]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/armsse.c
qom: Put name parameter before value / visitor parameter
[mirror_qemu.git] / hw / arm / armsse.c
1 /*
2 * Arm SSE (Subsystems for Embedded): IoTKit
3 *
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
10 */
11
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
24
25 /* Format of the System Information block SYS_CONFIG register */
26 typedef enum SysConfigFormat {
27 IoTKitFormat,
28 SSE200Format,
29 } SysConfigFormat;
30
31 struct ARMSSEInfo {
32 const char *name;
33 int sram_banks;
34 int num_cpus;
35 uint32_t sys_version;
36 uint32_t cpuwait_rst;
37 SysConfigFormat sys_config_format;
38 bool has_mhus;
39 bool has_ppus;
40 bool has_cachectrl;
41 bool has_cpusecctrl;
42 bool has_cpuid;
43 Property *props;
44 };
45
46 static Property iotkit_properties[] = {
47 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
48 MemoryRegion *),
49 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
50 DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
51 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
52 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
53 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
54 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
55 DEFINE_PROP_END_OF_LIST()
56 };
57
58 static Property armsse_properties[] = {
59 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
60 MemoryRegion *),
61 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
62 DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
63 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
64 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
65 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
66 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
67 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
68 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
69 DEFINE_PROP_END_OF_LIST()
70 };
71
72 static const ARMSSEInfo armsse_variants[] = {
73 {
74 .name = TYPE_IOTKIT,
75 .sram_banks = 1,
76 .num_cpus = 1,
77 .sys_version = 0x41743,
78 .cpuwait_rst = 0,
79 .sys_config_format = IoTKitFormat,
80 .has_mhus = false,
81 .has_ppus = false,
82 .has_cachectrl = false,
83 .has_cpusecctrl = false,
84 .has_cpuid = false,
85 .props = iotkit_properties,
86 },
87 {
88 .name = TYPE_SSE200,
89 .sram_banks = 4,
90 .num_cpus = 2,
91 .sys_version = 0x22041743,
92 .cpuwait_rst = 2,
93 .sys_config_format = SSE200Format,
94 .has_mhus = true,
95 .has_ppus = true,
96 .has_cachectrl = true,
97 .has_cpusecctrl = true,
98 .has_cpuid = true,
99 .props = armsse_properties,
100 },
101 };
102
103 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
104 {
105 /* Return the SYS_CONFIG value for this SSE */
106 uint32_t sys_config;
107
108 switch (info->sys_config_format) {
109 case IoTKitFormat:
110 sys_config = 0;
111 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
112 sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
113 break;
114 case SSE200Format:
115 sys_config = 0;
116 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
117 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
118 sys_config = deposit32(sys_config, 24, 4, 2);
119 if (info->num_cpus > 1) {
120 sys_config = deposit32(sys_config, 10, 1, 1);
121 sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
122 sys_config = deposit32(sys_config, 28, 4, 2);
123 }
124 break;
125 default:
126 g_assert_not_reached();
127 }
128 return sys_config;
129 }
130
131 /* Clock frequency in HZ of the 32KHz "slow clock" */
132 #define S32KCLK (32 * 1000)
133
134 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
135 static bool irq_is_common[32] = {
136 [0 ... 5] = true,
137 /* 6, 7: per-CPU MHU interrupts */
138 [8 ... 12] = true,
139 /* 13: per-CPU icache interrupt */
140 /* 14: reserved */
141 [15 ... 20] = true,
142 /* 21: reserved */
143 [22 ... 26] = true,
144 /* 27: reserved */
145 /* 28, 29: per-CPU CTI interrupts */
146 /* 30, 31: reserved */
147 };
148
149 /*
150 * Create an alias region in @container of @size bytes starting at @base
151 * which mirrors the memory starting at @orig.
152 */
153 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
154 const char *name, hwaddr base, hwaddr size, hwaddr orig)
155 {
156 memory_region_init_alias(mr, NULL, name, container, orig, size);
157 /* The alias is even lower priority than unimplemented_device regions */
158 memory_region_add_subregion_overlap(container, base, mr, -1500);
159 }
160
161 static void irq_status_forwarder(void *opaque, int n, int level)
162 {
163 qemu_irq destirq = opaque;
164
165 qemu_set_irq(destirq, level);
166 }
167
168 static void nsccfg_handler(void *opaque, int n, int level)
169 {
170 ARMSSE *s = ARMSSE(opaque);
171
172 s->nsccfg = level;
173 }
174
175 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
176 {
177 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
178 * system using the ARMSSE has a collection of control lines which
179 * are provided by the security controller and which we want to
180 * expose as control lines on the ARMSSE device itself, so the
181 * code using the ARMSSE can wire them up to the PPCs.
