4231A is the chip used in Windows Sound System and GUSMAX products
213
0806e3f6
FB
214@c man end
215
debc7065 216@node pcsys_quickstart
1eb20527 217@section Quick Start
7544a042 218@cindex quick start
1eb20527 219
285dc330 220Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
221
222@example
3804da9d 223qemu-system-i386 linux.img
0806e3f6
FB
224@end example
225
226Linux should boot and give you a prompt.
227
6cc721cf 228@node sec_invocation
ec410fc9
FB
229@section Invocation
230
231@example
0806e3f6 232@c man begin SYNOPSIS
8485140f 233@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 234@c man end
ec410fc9
FB
235@end example
236
0806e3f6 237@c man begin OPTIONS
d2c639d6
BS
238@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
239targets do not need a disk image.
ec410fc9 240
5824d651 241@include qemu-options.texi
ec410fc9 242
3e11db9a
FB
243@c man end
244
debc7065 245@node pcsys_keys
a40db1b3 246@section Keys in the graphical frontends
3e11db9a
FB
247
248@c man begin OPTIONS
249
de1db2a1
BH
250During the graphical emulation, you can use special key combinations to change
251modes. The default key mappings are shown below, but if you use @code{-alt-grab}
252then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
253@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
254
a1b74fe8 255@table @key
f9859310 256@item Ctrl-Alt-f
7544a042 257@kindex Ctrl-Alt-f
a1b74fe8 258Toggle full screen
a0a821a4 259
d6a65ba3
JK
260@item Ctrl-Alt-+
261@kindex Ctrl-Alt-+
262Enlarge the screen
263
264@item Ctrl-Alt--
265@kindex Ctrl-Alt--
266Shrink the screen
267
c4a735f9 268@item Ctrl-Alt-u
7544a042 269@kindex Ctrl-Alt-u
c4a735f9 270Restore the screen's un-scaled dimensions
271
f9859310 272@item Ctrl-Alt-n
7544a042 273@kindex Ctrl-Alt-n
a0a821a4
FB
274Switch to virtual console 'n'. Standard console mappings are:
275@table @emph
276@item 1
277Target system display
278@item 2
279Monitor
280@item 3
281Serial port
a1b74fe8
FB
282@end table
283
f9859310 284@item Ctrl-Alt
7544a042 285@kindex Ctrl-Alt
a0a821a4
FB
286Toggle mouse and keyboard grab.
287@end table
288
7544a042
SW
289@kindex Ctrl-Up
290@kindex Ctrl-Down
291@kindex Ctrl-PageUp
292@kindex Ctrl-PageDown
3e11db9a
FB
293In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
294@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
295
a40db1b3
PM
296@c man end
297
298@node mux_keys
299@section Keys in the character backend multiplexer
300
301@c man begin OPTIONS
302
303During emulation, if you are using a character backend multiplexer
304(which is the default if you are using @option{-nographic}) then
305several commands are available via an escape sequence. These
306key sequences all start with an escape character, which is @key{Ctrl-a}
307by default, but can be changed with @option{-echr}. The list below assumes
308you're using the default.
ec410fc9
FB
309
310@table @key
a1b74fe8 311@item Ctrl-a h
7544a042 312@kindex Ctrl-a h
ec410fc9 313Print this help
3b46e624 314@item Ctrl-a x
7544a042 315@kindex Ctrl-a x
366dfc52 316Exit emulator
3b46e624 317@item Ctrl-a s
7544a042 318@kindex Ctrl-a s
1f47a922 319Save disk data back to file (if -snapshot)
20d8a3ed 320@item Ctrl-a t
7544a042 321@kindex Ctrl-a t
d2c639d6 322Toggle console timestamps
a1b74fe8 323@item Ctrl-a b
7544a042 324@kindex Ctrl-a b
1f673135 325Send break (magic sysrq in Linux)
a1b74fe8 326@item Ctrl-a c
7544a042 327@kindex Ctrl-a c
a40db1b3
PM
328Rotate between the frontends connected to the multiplexer (usually
329this switches between the monitor and the console)
a1b74fe8 330@item Ctrl-a Ctrl-a
a40db1b3
PM
331@kindex Ctrl-a Ctrl-a
332Send the escape character to the frontend
ec410fc9 333@end table
0806e3f6
FB
334@c man end
335
336@ignore
337
1f673135
FB
338@c man begin SEEALSO
339The HTML documentation of QEMU for more precise information and Linux
340user mode emulator invocation.
341@c man end
342
343@c man begin AUTHOR
344Fabrice Bellard
345@c man end
346
347@end ignore
348
debc7065 349@node pcsys_monitor
1f673135 350@section QEMU Monitor
7544a042 351@cindex QEMU monitor
1f673135
FB
352
353The QEMU monitor is used to give complex commands to the QEMU
354emulator. You can use it to:
355
356@itemize @minus
357
358@item
e598752a 359Remove or insert removable media images
89dfe898 360(such as CD-ROM or floppies).
1f673135 361
5fafdf24 362@item
1f673135
FB
363Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
364from a disk file.
365
366@item Inspect the VM state without an external debugger.
367
368@end itemize
369
370@subsection Commands
371
372The following commands are available:
373
2313086a 374@include qemu-monitor.texi
0806e3f6 375
2cd8af2d
PB
376@include qemu-monitor-info.texi
377
1f673135
FB
378@subsection Integer expressions
379
380The monitor understands integers expressions for every integer
381argument. You can use register names to get the value of specifics
382CPU registers by prefixing them with @emph{$}.
ec410fc9 383
1f47a922
FB
384@node disk_images
385@section Disk Images
386
acd935ef
FB
387Since version 0.6.1, QEMU supports many disk image formats, including
388growable disk images (their size increase as non empty sectors are
13a2e80f
FB
389written), compressed and encrypted disk images. Version 0.8.3 added
390the new qcow2 disk image format which is essential to support VM
391snapshots.
1f47a922 392
debc7065
FB
393@menu
394* disk_images_quickstart:: Quick start for disk image creation
395* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 396* vm_snapshots:: VM snapshots
debc7065 397* qemu_img_invocation:: qemu-img Invocation
975b092b 398* qemu_nbd_invocation:: qemu-nbd Invocation
665b5d0d 399* qemu_ga_invocation:: qemu-ga Invocation
d3067b02 400* disk_images_formats:: Disk image file formats
19cb3738 401* host_drives:: Using host drives
debc7065 402* disk_images_fat_images:: Virtual FAT disk images
75818250 403* disk_images_nbd:: NBD access
42af9c30 404* disk_images_sheepdog:: Sheepdog disk images
00984e39 405* disk_images_iscsi:: iSCSI LUNs
8809e289 406* disk_images_gluster:: GlusterFS disk images
0a12ec87 407* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
408@end menu
409
410@node disk_images_quickstart
acd935ef
FB
411@subsection Quick start for disk image creation
412
413You can create a disk image with the command:
1f47a922 414@example
acd935ef 415qemu-img create myimage.img mysize
1f47a922 416@end example
acd935ef
FB
417where @var{myimage.img} is the disk image filename and @var{mysize} is its
418size in kilobytes. You can add an @code{M} suffix to give the size in
419megabytes and a @code{G} suffix for gigabytes.
420
debc7065 421See @ref{qemu_img_invocation} for more information.
1f47a922 422
debc7065 423@node disk_images_snapshot_mode
1f47a922
FB
424@subsection Snapshot mode
425
426If you use the option @option{-snapshot}, all disk images are
427considered as read only. When sectors in written, they are written in
428a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
429write back to the raw disk images by using the @code{commit} monitor
430command (or @key{C-a s} in the serial console).
1f47a922 431
13a2e80f
FB
432@node vm_snapshots
433@subsection VM snapshots
434
435VM snapshots are snapshots of the complete virtual machine including
436CPU state, RAM, device state and the content of all the writable
437disks. In order to use VM snapshots, you must have at least one non
438removable and writable block device using the @code{qcow2} disk image
439format. Normally this device is the first virtual hard drive.
440
441Use the monitor command @code{savevm} to create a new VM snapshot or
442replace an existing one. A human readable name can be assigned to each
19d36792 443snapshot in addition to its numerical ID.
13a2e80f
FB
444
445Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
446a VM snapshot. @code{info snapshots} lists the available snapshots
447with their associated information:
448
449@example
450(qemu) info snapshots
451Snapshot devices: hda
452Snapshot list (from hda):
453ID TAG VM SIZE DATE VM CLOCK
4541 start 41M 2006-08-06 12:38:02 00:00:14.954
4552 40M 2006-08-06 12:43:29 00:00:18.633
4563 msys 40M 2006-08-06 12:44:04 00:00:23.514
457@end example
458
459A VM snapshot is made of a VM state info (its size is shown in
460@code{info snapshots}) and a snapshot of every writable disk image.
461The VM state info is stored in the first @code{qcow2} non removable
462and writable block device. The disk image snapshots are stored in
463every disk image. The size of a snapshot in a disk image is difficult
464to evaluate and is not shown by @code{info snapshots} because the
465associated disk sectors are shared among all the snapshots to save
19d36792
FB
466disk space (otherwise each snapshot would need a full copy of all the
467disk images).
13a2e80f
FB
468
469When using the (unrelated) @code{-snapshot} option
470(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
471but they are deleted as soon as you exit QEMU.
472
473VM snapshots currently have the following known limitations:
474@itemize
5fafdf24 475@item
13a2e80f
FB
476They cannot cope with removable devices if they are removed or
477inserted after a snapshot is done.
5fafdf24 478@item
13a2e80f
FB
479A few device drivers still have incomplete snapshot support so their
480state is not saved or restored properly (in particular USB).
481@end itemize
482
acd935ef
FB
483@node qemu_img_invocation
484@subsection @code{qemu-img} Invocation
1f47a922 485
acd935ef 486@include qemu-img.texi
05efe46e 487
975b092b
TS
488@node qemu_nbd_invocation
489@subsection @code{qemu-nbd} Invocation
490
491@include qemu-nbd.texi
492
665b5d0d
MAL
493@node qemu_ga_invocation
494@subsection @code{qemu-ga} Invocation
495
496@include qemu-ga.texi
497
d3067b02
KW
498@node disk_images_formats
499@subsection Disk image file formats
500
501QEMU supports many image file formats that can be used with VMs as well as with
502any of the tools (like @code{qemu-img}). This includes the preferred formats
503raw and qcow2 as well as formats that are supported for compatibility with
504older QEMU versions or other hypervisors.
505
506Depending on the image format, different options can be passed to
507@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
508This section describes each format and the options that are supported for it.
