]> git.proxmox.com Git - mirror_qemu.git/blob - bsd-user/signal.c
accel/tcg: Replace CPUState.env_ptr with cpu_env()
[mirror_qemu.git] / bsd-user / signal.c
1 /*
2 * Emulation of BSD signals
3 *
4 * Copyright (c) 2003 - 2008 Fabrice Bellard
5 * Copyright (c) 2013 Stacey Son
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "qemu.h"
24 #include "gdbstub/user.h"
25 #include "signal-common.h"
26 #include "trace.h"
27 #include "hw/core/tcg-cpu-ops.h"
28 #include "host-signal.h"
29
30 static struct target_sigaction sigact_table[TARGET_NSIG];
31 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
32 static void target_to_host_sigset_internal(sigset_t *d,
33 const target_sigset_t *s);
34
35 static inline int on_sig_stack(TaskState *ts, unsigned long sp)
36 {
37 return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size;
38 }
39
40 static inline int sas_ss_flags(TaskState *ts, unsigned long sp)
41 {
42 return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE :
43 on_sig_stack(ts, sp) ? SS_ONSTACK : 0;
44 }
45
46 /*
47 * The BSD ABIs use the same signal numbers across all the CPU architectures, so
48 * (unlike Linux) these functions are just the identity mapping. This might not
49 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
50 */
51 int host_to_target_signal(int sig)
52 {
53 return sig;
54 }
55
56 int target_to_host_signal(int sig)
57 {
58 return sig;
59 }
60
61 static inline void target_sigemptyset(target_sigset_t *set)
62 {
63 memset(set, 0, sizeof(*set));
64 }
65
66 static inline void target_sigaddset(target_sigset_t *set, int signum)
67 {
68 signum--;
69 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
70 set->__bits[signum / TARGET_NSIG_BPW] |= mask;
71 }
72
73 static inline int target_sigismember(const target_sigset_t *set, int signum)
74 {
75 signum--;
76 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
77 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
78 }
79
80 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
81 static inline void rewind_if_in_safe_syscall(void *puc)
82 {
83 ucontext_t *uc = (ucontext_t *)puc;
84 uintptr_t pcreg = host_signal_pc(uc);
85
86 if (pcreg > (uintptr_t)safe_syscall_start
87 && pcreg < (uintptr_t)safe_syscall_end) {
88 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
89 }
90 }
91
92 /*
93 * Note: The following take advantage of the BSD signal property that all
94 * signals are available on all architectures.
95 */
96 static void host_to_target_sigset_internal(target_sigset_t *d,
97 const sigset_t *s)
98 {
99 int i;
100
101 target_sigemptyset(d);
102 for (i = 1; i <= NSIG; i++) {
103 if (sigismember(s, i)) {
104 target_sigaddset(d, host_to_target_signal(i));
105 }
106 }
107 }
108
109 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
110 {
111 target_sigset_t d1;
112 int i;
113
114 host_to_target_sigset_internal(&d1, s);
115 for (i = 0; i < _SIG_WORDS; i++) {
116 d->__bits[i] = tswap32(d1.__bits[i]);
117 }
118 }
119
120 static void target_to_host_sigset_internal(sigset_t *d,
121 const target_sigset_t *s)
122 {
123 int i;
124
125 sigemptyset(d);
126 for (i = 1; i <= TARGET_NSIG; i++) {
127 if (target_sigismember(s, i)) {
128 sigaddset(d, target_to_host_signal(i));
129 }
130 }
131 }
132
133 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
134 {
135 target_sigset_t s1;
136 int i;
137
138 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
139 s1.__bits[i] = tswap32(s->__bits[i]);
140 }
141 target_to_host_sigset_internal(d, &s1);
142 }
143
144 static bool has_trapno(int tsig)
145 {
146 return tsig == TARGET_SIGILL ||
147 tsig == TARGET_SIGFPE ||
148 tsig == TARGET_SIGSEGV ||
149 tsig == TARGET_SIGBUS ||
150 tsig == TARGET_SIGTRAP;
151 }
152
153 /* Siginfo conversion. */
154
155 /*
156 * Populate tinfo w/o swapping based on guessing which fields are valid.