182 */
183 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
184 DeviceState *armssedev = DEVICE(s);
185 DeviceState *dev_secctl = DEVICE(&s->secctl);
186 DeviceState *dev_splitter = DEVICE(splitter);
187 char *name;
188
189 name = g_strdup_printf("%s_nonsec", ppcname);
190 qdev_pass_gpios(dev_secctl, armssedev, name);
191 g_free(name);
192 name = g_strdup_printf("%s_ap", ppcname);
193 qdev_pass_gpios(dev_secctl, armssedev, name);
194 g_free(name);
195 name = g_strdup_printf("%s_irq_enable", ppcname);
196 qdev_pass_gpios(dev_secctl, armssedev, name);
197 g_free(name);
198 name = g_strdup_printf("%s_irq_clear", ppcname);
199 qdev_pass_gpios(dev_secctl, armssedev, name);
200 g_free(name);
201
202 /* irq_status is a little more tricky, because we need to
203 * split it so we can send it both to the security controller
204 * and to our OR gate for the NVIC interrupt line.
205 * Connect up the splitter's outputs, and create a GPIO input
206 * which will pass the line state to the input splitter.
207 */
208 name = g_strdup_printf("%s_irq_status", ppcname);
209 qdev_connect_gpio_out(dev_splitter, 0,
210 qdev_get_gpio_in_named(dev_secctl,
211 name, 0));
212 qdev_connect_gpio_out(dev_splitter, 1,
213 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
214 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
215 qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
216 s->irq_status_in[ppcnum], name, 1);
217 g_free(name);
218 }
219
220 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
221 {
222 /* Forward the 3rd output from the splitter device as a
223 * named GPIO output of the armsse object.
224 */
225 DeviceState *dev = DEVICE(s);
226 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
227
228 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
229 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
230 s->sec_resp_cfg, 1);
231 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
232 }
233
234 static void armsse_init(Object *obj)
235 {
236 ARMSSE *s = ARMSSE(obj);
237 ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
238 const ARMSSEInfo *info = asc->info;
239 int i;
240
241 assert(info->sram_banks <= MAX_SRAM_BANKS);
242 assert(info->num_cpus <= SSE_MAX_CPUS);
243
244 memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
245
246 for (i = 0; i < info->num_cpus; i++) {
247 /*
248 * We put each CPU in its own cluster as they are logically
249 * distinct and may be configured differently.
250 */
251 char *name;
252
253 name = g_strdup_printf("cluster%d", i);
254 object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
255 qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
256 g_free(name);
257
258 name = g_strdup_printf("armv7m%d", i);
259 object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
260 TYPE_ARMV7M);
261 qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
262 ARM_CPU_TYPE_NAME("cortex-m33"));
263 g_free(name);
264 name = g_strdup_printf("arm-sse-cpu-container%d", i);
265 memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
266 g_free(name);
267 if (i > 0) {
268 name = g_strdup_printf("arm-sse-container-alias%d", i);
269 memory_region_init_alias(&s->container_alias[i - 1], obj,
270 name, &s->container, 0, UINT64_MAX);
271 g_free(name);
272 }
273 }
274
275 object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
276 object_initialize_child(obj, "apb-ppc0", &s->apb_ppc0, TYPE_TZ_PPC);
277 object_initialize_child(obj, "apb-ppc1", &s->apb_ppc1, TYPE_TZ_PPC);
278 for (i = 0; i < info->sram_banks; i++) {
279 char *name = g_strdup_printf("mpc%d", i);
280 object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
281 g_free(name);
282 }
283 object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
284 TYPE_OR_IRQ);
285
286 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
287 char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
288 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
289
290 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
291 g_free(name);
292 }
293 object_initialize_child(obj, "timer0", &s->timer0, TYPE_CMSDK_APB_TIMER);
294 object_initialize_child(obj, "timer1", &s->timer1, TYPE_CMSDK_APB_TIMER);
295 object_initialize_child(obj, "s32ktimer", &s->s32ktimer,
296 TYPE_CMSDK_APB_TIMER);
297 object_initialize_child(obj, "dualtimer", &s->dualtimer,
298 TYPE_CMSDK_APB_DUALTIMER);
299 object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog,
300 TYPE_CMSDK_APB_WATCHDOG);
301 object_initialize_child(obj, "nswatchdog", &s->nswatchdog,
302 TYPE_CMSDK_APB_WATCHDOG);
303 object_initialize_child(obj, "swatchdog", &s->swatchdog,
304 TYPE_CMSDK_APB_WATCHDOG);
305 object_initialize_child(obj, "armsse-sysctl", &s->sysctl,
306 TYPE_IOTKIT_SYSCTL);
307 object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo,
308 TYPE_IOTKIT_SYSINFO);
