]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/sbsa-ref.c
target/arm: Move GTimer definitions to new 'gtimer.h' header
[mirror_qemu.git] / hw / arm / sbsa-ref.c
1 /*
2 * ARM SBSA Reference Platform emulation
3 *
4 * Copyright (c) 2018 Linaro Limited
5 * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
6 * Written by Hongbo Zhang <hongbo.zhang@linaro.org>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2 or later, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/datadir.h"
23 #include "qapi/error.h"
24 #include "qemu/error-report.h"
25 #include "qemu/units.h"
26 #include "sysemu/device_tree.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/sysemu.h"
31 #include "exec/hwaddr.h"
32 #include "kvm_arm.h"
33 #include "hw/arm/boot.h"
34 #include "hw/arm/bsa.h"
35 #include "hw/arm/fdt.h"
36 #include "hw/arm/smmuv3.h"
37 #include "hw/block/flash.h"
38 #include "hw/boards.h"
39 #include "hw/ide/internal.h"
40 #include "hw/ide/ahci_internal.h"
41 #include "hw/intc/arm_gicv3_common.h"
42 #include "hw/intc/arm_gicv3_its_common.h"
43 #include "hw/loader.h"
44 #include "hw/pci-host/gpex.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/usb.h"
47 #include "hw/usb/xhci.h"
48 #include "hw/char/pl011.h"
49 #include "hw/watchdog/sbsa_gwdt.h"
50 #include "net/net.h"
51 #include "qapi/qmp/qlist.h"
52 #include "qom/object.h"
53 #include "target/arm/cpu-qom.h"
54 #include "target/arm/gtimer.h"
55
56 #define RAMLIMIT_GB 8192
57 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
58
59 #define NUM_IRQS 256
60 #define NUM_SMMU_IRQS 4
61 #define NUM_SATA_PORTS 6
62
63 enum {
64 SBSA_FLASH,
65 SBSA_MEM,
66 SBSA_CPUPERIPHS,
67 SBSA_GIC_DIST,
68 SBSA_GIC_REDIST,
69 SBSA_GIC_ITS,
70 SBSA_SECURE_EC,
71 SBSA_GWDT_WS0,
72 SBSA_GWDT_REFRESH,
73 SBSA_GWDT_CONTROL,
74 SBSA_SMMU,
75 SBSA_UART,
76 SBSA_RTC,
77 SBSA_PCIE,
78 SBSA_PCIE_MMIO,
79 SBSA_PCIE_MMIO_HIGH,
80 SBSA_PCIE_PIO,
81 SBSA_PCIE_ECAM,
82 SBSA_GPIO,
83 SBSA_SECURE_UART,
84 SBSA_SECURE_UART_MM,
85 SBSA_SECURE_MEM,
86 SBSA_AHCI,
87 SBSA_XHCI,
88 };
89
90 struct SBSAMachineState {
91 MachineState parent;
92 struct arm_boot_info bootinfo;
93 int smp_cpus;
94 void *fdt;
95 int fdt_size;
96 int psci_conduit;
97 DeviceState *gic;
98 PFlashCFI01 *flash[2];
99 };
100
101 #define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref")
102 OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
103
104 static const MemMapEntry sbsa_ref_memmap[] = {
105 /* 512M boot ROM */
106 [SBSA_FLASH] = { 0, 0x20000000 },
107 /* 512M secure memory */
108 [SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 },
109 /* Space reserved for CPU peripheral devices */
110 [SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 },
111 [SBSA_GIC_DIST] = { 0x40060000, 0x00010000 },
112 [SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 },
113 [SBSA_GIC_ITS] = { 0x44081000, 0x00020000 },
114 [SBSA_SECURE_EC] = { 0x50000000, 0x00001000 },
115 [SBSA_GWDT_REFRESH] = { 0x50010000, 0x00001000 },
116 [SBSA_GWDT_CONTROL] = { 0x50011000, 0x00001000 },
117 [SBSA_UART] = { 0x60000000, 0x00001000 },
118 [SBSA_RTC] = { 0x60010000, 0x00001000 },
119 [SBSA_GPIO] = { 0x60020000, 0x00001000 },
120 [SBSA_SECURE_UART] = { 0x60030000, 0x00001000 },
121 [SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 },
122 [SBSA_SMMU] = { 0x60050000, 0x00020000 },
123 /* Space here reserved for more SMMUs */
124 [SBSA_AHCI] = { 0x60100000, 0x00010000 },
125 [SBSA_XHCI] = { 0x60110000, 0x00010000 },
126 /* Space here reserved for other devices */
127 [SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 },
128 /* 32-bit address PCIE MMIO space */
129 [SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 },
130 /* 256M PCIE ECAM space */