509
510@table @option
511@item raw
512
513Raw disk image format. This format has the advantage of
514being simple and easily exportable to all other emulators. If your
515file system supports @emph{holes} (for example in ext2 or ext3 on
516Linux or NTFS on Windows), then only the written sectors will reserve
517space. Use @code{qemu-img info} to know the real size used by the
518image or @code{ls -ls} on Unix/Linux.
519
06247428
HT
520Supported options:
521@table @code
522@item preallocation
523Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
524@code{falloc} mode preallocates space for image by calling posix_fallocate().
525@code{full} mode preallocates space for image by writing zeros to underlying
526storage.
527@end table
528
d3067b02
KW
529@item qcow2
530QEMU image format, the most versatile format. Use it to have smaller
531images (useful if your filesystem does not supports holes, for example
a1f688f4
MA
532on Windows), zlib based compression and support of multiple VM
533snapshots.
d3067b02
KW
534
535Supported options:
536@table @code
537@item compat
7fa9e1f9
SH
538Determines the qcow2 version to use. @code{compat=0.10} uses the
539traditional image format that can be read by any QEMU since 0.10.
d3067b02 540@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
541newer understand (this is the default). Amongst others, this includes
542zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
543
544@item backing_file
545File name of a base image (see @option{create} subcommand)
546@item backing_fmt
547Image format of the base image
548@item encryption
136cd19d 549If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 550
136cd19d
DB
551The use of encryption in qcow and qcow2 images is considered to be flawed by
552modern cryptography standards, suffering from a number of design problems:
553
554@itemize @minus
555@item The AES-CBC cipher is used with predictable initialization vectors based
556on the sector number. This makes it vulnerable to chosen plaintext attacks
557which can reveal the existence of encrypted data.
558@item The user passphrase is directly used as the encryption key. A poorly
559chosen or short passphrase will compromise the security of the encryption.
560@item In the event of the passphrase being compromised there is no way to
561change the passphrase to protect data in any qcow images. The files must
562be cloned, using a different encryption passphrase in the new file. The
563original file must then be securely erased using a program like shred,
564though even this is ineffective with many modern storage technologies.
565@end itemize
566
a1f688f4
MA
567Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
568it will go away in a future release. Users are recommended to use an
569alternative encryption technology such as the Linux dm-crypt / LUKS
570system.
d3067b02
KW
571
572@item cluster_size
573Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
574sizes can improve the image file size whereas larger cluster sizes generally
575provide better performance.
576
577@item preallocation
0e4271b7
HT
578Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
579@code{full}). An image with preallocated metadata is initially larger but can
580improve performance when the image needs to grow. @code{falloc} and @code{full}
581preallocations are like the same options of @code{raw} format, but sets up
582metadata also.
d3067b02
KW
583
584@item lazy_refcounts
585If this option is set to @code{on}, reference count updates are postponed with
586the goal of avoiding metadata I/O and improving performance. This is
587particularly interesting with @option{cache=writethrough} which doesn't batch
588metadata updates. The tradeoff is that after a host crash, the reference count
589tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
590check -r all} is required, which may take some time.
591
592This option can only be enabled if @code{compat=1.1} is specified.
593
4ab15590 594@item nocow
bc3a7f90 595If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
596valid on btrfs, no effect on other file systems.
597
598Btrfs has low performance when hosting a VM image file, even more when the guest
599on the VM also using btrfs as file system. Turning off COW is a way to mitigate
600this bad performance. Generally there are two ways to turn off COW on btrfs:
601a) Disable it by mounting with nodatacow, then all newly created files will be
602NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
603does.
604
605Note: this option is only valid to new or empty files. If there is an existing
606file which is COW and has data blocks already, it couldn't be changed to NOCOW
607by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 608the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 609
d3067b02
KW
610@end table
611
612@item qed
613Old QEMU image format with support for backing files and compact image files
614(when your filesystem or transport medium does not support holes).
615
616When converting QED images to qcow2, you might want to consider using the
617@code{lazy_refcounts=on} option to get a more QED-like behaviour.
618
619Supported options:
620@table @code
621@item backing_file
622File name of a base image (see @option{create} subcommand).
623@item backing_fmt
624Image file format of backing file (optional). Useful if the format cannot be
625autodetected because it has no header, like some vhd/vpc files.
626@item cluster_size
627Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
628cluster sizes can improve the image file size whereas larger cluster sizes
629generally provide better performance.
630@item table_size
631Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
632and 16). There is normally no need to change this value but this option can be
633used for performance benchmarking.
634@end table
635
636@item qcow
637Old QEMU image format with support for backing files, compact image files,
638encryption and compression.
639
640Supported options:
641@table @code
642@item backing_file
643File name of a base image (see @option{create} subcommand)
644@item encryption
645If this option is set to @code{on}, the image is encrypted.
646@end table
647
d3067b02
KW
648@item vdi
649VirtualBox 1.1 compatible image format.
650Supported options:
651@table @code
652@item static
653If this option is set to @code{on}, the image is created with metadata
654preallocation.
655@end table
656
657@item vmdk
658VMware 3 and 4 compatible image format.
659
660Supported options:
661@table @code
662@item backing_file
663File name of a base image (see @option{create} subcommand).
664@item compat6
665Create a VMDK version 6 image (instead of version 4)
f249924e
JK
666@item hwversion
667Specify vmdk virtual hardware version. Compat6 flag cannot be enabled
668if hwversion is specified.
d3067b02
KW
669@item subformat
670Specifies which VMDK subformat to use. Valid options are
671@code{monolithicSparse} (default),
672@code{monolithicFlat},
673@code{twoGbMaxExtentSparse},
674@code{twoGbMaxExtentFlat} and
675@code{streamOptimized}.
676@end table
677
678@item vpc
679VirtualPC compatible image format (VHD).
680Supported options:
681@table @code
682@item subformat
683Specifies which VHD subformat to use. Valid options are
684@code{dynamic} (default) and @code{fixed}.
685@end table
8282db1b
JC
686
687@item VHDX
688Hyper-V compatible image format (VHDX).
689Supported options:
690@table @code
691@item subformat
692Specifies which VHDX subformat to use. Valid options are
693@code{dynamic} (default) and @code{fixed}.
694@item block_state_zero
30af51ce
JC
695Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
696or @code{off}. When set to @code{off}, new blocks will be created as
697@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
698arbitrary data for those blocks. Do not set to @code{off} when using
699@code{qemu-img convert} with @code{subformat=dynamic}.
8282db1b
JC
700@item block_size
701Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
702@item log_size
703Log size; min 1 MB.
704@end table
d3067b02
KW
705@end table
706
707@subsubsection Read-only formats
708More disk image file formats are supported in a read-only mode.
709@table @option
710@item bochs
711Bochs images of @code{growing} type.
712@item cloop
713Linux Compressed Loop image, useful only to reuse directly compressed
714CD-ROM images present for example in the Knoppix CD-ROMs.
715@item dmg
716Apple disk image.
717@item parallels
718Parallels disk image format.
719@end table
720
721
19cb3738
FB
722@node host_drives
723@subsection Using host drives
724
725In addition to disk image files, QEMU can directly access host
726devices. We describe here the usage for QEMU version >= 0.8.3.
727
728@subsubsection Linux
729
730On Linux, you can directly use the host device filename instead of a
4be456f1 731disk image filename provided you have enough privileges to access
92a539d2 732it. For example, use @file{/dev/cdrom} to access to the CDROM.
19cb3738 733
f542086d 734@table @code
19cb3738
FB
735@item CD
736You can specify a CDROM device even if no CDROM is loaded. QEMU has
737specific code to detect CDROM insertion or removal. CDROM ejection by
738the guest OS is supported. Currently only data CDs are supported.
739@item Floppy
740You can specify a floppy device even if no floppy is loaded. Floppy
741removal is currently not detected accurately (if you change floppy
742without doing floppy access while the floppy is not loaded, the guest
743OS will think that the same floppy is loaded).
92a539d2
MA
744Use of the host's floppy device is deprecated, and support for it will
745be removed in a future release.
19cb3738
FB
746@item Hard disks
747Hard disks can be used. Normally you must specify the whole disk
748(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
749see it as a partitioned disk. WARNING: unless you know what you do, it
750is better to only make READ-ONLY accesses to the hard disk otherwise
751you may corrupt your host data (use the @option{-snapshot} command
752line option or modify the device permissions accordingly).
753@end table
754
755@subsubsection Windows
756
01781963
FB
757@table @code
758@item CD
4be456f1 759The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
760alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
761supported as an alias to the first CDROM drive.
19cb3738 762
e598752a 763Currently there is no specific code to handle removable media, so it
19cb3738
FB
764is better to use the @code{change} or @code{eject} monitor commands to
765change or eject media.
01781963 766@item Hard disks
89dfe898 767Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
768where @var{N} is the drive number (0 is the first hard disk).
769
770WARNING: unless you know what you do, it is better to only make
771READ-ONLY accesses to the hard disk otherwise you may corrupt your
772host data (use the @option{-snapshot} command line so that the
773modifications are written in a temporary file).
774@end table
775
19cb3738
FB
776
777@subsubsection Mac OS X
778
5fafdf24 779@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 780
e598752a 781Currently there is no specific code to handle removable media, so it
19cb3738
FB
782is better to use the @code{change} or @code{eject} monitor commands to
783change or eject media.
784
debc7065 785@node disk_images_fat_images
2c6cadd4
FB
786@subsection Virtual FAT disk images
787
788QEMU can automatically create a virtual FAT disk image from a
789directory tree. In order to use it, just type:
790
5fafdf24 791@example
3804da9d 792qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
793@end example
794
795Then you access access to all the files in the @file{/my_directory}
796directory without having to copy them in a disk image or to export
797them via SAMBA or NFS. The default access is @emph{read-only}.
798
799Floppies can be emulated with the @code{:floppy:} option:
800
5fafdf24 801@example
3804da9d 802qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
803@end example
804
805A read/write support is available for testing (beta stage) with the
806@code{:rw:} option:
807
5fafdf24 808@example
3804da9d 809qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
810@end example
811
812What you should @emph{never} do:
813@itemize
814@item use non-ASCII filenames ;
815@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
816@item expect it to work when loadvm'ing ;
817@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
818@end itemize
819
75818250
TS
820@node disk_images_nbd
821@subsection NBD access
822
823QEMU can access directly to block device exported using the Network Block Device
824protocol.
825
826@example
1d7d2a9d 827qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
828@end example
829
830If the NBD server is located on the same host, you can use an unix socket instead
831of an inet socket:
832
833@example
1d7d2a9d 834qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
835@end example
836
837In this case, the block device must be exported using qemu-nbd:
838
839@example
840qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
841@end example
842
9d85d557 843The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
844@example
845qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
846@end example
847
1d7d2a9d 848@noindent
75818250
TS
849and then you can use it with two guests:
850@example
1d7d2a9d
PB
851qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
852qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
853@end example
854
1d7d2a9d
PB
855If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
856own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 857@example
1d7d2a9d
PB
858qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
859qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
860@end example
861
862The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
863also available. Here are some example of the older syntax:
864@example
865qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
866qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
867qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
868@end example
869
42af9c30
MK
870@node disk_images_sheepdog
871@subsection Sheepdog disk images
872
873Sheepdog is a distributed storage system for QEMU. It provides highly
874available block level storage volumes that can be attached to
875QEMU-based virtual machines.