157 */
158 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
159 const siginfo_t *info)
160 {
161 int sig = host_to_target_signal(info->si_signo);
162 int si_code = info->si_code;
163 int si_type;
164
165 /*
166 * Make sure we that the variable portion of the target siginfo is zeroed
167 * out so we don't leak anything into that.
168 */
169 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
170
171 /*
172 * This is awkward, because we have to use a combination of the si_code and
173 * si_signo to figure out which of the union's members are valid.o We
174 * therefore make our best guess.
175 *
176 * Once we have made our guess, we record it in the top 16 bits of
177 * the si_code, so that tswap_siginfo() later can use it.
178 * tswap_siginfo() will strip these top bits out before writing
179 * si_code to the guest (sign-extending the lower bits).
180 */
181 tinfo->si_signo = sig;
182 tinfo->si_errno = info->si_errno;
183 tinfo->si_code = info->si_code;
184 tinfo->si_pid = info->si_pid;
185 tinfo->si_uid = info->si_uid;
186 tinfo->si_status = info->si_status;
187 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
188 /*
189 * si_value is opaque to kernel. On all FreeBSD platforms,
190 * sizeof(sival_ptr) >= sizeof(sival_int) so the following
191 * always will copy the larger element.
192 */
193 tinfo->si_value.sival_ptr =
194 (abi_ulong)(unsigned long)info->si_value.sival_ptr;
195
196 switch (si_code) {
197 /*
198 * All the SI_xxx codes that are defined here are global to
199 * all the signals (they have values that none of the other,
200 * more specific signal info will set).
201 */
202 case SI_USER:
203 case SI_LWP:
204 case SI_KERNEL:
205 case SI_QUEUE:
206 case SI_ASYNCIO:
207 /*
208 * Only the fixed parts are valid (though FreeBSD doesn't always
209 * set all the fields to non-zero values.
210 */
211 si_type = QEMU_SI_NOINFO;
212 break;
213 case SI_TIMER:
214 tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
215 tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
216 si_type = QEMU_SI_TIMER;
217 break;
218 case SI_MESGQ:
219 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
220 si_type = QEMU_SI_MESGQ;
221 break;
222 default:
223 /*
224 * We have to go based on the signal number now to figure out
225 * what's valid.
226 */
227 si_type = QEMU_SI_NOINFO;
228 if (has_trapno(sig)) {
229 tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
230 si_type = QEMU_SI_FAULT;
231 }
232 #ifdef TARGET_SIGPOLL
233 /*
234 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
235 * a chance it may popup in the future.
236 */
237 if (sig == TARGET_SIGPOLL) {
238 tinfo->_reason._poll._band = info->_reason._poll._band;
239 si_type = QEMU_SI_POLL;
240 }
241 #endif
242 /*
243 * Unsure that this can actually be generated, and our support for
244 * capsicum is somewhere between weak and non-existent, but if we get
245 * one, then we know what to save.
246 */
247 #ifdef QEMU_SI_CAPSICUM
248 if (sig == TARGET_SIGTRAP) {
249 tinfo->_reason._capsicum._syscall =
250 info->_reason._capsicum._syscall;
251 si_type = QEMU_SI_CAPSICUM;
252 }
253 #endif
254 break;
255 }
256 tinfo->si_code = deposit32(si_code, 24, 8, si_type);
257 }
258
259 static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info)
260 {
261 int si_type = extract32(info->si_code, 24, 8);
262 int si_code = sextract32(info->si_code, 0, 24);
263
264 __put_user(info->si_signo, &tinfo->si_signo);
265 __put_user(info->si_errno, &tinfo->si_errno);
266 __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */
267 __put_user(info->si_pid, &tinfo->si_pid);
268 __put_user(info->si_uid, &tinfo->si_uid);
269 __put_user(info->si_status, &tinfo->si_status);
270 __put_user(info->si_addr, &tinfo->si_addr);
271 /*
272 * Unswapped, because we passed it through mostly untouched. si_value is
273 * opaque to the kernel, so we didn't bother with potentially wasting cycles
274 * to swap it into host byte order.