309 if (info->has_mhus) {
310 object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
311 object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
312 }
313 if (info->has_ppus) {
314 for (i = 0; i < info->num_cpus; i++) {
315 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
316 int ppuidx = CPU0CORE_PPU + i;
317
318 object_initialize_child(obj, name, &s->ppu[ppuidx],
319 TYPE_UNIMPLEMENTED_DEVICE);
320 g_free(name);
321 }
322 object_initialize_child(obj, "DBG_PPU", &s->ppu[DBG_PPU],
323 TYPE_UNIMPLEMENTED_DEVICE);
324 for (i = 0; i < info->sram_banks; i++) {
325 char *name = g_strdup_printf("RAM%d_PPU", i);
326 int ppuidx = RAM0_PPU + i;
327
328 object_initialize_child(obj, name, &s->ppu[ppuidx],
329 TYPE_UNIMPLEMENTED_DEVICE);
330 g_free(name);
331 }
332 }
333 if (info->has_cachectrl) {
334 for (i = 0; i < info->num_cpus; i++) {
335 char *name = g_strdup_printf("cachectrl%d", i);
336
337 object_initialize_child(obj, name, &s->cachectrl[i],
338 TYPE_UNIMPLEMENTED_DEVICE);
339 g_free(name);
340 }
341 }
342 if (info->has_cpusecctrl) {
343 for (i = 0; i < info->num_cpus; i++) {
344 char *name = g_strdup_printf("cpusecctrl%d", i);
345
346 object_initialize_child(obj, name, &s->cpusecctrl[i],
347 TYPE_UNIMPLEMENTED_DEVICE);
348 g_free(name);
349 }
350 }
351 if (info->has_cpuid) {
352 for (i = 0; i < info->num_cpus; i++) {
353 char *name = g_strdup_printf("cpuid%d", i);
354
355 object_initialize_child(obj, name, &s->cpuid[i],
356 TYPE_ARMSSE_CPUID);
357 g_free(name);
358 }
359 }
360 object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
361 object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
362 TYPE_OR_IRQ);
363 object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
364 TYPE_SPLIT_IRQ);
365 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
366 char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
367 SplitIRQ *splitter = &s->ppc_irq_splitter[i];
368
369 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
370 g_free(name);
371 }
372 if (info->num_cpus > 1) {
373 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
374 if (irq_is_common[i]) {
375 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
376 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
377
378 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
379 g_free(name);
380 }
381 }
382 }
383 }
384
385 static void armsse_exp_irq(void *opaque, int n, int level)
386 {
387 qemu_irq *irqarray = opaque;
388
389 qemu_set_irq(irqarray[n], level);
390 }
391
392 static void armsse_mpcexp_status(void *opaque, int n, int level)
393 {
394 ARMSSE *s = ARMSSE(opaque);
395 qemu_set_irq(s->mpcexp_status_in[n], level);
396 }
397
398 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
399 {
400 /*
401 * Return a qemu_irq which can be used to signal IRQ n to
402 * all CPUs in the SSE.
403 */
404 ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
405 const ARMSSEInfo *info = asc->info;
406
407 assert(irq_is_common[irqno]);
408
409 if (info->num_cpus == 1) {
410 /* Only one CPU -- just connect directly to it */
411 return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
412 } else {
413 /* Connect to the splitter which feeds all CPUs */
414 return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
415 }
416 }
417
418 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
419 {
420 /* Map a PPU unimplemented device stub */
421 DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
422
423 qdev_prop_set_string(dev, "name", name);
424 qdev_prop_set_uint64(dev, "size", 0x1000);
425 sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal);
426 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
427 }
428
429 static void armsse_realize(DeviceState *dev, Error **errp)
430 {
431 ARMSSE *s = ARMSSE(dev);
432 ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
433 const ARMSSEInfo *info = asc->info;
434 int i;
435 MemoryRegion *mr;
436 Error *err = NULL;
437 SysBusDevice *sbd_apb_ppc0;
438 SysBusDevice *sbd_secctl;
439 DeviceState *dev_apb_ppc0;
440 DeviceState *dev_apb_ppc1;
441 DeviceState *dev_secctl;
442 DeviceState *dev_splitter;
443 uint32_t addr_width_max;
444
445 if (!s->board_memory) {
446 error_setg(errp, "memory property was not set");
447 return;
448 }
449
450 if (!s->mainclk_frq) {
451 error_setg(errp, "MAINCLK property was not set");
452 return;
453 }
454
455 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
456 assert(is_power_of_2(info->sram_banks));
457 addr_width_max = 24 - ctz32(info->sram_banks);
458 if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
459 error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
460 addr_width_max);
461 return;
462 }
463
464 /* Handling of which devices should be available only to secure
465 * code is usually done differently for M profile than for A profile.
