]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/virt.c
machine: Refactor smp-related call chains to pass MachineState
[mirror_qemu.git] / hw / arm / virt.c
1 /*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "qapi/error.h"
36 #include "hw/sysbus.h"
37 #include "hw/arm/boot.h"
38 #include "hw/arm/primecell.h"
39 #include "hw/arm/virt.h"
40 #include "hw/block/flash.h"
41 #include "hw/vfio/vfio-calxeda-xgmac.h"
42 #include "hw/vfio/vfio-amd-xgbe.h"
43 #include "hw/display/ramfb.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/sysemu.h"
48 #include "sysemu/kvm.h"
49 #include "hw/loader.h"
50 #include "exec/address-spaces.h"
51 #include "qemu/bitops.h"
52 #include "qemu/error-report.h"
53 #include "qemu/module.h"
54 #include "hw/pci-host/gpex.h"
55 #include "hw/arm/sysbus-fdt.h"
56 #include "hw/platform-bus.h"
57 #include "hw/arm/fdt.h"
58 #include "hw/intc/arm_gic.h"
59 #include "hw/intc/arm_gicv3_common.h"
60 #include "kvm_arm.h"
61 #include "hw/firmware/smbios.h"
62 #include "qapi/visitor.h"
63 #include "standard-headers/linux/input.h"
64 #include "hw/arm/smmuv3.h"
65 #include "hw/acpi/acpi.h"
66 #include "target/arm/internals.h"
67
68 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
69 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
70 void *data) \
71 { \
72 MachineClass *mc = MACHINE_CLASS(oc); \
73 virt_machine_##major##_##minor##_options(mc); \
74 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
75 if (latest) { \
76 mc->alias = "virt"; \
77 } \
78 } \
79 static const TypeInfo machvirt_##major##_##minor##_info = { \
80 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
81 .parent = TYPE_VIRT_MACHINE, \
82 .class_init = virt_##major##_##minor##_class_init, \
83 }; \
84 static void machvirt_machine_##major##_##minor##_init(void) \
85 { \
86 type_register_static(&machvirt_##major##_##minor##_info); \
87 } \
88 type_init(machvirt_machine_##major##_##minor##_init);
89
90 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
91 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
92 #define DEFINE_VIRT_MACHINE(major, minor) \
93 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
94
95
96 /* Number of external interrupt lines to configure the GIC with */
97 #define NUM_IRQS 256
98
99 #define PLATFORM_BUS_NUM_IRQS 64
100
101 /* Legacy RAM limit in GB (< version 4.0) */
102 #define LEGACY_RAMLIMIT_GB 255
103 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
104
105 /* Addresses and sizes of our components.
106 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
107 * 128MB..256MB is used for miscellaneous device I/O.
108 * 256MB..1GB is reserved for possible future PCI support (ie where the
109 * PCI memory window will go if we add a PCI host controller).
110 * 1GB and up is RAM (which may happily spill over into the
111 * high memory region beyond 4GB).
112 * This represents a compromise between how much RAM can be given to
113 * a 32 bit VM and leaving space for expansion and in particular for PCI.
114 * Note that devices should generally be placed at multiples of 0x10000,
115 * to accommodate guests using 64K pages.
116 */
117 static const MemMapEntry base_memmap[] = {
118 /* Space up to 0x8000000 is reserved for a boot ROM */
119 [VIRT_FLASH] = { 0, 0x08000000 },
120 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
121 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
122 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
123 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
124 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
125 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
126 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
127 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
128 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
129 /* This redistributor space allows up to 2*64kB*123 CPUs */
130 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
131 [VIRT_UART] = { 0x09000000, 0x00001000 },
132 [VIRT_RTC] = { 0x09010000, 0x00001000 },
133 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
134 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
135 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
136 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
137 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
138 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
139 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
140 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
141 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
142 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
143 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
144 /* Actual RAM size depends on initial RAM and device memory settings */
145 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
146 };
147
148 /*
149 * Highmem IO Regions: This memory map is floating, located after the RAM.