275 */
276 tinfo->si_value.sival_ptr = info->si_value.sival_ptr;
277
278 /*
279 * We can use our internal marker of which fields in the structure
280 * are valid, rather than duplicating the guesswork of
281 * host_to_target_siginfo_noswap() here.
282 */
283 switch (si_type) {
284 case QEMU_SI_NOINFO: /* No additional info */
285 break;
286 case QEMU_SI_FAULT:
287 __put_user(info->_reason._fault._trapno,
288 &tinfo->_reason._fault._trapno);
289 break;
290 case QEMU_SI_TIMER:
291 __put_user(info->_reason._timer._timerid,
292 &tinfo->_reason._timer._timerid);
293 __put_user(info->_reason._timer._overrun,
294 &tinfo->_reason._timer._overrun);
295 break;
296 case QEMU_SI_MESGQ:
297 __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd);
298 break;
299 case QEMU_SI_POLL:
300 /* Note: Not generated on FreeBSD */
301 __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band);
302 break;
303 #ifdef QEMU_SI_CAPSICUM
304 case QEMU_SI_CAPSICUM:
305 __put_user(info->_reason._capsicum._syscall,
306 &tinfo->_reason._capsicum._syscall);
307 break;
308 #endif
309 default:
310 g_assert_not_reached();
311 }
312 }
313
314 int block_signals(void)
315 {
316 TaskState *ts = (TaskState *)thread_cpu->opaque;
317 sigset_t set;
318
319 /*
320 * It's OK to block everything including SIGSEGV, because we won't run any
321 * further guest code before unblocking signals in
322 * process_pending_signals(). We depend on the FreeBSD behavior here where
323 * this will only affect this thread's signal mask. We don't use
324 * pthread_sigmask which might seem more correct because that routine also
325 * does odd things with SIGCANCEL to implement pthread_cancel().
326 */
327 sigfillset(&set);
328 sigprocmask(SIG_SETMASK, &set, 0);
329
330 return qatomic_xchg(&ts->signal_pending, 1);
331 }
332
333 /* Returns 1 if given signal should dump core if not handled. */
334 static int core_dump_signal(int sig)
335 {
336 switch (sig) {
337 case TARGET_SIGABRT:
338 case TARGET_SIGFPE:
339 case TARGET_SIGILL:
340 case TARGET_SIGQUIT:
341 case TARGET_SIGSEGV:
342 case TARGET_SIGTRAP:
343 case TARGET_SIGBUS:
344 return 1;
345 default:
346 return 0;
347 }
348 }
349
350 /* Abort execution with signal. */
351 static G_NORETURN
352 void dump_core_and_abort(int target_sig)
353 {
354 CPUState *cpu = thread_cpu;
355 CPUArchState *env = cpu_env(cpu);
356 TaskState *ts = cpu->opaque;
357 int core_dumped = 0;
358 int host_sig;
359 struct sigaction act;
360
361 host_sig = target_to_host_signal(target_sig);
362 gdb_signalled(env, target_sig);
363
364 /* Dump core if supported by target binary format */
365 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
366 stop_all_tasks();
367 core_dumped =
368 ((*ts->bprm->core_dump)(target_sig, env) == 0);
369 }
370 if (core_dumped) {
371 struct rlimit nodump;
372
373 /*
374 * We already dumped the core of target process, we don't want
375 * a coredump of qemu itself.
376 */
377 getrlimit(RLIMIT_CORE, &nodump);
378 nodump.rlim_cur = 0;
379 setrlimit(RLIMIT_CORE, &nodump);
380 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
381 "- %s\n", target_sig, strsignal(host_sig), "core dumped");
382 }
383
384 /*
385 * The proper exit code for dying from an uncaught signal is
386 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
387 * a negative value. To get the proper exit code we need to
388 * actually die from an uncaught signal. Here the default signal
389 * handler is installed, we send ourself a signal and we wait for
390 * it to arrive.
391 */
392 memset(&act, 0, sizeof(act));
393 sigfillset(&act.sa_mask);
394 act.sa_handler = SIG_DFL;
395 sigaction(host_sig, &act, NULL);
396
397 kill(getpid(), host_sig);
398
399 /*
400 * Make sure the signal isn't masked (just reuse the mask inside
401 * of act).