876
877You can create a Sheepdog disk image with the command:
878@example
5d6768e3 879qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
880@end example
881where @var{image} is the Sheepdog image name and @var{size} is its
882size.
883
884To import the existing @var{filename} to Sheepdog, you can use a
885convert command.
886@example
5d6768e3 887qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
888@end example
889
890You can boot from the Sheepdog disk image with the command:
891@example
5d6768e3 892qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
893@end example
894
895You can also create a snapshot of the Sheepdog image like qcow2.
896@example
5d6768e3 897qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
898@end example
899where @var{tag} is a tag name of the newly created snapshot.
900
901To boot from the Sheepdog snapshot, specify the tag name of the
902snapshot.
903@example
5d6768e3 904qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
905@end example
906
907You can create a cloned image from the existing snapshot.
908@example
5d6768e3 909qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
910@end example
911where @var{base} is a image name of the source snapshot and @var{tag}
912is its tag name.
913
1b8bbb46
MK
914You can use an unix socket instead of an inet socket:
915
916@example
917qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
918@end example
919
42af9c30
MK
920If the Sheepdog daemon doesn't run on the local host, you need to
921specify one of the Sheepdog servers to connect to.
922@example
5d6768e3
MK
923qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
924qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
925@end example
926
00984e39
RS
927@node disk_images_iscsi
928@subsection iSCSI LUNs
929
930iSCSI is a popular protocol used to access SCSI devices across a computer
931network.
932
933There are two different ways iSCSI devices can be used by QEMU.
934
935The first method is to mount the iSCSI LUN on the host, and make it appear as
936any other ordinary SCSI device on the host and then to access this device as a
937/dev/sd device from QEMU. How to do this differs between host OSes.
938
939The second method involves using the iSCSI initiator that is built into
940QEMU. This provides a mechanism that works the same way regardless of which
941host OS you are running QEMU on. This section will describe this second method
942of using iSCSI together with QEMU.
943
944In QEMU, iSCSI devices are described using special iSCSI URLs
945
946@example
947URL syntax:
948iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
949@end example
950
951Username and password are optional and only used if your target is set up
952using CHAP authentication for access control.
953Alternatively the username and password can also be set via environment
954variables to have these not show up in the process list
955
956@example
957export LIBISCSI_CHAP_USERNAME=<username>
958export LIBISCSI_CHAP_PASSWORD=<password>
959iscsi://<host>/<target-iqn-name>/<lun>
960@end example
961
f9dadc98
RS
962Various session related parameters can be set via special options, either
963in a configuration file provided via '-readconfig' or directly on the
964command line.
965
31459f46
RS
966If the initiator-name is not specified qemu will use a default name
967of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
968virtual machine.
969
970
f9dadc98
RS
971@example
972Setting a specific initiator name to use when logging in to the target
973-iscsi initiator-name=iqn.qemu.test:my-initiator
974@end example
975
976@example
977Controlling which type of header digest to negotiate with the target
978-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
979@end example
980
981These can also be set via a configuration file
982@example
983[iscsi]
984 user = "CHAP username"
985 password = "CHAP password"
986 initiator-name = "iqn.qemu.test:my-initiator"
987 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
988 header-digest = "CRC32C"
989@end example
990
991
992Setting the target name allows different options for different targets
993@example
994[iscsi "iqn.target.name"]
995 user = "CHAP username"
996 password = "CHAP password"
997 initiator-name = "iqn.qemu.test:my-initiator"
998 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
999 header-digest = "CRC32C"
1000@end example
1001
1002
1003Howto use a configuration file to set iSCSI configuration options:
1004@example
1005cat >iscsi.conf <<EOF
1006[iscsi]
1007 user = "me"
1008 password = "my password"
1009 initiator-name = "iqn.qemu.test:my-initiator"
1010 header-digest = "CRC32C"
1011EOF
1012
1013qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1014 -readconfig iscsi.conf
1015@end example
1016
1017
00984e39
RS
1018Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1019@example
1020This example shows how to set up an iSCSI target with one CDROM and one DISK
1021using the Linux STGT software target. This target is available on Red Hat based
1022systems as the package 'scsi-target-utils'.
1023
1024tgtd --iscsi portal=127.0.0.1:3260
1025tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1026tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1027 -b /IMAGES/disk.img --device-type=disk
1028tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1029 -b /IMAGES/cd.iso --device-type=cd
1030tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1031
f9dadc98
RS
1032qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1033 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1034 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1035@end example
1036
8809e289
BR
1037@node disk_images_gluster
1038@subsection GlusterFS disk images
00984e39 1039
8809e289
BR
1040GlusterFS is an user space distributed file system.
1041
1042You can boot from the GlusterFS disk image with the command:
1043@example
1044qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1045@end example
1046
1047@var{gluster} is the protocol.
1048
1049@var{transport} specifies the transport type used to connect to gluster
1050management daemon (glusterd). Valid transport types are
1051tcp, unix and rdma. If a transport type isn't specified, then tcp
1052type is assumed.
1053
1054@var{server} specifies the server where the volume file specification for
1055the given volume resides. This can be either hostname, ipv4 address
1056or ipv6 address. ipv6 address needs to be within square brackets [ ].
d274e07c 1057If transport type is unix, then @var{server} field should not be specified.
8809e289
BR
1058Instead @var{socket} field needs to be populated with the path to unix domain
1059socket.
1060
1061@var{port} is the port number on which glusterd is listening. This is optional
1062and if not specified, QEMU will send 0 which will make gluster to use the
1063default port. If the transport type is unix, then @var{port} should not be
1064specified.
1065
1066@var{volname} is the name of the gluster volume which contains the disk image.
1067
1068@var{image} is the path to the actual disk image that resides on gluster volume.
1069
1070You can create a GlusterFS disk image with the command:
1071@example
1072qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1073@end example
1074
1075Examples
1076@example
1077qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1078qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1079qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1080qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1081qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1082qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1083qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1084qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1085@end example
00984e39 1086
0a12ec87
RJ
1087@node disk_images_ssh
1088@subsection Secure Shell (ssh) disk images
1089
1090You can access disk images located on a remote ssh server
1091by using the ssh protocol:
1092
1093@example
1094qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1095@end example
1096
1097Alternative syntax using properties:
1098
1099@example
1100qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1101@end example
1102
1103@var{ssh} is the protocol.
1104
1105@var{user} is the remote user. If not specified, then the local
1106username is tried.
1107
1108@var{server} specifies the remote ssh server. Any ssh server can be
1109used, but it must implement the sftp-server protocol. Most Unix/Linux
1110systems should work without requiring any extra configuration.
1111
1112@var{port} is the port number on which sshd is listening. By default
1113the standard ssh port (22) is used.
1114
1115@var{path} is the path to the disk image.
1116
1117The optional @var{host_key_check} parameter controls how the remote
1118host's key is checked. The default is @code{yes} which means to use
1119the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1120turns off known-hosts checking. Or you can check that the host key
1121matches a specific fingerprint:
1122@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1123(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1124tools only use MD5 to print fingerprints).
1125
1126Currently authentication must be done using ssh-agent. Other
1127authentication methods may be supported in future.
1128
9a2d462e
RJ
1129Note: Many ssh servers do not support an @code{fsync}-style operation.
1130The ssh driver cannot guarantee that disk flush requests are
1131obeyed, and this causes a risk of disk corruption if the remote
1132server or network goes down during writes. The driver will
1133print a warning when @code{fsync} is not supported:
1134
1135warning: ssh server @code{ssh.example.com:22} does not support fsync
1136
1137With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1138supported.
0a12ec87 1139
debc7065 1140@node pcsys_network
9d4fb82e
FB
1141@section Network emulation
1142
4be456f1 1143QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1144target) and can connect them to an arbitrary number of Virtual Local
1145Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1146VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1147simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1148network stack can replace the TAP device to have a basic network
1149connection.
1150
1151@subsection VLANs
9d4fb82e 1152
41d03949
FB
1153QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1154connection between several network devices. These devices can be for
1155example QEMU virtual Ethernet cards or virtual Host ethernet devices
1156(TAP devices).
9d4fb82e 1157
41d03949
FB
1158@subsection Using TAP network interfaces
1159
1160This is the standard way to connect QEMU to a real network. QEMU adds
1161a virtual network device on your host (called @code{tapN}), and you
1162can then configure it as if it was a real ethernet card.
9d4fb82e 1163
8f40c388
FB
1164@subsubsection Linux host
1165
9d4fb82e
FB
1166As an example, you can download the @file{linux-test-xxx.tar.gz}
1167archive and copy the script @file{qemu-ifup} in @file{/etc} and
1168configure properly @code{sudo} so that the command @code{ifconfig}
1169contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1170that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1171device @file{/dev/net/tun} must be present.
1172
ee0f4751
FB
1173See @ref{sec_invocation} to have examples of command lines using the
1174TAP network interfaces.
9d4fb82e 1175
8f40c388
FB
1176@subsubsection Windows host
1177
1178There is a virtual ethernet driver for Windows 2000/XP systems, called
1179TAP-Win32. But it is not included in standard QEMU for Windows,
1180so you will need to get it separately. It is part of OpenVPN package,
1181so download OpenVPN from : @url{http://openvpn.net/}.
1182
9d4fb82e
FB
1183@subsection Using the user mode network stack
1184
41d03949
FB
1185By using the option @option{-net user} (default configuration if no
1186@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1187network stack (you don't need root privilege to use the virtual
41d03949 1188network). The virtual network configuration is the following:
9d4fb82e
FB
1189
1190@example
1191
41d03949
FB
1192 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1193 | (10.0.2.2)
9d4fb82e 1194 |
2518bd0d 1195 ----> DNS server (10.0.2.3)
3b46e624 1196 |
2518bd0d 1197 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1198@end example
1199
1200The QEMU VM behaves as if it was behind a firewall which blocks all
1201incoming connections. You can use a DHCP client to automatically
41d03949
FB
1202configure the network in the QEMU VM. The DHCP server assign addresses
1203to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1204
1205In order to check that the user mode network is working, you can ping
1206the address 10.0.2.2 and verify that you got an address in the range
120710.0.2.x from the QEMU virtual DHCP server.
1208
37cbfcce
GH
1209Note that ICMP traffic in general does not work with user mode networking.