150 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
151 * top of the RAM, so that its base get the same alignment as the size,
152 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
153 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
154 * Note the extended_memmap is sized so that it eventually also includes the
155 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
156 * index of base_memmap).
157 */
158 static MemMapEntry extended_memmap[] = {
159 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
160 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
161 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
162 /* Second PCIe window */
163 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
164 };
165
166 static const int a15irqmap[] = {
167 [VIRT_UART] = 1,
168 [VIRT_RTC] = 2,
169 [VIRT_PCIE] = 3, /* ... to 6 */
170 [VIRT_GPIO] = 7,
171 [VIRT_SECURE_UART] = 8,
172 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
173 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
174 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
175 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
176 };
177
178 static const char *valid_cpus[] = {
179 ARM_CPU_TYPE_NAME("cortex-a7"),
180 ARM_CPU_TYPE_NAME("cortex-a15"),
181 ARM_CPU_TYPE_NAME("cortex-a53"),
182 ARM_CPU_TYPE_NAME("cortex-a57"),
183 ARM_CPU_TYPE_NAME("cortex-a72"),
184 ARM_CPU_TYPE_NAME("host"),
185 ARM_CPU_TYPE_NAME("max"),
186 };
187
188 static bool cpu_type_valid(const char *cpu)
189 {
190 int i;
191
192 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
193 if (strcmp(cpu, valid_cpus[i]) == 0) {
194 return true;
195 }
196 }
197 return false;
198 }
199
200 static void create_fdt(VirtMachineState *vms)
201 {
202 void *fdt = create_device_tree(&vms->fdt_size);
203
204 if (!fdt) {
205 error_report("create_device_tree() failed");
206 exit(1);
207 }
208
209 vms->fdt = fdt;
210
211 /* Header */
212 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
213 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
214 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
215
216 /* /chosen must exist for load_dtb to fill in necessary properties later */
217 qemu_fdt_add_subnode(fdt, "/chosen");
218
219 /* Clock node, for the benefit of the UART. The kernel device tree
220 * binding documentation claims the PL011 node clock properties are
221 * optional but in practice if you omit them the kernel refuses to
222 * probe for the device.
223 */
224 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
225 qemu_fdt_add_subnode(fdt, "/apb-pclk");
226 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
227 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
228 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
229 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
230 "clk24mhz");
231 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
232
233 if (have_numa_distance) {
234 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
235 uint32_t *matrix = g_malloc0(size);
236 int idx, i, j;
237
238 for (i = 0; i < nb_numa_nodes; i++) {
239 for (j = 0; j < nb_numa_nodes; j++) {
240 idx = (i * nb_numa_nodes + j) * 3;
241 matrix[idx + 0] = cpu_to_be32(i);
242 matrix[idx + 1] = cpu_to_be32(j);
243 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
244 }
245 }
246
247 qemu_fdt_add_subnode(fdt, "/distance-map");
248 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
249 "numa-distance-map-v1");
250 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
251 matrix, size);
252 g_free(matrix);
253 }
254 }
255
256 static void fdt_add_timer_nodes(const VirtMachineState *vms)
257 {
258 /* On real hardware these interrupts are level-triggered.
259 * On KVM they were edge-triggered before host kernel version 4.4,
260 * and level-triggered afterwards.
261 * On emulated QEMU they are level-triggered.
262 *
263 * Getting the DTB info about them wrong is awkward for some
264 * guest kernels:
265 * pre-4.8 ignore the DT and leave the interrupt configured
266 * with whatever the GIC reset value (or the bootloader) left it at
267 * 4.8 before rc6 honour the incorrect data by programming it back
268 * into the GIC, causing problems
269 * 4.8rc6 and later ignore the DT and always write "level triggered"
270 * into the GIC
271 *
272 * For backwards-compatibility, virt-2.8 and earlier will continue
273 * to say these are edge-triggered, but later machines will report
274 * the correct information.