402 */
403 sigdelset(&act.sa_mask, host_sig);
404 sigsuspend(&act.sa_mask);
405
406 /* unreachable */
407 abort();
408 }
409
410 /*
411 * Queue a signal so that it will be send to the virtual CPU as soon as
412 * possible.
413 */
414 void queue_signal(CPUArchState *env, int sig, int si_type,
415 target_siginfo_t *info)
416 {
417 CPUState *cpu = env_cpu(env);
418 TaskState *ts = cpu->opaque;
419
420 trace_user_queue_signal(env, sig);
421
422 info->si_code = deposit32(info->si_code, 24, 8, si_type);
423
424 ts->sync_signal.info = *info;
425 ts->sync_signal.pending = sig;
426 /* Signal that a new signal is pending. */
427 qatomic_set(&ts->signal_pending, 1);
428 return;
429 }
430
431 static int fatal_signal(int sig)
432 {
433
434 switch (sig) {
435 case TARGET_SIGCHLD:
436 case TARGET_SIGURG:
437 case TARGET_SIGWINCH:
438 case TARGET_SIGINFO:
439 /* Ignored by default. */
440 return 0;
441 case TARGET_SIGCONT:
442 case TARGET_SIGSTOP:
443 case TARGET_SIGTSTP:
444 case TARGET_SIGTTIN:
445 case TARGET_SIGTTOU:
446 /* Job control signals. */
447 return 0;
448 default:
449 return 1;
450 }
451 }
452
453 /*
454 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
455 * 'force' part is handled in process_pending_signals().
456 */
457 void force_sig_fault(int sig, int code, abi_ulong addr)
458 {
459 CPUState *cpu = thread_cpu;
460 CPUArchState *env = cpu_env(cpu);
461 target_siginfo_t info = {};
462
463 info.si_signo = sig;
464 info.si_errno = 0;
465 info.si_code = code;
466 info.si_addr = addr;
467 queue_signal(env, sig, QEMU_SI_FAULT, &info);
468 }
469
470 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
471 {
472 CPUState *cpu = thread_cpu;
473 TaskState *ts = cpu->opaque;
474 target_siginfo_t tinfo;
475 ucontext_t *uc = puc;
476 struct emulated_sigtable *k;
477 int guest_sig;
478 uintptr_t pc = 0;
479 bool sync_sig = false;
480
481 /*
482 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
483 * handling wrt signal blocking and unwinding.
484 */
485 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
486 MMUAccessType access_type;
487 uintptr_t host_addr;
488 abi_ptr guest_addr;
489 bool is_write;
490
491 host_addr = (uintptr_t)info->si_addr;
492
493 /*
494 * Convert forcefully to guest address space: addresses outside
495 * reserved_va are still valid to report via SEGV_MAPERR.
496 */
497 guest_addr = h2g_nocheck(host_addr);
498
499 pc = host_signal_pc(uc);
500 is_write = host_signal_write(info, uc);
501 access_type = adjust_signal_pc(&pc, is_write);
502
503 if (host_sig == SIGSEGV) {
504 bool maperr = true;
505
506 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
507 /* If this was a write to a TB protected page, restart. */
508 if (is_write &&
509 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
510 pc, guest_addr)) {
511 return;
512 }
513
514 /*
515 * With reserved_va, the whole address space is PROT_NONE,
516 * which means that we may get ACCERR when we want MAPERR.
517 */
518 if (page_get_flags(guest_addr) & PAGE_VALID) {
519 maperr = false;
520 } else {
521 info->si_code = SEGV_MAPERR;
522 }
523 }
524
525 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
526 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
527 } else {
528 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
529 if (info->si_code == BUS_ADRALN) {
530 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
531 }
532 }
533
534 sync_sig = true;
535 }
536
537 /* Get the target signal number. */
538 guest_sig = host_to_target_signal(host_sig);
539 if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
540 return;
541 }
542 trace_user_host_signal(cpu, host_sig, guest_sig);
543
544 host_to_target_siginfo_noswap(&tinfo, info);
545
546 k = &ts->sigtab[guest_sig - 1];
547 k->info = tinfo;
548 k->pending = guest_sig;
549 ts->signal_pending = 1;
550
551 /*
552 * For synchronous signals, unwind the cpu state to the faulting
553 * insn and then exit back to the main loop so that the signal
554 * is delivered immediately.