466 * Instead of putting some devices only into the secure address space,
467 * devices exist in both address spaces but with hard-wired security
468 * permissions that will cause the CPU to fault for non-secure accesses.
469 *
470 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
471 * which specifies hard-wired security permissions for different
472 * areas of the physical address space. For the ARMSSE IDAU, the
473 * top 4 bits of the physical address are the IDAU region ID, and
474 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
475 * region, otherwise it is an S region.
476 *
477 * The various devices and RAMs are generally all mapped twice,
478 * once into a region that the IDAU defines as secure and once
479 * into a non-secure region. They sit behind either a Memory
480 * Protection Controller (for RAM) or a Peripheral Protection
481 * Controller (for devices), which allow a more fine grained
482 * configuration of whether non-secure accesses are permitted.
483 *
484 * (The other place that guest software can configure security
485 * permissions is in the architected SAU (Security Attribution
486 * Unit), which is entirely inside the CPU. The IDAU can upgrade
487 * the security attributes for a region to more restrictive than
488 * the SAU specifies, but cannot downgrade them.)
489 *
490 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
491 * 0x20000000..0x2007ffff 32KB FPGA block RAM
492 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
493 * 0x40000000..0x4000ffff base peripheral region 1
494 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
495 * 0x40020000..0x4002ffff system control element peripherals
496 * 0x40080000..0x400fffff base peripheral region 2
497 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
498 */
499
500 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
501
502 for (i = 0; i < info->num_cpus; i++) {
503 DeviceState *cpudev = DEVICE(&s->armv7m[i]);
504 Object *cpuobj = OBJECT(&s->armv7m[i]);
505 int j;
506 char *gpioname;
507
508 qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
509 /*
510 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
511 * registers in the IoT Kit System Control Register block. In QEMU
512 * we set the initial value here, and also the reset value of the
513 * sysctl register, from this object's QOM init-svtor property.
514 * If the guest changes the INITSVTOR* registers at runtime then the
515 * code in iotkit-sysctl.c will update the CPU init-svtor property
516 * (which will then take effect on the next CPU warm-reset).
517 *
518 * Note that typically a board using the SSE-200 will have a system
519 * control processor whose boot firmware initializes the INITSVTOR*
520 * registers before powering up the CPUs. QEMU doesn't emulate
521 * the control processor, so instead we behave in the way that the
522 * firmware does: the initial value should be set by the board code
523 * (using the init-svtor property on the ARMSSE object) to match
524 * whatever its firmware does.
525 */
526 qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
527 /*
528 * CPUs start powered down if the corresponding bit in the CPUWAIT
529 * register is 1. In real hardware the CPUWAIT register reset value is
530 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
531 * CPUWAIT1_RST parameters), but since all the boards we care about
532 * start CPU0 and leave CPU1 powered off, we hard-code that in
533 * info->cpuwait_rst for now. We can add QOM properties for this
534 * later if necessary.
535 */
536 if (extract32(info->cpuwait_rst, i, 1)) {
537 object_property_set_bool(cpuobj, "start-powered-off", true, &err);
538 if (err) {
539 error_propagate(errp, err);
540 return;
541 }
542 }
543 if (!s->cpu_fpu[i]) {
544 object_property_set_bool(cpuobj, "vfp", false, &err);
545 if (err) {
546 error_propagate(errp, err);
547 return;
548 }
549 }
550 if (!s->cpu_dsp[i]) {
551 object_property_set_bool(cpuobj, "dsp", false, &err);
552 if (err) {
553 error_propagate(errp, err);
554 return;
555 }
556 }
557
558 if (i > 0) {
559 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
560 &s->container_alias[i - 1], -1);
561 } else {
562 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
563 &s->container, -1);
564 }
565 object_property_set_link(cpuobj, "memory",
566 OBJECT(&s->cpu_container[i]), &error_abort);
567 object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
568 if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), &err)) {
569 error_propagate(errp, err);
570 return;
571 }
572 /*
573 * The cluster must be realized after the armv7m container, as
574 * the container's CPU object is only created on realize, and the
575 * CPU must exist and have been parented into the cluster before
576 * the cluster is realized.