131 [SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 },
132 /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
133 [SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL },
134 [SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES },
135 };
136
137 static const int sbsa_ref_irqmap[] = {
138 [SBSA_UART] = 1,
139 [SBSA_RTC] = 2,
140 [SBSA_PCIE] = 3, /* ... to 6 */
141 [SBSA_GPIO] = 7,
142 [SBSA_SECURE_UART] = 8,
143 [SBSA_SECURE_UART_MM] = 9,
144 [SBSA_AHCI] = 10,
145 [SBSA_XHCI] = 11,
146 [SBSA_SMMU] = 12, /* ... to 15 */
147 [SBSA_GWDT_WS0] = 16,
148 };
149
150 static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
151 {
152 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
153 return arm_build_mp_affinity(idx, clustersz);
154 }
155
156 static void sbsa_fdt_add_gic_node(SBSAMachineState *sms)
157 {
158 char *nodename;
159
160 nodename = g_strdup_printf("/intc");
161 qemu_fdt_add_subnode(sms->fdt, nodename);
162 qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
163 2, sbsa_ref_memmap[SBSA_GIC_DIST].base,
164 2, sbsa_ref_memmap[SBSA_GIC_DIST].size,
165 2, sbsa_ref_memmap[SBSA_GIC_REDIST].base,
166 2, sbsa_ref_memmap[SBSA_GIC_REDIST].size);
167
168 nodename = g_strdup_printf("/intc/its");
169 qemu_fdt_add_subnode(sms->fdt, nodename);
170 qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
171 2, sbsa_ref_memmap[SBSA_GIC_ITS].base,
172 2, sbsa_ref_memmap[SBSA_GIC_ITS].size);
173
174 g_free(nodename);
175 }
176
177 /*
178 * Firmware on this machine only uses ACPI table to load OS, these limited
179 * device tree nodes are just to let firmware know the info which varies from
180 * command line parameters, so it is not necessary to be fully compatible
181 * with the kernel CPU and NUMA binding rules.
182 */
183 static void create_fdt(SBSAMachineState *sms)
184 {
185 void *fdt = create_device_tree(&sms->fdt_size);
186 const MachineState *ms = MACHINE(sms);
187 int nb_numa_nodes = ms->numa_state->num_nodes;
188 int cpu;
189
190 if (!fdt) {
191 error_report("create_device_tree() failed");
192 exit(1);
193 }
194
195 sms->fdt = fdt;
196
197 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
198 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
199 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
200
201 /*
202 * This versioning scheme is for informing platform fw only. It is neither:
203 * - A QEMU versioned machine type; a given version of QEMU will emulate
204 * a given version of the platform.
205 * - A reflection of level of SBSA (now SystemReady SR) support provided.
206 *
207 * machine-version-major: updated when changes breaking fw compatibility
208 * are introduced.
209 * machine-version-minor: updated when features are added that don't break
210 * fw compatibility.
211 */
212 qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
213 qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 3);
214
215 if (ms->numa_state->have_numa_distance) {
216 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
217 uint32_t *matrix = g_malloc0(size);
218 int idx, i, j;
219
220 for (i = 0; i < nb_numa_nodes; i++) {
221 for (j = 0; j < nb_numa_nodes; j++) {
222 idx = (i * nb_numa_nodes + j) * 3;
223 matrix[idx + 0] = cpu_to_be32(i);
224 matrix[idx + 1] = cpu_to_be32(j);
225 matrix[idx + 2] =
226 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
227 }
228 }
229
230 qemu_fdt_add_subnode(fdt, "/distance-map");
231 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
232 matrix, size);
233 g_free(matrix);
234 }
235
236 /*
237 * From Documentation/devicetree/bindings/arm/cpus.yaml
238 * On ARM v8 64-bit systems this property is required
239 * and matches the MPIDR_EL1 register affinity bits.