555 */
556 if (sync_sig) {
557 cpu->exception_index = EXCP_INTERRUPT;
558 cpu_loop_exit_restore(cpu, pc);
559 }
560
561 rewind_if_in_safe_syscall(puc);
562
563 /*
564 * Block host signals until target signal handler entered. We
565 * can't block SIGSEGV or SIGBUS while we're executing guest
566 * code in case the guest code provokes one in the window between
567 * now and it getting out to the main loop. Signals will be
568 * unblocked again in process_pending_signals().
569 */
570 sigfillset(&uc->uc_sigmask);
571 sigdelset(&uc->uc_sigmask, SIGSEGV);
572 sigdelset(&uc->uc_sigmask, SIGBUS);
573
574 /* Interrupt the virtual CPU as soon as possible. */
575 cpu_exit(thread_cpu);
576 }
577
578 /* do_sigaltstack() returns target values and errnos. */
579 /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */
580 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp)
581 {
582 TaskState *ts = (TaskState *)thread_cpu->opaque;
583 int ret;
584 target_stack_t oss;
585
586 if (uoss_addr) {
587 /* Save current signal stack params */
588 oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp);
589 oss.ss_size = tswapl(ts->sigaltstack_used.ss_size);
590 oss.ss_flags = tswapl(sas_ss_flags(ts, sp));
591 }
592
593 if (uss_addr) {
594 target_stack_t *uss;
595 target_stack_t ss;
596 size_t minstacksize = TARGET_MINSIGSTKSZ;
597
598 ret = -TARGET_EFAULT;
599 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
600 goto out;
601 }
602 __get_user(ss.ss_sp, &uss->ss_sp);
603 __get_user(ss.ss_size, &uss->ss_size);
604 __get_user(ss.ss_flags, &uss->ss_flags);
605 unlock_user_struct(uss, uss_addr, 0);
606
607 ret = -TARGET_EPERM;
608 if (on_sig_stack(ts, sp)) {
609 goto out;
610 }
611
612 ret = -TARGET_EINVAL;
613 if (ss.ss_flags != TARGET_SS_DISABLE
614 && ss.ss_flags != TARGET_SS_ONSTACK
615 && ss.ss_flags != 0) {
616 goto out;
617 }
618
619 if (ss.ss_flags == TARGET_SS_DISABLE) {
620 ss.ss_size = 0;
621 ss.ss_sp = 0;
622 } else {
623 ret = -TARGET_ENOMEM;
624 if (ss.ss_size < minstacksize) {
625 goto out;
626 }
627 }
628
629 ts->sigaltstack_used.ss_sp = ss.ss_sp;
630 ts->sigaltstack_used.ss_size = ss.ss_size;
631 }
632
633 if (uoss_addr) {
634 ret = -TARGET_EFAULT;
635 if (copy_to_user(uoss_addr, &oss, sizeof(oss))) {
636 goto out;
637 }
638 }
639
640 ret = 0;
641 out:
642 return ret;
643 }
644
645 /* do_sigaction() return host values and errnos */
646 int do_sigaction(int sig, const struct target_sigaction *act,
647 struct target_sigaction *oact)
648 {
649 struct target_sigaction *k;
650 struct sigaction act1;
651 int host_sig;
652 int ret = 0;
653
654 if (sig < 1 || sig > TARGET_NSIG) {
655 return -TARGET_EINVAL;
656 }
657
658 if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) &&
659 act != NULL && act->_sa_handler != TARGET_SIG_DFL) {
660 return -TARGET_EINVAL;
661 }
662
663 if (block_signals()) {
664 return -TARGET_ERESTART;
665 }
666
667 k = &sigact_table[sig - 1];
668 if (oact) {
669 oact->_sa_handler = tswapal(k->_sa_handler);
670 oact->sa_flags = tswap32(k->sa_flags);
671 oact->sa_mask = k->sa_mask;
672 }
673 if (act) {
674 k->_sa_handler = tswapal(act->_sa_handler);
675 k->sa_flags = tswap32(act->sa_flags);
676 k->sa_mask = act->sa_mask;
677
678 /* Update the host signal state. */
679 host_sig = target_to_host_signal(sig);
680 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
681 memset(&act1, 0, sizeof(struct sigaction));
682 sigfillset(&act1.sa_mask);
683 act1.sa_flags = SA_SIGINFO;
684 if (k->sa_flags & TARGET_SA_RESTART) {
685 act1.sa_flags |= SA_RESTART;
686 }
687 /*
688 * Note: It is important to update the host kernel signal mask to
689 * avoid getting unexpected interrupted system calls.