577 */
578 if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, &err)) {
579 error_propagate(errp, err);
580 return;
581 }
582
583 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
584 s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
585 for (j = 0; j < s->exp_numirq; j++) {
586 s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
587 }
588 if (i == 0) {
589 gpioname = g_strdup("EXP_IRQ");
590 } else {
591 gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
592 }
593 qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
594 s->exp_irqs[i],
595 gpioname, s->exp_numirq);
596 g_free(gpioname);
597 }
598
599 /* Wire up the splitters that connect common IRQs to all CPUs */
600 if (info->num_cpus > 1) {
601 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
602 if (irq_is_common[i]) {
603 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
604 DeviceState *devs = DEVICE(splitter);
605 int cpunum;
606
607 object_property_set_int(splitter, "num-lines", info->num_cpus,
608 &err);
609 if (err) {
610 error_propagate(errp, err);
611 return;
612 }
613 if (!qdev_realize(DEVICE(splitter), NULL, &err)) {
614 error_propagate(errp, err);
615 return;
616 }
617 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
618 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
619
620 qdev_connect_gpio_out(devs, cpunum,
621 qdev_get_gpio_in(cpudev, i));
622 }
623 }
624 }
625 }
626
627 /* Set up the big aliases first */
628 make_alias(s, &s->alias1, &s->container, "alias 1",
629 0x10000000, 0x10000000, 0x00000000);
630 make_alias(s, &s->alias2, &s->container,
631 "alias 2", 0x30000000, 0x10000000, 0x20000000);
632 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
633 * a few extra devices that only appear there (generally the
634 * control interfaces for the protection controllers).
635 * We implement this by mapping those devices over the top of this
636 * alias MR at a higher priority. Some of the devices in this range
637 * are per-CPU, so we must put this alias in the per-cpu containers.
638 */
639 for (i = 0; i < info->num_cpus; i++) {
640 make_alias(s, &s->alias3[i], &s->cpu_container[i],
641 "alias 3", 0x50000000, 0x10000000, 0x40000000);
642 }
643
644 /* Security controller */
645 if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), &err)) {
646 error_propagate(errp, err);
647 return;
648 }
649 sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
650 dev_secctl = DEVICE(&s->secctl);
651 sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
652 sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
653
654 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
655 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
656
657 /* The sec_resp_cfg output from the security controller must be split into
658 * multiple lines, one for each of the PPCs within the ARMSSE and one
659 * that will be an output from the ARMSSE to the system.
660 */
661 object_property_set_int(OBJECT(&s->sec_resp_splitter), "num-lines", 3,
662 &err);
663 if (err) {
664 error_propagate(errp, err);
665 return;
666 }
667 if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, &err)) {
668 error_propagate(errp, err);
669 return;
670 }
671 dev_splitter = DEVICE(&s->sec_resp_splitter);
672 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
673 qdev_get_gpio_in(dev_splitter, 0));
674
675 /* Each SRAM bank lives behind its own Memory Protection Controller */
676 for (i = 0; i < info->sram_banks; i++) {
677 char *ramname = g_strdup_printf("armsse.sram%d", i);
678 SysBusDevice *sbd_mpc;
679 uint32_t sram_bank_size = 1 << s->sram_addr_width;
680
681 memory_region_init_ram(&s->sram[i], NULL, ramname,
682 sram_bank_size, &err);
683 g_free(ramname);
684 if (err) {
685 error_propagate(errp, err);
686 return;
687 }
688 object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
689 OBJECT(&s->sram[i]), &error_abort);
690 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), &err)) {
691 error_propagate(errp, err);
692 return;
693 }
694 /* Map the upstream end of the MPC into the right place... */
695 sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
696 memory_region_add_subregion(&s->container,
697 0x20000000 + i * sram_bank_size,
698 sysbus_mmio_get_region(sbd_mpc, 1));
699 /* ...and its register interface */
700 memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
701 sysbus_mmio_get_region(sbd_mpc, 0));
702 }
703
704 /* We must OR together lines from the MPC splitters to go to the NVIC */
705 object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
706 IOTS_NUM_EXP_MPC + info->sram_banks, &err);
707 if (err) {
708 error_propagate(errp, err);
709 return;
710 }
711 if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, &err)) {
712 error_propagate(errp, err);
713 return;
714 }
715 qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
716 armsse_get_common_irq_in(s, 9));
717
718 /* Devices behind APB PPC0:
719 * 0x40000000: timer0
720 * 0x40001000: timer1
721 * 0x40002000: dual timer
722 * 0x40003000: MHU0 (SSE-200 only)
723 * 0x40004000: MHU1 (SSE-200 only)
724 * We must configure and realize each downstream device and connect
725 * it to the appropriate PPC port; then we can realize the PPC and
726 * map its upstream ends to the right place in the container.