275 */
276 ARMCPU *armcpu;
277 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
278 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
279
280 if (vmc->claim_edge_triggered_timers) {
281 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
282 }
283
284 if (vms->gic_version == 2) {
285 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
286 GIC_FDT_IRQ_PPI_CPU_WIDTH,
287 (1 << vms->smp_cpus) - 1);
288 }
289
290 qemu_fdt_add_subnode(vms->fdt, "/timer");
291
292 armcpu = ARM_CPU(qemu_get_cpu(0));
293 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
294 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
295 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
296 compat, sizeof(compat));
297 } else {
298 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
299 "arm,armv7-timer");
300 }
301 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
302 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
303 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
304 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
305 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
306 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
307 }
308
309 static void fdt_add_cpu_nodes(const VirtMachineState *vms)
310 {
311 int cpu;
312 int addr_cells = 1;
313 const MachineState *ms = MACHINE(vms);
314
315 /*
316 * From Documentation/devicetree/bindings/arm/cpus.txt
317 * On ARM v8 64-bit systems value should be set to 2,
318 * that corresponds to the MPIDR_EL1 register size.
319 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
320 * in the system, #address-cells can be set to 1, since
321 * MPIDR_EL1[63:32] bits are not used for CPUs
322 * identification.
323 *
324 * Here we actually don't know whether our system is 32- or 64-bit one.
325 * The simplest way to go is to examine affinity IDs of all our CPUs. If
326 * at least one of them has Aff3 populated, we set #address-cells to 2.
327 */
328 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
329 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
330
331 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
332 addr_cells = 2;
333 break;
334 }
335 }
336
337 qemu_fdt_add_subnode(vms->fdt, "/cpus");
338 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
339 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
340
341 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
342 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
343 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
344 CPUState *cs = CPU(armcpu);
345
346 qemu_fdt_add_subnode(vms->fdt, nodename);
347 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
348 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
349 armcpu->dtb_compatible);
350
351 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
352 && vms->smp_cpus > 1) {
353 qemu_fdt_setprop_string(vms->fdt, nodename,
354 "enable-method", "psci");
355 }
356
357 if (addr_cells == 2) {
358 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
359 armcpu->mp_affinity);
360 } else {
361 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
362 armcpu->mp_affinity);
363 }
364
365 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
366 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
367 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
368 }
369
370 g_free(nodename);
371 }
372 }
373
374 static void fdt_add_its_gic_node(VirtMachineState *vms)
375 {
376 char *nodename;
377
378 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
379 nodename = g_strdup_printf("/intc/its@%" PRIx64,
380 vms->memmap[VIRT_GIC_ITS].base);
381 qemu_fdt_add_subnode(vms->fdt, nodename);
382 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
383 "arm,gic-v3-its");
384 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
385 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
386 2, vms->memmap[VIRT_GIC_ITS].base,
387 2, vms->memmap[VIRT_GIC_ITS].size);
388 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
389 g_free(nodename);
390 }
391
392 static void fdt_add_v2m_gic_node(VirtMachineState *vms)
393 {
394 char *nodename;
395
396 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
397 vms->memmap[VIRT_GIC_V2M].base);
398 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
399 qemu_fdt_add_subnode(vms->fdt, nodename);
400 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
401 "arm,gic-v2m-frame");
402 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
403 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
404 2, vms->memmap[VIRT_GIC_V2M].base,
405 2, vms->memmap[VIRT_GIC_V2M].size);
406 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
407 g_free(nodename);
408 }
409
410 static void fdt_add_gic_node(VirtMachineState *vms)
411 {
412 char *nodename;
413
414 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
415 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
416
417 nodename = g_strdup_printf("/intc@%" PRIx64,
418 vms->memmap[VIRT_GIC_DIST].base);
419 qemu_fdt_add_subnode(vms->fdt, nodename);
420 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