240 *
241 * * If cpus node's #address-cells property is set to 2
242 *
243 * The first reg cell bits [7:0] must be set to
244 * bits [39:32] of MPIDR_EL1.
245 *
246 * The second reg cell bits [23:0] must be set to
247 * bits [23:0] of MPIDR_EL1.
248 */
249 qemu_fdt_add_subnode(sms->fdt, "/cpus");
250 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
251 qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
252
253 for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
254 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
255 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
256 CPUState *cs = CPU(armcpu);
257 uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
258
259 qemu_fdt_add_subnode(sms->fdt, nodename);
260 qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
261
262 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
263 qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
264 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
265 }
266
267 g_free(nodename);
268 }
269
270 sbsa_fdt_add_gic_node(sms);
271 }
272
273 #define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
274
275 static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
276 const char *name,
277 const char *alias_prop_name)
278 {
279 /*
280 * Create a single flash device. We use the same parameters as
281 * the flash devices on the Versatile Express board.
282 */
283 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
284
285 qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
286 qdev_prop_set_uint8(dev, "width", 4);
287 qdev_prop_set_uint8(dev, "device-width", 2);
288 qdev_prop_set_bit(dev, "big-endian", false);
289 qdev_prop_set_uint16(dev, "id0", 0x89);
290 qdev_prop_set_uint16(dev, "id1", 0x18);
291 qdev_prop_set_uint16(dev, "id2", 0x00);
292 qdev_prop_set_uint16(dev, "id3", 0x00);
293 qdev_prop_set_string(dev, "name", name);
294 object_property_add_child(OBJECT(sms), name, OBJECT(dev));
295 object_property_add_alias(OBJECT(sms), alias_prop_name,
296 OBJECT(dev), "drive");
297 return PFLASH_CFI01(dev);
298 }
299
300 static void sbsa_flash_create(SBSAMachineState *sms)
301 {
302 sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
303 sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
304 }
305
306 static void sbsa_flash_map1(PFlashCFI01 *flash,
307 hwaddr base, hwaddr size,
308 MemoryRegion *sysmem)
309 {
310 DeviceState *dev = DEVICE(flash);
311
312 assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
313 assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
314 qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
315 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
316
317 memory_region_add_subregion(sysmem, base,
318 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
319 0));
320 }
321
322 static void sbsa_flash_map(SBSAMachineState *sms,
323 MemoryRegion *sysmem,
324 MemoryRegion *secure_sysmem)
325 {
326 /*
327 * Map two flash devices to fill the SBSA_FLASH space in the memmap.
328 * sysmem is the system memory space. secure_sysmem is the secure view
329 * of the system, and the first flash device should be made visible only
330 * there. The second flash device is visible to both secure and nonsecure.