727 */
728 qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
729 if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer0), &err)) {
730 error_propagate(errp, err);
731 return;
732 }
733 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
734 armsse_get_common_irq_in(s, 3));
735 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
736 object_property_set_link(OBJECT(&s->apb_ppc0), "port[0]", OBJECT(mr),
737 &error_abort);
738
739 qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
740 if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer1), &err)) {
741 error_propagate(errp, err);
742 return;
743 }
744 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
745 armsse_get_common_irq_in(s, 4));
746 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
747 object_property_set_link(OBJECT(&s->apb_ppc0), "port[1]", OBJECT(mr),
748 &error_abort);
749
750 qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
751 if (!sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), &err)) {
752 error_propagate(errp, err);
753 return;
754 }
755 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
756 armsse_get_common_irq_in(s, 5));
757 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
758 object_property_set_link(OBJECT(&s->apb_ppc0), "port[2]", OBJECT(mr),
759 &error_abort);
760
761 if (info->has_mhus) {
762 /*
763 * An SSE-200 with only one CPU should have only one MHU created,
764 * with the region where the second MHU usually is being RAZ/WI.
765 * We don't implement that SSE-200 config; if we want to support
766 * it then this code needs to be enhanced to handle creating the
767 * RAZ/WI region instead of the second MHU.
768 */
769 assert(info->num_cpus == ARRAY_SIZE(s->mhu));
770
771 for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
772 char *port;
773 int cpunum;
774 SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
775
776 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), &err)) {
777 error_propagate(errp, err);
778 return;
779 }
780 port = g_strdup_printf("port[%d]", i + 3);
781 mr = sysbus_mmio_get_region(mhu_sbd, 0);
782 object_property_set_link(OBJECT(&s->apb_ppc0), port, OBJECT(mr),
783 &error_abort);
784 g_free(port);
785
786 /*
787 * Each MHU has an irq line for each CPU:
788 * MHU 0 irq line 0 -> CPU 0 IRQ 6
789 * MHU 0 irq line 1 -> CPU 1 IRQ 6
790 * MHU 1 irq line 0 -> CPU 0 IRQ 7
791 * MHU 1 irq line 1 -> CPU 1 IRQ 7
792 */
793 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
794 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
795
796 sysbus_connect_irq(mhu_sbd, cpunum,
797 qdev_get_gpio_in(cpudev, 6 + i));
798 }
799 }
800 }
801
802 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc0), &err)) {
803 error_propagate(errp, err);
804 return;
805 }
806
807 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
808 dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
809
810 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
811 memory_region_add_subregion(&s->container, 0x40000000, mr);
812 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
813 memory_region_add_subregion(&s->container, 0x40001000, mr);
814 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
815 memory_region_add_subregion(&s->container, 0x40002000, mr);
816 if (info->has_mhus) {
817 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
818 memory_region_add_subregion(&s->container, 0x40003000, mr);
819 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
820 memory_region_add_subregion(&s->container, 0x40004000, mr);
821 }
822 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
823 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
824 qdev_get_gpio_in_named(dev_apb_ppc0,
825 "cfg_nonsec", i));
826 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
827 qdev_get_gpio_in_named(dev_apb_ppc0,
828 "cfg_ap", i));
829 }
830 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
831 qdev_get_gpio_in_named(dev_apb_ppc0,
832 "irq_enable", 0));
833 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
834 qdev_get_gpio_in_named(dev_apb_ppc0,
835 "irq_clear", 0));
836 qdev_connect_gpio_out(dev_splitter, 0,
837 qdev_get_gpio_in_named(dev_apb_ppc0,
838 "cfg_sec_resp", 0));
839
840 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
841 * ones) are sent individually to the security controller, and also
842 * ORed together to give a single combined PPC interrupt to the NVIC.