421 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
422 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
423 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
424 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
425 if (vms->gic_version == 3) {
426 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
427
428 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
429 "arm,gic-v3");
430
431 qemu_fdt_setprop_cell(vms->fdt, nodename,
432 "#redistributor-regions", nb_redist_regions);
433
434 if (nb_redist_regions == 1) {
435 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
436 2, vms->memmap[VIRT_GIC_DIST].base,
437 2, vms->memmap[VIRT_GIC_DIST].size,
438 2, vms->memmap[VIRT_GIC_REDIST].base,
439 2, vms->memmap[VIRT_GIC_REDIST].size);
440 } else {
441 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
442 2, vms->memmap[VIRT_GIC_DIST].base,
443 2, vms->memmap[VIRT_GIC_DIST].size,
444 2, vms->memmap[VIRT_GIC_REDIST].base,
445 2, vms->memmap[VIRT_GIC_REDIST].size,
446 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
447 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
448 }
449
450 if (vms->virt) {
451 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
452 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
453 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
454 }
455 } else {
456 /* 'cortex-a15-gic' means 'GIC v2' */
457 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
458 "arm,cortex-a15-gic");
459 if (!vms->virt) {
460 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
461 2, vms->memmap[VIRT_GIC_DIST].base,
462 2, vms->memmap[VIRT_GIC_DIST].size,
463 2, vms->memmap[VIRT_GIC_CPU].base,
464 2, vms->memmap[VIRT_GIC_CPU].size);
465 } else {
466 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
467 2, vms->memmap[VIRT_GIC_DIST].base,
468 2, vms->memmap[VIRT_GIC_DIST].size,
469 2, vms->memmap[VIRT_GIC_CPU].base,
470 2, vms->memmap[VIRT_GIC_CPU].size,
471 2, vms->memmap[VIRT_GIC_HYP].base,
472 2, vms->memmap[VIRT_GIC_HYP].size,
473 2, vms->memmap[VIRT_GIC_VCPU].base,
474 2, vms->memmap[VIRT_GIC_VCPU].size);
475 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
476 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
477 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
478 }
479 }
480
481 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
482 g_free(nodename);
483 }
484
485 static void fdt_add_pmu_nodes(const VirtMachineState *vms)
486 {
487 CPUState *cpu;
488 ARMCPU *armcpu;
489 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
490
491 CPU_FOREACH(cpu) {
492 armcpu = ARM_CPU(cpu);
493 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
494 return;
495 }
496 if (kvm_enabled()) {
497 if (kvm_irqchip_in_kernel()) {
498 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
499 }
500 kvm_arm_pmu_init(cpu);
501 }
502 }
503
504 if (vms->gic_version == 2) {
505 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
506 GIC_FDT_IRQ_PPI_CPU_WIDTH,
507 (1 << vms->smp_cpus) - 1);
508 }
509
510 armcpu = ARM_CPU(qemu_get_cpu(0));
511 qemu_fdt_add_subnode(vms->fdt, "/pmu");
512 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
513 const char compat[] = "arm,armv8-pmuv3";
514 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
515 compat, sizeof(compat));
516 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
517 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
518 }
519 }
520
521 static void create_its(VirtMachineState *vms, DeviceState *gicdev)
522 {
523 const char *itsclass = its_class_name();
524 DeviceState *dev;
525
526 if (!itsclass) {
527 /* Do nothing if not supported */
528 return;
529 }
530
531 dev = qdev_create(NULL, itsclass);
532
533 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
534 &error_abort);
535 qdev_init_nofail(dev);
536 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
537
538 fdt_add_its_gic_node(vms);
539 }
540
541 static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
542 {
543 int i;
544 int irq = vms->irqmap[VIRT_GIC_V2M];
545 DeviceState *dev;
546
547 dev = qdev_create(NULL, "arm-gicv2m");
548 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
549 qdev_prop_set_uint32(dev, "base-spi", irq);
550 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
551 qdev_init_nofail(dev);
552
553 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
554 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
555 }
556
557 fdt_add_v2m_gic_node(vms);
558 }
559
560 static void create_gic(VirtMachineState *vms, qemu_irq *pic)
561 {
562 /* We create a standalone GIC */
563 DeviceState *gicdev;
564 SysBusDevice *gicbusdev;
565 const char *gictype;
566 int type = vms->gic_version, i;
567 uint32_t nb_redist_regions = 0;
568
569 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
570
571 gicdev = qdev_create(NULL, gictype);
572 qdev_prop_set_uint32(gicdev, "revision", type);
573 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
574 /* Note that the num-irq property counts both internal and external
575 * interrupts; there are always 32 of the former (mandated by GIC spec).