331 */
332 hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
333 hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
334
335 sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
336 secure_sysmem);
337 sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
338 sysmem);
339 }
340
341 static bool sbsa_firmware_init(SBSAMachineState *sms,
342 MemoryRegion *sysmem,
343 MemoryRegion *secure_sysmem)
344 {
345 const char *bios_name;
346 int i;
347 BlockBackend *pflash_blk0;
348
349 /* Map legacy -drive if=pflash to machine properties */
350 for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
351 pflash_cfi01_legacy_drive(sms->flash[i],
352 drive_get(IF_PFLASH, 0, i));
353 }
354
355 sbsa_flash_map(sms, sysmem, secure_sysmem);
356
357 pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
358
359 bios_name = MACHINE(sms)->firmware;
360 if (bios_name) {
361 char *fname;
362 MemoryRegion *mr;
363 int image_size;
364
365 if (pflash_blk0) {
366 error_report("The contents of the first flash device may be "
367 "specified with -bios or with -drive if=pflash... "
368 "but you cannot use both options at once");
369 exit(1);
370 }
371
372 /* Fall back to -bios */
373
374 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
375 if (!fname) {
376 error_report("Could not find ROM image '%s'", bios_name);
377 exit(1);
378 }
379 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
380 image_size = load_image_mr(fname, mr);
381 g_free(fname);
382 if (image_size < 0) {
383 error_report("Could not load ROM image '%s'", bios_name);
384 exit(1);
385 }
386 }
387
388 return pflash_blk0 || bios_name;
389 }
390
391 static void create_secure_ram(SBSAMachineState *sms,
392 MemoryRegion *secure_sysmem)
393 {
394 MemoryRegion *secram = g_new(MemoryRegion, 1);
395 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
396 hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
397
398 memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
399 &error_fatal);
400 memory_region_add_subregion(secure_sysmem, base, secram);
401 }
402
403 static void create_its(SBSAMachineState *sms)
404 {
405 const char *itsclass = its_class_name();
406 DeviceState *dev;
407
408 dev = qdev_new(itsclass);
409
410 object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(sms->gic),
411 &error_abort);
412 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
413 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sbsa_ref_memmap[SBSA_GIC_ITS].base);
414 }
415
416 static void create_gic(SBSAMachineState *sms, MemoryRegion *mem)
417 {
418 unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
419 SysBusDevice *gicbusdev;
420 const char *gictype;
421 uint32_t redist0_capacity, redist0_count;
422 QList *redist_region_count;
423 int i;
424
425 gictype = gicv3_class_name();
426
427 sms->gic = qdev_new(gictype);
428 qdev_prop_set_uint32(sms->gic, "revision", 3);
429 qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
430 /*
431 * Note that the num-irq property counts both internal and external
432 * interrupts; there are always 32 of the former (mandated by GIC spec).
433 */
434 qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
435 qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
436
437 redist0_capacity =
438 sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
439 redist0_count = MIN(smp_cpus, redist0_capacity);
440
441 redist_region_count = qlist_new();
442 qlist_append_int(redist_region_count, redist0_count);
443 qdev_prop_set_array(sms->gic, "redist-region-count", redist_region_count);
444
445 object_property_set_link(OBJECT(sms->gic), "sysmem",
446 OBJECT(mem), &error_fatal);
447 qdev_prop_set_bit(sms->gic, "has-lpi", true);
448
449 gicbusdev = SYS_BUS_DEVICE(sms->gic);
450 sysbus_realize_and_unref(gicbusdev, &error_fatal);
451 sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
452 sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
453
454 /*
455 * Wire the outputs from each CPU's generic timer and the GICv3
456 * maintenance interrupt signal to the appropriate GIC PPI inputs,
457 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
458 */
459 for (i = 0; i < smp_cpus; i++) {
460 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
461 int intidbase = NUM_IRQS + i * GIC_INTERNAL;
462 int irq;
463 /*
464 * Mapping from the output timer irq lines from the CPU to the
465 * GIC PPI inputs used for this board.