843 */
844 object_property_set_int(OBJECT(&s->ppc_irq_orgate), "num-lines", NUM_PPCS,
845 &err);
846 if (err) {
847 error_propagate(errp, err);
848 return;
849 }
850 if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, &err)) {
851 error_propagate(errp, err);
852 return;
853 }
854 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
855 armsse_get_common_irq_in(s, 10));
856
857 /*
858 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
859 * private per-CPU region (all these devices are SSE-200 only):
860 * 0x50010000: L1 icache control registers
861 * 0x50011000: CPUSECCTRL (CPU local security control registers)
862 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
863 */
864 if (info->has_cachectrl) {
865 for (i = 0; i < info->num_cpus; i++) {
866 char *name = g_strdup_printf("cachectrl%d", i);
867 MemoryRegion *mr;
868
869 qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
870 g_free(name);
871 qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
872 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), &err)) {
873 error_propagate(errp, err);
874 return;
875 }
876
877 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
878 memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
879 }
880 }
881 if (info->has_cpusecctrl) {
882 for (i = 0; i < info->num_cpus; i++) {
883 char *name = g_strdup_printf("CPUSECCTRL%d", i);
884 MemoryRegion *mr;
885
886 qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
887 g_free(name);
888 qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
889 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), &err)) {
890 error_propagate(errp, err);
891 return;
892 }
893
894 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
895 memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
896 }
897 }
898 if (info->has_cpuid) {
899 for (i = 0; i < info->num_cpus; i++) {
900 MemoryRegion *mr;
901
902 qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
903 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), &err)) {
904 error_propagate(errp, err);
905 return;
906 }
907
908 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
909 memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
910 }
911 }
912
913 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
914 /* Devices behind APB PPC1:
915 * 0x4002f000: S32K timer
916 */
917 qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
918 if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), &err)) {
919 error_propagate(errp, err);
920 return;
921 }
922 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
923 armsse_get_common_irq_in(s, 2));
924 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
925 object_property_set_link(OBJECT(&s->apb_ppc1), "port[0]", OBJECT(mr),
926 &error_abort);
927
928 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc1), &err)) {
929 error_propagate(errp, err);
930 return;
931 }
932 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
933 memory_region_add_subregion(&s->container, 0x4002f000, mr);
934
935 dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
936 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
937 qdev_get_gpio_in_named(dev_apb_ppc1,
938 "cfg_nonsec", 0));
939 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
940 qdev_get_gpio_in_named(dev_apb_ppc1,
941 "cfg_ap", 0));
942 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
943 qdev_get_gpio_in_named(dev_apb_ppc1,
944 "irq_enable", 0));
945 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
946 qdev_get_gpio_in_named(dev_apb_ppc1,
947 "irq_clear", 0));
948 qdev_connect_gpio_out(dev_splitter, 1,
949 qdev_get_gpio_in_named(dev_apb_ppc1,
950 "cfg_sec_resp", 0));
951
952 object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
953 info->sys_version, &err);
954 if (err) {
955 error_propagate(errp, err);
956 return;
957 }
958 object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
959 armsse_sys_config_value(s, info), &err);
960 if (err) {
961 error_propagate(errp, err);
962 return;
963 }
964 if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), &err)) {
965 error_propagate(errp, err);
966 return;
967 }
968 /* System information registers */
969 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
970 /* System control registers */
971 object_property_set_int(OBJECT(&s->sysctl), "SYS_VERSION",
972 info->sys_version, &error_abort);
973 object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
974 info->cpuwait_rst, &error_abort);
975 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
976 s->init_svtor, &error_abort);
977 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
978 s->init_svtor, &error_abort);
979 if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), &err)) {
980 error_propagate(errp, err);
981 return;
982 }
983 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
984
985 if (info->has_ppus) {
986 /* CPUnCORE_PPU for each CPU */
987 for (i = 0; i < info->num_cpus; i++) {
988 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
989
990 map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
991 /*
992 * We don't support CPU debug so don't create the
993 * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
994 */
995 g_free(name);
996 }
997 map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
998
999 for (i = 0; i < info->sram_banks; i++) {
1000 char *name = g_strdup_printf("RAM%d_PPU", i);
1001
1002 map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
1003 g_free(name);
1004 }
1005 }
1006
1007 /* This OR gate wires together outputs from the secure watchdogs to NMI */
1008 object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2, &err);
1009 if (err) {
1010 error_propagate(errp, err);
1011 return;
1012 }
1013 if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, &err)) {
1014 error_propagate(errp, err);
1015 return;
1016 }
1017 qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1018 qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1019
1020 qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
1021 if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), &err)) {
1022 error_propagate(errp, err);
1023 return;
1024 }
1025 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1026 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1027 sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1028
1029 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1030
1031 qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