1210@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1211however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1212ping sockets to allow @code{ping} to the Internet. The host admin has to set
1213the ping_group_range in order to grant access to those sockets. To allow ping
1214for GID 100 (usually users group):
1215
1216@example
1217echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1218@end example
b415a407 1219
9bf05444
FB
1220When using the built-in TFTP server, the router is also the TFTP
1221server.
1222
c8c6afa8
TH
1223When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
1224connections can be redirected from the host to the guest. It allows for
1225example to redirect X11, telnet or SSH connections.
443f1376 1226
41d03949
FB
1227@subsection Connecting VLANs between QEMU instances
1228
1229Using the @option{-net socket} option, it is possible to make VLANs
1230that span several QEMU instances. See @ref{sec_invocation} to have a
1231basic example.
1232
576fd0a1 1233@node pcsys_other_devs
6cbf4c8c
CM
1234@section Other Devices
1235
1236@subsection Inter-VM Shared Memory device
1237
5400c02b
MA
1238On Linux hosts, a shared memory device is available. The basic syntax
1239is:
6cbf4c8c
CM
1240
1241@example
5400c02b
MA
1242qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
1243@end example
1244
1245where @var{hostmem} names a host memory backend. For a POSIX shared
1246memory backend, use something like
1247
1248@example
1249-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
1250@end example
1251
1252If desired, interrupts can be sent between guest VMs accessing the same shared
1253memory region. Interrupt support requires using a shared memory server and
1254using a chardev socket to connect to it. The code for the shared memory server
1255is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1256memory server is:
1257
1258@example
a75eb03b 1259# First start the ivshmem server once and for all
50d34c4e 1260ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
1261
1262# Then start your qemu instances with matching arguments
5400c02b 1263qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 1264 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
1265@end example
1266
1267When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1268using the same server to communicate via interrupts. Guests can read their
1309cf44 1269VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 1270
62a830b6
MA
1271@subsubsection Migration with ivshmem
1272
5400c02b
MA
1273With device property @option{master=on}, the guest will copy the shared
1274memory on migration to the destination host. With @option{master=off},
1275the guest will not be able to migrate with the device attached. In the
1276latter case, the device should be detached and then reattached after
1277migration using the PCI hotplug support.
6cbf4c8c 1278
62a830b6
MA
1279At most one of the devices sharing the same memory can be master. The
1280master must complete migration before you plug back the other devices.
1281
7d4f4bda
MAL
1282@subsubsection ivshmem and hugepages
1283
1284Instead of specifying the <shm size> using POSIX shm, you may specify
1285a memory backend that has hugepage support:
1286
1287@example
5400c02b
MA
1288qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
1289 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
1290@end example
1291
1292ivshmem-server also supports hugepages mount points with the
1293@option{-m} memory path argument.
1294
9d4fb82e
FB
1295@node direct_linux_boot
1296@section Direct Linux Boot
1f673135
FB
1297
1298This section explains how to launch a Linux kernel inside QEMU without
1299having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1300kernel testing.
1f673135 1301
ee0f4751 1302The syntax is:
1f673135 1303@example
3804da9d 1304qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1305@end example
1306
ee0f4751
FB
1307Use @option{-kernel} to provide the Linux kernel image and
1308@option{-append} to give the kernel command line arguments. The
1309@option{-initrd} option can be used to provide an INITRD image.
1f673135 1310
ee0f4751
FB
1311When using the direct Linux boot, a disk image for the first hard disk
1312@file{hda} is required because its boot sector is used to launch the
1313Linux kernel.
1f673135 1314
ee0f4751
FB
1315If you do not need graphical output, you can disable it and redirect
1316the virtual serial port and the QEMU monitor to the console with the
1317@option{-nographic} option. The typical command line is:
1f673135 1318@example
3804da9d
SW
1319qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1320 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1321@end example
1322
ee0f4751
FB
1323Use @key{Ctrl-a c} to switch between the serial console and the
1324monitor (@pxref{pcsys_keys}).
1f673135 1325
debc7065 1326@node pcsys_usb
b389dbfb
FB
1327@section USB emulation
1328
0aff66b5
PB
1329QEMU emulates a PCI UHCI USB controller. You can virtually plug
1330virtual USB devices or real host USB devices (experimental, works only
071c9394 1331on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1332as necessary to connect multiple USB devices.
b389dbfb 1333
0aff66b5
PB
1334@menu
1335* usb_devices::
1336* host_usb_devices::
1337@end menu
1338@node usb_devices
1339@subsection Connecting USB devices
b389dbfb 1340
0aff66b5
PB
1341USB devices can be connected with the @option{-usbdevice} commandline option
1342or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1343
db380c06
AZ
1344@table @code
1345@item mouse
0aff66b5 1346Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1347@item tablet
c6d46c20 1348Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1349This means QEMU is able to report the mouse position without having
0aff66b5 1350to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1351@item disk:@var{file}
0aff66b5 1352Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1353@item host:@var{bus.addr}
0aff66b5
PB
1354Pass through the host device identified by @var{bus.addr}
1355(Linux only)
db380c06 1356@item host:@var{vendor_id:product_id}
0aff66b5
PB
1357Pass through the host device identified by @var{vendor_id:product_id}
1358(Linux only)
db380c06 1359@item wacom-tablet
f6d2a316
AZ
1360Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1361above but it can be used with the tslib library because in addition to touch
1362coordinates it reports touch pressure.
db380c06 1363@item keyboard
47b2d338 1364Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1365@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1366Serial converter. This emulates an FTDI FT232BM chip connected to host character
1367device @var{dev}. The available character devices are the same as for the
1368@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1369used to override the default 0403:6001. For instance,
db380c06
AZ
1370@example
1371usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1372@end example
1373will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1374serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1375@item braille
1376Braille device. This will use BrlAPI to display the braille output on a real
1377or fake device.
9ad97e65
AZ
1378@item net:@var{options}
1379Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1380specifies NIC options as with @code{-net nic,}@var{options} (see description).
1381For instance, user-mode networking can be used with
6c9f886c 1382@example
3804da9d 1383qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1384@end example
1385Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1386@item bt[:@var{hci-type}]
1387Bluetooth dongle whose type is specified in the same format as with
1388the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1389no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1390This USB device implements the USB Transport Layer of HCI. Example
1391usage:
1392@example
8485140f 1393@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 1394@end example
0aff66b5 1395@end table
b389dbfb 1396
0aff66b5 1397@node host_usb_devices
b389dbfb
FB
1398@subsection Using host USB devices on a Linux host
1399
1400WARNING: this is an experimental feature. QEMU will slow down when
1401using it. USB devices requiring real time streaming (i.e. USB Video
1402Cameras) are not supported yet.
1403
1404@enumerate
5fafdf24 1405@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1406is actually using the USB device. A simple way to do that is simply to
1407disable the corresponding kernel module by renaming it from @file{mydriver.o}
1408to @file{mydriver.o.disabled}.
1409
1410@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1411@example
1412ls /proc/bus/usb
1413001 devices drivers
1414@end example
1415
1416@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1417@example
1418chown -R myuid /proc/bus/usb
1419@end example
1420
1421@item Launch QEMU and do in the monitor:
5fafdf24 1422@example
b389dbfb
FB
1423info usbhost
1424 Device 1.2, speed 480 Mb/s
1425 Class 00: USB device 1234:5678, USB DISK
1426@end example
1427You should see the list of the devices you can use (Never try to use
1428hubs, it won't work).
1429
1430@item Add the device in QEMU by using:
5fafdf24 1431@example
b389dbfb
FB
1432usb_add host:1234:5678
1433@end example
1434
1435Normally the guest OS should report that a new USB device is
1436plugged. You can use the option @option{-usbdevice} to do the same.
1437
1438@item Now you can try to use the host USB device in QEMU.
1439
1440@end enumerate
1441
1442When relaunching QEMU, you may have to unplug and plug again the USB
1443device to make it work again (this is a bug).
1444
f858dcae
TS
1445@node vnc_security
1446@section VNC security
1447
1448The VNC server capability provides access to the graphical console
1449of the guest VM across the network. This has a number of security
1450considerations depending on the deployment scenarios.
1451
1452@menu
1453* vnc_sec_none::
1454* vnc_sec_password::
1455* vnc_sec_certificate::
1456* vnc_sec_certificate_verify::
1457* vnc_sec_certificate_pw::
2f9606b3
AL
1458* vnc_sec_sasl::
1459* vnc_sec_certificate_sasl::
f858dcae 1460* vnc_generate_cert::
2f9606b3 1461* vnc_setup_sasl::
f858dcae
TS
1462@end menu
1463@node vnc_sec_none
1464@subsection Without passwords
1465
1466The simplest VNC server setup does not include any form of authentication.
1467For this setup it is recommended to restrict it to listen on a UNIX domain
1468socket only. For example
1469
1470@example
3804da9d 1471qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1472@end example
1473
1474This ensures that only users on local box with read/write access to that
1475path can access the VNC server. To securely access the VNC server from a
1476remote machine, a combination of netcat+ssh can be used to provide a secure
1477tunnel.
1478
1479@node vnc_sec_password
1480@subsection With passwords
1481
1482The VNC protocol has limited support for password based authentication. Since
1483the protocol limits passwords to 8 characters it should not be considered
1484to provide high security. The password can be fairly easily brute-forced by
1485a client making repeat connections. For this reason, a VNC server using password
1486authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1487or UNIX domain sockets. Password authentication is not supported when operating
1488in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1489authentication is requested with the @code{password} option, and then once QEMU
1490is running the password is set with the monitor. Until the monitor is used to
1491set the password all clients will be rejected.
f858dcae
TS
1492
1493@example
3804da9d 1494qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1495(qemu) change vnc password
1496Password: ********
1497(qemu)
1498@end example
1499
1500@node vnc_sec_certificate
1501@subsection With x509 certificates
1502
1503The QEMU VNC server also implements the VeNCrypt extension allowing use of
1504TLS for encryption of the session, and x509 certificates for authentication.
1505The use of x509 certificates is strongly recommended, because TLS on its
1506own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1507support provides a secure session, but no authentication. This allows any
1508client to connect, and provides an encrypted session.
1509
1510@example
3804da9d 1511qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1512@end example
1513
1514In the above example @code{/etc/pki/qemu} should contain at least three files,
1515@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1516users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1517NB the @code{server-key.pem} file should be protected with file mode 0600 to
1518only be readable by the user owning it.
1519
1520@node vnc_sec_certificate_verify
1521@subsection With x509 certificates and client verification
1522
1523Certificates can also provide a means to authenticate the client connecting.
1524The server will request that the client provide a certificate, which it will
1525then validate against the CA certificate. This is a good choice if deploying
1526in an environment with a private internal certificate authority.