690 */
691 if (k->_sa_handler == TARGET_SIG_IGN) {
692 act1.sa_sigaction = (void *)SIG_IGN;
693 } else if (k->_sa_handler == TARGET_SIG_DFL) {
694 if (fatal_signal(sig)) {
695 act1.sa_sigaction = host_signal_handler;
696 } else {
697 act1.sa_sigaction = (void *)SIG_DFL;
698 }
699 } else {
700 act1.sa_sigaction = host_signal_handler;
701 }
702 ret = sigaction(host_sig, &act1, NULL);
703 }
704 }
705 return ret;
706 }
707
708 static inline abi_ulong get_sigframe(struct target_sigaction *ka,
709 CPUArchState *env, size_t frame_size)
710 {
711 TaskState *ts = (TaskState *)thread_cpu->opaque;
712 abi_ulong sp;
713
714 /* Use default user stack */
715 sp = get_sp_from_cpustate(env);
716
717 if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) {
718 sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
719 }
720
721 /* TODO: make this a target_arch function / define */
722 #if defined(TARGET_ARM)
723 return (sp - frame_size) & ~7;
724 #elif defined(TARGET_AARCH64)
725 return (sp - frame_size) & ~15;
726 #else
727 return sp - frame_size;
728 #endif
729 }
730
731 /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */
732
733 static void setup_frame(int sig, int code, struct target_sigaction *ka,
734 target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env)
735 {
736 struct target_sigframe *frame;
737 abi_ulong frame_addr;
738 int i;
739
740 frame_addr = get_sigframe(ka, env, sizeof(*frame));
741 trace_user_setup_frame(env, frame_addr);
742 if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) {
743 unlock_user_struct(frame, frame_addr, 1);
744 dump_core_and_abort(TARGET_SIGILL);
745 return;
746 }
747
748 memset(frame, 0, sizeof(*frame));
749 setup_sigframe_arch(env, frame_addr, frame, 0);
750
751 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
752 __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]);
753 }
754
755 if (tinfo) {
756 frame->sf_si.si_signo = tinfo->si_signo;
757 frame->sf_si.si_errno = tinfo->si_errno;
758 frame->sf_si.si_code = tinfo->si_code;
759 frame->sf_si.si_pid = tinfo->si_pid;
760 frame->sf_si.si_uid = tinfo->si_uid;
761 frame->sf_si.si_status = tinfo->si_status;
762 frame->sf_si.si_addr = tinfo->si_addr;
763 /* see host_to_target_siginfo_noswap() for more details */
764 frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr;
765 /*
766 * At this point, whatever is in the _reason union is complete
767 * and in target order, so just copy the whole thing over, even
768 * if it's too large for this specific signal.
769 * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured
770 * that's so.