1032 if (!sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), &err)) {
1033 error_propagate(errp, err);
1034 return;
1035 }
1036 sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1037 armsse_get_common_irq_in(s, 1));
1038 sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1039
1040 qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1041 if (!sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), &err)) {
1042 error_propagate(errp, err);
1043 return;
1044 }
1045 sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1046 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1047 sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1048
1049 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1050 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1051
1052 object_property_set_int(splitter, "num-lines", 2, &err);
1053 if (err) {
1054 error_propagate(errp, err);
1055 return;
1056 }
1057 if (!qdev_realize(DEVICE(splitter), NULL, &err)) {
1058 error_propagate(errp, err);
1059 return;
1060 }
1061 }
1062
1063 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1064 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1065
1066 armsse_forward_ppc(s, ppcname, i);
1067 g_free(ppcname);
1068 }
1069
1070 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1071 char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1072
1073 armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1074 g_free(ppcname);
1075 }
1076
1077 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1078 /* Wire up IRQ splitter for internal PPCs */
1079 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1080 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1081 i - NUM_EXTERNAL_PPCS);
1082 TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1083
1084 qdev_connect_gpio_out(devs, 0,
1085 qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1086 qdev_connect_gpio_out(devs, 1,
1087 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1088 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1089 qdev_get_gpio_in(devs, 0));
1090 g_free(gpioname);
1091 }
1092
1093 /* Wire up the splitters for the MPC IRQs */
1094 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1095 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1096 DeviceState *dev_splitter = DEVICE(splitter);
1097
1098 object_property_set_int(OBJECT(splitter), "num-lines", 2, &err);
1099 if (err) {
1100 error_propagate(errp, err);
1101 return;
1102 }
1103 if (!qdev_realize(DEVICE(splitter), NULL, &err)) {
1104 error_propagate(errp, err);
1105 return;
1106 }
1107
1108 if (i < IOTS_NUM_EXP_MPC) {
1109 /* Splitter input is from GPIO input line */
1110 s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1111 qdev_connect_gpio_out(dev_splitter, 0,
1112 qdev_get_gpio_in_named(dev_secctl,
1113 "mpcexp_status", i));
1114 } else {
1115 /* Splitter input is from our own MPC */
1116 qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1117 "irq", 0,
1118 qdev_get_gpio_in(dev_splitter, 0));
1119 qdev_connect_gpio_out(dev_splitter, 0,
1120 qdev_get_gpio_in_named(dev_secctl,
1121 "mpc_status", 0));
1122 }
1123
1124 qdev_connect_gpio_out(dev_splitter, 1,
1125 qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1126 }
1127 /* Create GPIO inputs which will pass the line state for our
1128 * mpcexp_irq inputs to the correct splitter devices.
1129 */
1130 qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1131 IOTS_NUM_EXP_MPC);
1132
1133 armsse_forward_sec_resp_cfg(s);
1134
1135 /* Forward the MSC related signals */
1136 qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1137 qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1138 qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1139 qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1140 armsse_get_common_irq_in(s, 11));
1141
1142 /*
1143 * Expose our container region to the board model; this corresponds
1144 * to the AHB Slave Expansion ports which allow bus master devices
1145 * (eg DMA controllers) in the board model to make transactions into
1146 * devices in the ARMSSE.
1147 */
1148 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1149
1150 system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1151 }
1152
1153 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1154 int *iregion, bool *exempt, bool *ns, bool *nsc)
1155 {
1156 /*
1157 * For ARMSSE systems the IDAU responses are simple logical functions
1158 * of the address bits. The NSC attribute is guest-adjustable via the
1159 * NSCCFG register in the security controller.
1160 */
1161 ARMSSE *s = ARMSSE(ii);
1162 int region = extract32(address, 28, 4);
1163
1164 *ns = !(region & 1);
1165 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1166 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1167 *exempt = (address & 0xeff00000) == 0xe0000000;
1168 *iregion = region;
1169 }
1170
1171 static const VMStateDescription armsse_vmstate = {
1172 .name = "iotkit",
1173 .version_id = 1,
1174 .minimum_version_id = 1,
1175 .fields = (VMStateField[]) {
1176 VMSTATE_UINT32(nsccfg, ARMSSE),
1177 VMSTATE_END_OF_LIST()
1178 }
1179 };
1180
1181 static void armsse_reset(DeviceState *dev)
1182 {
1183 ARMSSE *s = ARMSSE(dev);
1184
1185 s->nsccfg = 0;
1186 }
1187
1188 static void armsse_class_init(ObjectClass *klass, void *data)
1189 {
1190 DeviceClass *dc = DEVICE_CLASS(klass);
1191 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1192 ARMSSEClass *asc = ARMSSE_CLASS(klass);
1193 const ARMSSEInfo *info = data;
1194
1195 dc->realize = armsse_realize;
1196 dc->vmsd = &armsse_vmstate;
1197 device_class_set_props(dc, info->props);
1198 dc->reset = armsse_reset;
1199 iic->check = armsse_idau_check;
1200 asc->info = info;
1201 }
1202
1203 static const TypeInfo armsse_info = {
1204 .name = TYPE_ARMSSE,
1205 .parent = TYPE_SYS_BUS_DEVICE,
1206 .instance_size = sizeof(ARMSSE),
1207 .instance_init = armsse_init,
1208 .abstract = true,
1209 .interfaces = (InterfaceInfo[]) {
1210 { TYPE_IDAU_INTERFACE },
1211 { }
1212 }
1213 };
1214
1215 static void armsse_register_types(void)
1216 {
1217 int i;
1218
1219 type_register_static(&armsse_info);
1220
1221 for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1222 TypeInfo ti = {
1223 .name = armsse_variants[i].name,
1224 .parent = TYPE_ARMSSE,
1225 .class_init = armsse_class_init,
1226 .class_data = (void *)&armsse_variants[i],
1227 };
1228 type_register(&ti);
1229 }
1230 }
1231
1232 type_init(armsse_register_types);