1527
1528@example
3804da9d 1529qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1530@end example
1531
1532
1533@node vnc_sec_certificate_pw
1534@subsection With x509 certificates, client verification and passwords
1535
1536Finally, the previous method can be combined with VNC password authentication
1537to provide two layers of authentication for clients.
1538
1539@example
3804da9d 1540qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1541(qemu) change vnc password
1542Password: ********
1543(qemu)
1544@end example
1545
2f9606b3
AL
1546
1547@node vnc_sec_sasl
1548@subsection With SASL authentication
1549
1550The SASL authentication method is a VNC extension, that provides an
1551easily extendable, pluggable authentication method. This allows for
1552integration with a wide range of authentication mechanisms, such as
1553PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1554The strength of the authentication depends on the exact mechanism
1555configured. If the chosen mechanism also provides a SSF layer, then
1556it will encrypt the datastream as well.
1557
1558Refer to the later docs on how to choose the exact SASL mechanism
1559used for authentication, but assuming use of one supporting SSF,
1560then QEMU can be launched with:
1561
1562@example
3804da9d 1563qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1564@end example
1565
1566@node vnc_sec_certificate_sasl
1567@subsection With x509 certificates and SASL authentication
1568
1569If the desired SASL authentication mechanism does not supported
1570SSF layers, then it is strongly advised to run it in combination
1571with TLS and x509 certificates. This provides securely encrypted
1572data stream, avoiding risk of compromising of the security
1573credentials. This can be enabled, by combining the 'sasl' option
1574with the aforementioned TLS + x509 options:
1575
1576@example
3804da9d 1577qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1578@end example
1579
1580
f858dcae
TS
1581@node vnc_generate_cert
1582@subsection Generating certificates for VNC
1583
1584The GNU TLS packages provides a command called @code{certtool} which can
1585be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1586is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1587each server. If using certificates for authentication, then each client
1588will also need to be issued a certificate. The recommendation is for the
1589server to keep its certificates in either @code{/etc/pki/qemu} or for
1590unprivileged users in @code{$HOME/.pki/qemu}.
1591
1592@menu
1593* vnc_generate_ca::
1594* vnc_generate_server::
1595* vnc_generate_client::
1596@end menu
1597@node vnc_generate_ca
1598@subsubsection Setup the Certificate Authority
1599
1600This step only needs to be performed once per organization / organizational
1601unit. First the CA needs a private key. This key must be kept VERY secret
1602and secure. If this key is compromised the entire trust chain of the certificates
1603issued with it is lost.
1604
1605@example
1606# certtool --generate-privkey > ca-key.pem
1607@end example
1608
1609A CA needs to have a public certificate. For simplicity it can be a self-signed
1610certificate, or one issue by a commercial certificate issuing authority. To
1611generate a self-signed certificate requires one core piece of information, the
1612name of the organization.
1613
1614@example
1615# cat > ca.info <<EOF
1616cn = Name of your organization
1617ca
1618cert_signing_key
1619EOF
1620# certtool --generate-self-signed \
1621 --load-privkey ca-key.pem
1622 --template ca.info \
1623 --outfile ca-cert.pem
1624@end example
1625
1626The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1627TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1628
1629@node vnc_generate_server
1630@subsubsection Issuing server certificates
1631
1632Each server (or host) needs to be issued with a key and certificate. When connecting
1633the certificate is sent to the client which validates it against the CA certificate.
1634The core piece of information for a server certificate is the hostname. This should
1635be the fully qualified hostname that the client will connect with, since the client
1636will typically also verify the hostname in the certificate. On the host holding the
1637secure CA private key:
1638
1639@example
1640# cat > server.info <<EOF
1641organization = Name of your organization
1642cn = server.foo.example.com
1643tls_www_server
1644encryption_key
1645signing_key
1646EOF
1647# certtool --generate-privkey > server-key.pem
1648# certtool --generate-certificate \
1649 --load-ca-certificate ca-cert.pem \
1650 --load-ca-privkey ca-key.pem \
63c693f8 1651 --load-privkey server-key.pem \
f858dcae
TS
1652 --template server.info \
1653 --outfile server-cert.pem
1654@end example
1655
1656The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1657to the server for which they were generated. The @code{server-key.pem} is security
1658sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1659
1660@node vnc_generate_client
1661@subsubsection Issuing client certificates
1662
1663If the QEMU VNC server is to use the @code{x509verify} option to validate client
1664certificates as its authentication mechanism, each client also needs to be issued
1665a certificate. The client certificate contains enough metadata to uniquely identify
1666the client, typically organization, state, city, building, etc. On the host holding
1667the secure CA private key:
1668
1669@example
1670# cat > client.info <<EOF
1671country = GB
1672state = London
1673locality = London
63c693f8 1674organization = Name of your organization
f858dcae
TS
1675cn = client.foo.example.com
1676tls_www_client
1677encryption_key
1678signing_key
1679EOF
1680# certtool --generate-privkey > client-key.pem
1681# certtool --generate-certificate \
1682 --load-ca-certificate ca-cert.pem \
1683 --load-ca-privkey ca-key.pem \
1684 --load-privkey client-key.pem \
1685 --template client.info \
1686 --outfile client-cert.pem
1687@end example
1688
1689The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1690copied to the client for which they were generated.
1691
2f9606b3
AL
1692
1693@node vnc_setup_sasl
1694
1695@subsection Configuring SASL mechanisms
1696
1697The following documentation assumes use of the Cyrus SASL implementation on a
1698Linux host, but the principals should apply to any other SASL impl. When SASL
1699is enabled, the mechanism configuration will be loaded from system default
1700SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1701unprivileged user, an environment variable SASL_CONF_PATH can be used
1702to make it search alternate locations for the service config.
1703
1704The default configuration might contain
1705
1706@example
1707mech_list: digest-md5
1708sasldb_path: /etc/qemu/passwd.db
1709@end example
1710
1711This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1712Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1713in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1714command. While this mechanism is easy to configure and use, it is not
1715considered secure by modern standards, so only suitable for developers /
1716ad-hoc testing.
1717
1718A more serious deployment might use Kerberos, which is done with the 'gssapi'
1719mechanism
1720
1721@example
1722mech_list: gssapi
1723keytab: /etc/qemu/krb5.tab
1724@end example
1725
1726For this to work the administrator of your KDC must generate a Kerberos
1727principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1728replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1729machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1730
1731Other configurations will be left as an exercise for the reader. It should
1732be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1733encryption. For all other mechanisms, VNC should always be configured to
1734use TLS and x509 certificates to protect security credentials from snooping.
1735
0806e3f6 1736@node gdb_usage
da415d54
FB
1737@section GDB usage
1738
1739QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1740'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1741
b65ee4fa 1742In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1743gdb connection:
1744@example
3804da9d
SW
1745qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1746 -append "root=/dev/hda"
da415d54
FB
1747Connected to host network interface: tun0
1748Waiting gdb connection on port 1234
1749@end example
1750
1751Then launch gdb on the 'vmlinux' executable:
1752@example
1753> gdb vmlinux
1754@end example
1755
1756In gdb, connect to QEMU:
1757@example
6c9bf893 1758(gdb) target remote localhost:1234
da415d54
FB
1759@end example
1760
1761Then you can use gdb normally. For example, type 'c' to launch the kernel:
1762@example
1763(gdb) c
1764@end example
1765
0806e3f6
FB
1766Here are some useful tips in order to use gdb on system code:
1767
1768@enumerate
1769@item
1770Use @code{info reg} to display all the CPU registers.
1771@item
1772Use @code{x/10i $eip} to display the code at the PC position.
1773@item
1774Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1775@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1776@end enumerate
1777
60897d36
EI
1778Advanced debugging options:
1779
b6af0975 1780The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1781@table @code
60897d36
EI
1782@item maintenance packet qqemu.sstepbits
1783
1784This will display the MASK bits used to control the single stepping IE:
1785@example
1786(gdb) maintenance packet qqemu.sstepbits
1787sending: "qqemu.sstepbits"
1788received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1789@end example
1790@item maintenance packet qqemu.sstep
1791
1792This will display the current value of the mask used when single stepping IE:
1793@example
1794(gdb) maintenance packet qqemu.sstep
1795sending: "qqemu.sstep"
1796received: "0x7"
1797@end example
1798@item maintenance packet Qqemu.sstep=HEX_VALUE
1799
1800This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1801@example
1802(gdb) maintenance packet Qqemu.sstep=0x5
1803sending: "qemu.sstep=0x5"
1804received: "OK"
1805@end example
94d45e44 1806@end table
60897d36 1807
debc7065 1808@node pcsys_os_specific
1a084f3d
FB
1809@section Target OS specific information
1810
1811@subsection Linux
1812
15a34c63
FB
1813To have access to SVGA graphic modes under X11, use the @code{vesa} or
1814the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1815color depth in the guest and the host OS.
1a084f3d 1816
e3371e62
FB
1817When using a 2.6 guest Linux kernel, you should add the option
1818@code{clock=pit} on the kernel command line because the 2.6 Linux
1819kernels make very strict real time clock checks by default that QEMU
1820cannot simulate exactly.
1821
7c3fc84d
FB
1822When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1823not activated because QEMU is slower with this patch. The QEMU
1824Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1825Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1826patch by default. Newer kernels don't have it.
1827
1a084f3d
FB
1828@subsection Windows
1829
1830If you have a slow host, using Windows 95 is better as it gives the
1831best speed. Windows 2000 is also a good choice.
1832
e3371e62
FB
1833@subsubsection SVGA graphic modes support
1834
1835QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1836card. All Windows versions starting from Windows 95 should recognize
1837and use this graphic card. For optimal performances, use 16 bit color
1838depth in the guest and the host OS.
1a084f3d 1839
3cb0853a
FB
1840If you are using Windows XP as guest OS and if you want to use high
1841resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18421280x1024x16), then you should use the VESA VBE virtual graphic card
1843(option @option{-std-vga}).
1844
e3371e62
FB
1845@subsubsection CPU usage reduction
1846
1847Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1848instruction. The result is that it takes host CPU cycles even when
1849idle. You can install the utility from
1850@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1851problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1852
9d0a8e6f 1853@subsubsection Windows 2000 disk full problem
e3371e62 1854
9d0a8e6f
FB
1855Windows 2000 has a bug which gives a disk full problem during its
1856installation. When installing it, use the @option{-win2k-hack} QEMU
1857option to enable a specific workaround. After Windows 2000 is
1858installed, you no longer need this option (this option slows down the
1859IDE transfers).
e3371e62 1860
6cc721cf
FB
1861@subsubsection Windows 2000 shutdown
1862
1863Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1864can. It comes from the fact that Windows 2000 does not automatically
1865use the APM driver provided by the BIOS.