466 */
467 const int timer_irq[] = {
468 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
469 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
470 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
471 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
472 [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
473 };
474
475 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
476 qdev_connect_gpio_out(cpudev, irq,
477 qdev_get_gpio_in(sms->gic,
478 intidbase + timer_irq[irq]));
479 }
480
481 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
482 qdev_get_gpio_in(sms->gic,
483 intidbase
484 + ARCH_GIC_MAINT_IRQ));
485
486 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
487 qdev_get_gpio_in(sms->gic,
488 intidbase
489 + VIRTUAL_PMU_IRQ));
490
491 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
492 sysbus_connect_irq(gicbusdev, i + smp_cpus,
493 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
494 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
495 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
496 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
497 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
498 }
499 create_its(sms);
500 }
501
502 static void create_uart(const SBSAMachineState *sms, int uart,
503 MemoryRegion *mem, Chardev *chr)
504 {
505 hwaddr base = sbsa_ref_memmap[uart].base;
506 int irq = sbsa_ref_irqmap[uart];
507 DeviceState *dev = qdev_new(TYPE_PL011);
508 SysBusDevice *s = SYS_BUS_DEVICE(dev);
509
510 qdev_prop_set_chr(dev, "chardev", chr);
511 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
512 memory_region_add_subregion(mem, base,
513 sysbus_mmio_get_region(s, 0));
514 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
515 }
516
517 static void create_rtc(const SBSAMachineState *sms)
518 {
519 hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
520 int irq = sbsa_ref_irqmap[SBSA_RTC];
521
522 sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
523 }
524
525 static void create_wdt(const SBSAMachineState *sms)
526 {
527 hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
528 hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
529 DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
530 SysBusDevice *s = SYS_BUS_DEVICE(dev);
531 int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
532
533 sysbus_realize_and_unref(s, &error_fatal);
534 sysbus_mmio_map(s, 0, rbase);
535 sysbus_mmio_map(s, 1, cbase);
536 sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
537 }
538
539 static DeviceState *gpio_key_dev;
540 static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
541 {
542 /* use gpio Pin 3 for power button event */
543 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
544 }
545
546 static Notifier sbsa_ref_powerdown_notifier = {
547 .notify = sbsa_ref_powerdown_req
548 };
549
550 static void create_gpio(const SBSAMachineState *sms)
551 {
552 DeviceState *pl061_dev;
553 hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
554 int irq = sbsa_ref_irqmap[SBSA_GPIO];
555
556 pl061_dev = sysbus_create_simple("pl061", base,
557 qdev_get_gpio_in(sms->gic, irq));
558
559 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
560 qdev_get_gpio_in(pl061_dev, 3));
561
562 /* connect powerdown request */
563 qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
564 }
565
566 static void create_ahci(const SBSAMachineState *sms)
567 {
568 hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
569 int irq = sbsa_ref_irqmap[SBSA_AHCI];
570 DeviceState *dev;
571 DriveInfo *hd[NUM_SATA_PORTS];
572 SysbusAHCIState *sysahci;
573 AHCIState *ahci;
574 int i;
575
576 dev = qdev_new("sysbus-ahci");
577 qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
578 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
579 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
580 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
581
582 sysahci = SYSBUS_AHCI(dev);
583 ahci = &sysahci->ahci;
584 ide_drive_get(hd, ARRAY_SIZE(hd));
585 for (i = 0; i < ahci->ports; i++) {
586 if (hd[i] == NULL) {
587 continue;
588 }
589 ide_bus_create_drive(&ahci->dev[i].port, 0, hd[i]);
590 }
591 }
592
593 static void create_xhci(const SBSAMachineState *sms)
594 {
595 hwaddr base = sbsa_ref_memmap[SBSA_XHCI].base;
596 int irq = sbsa_ref_irqmap[SBSA_XHCI];
597 DeviceState *dev = qdev_new(TYPE_XHCI_SYSBUS);
598 qdev_prop_set_uint32(dev, "slots", XHCI_MAXSLOTS);
599
600 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
601 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
602 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
603 }
604
605 static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
606 {
607 hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
608 int irq = sbsa_ref_irqmap[SBSA_SMMU];
609 DeviceState *dev;
610 int i;
611