771 */
772 memcpy(&frame->sf_si._reason, &tinfo->_reason,
773 sizeof(tinfo->_reason));
774 }
775
776 set_sigtramp_args(env, sig, frame, frame_addr, ka);
777
778 unlock_user_struct(frame, frame_addr, 1);
779 }
780
781 static int reset_signal_mask(target_ucontext_t *ucontext)
782 {
783 int i;
784 sigset_t blocked;
785 target_sigset_t target_set;
786 TaskState *ts = (TaskState *)thread_cpu->opaque;
787
788 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
789 __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]);
790 }
791 target_to_host_sigset_internal(&blocked, &target_set);
792 ts->signal_mask = blocked;
793
794 return 0;
795 }
796
797 /* See sys/$M/$M/exec_machdep.c sigreturn() */
798 long do_sigreturn(CPUArchState *env, abi_ulong addr)
799 {
800 long ret;
801 abi_ulong target_ucontext;
802 target_ucontext_t *ucontext = NULL;
803
804 /* Get the target ucontext address from the stack frame */
805 ret = get_ucontext_sigreturn(env, addr, &target_ucontext);
806 if (is_error(ret)) {
807 return ret;
808 }
809 trace_user_do_sigreturn(env, addr);
810 if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) {
811 goto badframe;
812 }
813
814 /* Set the register state back to before the signal. */
815 if (set_mcontext(env, &ucontext->uc_mcontext, 1)) {
816 goto badframe;
817 }
818
819 /* And reset the signal mask. */
820 if (reset_signal_mask(ucontext)) {
821 goto badframe;
822 }
823
824 unlock_user_struct(ucontext, target_ucontext, 0);
825 return -TARGET_EJUSTRETURN;
826
827 badframe:
828 if (ucontext != NULL) {
829 unlock_user_struct(ucontext, target_ucontext, 0);
830 }
831 return -TARGET_EFAULT;
832 }
833
834 void signal_init(void)
835 {
836 TaskState *ts = (TaskState *)thread_cpu->opaque;
837 struct sigaction act;
838 struct sigaction oact;
839 int i;
840 int host_sig;
841
842 /* Set the signal mask from the host mask. */
843 sigprocmask(0, 0, &ts->signal_mask);
844
845 sigfillset(&act.sa_mask);
846 act.sa_sigaction = host_signal_handler;
847 act.sa_flags = SA_SIGINFO;
848
849 for (i = 1; i <= TARGET_NSIG; i++) {
850 #ifdef CONFIG_GPROF
851 if (i == TARGET_SIGPROF) {
852 continue;
853 }
854 #endif
855 host_sig = target_to_host_signal(i);
856 sigaction(host_sig, NULL, &oact);
857 if (oact.sa_sigaction == (void *)SIG_IGN) {
858 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
859 } else if (oact.sa_sigaction == (void *)SIG_DFL) {
860 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
861 }
862 /*
863 * If there's already a handler installed then something has
864 * gone horribly wrong, so don't even try to handle that case.
865 * Install some handlers for our own use. We need at least
866 * SIGSEGV and SIGBUS, to detect exceptions. We can not just
867 * trap all signals because it affects syscall interrupt
868 * behavior. But do trap all default-fatal signals.
869 */
870 if (fatal_signal(i)) {
871 sigaction(host_sig, &act, NULL);
872 }
873 }
874 }
875
876 static void handle_pending_signal(CPUArchState *env, int sig,
877 struct emulated_sigtable *k)
878 {
879 CPUState *cpu = env_cpu(env);
880 TaskState *ts = cpu->opaque;
881 struct target_sigaction *sa;
882 int code;
883 sigset_t set;
884 abi_ulong handler;
885 target_siginfo_t tinfo;
886 target_sigset_t target_old_set;
887
888 trace_user_handle_signal(env, sig);
889
890 k->pending = 0;
891
892 sig = gdb_handlesig(cpu, sig);
893 if (!sig) {
894 sa = NULL;
895 handler = TARGET_SIG_IGN;
896 } else {
897 sa = &sigact_table[sig - 1];
898 handler = sa->_sa_handler;
899 }
900
901 if (do_strace) {
902 print_taken_signal(sig, &k->info);
903 }
904
905 if (handler == TARGET_SIG_DFL) {
906 /*
907 * default handler : ignore some signal. The other are job
908 * control or fatal.
909 */
910 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN ||
911 sig == TARGET_SIGTTOU) {
912 kill(getpid(), SIGSTOP);
913 } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG &&
914 sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH &&
915 sig != TARGET_SIGCONT) {
916 dump_core_and_abort(sig);
917 }
918 } else if (handler == TARGET_SIG_IGN) {
919 /* ignore sig */
920 } else if (handler == TARGET_SIG_ERR) {
921 dump_core_and_abort(sig);
922 } else {
923 /* compute the blocked signals during the handler execution */
924 sigset_t *blocked_set;
925
926 target_to_host_sigset(&set, &sa->sa_mask);
927 /*
928 * SA_NODEFER indicates that the current signal should not be
929 * blocked during the handler.