1866
1867In order to correct that, do the following (thanks to Struan
1868Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1869Add/Troubleshoot a device => Add a new device & Next => No, select the
1870hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1871(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1872correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1873
1874@subsubsection Share a directory between Unix and Windows
1875
c8c6afa8
TH
1876See @ref{sec_invocation} about the help of the option
1877@option{'-netdev user,smb=...'}.
6cc721cf 1878
2192c332 1879@subsubsection Windows XP security problem
e3371e62
FB
1880
1881Some releases of Windows XP install correctly but give a security
1882error when booting:
1883@example
1884A problem is preventing Windows from accurately checking the
1885license for this computer. Error code: 0x800703e6.
1886@end example
e3371e62 1887
2192c332
FB
1888The workaround is to install a service pack for XP after a boot in safe
1889mode. Then reboot, and the problem should go away. Since there is no
1890network while in safe mode, its recommended to download the full
1891installation of SP1 or SP2 and transfer that via an ISO or using the
1892vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1893
a0a821a4
FB
1894@subsection MS-DOS and FreeDOS
1895
1896@subsubsection CPU usage reduction
1897
1898DOS does not correctly use the CPU HLT instruction. The result is that
1899it takes host CPU cycles even when idle. You can install the utility
1900from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1901problem.
1902
debc7065 1903@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1904@chapter QEMU System emulator for non PC targets
1905
1906QEMU is a generic emulator and it emulates many non PC
1907machines. Most of the options are similar to the PC emulator. The
4be456f1 1908differences are mentioned in the following sections.
3f9f3aa1 1909
debc7065 1910@menu
7544a042 1911* PowerPC System emulator::
24d4de45
TS
1912* Sparc32 System emulator::
1913* Sparc64 System emulator::
1914* MIPS System emulator::
1915* ARM System emulator::
1916* ColdFire System emulator::
7544a042
SW
1917* Cris System emulator::
1918* Microblaze System emulator::
1919* SH4 System emulator::
3aeaea65 1920* Xtensa System emulator::
debc7065
FB
1921@end menu
1922
7544a042
SW
1923@node PowerPC System emulator
1924@section PowerPC System emulator
1925@cindex system emulation (PowerPC)
1a084f3d 1926
15a34c63
FB
1927Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1928or PowerMac PowerPC system.
1a084f3d 1929
b671f9ed 1930QEMU emulates the following PowerMac peripherals:
1a084f3d 1931
15a34c63 1932@itemize @minus
5fafdf24 1933@item
006f3a48 1934UniNorth or Grackle PCI Bridge
15a34c63
FB
1935@item
1936PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1937@item
15a34c63 19382 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1939@item
15a34c63
FB
1940NE2000 PCI adapters
1941@item
1942Non Volatile RAM
1943@item
1944VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1945@end itemize
1946
b671f9ed 1947QEMU emulates the following PREP peripherals:
52c00a5f
FB
1948
1949@itemize @minus
5fafdf24 1950@item
15a34c63
FB
1951PCI Bridge
1952@item
1953PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1954@item
52c00a5f
FB
19552 IDE interfaces with hard disk and CD-ROM support
1956@item
1957Floppy disk
5fafdf24 1958@item
15a34c63 1959NE2000 network adapters
52c00a5f
FB
1960@item
1961Serial port
1962@item
1963PREP Non Volatile RAM
15a34c63
FB
1964@item
1965PC compatible keyboard and mouse.
52c00a5f
FB
1966@end itemize
1967
15a34c63 1968QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1969@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1970
992e5acd 1971Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1972for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1973v2) portable firmware implementation. The goal is to implement a 100%
1974IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1975
15a34c63
FB
1976@c man begin OPTIONS
1977
1978The following options are specific to the PowerPC emulation:
1979
1980@table @option
1981
4e257e5e 1982@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1983
340fb41b 1984Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1985
4e257e5e 1986@item -prom-env @var{string}
95efd11c
BS
1987
1988Set OpenBIOS variables in NVRAM, for example:
1989
1990@example
1991qemu-system-ppc -prom-env 'auto-boot?=false' \
1992 -prom-env 'boot-device=hd:2,\yaboot' \
1993 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1994@end example
1995
1996These variables are not used by Open Hack'Ware.
1997
15a34c63
FB
1998@end table
1999
5fafdf24 2000@c man end
15a34c63
FB
2001
2002
52c00a5f 2003More information is available at
3f9f3aa1 2004@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 2005
24d4de45
TS
2006@node Sparc32 System emulator
2007@section Sparc32 System emulator
7544a042 2008@cindex system emulation (Sparc32)
e80cfcfc 2009
34a3d239
BS
2010Use the executable @file{qemu-system-sparc} to simulate the following
2011Sun4m architecture machines:
2012@itemize @minus
2013@item
2014SPARCstation 4
2015@item
2016SPARCstation 5
2017@item
2018SPARCstation 10
2019@item
2020SPARCstation 20
2021@item
2022SPARCserver 600MP
2023@item
2024SPARCstation LX
2025@item
2026SPARCstation Voyager
2027@item
2028SPARCclassic
2029@item
2030SPARCbook
2031@end itemize
2032
2033The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2034but Linux limits the number of usable CPUs to 4.
e80cfcfc 2035
6a4e1771 2036QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2037
2038@itemize @minus
3475187d 2039@item
6a4e1771 2040IOMMU
e80cfcfc 2041@item
33632788 2042TCX or cgthree Frame buffer
5fafdf24 2043@item
e80cfcfc
FB
2044Lance (Am7990) Ethernet
2045@item
34a3d239 2046Non Volatile RAM M48T02/M48T08
e80cfcfc 2047@item
3475187d
FB
2048Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2049and power/reset logic
2050@item
2051ESP SCSI controller with hard disk and CD-ROM support
2052@item
6a3b9cc9 2053Floppy drive (not on SS-600MP)
a2502b58
BS
2054@item
2055CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2056@end itemize
2057
6a3b9cc9
BS
2058The number of peripherals is fixed in the architecture. Maximum
2059memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2060others 2047MB.
3475187d 2061
30a604f3 2062Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2063@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2064firmware implementation. The goal is to implement a 100% IEEE
20651275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2066
2067A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2068the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 2069most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2070don't work probably due to interface issues between OpenBIOS and
2071Solaris.
3475187d
FB
2072
2073@c man begin OPTIONS
2074
a2502b58 2075The following options are specific to the Sparc32 emulation:
3475187d
FB
2076
2077@table @option
2078
4e257e5e 2079@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2080
33632788
MCA
2081Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2082option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2083of 1152x900x8 for people who wish to use OBP.
3475187d 2084
4e257e5e 2085@item -prom-env @var{string}
66508601
BS
2086
2087Set OpenBIOS variables in NVRAM, for example:
2088
2089@example
2090qemu-system-sparc -prom-env 'auto-boot?=false' \
2091 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2092@end example
2093
6a4e1771 2094@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2095
2096Set the emulated machine type. Default is SS-5.
2097
3475187d
FB
2098@end table
2099
5fafdf24 2100@c man end
3475187d 2101
24d4de45
TS
2102@node Sparc64 System emulator
2103@section Sparc64 System emulator
7544a042 2104@cindex system emulation (Sparc64)
e80cfcfc 2105
34a3d239
BS
2106Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2107(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
2108Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2109able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2110Sun4v and Niagara emulators are still a work in progress.
b756921a 2111
c7ba218d 2112QEMU emulates the following peripherals:
83469015
FB
2113
2114@itemize @minus
2115@item
5fafdf24 2116UltraSparc IIi APB PCI Bridge
83469015
FB
2117@item
2118PCI VGA compatible card with VESA Bochs Extensions
2119@item
34a3d239
BS
2120PS/2 mouse and keyboard
2121@item
83469015
FB
2122Non Volatile RAM M48T59
2123@item
2124PC-compatible serial ports
c7ba218d
BS
2125@item
21262 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2127@item
2128Floppy disk
83469015
FB
2129@end itemize
2130
c7ba218d
BS
2131@c man begin OPTIONS
2132
2133The following options are specific to the Sparc64 emulation:
2134
2135@table @option
2136
4e257e5e 2137@item -prom-env @var{string}
34a3d239
BS
2138
2139Set OpenBIOS variables in NVRAM, for example:
2140
2141@example
2142qemu-system-sparc64 -prom-env 'auto-boot?=false'
2143@end example
2144
2145@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2146
2147Set the emulated machine type. The default is sun4u.
2148
2149@end table
2150
2151@c man end
2152
24d4de45
TS
2153@node MIPS System emulator
2154@section MIPS System emulator
7544a042 2155@cindex system emulation (MIPS)
9d0a8e6f 2156
d9aedc32
TS
2157Four executables cover simulation of 32 and 64-bit MIPS systems in
2158both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2159@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2160Five different machine types are emulated:
24d4de45
TS
2161
2162@itemize @minus
2163@item
2164A generic ISA PC-like machine "mips"
2165@item
2166The MIPS Malta prototype board "malta"
2167@item
d9aedc32 2168An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2169@item
f0fc6f8f 2170MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2171@item
2172A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2173@end itemize
2174
2175The generic emulation is supported by Debian 'Etch' and is able to
2176install Debian into a virtual disk image. The following devices are
2177emulated:
3f9f3aa1
FB
2178
2179@itemize @minus
5fafdf24 2180@item
6bf5b4e8 2181A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2182@item
2183PC style serial port
2184@item
24d4de45
TS
2185PC style IDE disk
2186@item
3f9f3aa1
FB
2187NE2000 network card
2188@end itemize
2189
24d4de45
TS
2190The Malta emulation supports the following devices:
2191
2192@itemize @minus
2193@item
0b64d008 2194Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2195@item
2196PIIX4 PCI/USB/SMbus controller
2197@item
2198The Multi-I/O chip's serial device
2199@item
3a2eeac0 2200PCI network cards (PCnet32 and others)
24d4de45
TS
2201@item
2202Malta FPGA serial device
2203@item
1f605a76 2204Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2205@end itemize
2206
2207The ACER Pica emulation supports:
2208
2209@itemize @minus
2210@item
2211MIPS R4000 CPU
2212@item
2213PC-style IRQ and DMA controllers
2214@item
2215PC Keyboard
2216@item
2217IDE controller
2218@end itemize
3f9f3aa1 2219
b5e4946f 2220The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2221to what the proprietary MIPS emulator uses for running Linux.