612 dev = qdev_new(TYPE_ARM_SMMUV3);
613
614 object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
615 &error_abort);
616 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
617 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
618 for (i = 0; i < NUM_SMMU_IRQS; i++) {
619 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
620 qdev_get_gpio_in(sms->gic, irq + i));
621 }
622 }
623
624 static void create_pcie(SBSAMachineState *sms)
625 {
626 hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
627 hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
628 hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
629 hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
630 hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
631 hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
632 hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
633 int irq = sbsa_ref_irqmap[SBSA_PCIE];
634 MachineClass *mc = MACHINE_GET_CLASS(sms);
635 MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
636 MemoryRegion *ecam_alias, *ecam_reg;
637 DeviceState *dev;
638 PCIHostState *pci;
639 int i;
640
641 dev = qdev_new(TYPE_GPEX_HOST);
642 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
643
644 /* Map ECAM space */
645 ecam_alias = g_new0(MemoryRegion, 1);
646 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
647 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
648 ecam_reg, 0, size_ecam);
649 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
650
651 /* Map the MMIO space */
652 mmio_alias = g_new0(MemoryRegion, 1);
653 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
654 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
655 mmio_reg, base_mmio, size_mmio);
656 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
657
658 /* Map the MMIO_HIGH space */
659 mmio_alias_high = g_new0(MemoryRegion, 1);
660 memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
661 mmio_reg, base_mmio_high, size_mmio_high);
662 memory_region_add_subregion(get_system_memory(), base_mmio_high,
663 mmio_alias_high);
664
665 /* Map IO port space */
666 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
667
668 for (i = 0; i < GPEX_NUM_IRQS; i++) {
669 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
670 qdev_get_gpio_in(sms->gic, irq + i));
671 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
672 }
673
674 pci = PCI_HOST_BRIDGE(dev);
675 if (pci->bus) {
676 for (i = 0; i < nb_nics; i++) {
677 pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
678 }
679 }
680
681 pci_create_simple(pci->bus, -1, "bochs-display");
682
683 create_smmu(sms, pci->bus);
684 }
685
686 static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
687 {
688 const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
689 bootinfo);
690
691 *fdt_size = board->fdt_size;
692 return board->fdt;
693 }
694
695 static void create_secure_ec(MemoryRegion *mem)
696 {
697 hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
698 DeviceState *dev = qdev_new("sbsa-ec");
699 SysBusDevice *s = SYS_BUS_DEVICE(dev);
700
701 memory_region_add_subregion(mem, base,
702 sysbus_mmio_get_region(s, 0));
703 }
704
705 static void sbsa_ref_init(MachineState *machine)
706 {
707 unsigned int smp_cpus = machine->smp.cpus;
708 unsigned int max_cpus = machine->smp.max_cpus;
709 SBSAMachineState *sms = SBSA_MACHINE(machine);
710 MachineClass *mc = MACHINE_GET_CLASS(machine);
711 MemoryRegion *sysmem = get_system_memory();
712 MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
713 bool firmware_loaded;
714 const CPUArchIdList *possible_cpus;
715 int n, sbsa_max_cpus;
716
717 if (kvm_enabled()) {
718 error_report("sbsa-ref: KVM is not supported for this machine");
719 exit(1);
720 }
721
722 /*
723 * The Secure view of the world is the same as the NonSecure,
724 * but with a few extra devices. Create it as a container region
725 * containing the system memory at low priority; any secure-only
726 * devices go in at higher priority and take precedence.
727 */
728 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
729 UINT64_MAX);
730 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
731
732 firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
733
734 /*
735 * This machine has EL3 enabled, external firmware should supply PSCI
736 * implementation, so the QEMU's internal PSCI is disabled.
737 */
738 sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
739
740 sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
741
742 if (max_cpus > sbsa_max_cpus) {
743 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
744 "supported by machine 'sbsa-ref' (%d)",
745 max_cpus, sbsa_max_cpus);
746 exit(1);
747 }
748
749 sms->smp_cpus = smp_cpus;
750
751 if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
752 error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
753 exit(1);