930 */
931 if (!(sa->sa_flags & TARGET_SA_NODEFER)) {
932 sigaddset(&set, target_to_host_signal(sig));
933 }
934
935 /*
936 * Save the previous blocked signal state to restore it at the
937 * end of the signal execution (see do_sigreturn).
938 */
939 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
940
941 blocked_set = ts->in_sigsuspend ?
942 &ts->sigsuspend_mask : &ts->signal_mask;
943 sigorset(&ts->signal_mask, blocked_set, &set);
944 ts->in_sigsuspend = false;
945 sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL);
946
947 /* XXX VM86 on x86 ??? */
948
949 code = k->info.si_code; /* From host, so no si_type */
950 /* prepare the stack frame of the virtual CPU */
951 if (sa->sa_flags & TARGET_SA_SIGINFO) {
952 tswap_siginfo(&tinfo, &k->info);
953 setup_frame(sig, code, sa, &target_old_set, &tinfo, env);
954 } else {
955 setup_frame(sig, code, sa, &target_old_set, NULL, env);
956 }
957 if (sa->sa_flags & TARGET_SA_RESETHAND) {
958 sa->_sa_handler = TARGET_SIG_DFL;
959 }
960 }
961 }
962
963 void process_pending_signals(CPUArchState *env)
964 {
965 CPUState *cpu = env_cpu(env);
966 int sig;
967 sigset_t *blocked_set, set;
968 struct emulated_sigtable *k;
969 TaskState *ts = cpu->opaque;
970
971 while (qatomic_read(&ts->signal_pending)) {
972 sigfillset(&set);
973 sigprocmask(SIG_SETMASK, &set, 0);
974
975 restart_scan:
976 sig = ts->sync_signal.pending;
977 if (sig) {
978 /*
979 * Synchronous signals are forced by the emulated CPU in some way.
980 * If they are set to ignore, restore the default handler (see
981 * sys/kern_sig.c trapsignal() and execsigs() for this behavior)
982 * though maybe this is done only when forcing exit for non SIGCHLD.
983 */
984 if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) ||
985 sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
986 sigdelset(&ts->signal_mask, target_to_host_signal(sig));
987 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
988 }
989 handle_pending_signal(env, sig, &ts->sync_signal);
990 }
991
992 k = ts->sigtab;
993 for (sig = 1; sig <= TARGET_NSIG; sig++, k++) {
994 blocked_set = ts->in_sigsuspend ?
995 &ts->sigsuspend_mask : &ts->signal_mask;
996 if (k->pending &&
997 !sigismember(blocked_set, target_to_host_signal(sig))) {
998 handle_pending_signal(env, sig, k);
999 /*
1000 * Restart scan from the beginning, as handle_pending_signal
1001 * might have resulted in a new synchronous signal (eg SIGSEGV).
1002 */
1003 goto restart_scan;
1004 }
1005 }
1006
1007 /*
1008 * Unblock signals and check one more time. Unblocking signals may cause
1009 * us to take another host signal, which will set signal_pending again.
1010 */
1011 qatomic_set(&ts->signal_pending, 0);
1012 ts->in_sigsuspend = false;
1013 set = ts->signal_mask;
1014 sigdelset(&set, SIGSEGV);
1015 sigdelset(&set, SIGBUS);
1016 sigprocmask(SIG_SETMASK, &set, 0);
1017 }
1018 ts->in_sigsuspend = false;
1019 }
1020
1021 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
1022 MMUAccessType access_type, bool maperr, uintptr_t ra)
1023 {
1024 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1025
1026 if (tcg_ops->record_sigsegv) {
1027 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
1028 }
1029
1030 force_sig_fault(TARGET_SIGSEGV,
1031 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
1032 addr);
1033 cpu->exception_index = EXCP_INTERRUPT;
1034 cpu_loop_exit_restore(cpu, ra);
1035 }
1036
1037 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
1038 MMUAccessType access_type, uintptr_t ra)
1039 {
1040 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
1041
1042 if (tcg_ops->record_sigbus) {
1043 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
1044 }
1045
1046 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
1047 cpu->exception_index = EXCP_INTERRUPT;
1048 cpu_loop_exit_restore(cpu, ra);
1049 }