2222It supports:
6bf5b4e8
TS
2223
2224@itemize @minus
2225@item
2226A range of MIPS CPUs, default is the 24Kf
2227@item
2228PC style serial port
2229@item
2230MIPSnet network emulation
2231@end itemize
2232
88cb0a02
AJ
2233The MIPS Magnum R4000 emulation supports:
2234
2235@itemize @minus
2236@item
2237MIPS R4000 CPU
2238@item
2239PC-style IRQ controller
2240@item
2241PC Keyboard
2242@item
2243SCSI controller
2244@item
2245G364 framebuffer
2246@end itemize
2247
2248
24d4de45
TS
2249@node ARM System emulator
2250@section ARM System emulator
7544a042 2251@cindex system emulation (ARM)
3f9f3aa1
FB
2252
2253Use the executable @file{qemu-system-arm} to simulate a ARM
2254machine. The ARM Integrator/CP board is emulated with the following
2255devices:
2256
2257@itemize @minus
2258@item
9ee6e8bb 2259ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2260@item
2261Two PL011 UARTs
5fafdf24 2262@item
3f9f3aa1 2263SMC 91c111 Ethernet adapter
00a9bf19
PB
2264@item
2265PL110 LCD controller
2266@item
2267PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2268@item
2269PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2270@end itemize
2271
2272The ARM Versatile baseboard is emulated with the following devices:
2273
2274@itemize @minus
2275@item
9ee6e8bb 2276ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2277@item
2278PL190 Vectored Interrupt Controller
2279@item
2280Four PL011 UARTs
5fafdf24 2281@item
00a9bf19
PB
2282SMC 91c111 Ethernet adapter
2283@item
2284PL110 LCD controller
2285@item
2286PL050 KMI with PS/2 keyboard and mouse.
2287@item
2288PCI host bridge. Note the emulated PCI bridge only provides access to
2289PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2290This means some devices (eg. ne2k_pci NIC) are not usable, and others
2291(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2292mapped control registers.
e6de1bad
PB
2293@item
2294PCI OHCI USB controller.
2295@item
2296LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2297@item
2298PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2299@end itemize
2300
21a88941
PB
2301Several variants of the ARM RealView baseboard are emulated,
2302including the EB, PB-A8 and PBX-A9. Due to interactions with the
2303bootloader, only certain Linux kernel configurations work out
2304of the box on these boards.
2305
2306Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2307enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2308should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2309disabled and expect 1024M RAM.
2310
40c5c6cd 2311The following devices are emulated:
d7739d75
PB
2312
2313@itemize @minus
2314@item
f7c70325 2315ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2316@item
2317ARM AMBA Generic/Distributed Interrupt Controller
2318@item
2319Four PL011 UARTs
5fafdf24 2320@item
0ef849d7 2321SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2322@item
2323PL110 LCD controller
2324@item
2325PL050 KMI with PS/2 keyboard and mouse
2326@item
2327PCI host bridge
2328@item
2329PCI OHCI USB controller
2330@item
2331LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2332@item
2333PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2334@end itemize
2335
b00052e4
AZ
2336The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2337and "Terrier") emulation includes the following peripherals:
2338
2339@itemize @minus
2340@item
2341Intel PXA270 System-on-chip (ARM V5TE core)
2342@item
2343NAND Flash memory
2344@item
2345IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2346@item
2347On-chip OHCI USB controller
2348@item
2349On-chip LCD controller
2350@item
2351On-chip Real Time Clock
2352@item
2353TI ADS7846 touchscreen controller on SSP bus
2354@item
2355Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2356@item
2357GPIO-connected keyboard controller and LEDs
2358@item
549444e1 2359Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2360@item
2361Three on-chip UARTs
2362@item
2363WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2364@end itemize
2365
02645926
AZ
2366The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2367following elements:
2368
2369@itemize @minus
2370@item
2371Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2372@item
2373ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2374@item
2375On-chip LCD controller
2376@item
2377On-chip Real Time Clock
2378@item
2379TI TSC2102i touchscreen controller / analog-digital converter / Audio
2380CODEC, connected through MicroWire and I@math{^2}S busses
2381@item
2382GPIO-connected matrix keypad
2383@item
2384Secure Digital card connected to OMAP MMC/SD host
2385@item
2386Three on-chip UARTs
2387@end itemize
2388
c30bb264
AZ
2389Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2390emulation supports the following elements:
2391
2392@itemize @minus
2393@item
2394Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2395@item
2396RAM and non-volatile OneNAND Flash memories
2397@item
2398Display connected to EPSON remote framebuffer chip and OMAP on-chip
2399display controller and a LS041y3 MIPI DBI-C controller
2400@item
2401TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2402driven through SPI bus
2403@item
2404National Semiconductor LM8323-controlled qwerty keyboard driven
2405through I@math{^2}C bus
2406@item
2407Secure Digital card connected to OMAP MMC/SD host
2408@item
2409Three OMAP on-chip UARTs and on-chip STI debugging console
2410@item
40c5c6cd 2411A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2412@item
c30bb264
AZ
2413Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2414TUSB6010 chip - only USB host mode is supported
2415@item
2416TI TMP105 temperature sensor driven through I@math{^2}C bus
2417@item
2418TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2419@item
2420Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2421through CBUS
2422@end itemize
2423
9ee6e8bb
PB
2424The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2425devices:
2426
2427@itemize @minus
2428@item
2429Cortex-M3 CPU core.
2430@item
243164k Flash and 8k SRAM.
2432@item
2433Timers, UARTs, ADC and I@math{^2}C interface.
2434@item
2435OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2436@end itemize
2437
2438The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2439devices:
2440
2441@itemize @minus
2442@item
2443Cortex-M3 CPU core.
2444@item
2445256k Flash and 64k SRAM.
2446@item
2447Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2448@item
2449OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2450@end itemize
2451
57cd6e97
AZ
2452The Freecom MusicPal internet radio emulation includes the following
2453elements:
2454
2455@itemize @minus
2456@item
2457Marvell MV88W8618 ARM core.
2458@item
245932 MB RAM, 256 KB SRAM, 8 MB flash.
2460@item
2461Up to 2 16550 UARTs
2462@item
2463MV88W8xx8 Ethernet controller
2464@item
2465MV88W8618 audio controller, WM8750 CODEC and mixer
2466@item
e080e785 2467128×64 display with brightness control
57cd6e97
AZ
2468@item
24692 buttons, 2 navigation wheels with button function
2470@end itemize
2471
997641a8 2472The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2473The emulation includes the following elements:
997641a8
AZ
2474
2475@itemize @minus
2476@item
2477Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2478@item
2479ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2480V1
24811 Flash of 16MB and 1 Flash of 8MB
2482V2
24831 Flash of 32MB
2484@item
2485On-chip LCD controller
2486@item
2487On-chip Real Time Clock
2488@item
2489Secure Digital card connected to OMAP MMC/SD host
2490@item
2491Three on-chip UARTs
2492@end itemize
2493
3f9f3aa1
FB
2494A Linux 2.6 test image is available on the QEMU web site. More
2495information is available in the QEMU mailing-list archive.
9d0a8e6f 2496
d2c639d6
BS
2497@c man begin OPTIONS
2498
2499The following options are specific to the ARM emulation:
2500
2501@table @option
2502
2503@item -semihosting
2504Enable semihosting syscall emulation.
2505
2506On ARM this implements the "Angel" interface.
2507
2508Note that this allows guest direct access to the host filesystem,
2509so should only be used with trusted guest OS.
2510
2511@end table
2512
24d4de45
TS
2513@node ColdFire System emulator
2514@section ColdFire System emulator
7544a042
SW
2515@cindex system emulation (ColdFire)
2516@cindex system emulation (M68K)
209a4e69
PB
2517
2518Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2519The emulator is able to boot a uClinux kernel.
707e011b
PB
2520
2521The M5208EVB emulation includes the following devices:
2522
2523@itemize @minus
5fafdf24 2524@item
707e011b
PB
2525MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2526@item
2527Three Two on-chip UARTs.
2528@item
2529Fast Ethernet Controller (FEC)
2530@end itemize
2531
2532The AN5206 emulation includes the following devices:
209a4e69
PB
2533
2534@itemize @minus
5fafdf24 2535@item
209a4e69
PB
2536MCF5206 ColdFire V2 Microprocessor.
2537@item
2538Two on-chip UARTs.
2539@end itemize
2540
d2c639d6
BS
2541@c man begin OPTIONS
2542
7544a042 2543The following options are specific to the ColdFire emulation:
d2c639d6
BS
2544
2545@table @option
2546
2547@item -semihosting
2548Enable semihosting syscall emulation.
2549
2550On M68K this implements the "ColdFire GDB" interface used by libgloss.
2551
2552Note that this allows guest direct access to the host filesystem,
2553so should only be used with trusted guest OS.
2554
2555@end table
2556
7544a042
SW
2557@node Cris System emulator
2558@section Cris System emulator
2559@cindex system emulation (Cris)
2560
2561TODO
2562
2563@node Microblaze System emulator
2564@section Microblaze System emulator
2565@cindex system emulation (Microblaze)
2566
2567TODO
2568
2569@node SH4 System emulator
2570@section SH4 System emulator
2571@cindex system emulation (SH4)
2572
2573TODO
2574
3aeaea65
MF
2575@node Xtensa System emulator
2576@section Xtensa System emulator
2577@cindex system emulation (Xtensa)
2578
2579Two executables cover simulation of both Xtensa endian options,
2580@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2581Two different machine types are emulated:
2582
2583@itemize @minus
2584@item
2585Xtensa emulator pseudo board "sim"
2586@item
2587Avnet LX60/LX110/LX200 board
2588@end itemize
2589
b5e4946f 2590The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2591to one provided by the proprietary Tensilica ISS.
2592It supports:
2593
2594@itemize @minus
2595@item
2596A range of Xtensa CPUs, default is the DC232B
2597@item
2598Console and filesystem access via semihosting calls
2599@end itemize
2600
2601The Avnet LX60/LX110/LX200 emulation supports:
2602
2603@itemize @minus
2604@item
2605A range of Xtensa CPUs, default is the DC232B
2606@item
260716550 UART
2608@item
2609OpenCores 10/100 Mbps Ethernet MAC
2610@end itemize
2611
2612@c man begin OPTIONS
2613
2614The following options are specific to the Xtensa emulation:
2615
2616@table @option
2617
2618@item -semihosting
2619Enable semihosting syscall emulation.
2620
2621Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2622Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2623
2624Note that this allows guest direct access to the host filesystem,
2625so should only be used with trusted guest OS.
2626
2627@end table
5fafdf24
TS
2628@node QEMU User space emulator
2629@chapter QEMU User space emulator
83195237
FB
2630
2631@menu
2632* Supported Operating Systems ::
0722cc42 2633* Features::
83195237 2634* Linux User space emulator::
84778508 2635* BSD User space emulator ::
83195237
FB
2636@end menu
2637
2638@node Supported Operating Systems
2639@section Supported Operating Systems
2640
2641The following OS are supported in user space emulation:
2642
2643@itemize @minus
2644@item
4be456f1 2645Linux (referred as qemu-linux-user)
83195237 2646@item
84778508 2647BSD (referred as qemu-bsd-user)
83195237
FB
2648@end itemize
2649
0722cc42
PB
2650@node Features
2651@section Features
2652
2653QEMU user space emulation has the following notable features:
2654
2655@table @strong
2656@item System call translation:
2657QEMU includes a generic system call translator. This means that
2658the parameters of the system calls can be converted to fix
2659endianness and 32/64-bit mismatches between hosts and targets.