754 }
755
756 possible_cpus = mc->possible_cpu_arch_ids(machine);
757 for (n = 0; n < possible_cpus->len; n++) {
758 Object *cpuobj;
759 CPUState *cs;
760
761 if (n >= smp_cpus) {
762 break;
763 }
764
765 cpuobj = object_new(possible_cpus->cpus[n].type);
766 object_property_set_int(cpuobj, "mp-affinity",
767 possible_cpus->cpus[n].arch_id, NULL);
768
769 cs = CPU(cpuobj);
770 cs->cpu_index = n;
771
772 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
773 &error_fatal);
774
775 if (object_property_find(cpuobj, "reset-cbar")) {
776 object_property_set_int(cpuobj, "reset-cbar",
777 sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
778 &error_abort);
779 }
780
781 object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
782 &error_abort);
783
784 object_property_set_link(cpuobj, "secure-memory",
785 OBJECT(secure_sysmem), &error_abort);
786
787 qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
788 object_unref(cpuobj);
789 }
790
791 memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
792 machine->ram);
793
794 create_fdt(sms);
795
796 create_secure_ram(sms, secure_sysmem);
797
798 create_gic(sms, sysmem);
799
800 create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
801 create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
802 /* Second secure UART for RAS and MM from EL0 */
803 create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
804
805 create_rtc(sms);
806
807 create_wdt(sms);
808
809 create_gpio(sms);
810
811 create_ahci(sms);
812
813 create_xhci(sms);
814
815 create_pcie(sms);
816
817 create_secure_ec(secure_sysmem);
818
819 sms->bootinfo.ram_size = machine->ram_size;
820 sms->bootinfo.board_id = -1;
821 sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
822 sms->bootinfo.get_dtb = sbsa_ref_dtb;
823 sms->bootinfo.firmware_loaded = firmware_loaded;
824 arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
825 }
826
827 static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
828 {
829 unsigned int max_cpus = ms->smp.max_cpus;
830 SBSAMachineState *sms = SBSA_MACHINE(ms);
831 int n;
832
833 if (ms->possible_cpus) {
834 assert(ms->possible_cpus->len == max_cpus);
835 return ms->possible_cpus;
836 }
837
838 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
839 sizeof(CPUArchId) * max_cpus);
840 ms->possible_cpus->len = max_cpus;
841 for (n = 0; n < ms->possible_cpus->len; n++) {
842 ms->possible_cpus->cpus[n].type = ms->cpu_type;
843 ms->possible_cpus->cpus[n].arch_id =
844 sbsa_ref_cpu_mp_affinity(sms, n);
845 ms->possible_cpus->cpus[n].props.has_thread_id = true;
846 ms->possible_cpus->cpus[n].props.thread_id = n;
847 }
848 return ms->possible_cpus;
849 }
850
851 static CpuInstanceProperties
852 sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
853 {
854 MachineClass *mc = MACHINE_GET_CLASS(ms);
855 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
856
857 assert(cpu_index < possible_cpus->len);
858 return possible_cpus->cpus[cpu_index].props;
859 }
860
861 static int64_t
862 sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
863 {
864 return idx % ms->numa_state->num_nodes;
865 }
866
867 static void sbsa_ref_instance_init(Object *obj)
868 {
869 SBSAMachineState *sms = SBSA_MACHINE(obj);
870
871 sbsa_flash_create(sms);
872 }
873
874 static void sbsa_ref_class_init(ObjectClass *oc, void *data)
875 {
876 MachineClass *mc = MACHINE_CLASS(oc);
877 static const char * const valid_cpu_types[] = {
878 ARM_CPU_TYPE_NAME("cortex-a57"),
879 ARM_CPU_TYPE_NAME("cortex-a72"),
880 ARM_CPU_TYPE_NAME("neoverse-n1"),
881 ARM_CPU_TYPE_NAME("neoverse-v1"),
882 ARM_CPU_TYPE_NAME("neoverse-n2"),
883 ARM_CPU_TYPE_NAME("max"),
884 NULL,
885 };
886
887 mc->init = sbsa_ref_init;
888 mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
889 mc->default_cpu_type = ARM_CPU_TYPE_NAME("neoverse-n1");
890 mc->valid_cpu_types = valid_cpu_types;
891 mc->max_cpus = 512;
892 mc->pci_allow_0_address = true;
893 mc->minimum_page_bits = 12;
894 mc->block_default_type = IF_IDE;
895 mc->no_cdrom = 1;
896 mc->default_nic = "e1000e";
897 mc->default_ram_size = 1 * GiB;
898 mc->default_ram_id = "sbsa-ref.ram";
899 mc->default_cpus = 4;
900 mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
901 mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
902 mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
903 /* platform instead of architectural choice */
904 mc->cpu_cluster_has_numa_boundary = true;
905 }
906
907 static const TypeInfo sbsa_ref_info = {
908 .name = TYPE_SBSA_MACHINE,
909 .parent = TYPE_MACHINE,
910 .instance_init = sbsa_ref_instance_init,
911 .class_init = sbsa_ref_class_init,
912 .instance_size = sizeof(SBSAMachineState),
913 };
914
915 static void sbsa_ref_machine_init(void)
916 {
917 type_register_static(&sbsa_ref_info);
918 }
919
920 type_init(sbsa_ref_machine_init);