576 */
577 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
578 if (!kvm_irqchip_in_kernel()) {
579 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
580 }
581
582 if (type == 3) {
583 uint32_t redist0_capacity =
584 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
585 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
586
587 nb_redist_regions = virt_gicv3_redist_region_count(vms);
588
589 qdev_prop_set_uint32(gicdev, "len-redist-region-count",
590 nb_redist_regions);
591 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
592
593 if (nb_redist_regions == 2) {
594 uint32_t redist1_capacity =
595 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
596
597 qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
598 MIN(smp_cpus - redist0_count, redist1_capacity));
599 }
600 } else {
601 if (!kvm_irqchip_in_kernel()) {
602 qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
603 vms->virt);
604 }
605 }
606 qdev_init_nofail(gicdev);
607 gicbusdev = SYS_BUS_DEVICE(gicdev);
608 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
609 if (type == 3) {
610 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
611 if (nb_redist_regions == 2) {
612 sysbus_mmio_map(gicbusdev, 2,
613 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
614 }
615 } else {
616 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
617 if (vms->virt) {
618 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
619 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
620 }
621 }
622
623 /* Wire the outputs from each CPU's generic timer and the GICv3
624 * maintenance interrupt signal to the appropriate GIC PPI inputs,
625 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
626 */
627 for (i = 0; i < smp_cpus; i++) {
628 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
629 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
630 int irq;
631 /* Mapping from the output timer irq lines from the CPU to the
632 * GIC PPI inputs we use for the virt board.
633 */
634 const int timer_irq[] = {
635 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
636 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
637 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
638 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
639 };
640
641 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
642 qdev_connect_gpio_out(cpudev, irq,
643 qdev_get_gpio_in(gicdev,
644 ppibase + timer_irq[irq]));
645 }
646
647 if (type == 3) {
648 qemu_irq irq = qdev_get_gpio_in(gicdev,
649 ppibase + ARCH_GIC_MAINT_IRQ);
650 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
651 0, irq);
652 } else if (vms->virt) {
653 qemu_irq irq = qdev_get_gpio_in(gicdev,
654 ppibase + ARCH_GIC_MAINT_IRQ);
655 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
656 }
657
658 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
659 qdev_get_gpio_in(gicdev, ppibase
660 + VIRTUAL_PMU_IRQ));
661
662 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
663 sysbus_connect_irq(gicbusdev, i + smp_cpus,
664 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
665 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
666 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
667 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
668 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
669 }
670
671 for (i = 0; i < NUM_IRQS; i++) {
672 pic[i] = qdev_get_gpio_in(gicdev, i);
673 }
674
675 fdt_add_gic_node(vms);
676
677 if (type == 3 && vms->its) {
678 create_its(vms, gicdev);
679 } else if (type == 2) {
680 create_v2m(vms, pic);
681 }
682 }
683
684 static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
685 MemoryRegion *mem, Chardev *chr)
686 {
687 char *nodename;
688 hwaddr base = vms->memmap[uart].base;
689 hwaddr size = vms->memmap[uart].size;
690 int irq = vms->irqmap[uart];
691 const char compat[] = "arm,pl011\0arm,primecell";
692 const char clocknames[] = "uartclk\0apb_pclk";
693 DeviceState *dev = qdev_create(NULL, "pl011");
694 SysBusDevice *s = SYS_BUS_DEVICE(dev);
695
696 qdev_prop_set_chr(dev, "chardev", chr);
697 qdev_init_nofail(dev);
698 memory_region_add_subregion(mem, base,
699 sysbus_mmio_get_region(s, 0));
700 sysbus_connect_irq(s, 0, pic[irq]);
701
702 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
703 qemu_fdt_add_subnode(vms->fdt, nodename);
704 /* Note that we can't use setprop_string because of the embedded NUL */
705 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
706 compat, sizeof(compat));
707 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
708 2, base, 2, size);
709 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
710 GIC_FDT_IRQ_TYPE_SPI, irq,
711 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
712 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
713 vms->clock_phandle, vms->clock_phandle);
714 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
715 clocknames, sizeof(clocknames));
716
717 if (uart == VIRT_UART) {
718 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
719 } else {