2660IOCTLs can be converted too.
2661
2662@item POSIX signal handling:
2663QEMU can redirect to the running program all signals coming from
2664the host (such as @code{SIGALRM}), as well as synthesize signals from
2665virtual CPU exceptions (for example @code{SIGFPE} when the program
2666executes a division by zero).
2667
2668QEMU relies on the host kernel to emulate most signal system
2669calls, for example to emulate the signal mask. On Linux, QEMU
2670supports both normal and real-time signals.
2671
2672@item Threading:
2673On Linux, QEMU can emulate the @code{clone} syscall and create a real
2674host thread (with a separate virtual CPU) for each emulated thread.
2675Note that not all targets currently emulate atomic operations correctly.
2676x86 and ARM use a global lock in order to preserve their semantics.
2677@end table
2678
2679QEMU was conceived so that ultimately it can emulate itself. Although
2680it is not very useful, it is an important test to show the power of the
2681emulator.
2682
83195237
FB
2683@node Linux User space emulator
2684@section Linux User space emulator
386405f7 2685
debc7065
FB
2686@menu
2687* Quick Start::
2688* Wine launch::
2689* Command line options::
79737e4a 2690* Other binaries::
debc7065
FB
2691@end menu
2692
2693@node Quick Start
83195237 2694@subsection Quick Start
df0f11a0 2695
1f673135 2696In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2697itself and all the target (x86) dynamic libraries used by it.
386405f7 2698
1f673135 2699@itemize
386405f7 2700
1f673135
FB
2701@item On x86, you can just try to launch any process by using the native
2702libraries:
386405f7 2703
5fafdf24 2704@example
1f673135
FB
2705qemu-i386 -L / /bin/ls
2706@end example
386405f7 2707
1f673135
FB
2708@code{-L /} tells that the x86 dynamic linker must be searched with a
2709@file{/} prefix.
386405f7 2710
b65ee4fa
SW
2711@item Since QEMU is also a linux process, you can launch QEMU with
2712QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2713
5fafdf24 2714@example
1f673135
FB
2715qemu-i386 -L / qemu-i386 -L / /bin/ls
2716@end example
386405f7 2717
1f673135
FB
2718@item On non x86 CPUs, you need first to download at least an x86 glibc
2719(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2720@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2721
1f673135 2722@example
5fafdf24 2723unset LD_LIBRARY_PATH
1f673135 2724@end example
1eb87257 2725
1f673135 2726Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2727
1f673135
FB
2728@example
2729qemu-i386 tests/i386/ls
2730@end example
4c3b5a48 2731You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2732QEMU is automatically launched by the Linux kernel when you try to
2733launch x86 executables. It requires the @code{binfmt_misc} module in the
2734Linux kernel.
1eb87257 2735
1f673135
FB
2736@item The x86 version of QEMU is also included. You can try weird things such as:
2737@example
debc7065
FB
2738qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2739 /usr/local/qemu-i386/bin/ls-i386
1f673135 2740@end example
1eb20527 2741
1f673135 2742@end itemize
1eb20527 2743
debc7065 2744@node Wine launch
83195237 2745@subsection Wine launch
1eb20527 2746
1f673135 2747@itemize
386405f7 2748
1f673135
FB
2749@item Ensure that you have a working QEMU with the x86 glibc
2750distribution (see previous section). In order to verify it, you must be
2751able to do:
386405f7 2752
1f673135
FB
2753@example
2754qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2755@end example
386405f7 2756
1f673135 2757@item Download the binary x86 Wine install
5fafdf24 2758(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2759
1f673135 2760@item Configure Wine on your account. Look at the provided script
debc7065 2761@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2762@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2763
1f673135 2764@item Then you can try the example @file{putty.exe}:
386405f7 2765
1f673135 2766@example
debc7065
FB
2767qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2768 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2769@end example
386405f7 2770
1f673135 2771@end itemize
fd429f2f 2772
debc7065 2773@node Command line options
83195237 2774@subsection Command line options
1eb20527 2775
1f673135 2776@example
8485140f 2777@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2778@end example
1eb20527 2779
1f673135
FB
2780@table @option
2781@item -h
2782Print the help
3b46e624 2783@item -L path
1f673135
FB
2784Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2785@item -s size
2786Set the x86 stack size in bytes (default=524288)
34a3d239 2787@item -cpu model
c8057f95 2788Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2789@item -E @var{var}=@var{value}
2790Set environment @var{var} to @var{value}.
2791@item -U @var{var}
2792Remove @var{var} from the environment.
379f6698
PB
2793@item -B offset
2794Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2795the address region required by guest applications is reserved on the host.
2796This option is currently only supported on some hosts.
68a1c816
PB
2797@item -R size
2798Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2799"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2800@end table
2801
1f673135 2802Debug options:
386405f7 2803
1f673135 2804@table @option
989b697d
PM
2805@item -d item1,...
2806Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2807@item -p pagesize
2808Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2809@item -g port
2810Wait gdb connection to port
1b530a6d
AJ
2811@item -singlestep
2812Run the emulation in single step mode.
1f673135 2813@end table
386405f7 2814
b01bcae6
AZ
2815Environment variables:
2816
2817@table @env
2818@item QEMU_STRACE
2819Print system calls and arguments similar to the 'strace' program
2820(NOTE: the actual 'strace' program will not work because the user
2821space emulator hasn't implemented ptrace). At the moment this is
2822incomplete. All system calls that don't have a specific argument
2823format are printed with information for six arguments. Many
2824flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2825@end table
b01bcae6 2826
79737e4a 2827@node Other binaries
83195237 2828@subsection Other binaries
79737e4a 2829
7544a042
SW
2830@cindex user mode (Alpha)
2831@command{qemu-alpha} TODO.
2832
2833@cindex user mode (ARM)
2834@command{qemu-armeb} TODO.
2835
2836@cindex user mode (ARM)
79737e4a
PB
2837@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2838binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2839configurations), and arm-uclinux bFLT format binaries.
2840
7544a042
SW
2841@cindex user mode (ColdFire)
2842@cindex user mode (M68K)
e6e5906b
PB
2843@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2844(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2845coldfire uClinux bFLT format binaries.
2846
79737e4a
PB
2847The binary format is detected automatically.
2848
7544a042
SW
2849@cindex user mode (Cris)
2850@command{qemu-cris} TODO.
2851
2852@cindex user mode (i386)
2853@command{qemu-i386} TODO.
2854@command{qemu-x86_64} TODO.
2855
2856@cindex user mode (Microblaze)
2857@command{qemu-microblaze} TODO.
2858
2859@cindex user mode (MIPS)
2860@command{qemu-mips} TODO.
2861@command{qemu-mipsel} TODO.
2862
2863@cindex user mode (PowerPC)
2864@command{qemu-ppc64abi32} TODO.
2865@command{qemu-ppc64} TODO.
2866@command{qemu-ppc} TODO.
2867
2868@cindex user mode (SH4)
2869@command{qemu-sh4eb} TODO.
2870@command{qemu-sh4} TODO.
2871
2872@cindex user mode (SPARC)
34a3d239
BS
2873@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2874
a785e42e
BS
2875@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2876(Sparc64 CPU, 32 bit ABI).
2877
2878@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2879SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2880
84778508
BS
2881@node BSD User space emulator
2882@section BSD User space emulator
2883
2884@menu
2885* BSD Status::
2886* BSD Quick Start::
2887* BSD Command line options::
2888@end menu
2889
2890@node BSD Status
2891@subsection BSD Status
2892
2893@itemize @minus
2894@item
2895target Sparc64 on Sparc64: Some trivial programs work.
2896@end itemize
2897
2898@node BSD Quick Start
2899@subsection Quick Start
2900
2901In order to launch a BSD process, QEMU needs the process executable
2902itself and all the target dynamic libraries used by it.
2903
2904@itemize
2905
2906@item On Sparc64, you can just try to launch any process by using the native
2907libraries:
2908
2909@example
2910qemu-sparc64 /bin/ls
2911@end example
2912
2913@end itemize
2914
2915@node BSD Command line options
2916@subsection Command line options
2917
2918@example
8485140f 2919@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2920@end example
2921
2922@table @option
2923@item -h
2924Print the help
2925@item -L path
2926Set the library root path (default=/)
2927@item -s size
2928Set the stack size in bytes (default=524288)
f66724c9
SW
2929@item -ignore-environment
2930Start with an empty environment. Without this option,
40c5c6cd 2931the initial environment is a copy of the caller's environment.
f66724c9
SW
2932@item -E @var{var}=@var{value}
2933Set environment @var{var} to @var{value}.
2934@item -U @var{var}
2935Remove @var{var} from the environment.
84778508
BS
2936@item -bsd type
2937Set the type of the emulated BSD Operating system. Valid values are
2938FreeBSD, NetBSD and OpenBSD (default).
2939@end table
2940
2941Debug options:
2942
2943@table @option
989b697d
PM
2944@item -d item1,...
2945Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2946@item -p pagesize
2947Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2948@item -singlestep
2949Run the emulation in single step mode.
84778508
BS
2950@end table
2951
47eacb4f 2952
78e87797
PB
2953@include qemu-tech.texi
2954
7544a042
SW
2955@node License
2956@appendix License
2957
2958QEMU is a trademark of Fabrice Bellard.
2959
2960QEMU is released under the GNU General Public License (TODO: add link).
2961Parts of QEMU have specific licenses, see file LICENSE.
2962
2963TODO (refer to file LICENSE, include it, include the GPL?)
2964
debc7065 2965@node Index
7544a042
SW
2966@appendix Index
2967@menu
2968* Concept Index::
2969* Function Index::
2970* Keystroke Index::
2971* Program Index::
2972* Data Type Index::
2973* Variable Index::
2974@end menu
2975
2976@node Concept Index
2977@section Concept Index
2978This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2979@printindex cp
2980
7544a042
SW
2981@node Function Index
2982@section Function Index
2983This index could be used for command line options and monitor functions.
2984@printindex fn
2985
2986@node Keystroke Index
2987@section Keystroke Index
2988
2989This is a list of all keystrokes which have a special function
2990in system emulation.
2991
2992@printindex ky
2993
2994@node Program Index
2995@section Program Index
2996@printindex pg
2997
2998@node Data Type Index
2999@section Data Type Index
3000
3001This index could be used for qdev device names and options.
3002
3003@printindex tp
3004
3005@node Variable Index
3006@section Variable Index
3007@printindex vr
3008
debc7065 3009@bye