720 /* Mark as not usable by the normal world */
721 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
722 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
723
724 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
725 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
726 nodename);
727 }
728
729 g_free(nodename);
730 }
731
732 static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
733 {
734 char *nodename;
735 hwaddr base = vms->memmap[VIRT_RTC].base;
736 hwaddr size = vms->memmap[VIRT_RTC].size;
737 int irq = vms->irqmap[VIRT_RTC];
738 const char compat[] = "arm,pl031\0arm,primecell";
739
740 sysbus_create_simple("pl031", base, pic[irq]);
741
742 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
743 qemu_fdt_add_subnode(vms->fdt, nodename);
744 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
745 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
746 2, base, 2, size);
747 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
748 GIC_FDT_IRQ_TYPE_SPI, irq,
749 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
750 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
751 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
752 g_free(nodename);
753 }
754
755 static DeviceState *gpio_key_dev;
756 static void virt_powerdown_req(Notifier *n, void *opaque)
757 {
758 /* use gpio Pin 3 for power button event */
759 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
760 }
761
762 static Notifier virt_system_powerdown_notifier = {
763 .notify = virt_powerdown_req
764 };
765
766 static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
767 {
768 char *nodename;
769 DeviceState *pl061_dev;
770 hwaddr base = vms->memmap[VIRT_GPIO].base;
771 hwaddr size = vms->memmap[VIRT_GPIO].size;
772 int irq = vms->irqmap[VIRT_GPIO];
773 const char compat[] = "arm,pl061\0arm,primecell";
774
775 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
776
777 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
778 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
779 qemu_fdt_add_subnode(vms->fdt, nodename);
780 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
781 2, base, 2, size);
782 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
783 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
784 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
785 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
786 GIC_FDT_IRQ_TYPE_SPI, irq,
787 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
788 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
789 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
790 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
791
792 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
793 qdev_get_gpio_in(pl061_dev, 3));
794 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
795 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
796 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
797 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
798
799 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
800 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
801 "label", "GPIO Key Poweroff");
802 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
803 KEY_POWER);
804 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
805 "gpios", phandle, 3, 0);
806
807 /* connect powerdown request */
808 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
809
810 g_free(nodename);
811 }
812
813 static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
814 {
815 int i;
816 hwaddr size = vms->memmap[VIRT_MMIO].size;
817
818 /* We create the transports in forwards order. Since qbus_realize()
819 * prepends (not appends) new child buses, the incrementing loop below will
820 * create a list of virtio-mmio buses with decreasing base addresses.
821 *
822 * When a -device option is processed from the command line,
823 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
824 * order. The upshot is that -device options in increasing command line
825 * order are mapped to virtio-mmio buses with decreasing base addresses.
826 *
827 * When this code was originally written, that arrangement ensured that the
828 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
829 * the first -device on the command line. (The end-to-end order is a
830 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
831 * guest kernel's name-to-address assignment strategy.)
832 *
833 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
834 * the message, if not necessarily the code, of commit 70161ff336.
835 * Therefore the loop now establishes the inverse of the original intent.
836 *
837 * Unfortunately, we can't counteract the kernel change by reversing the
838 * loop; it would break existing command lines.
839 *
840 * In any case, the kernel makes no guarantee about the stability of
841 * enumeration order of virtio devices (as demonstrated by it changing
842 * between kernel versions). For reliable and stable identification
843 * of disks users must use UUIDs or similar mechanisms.
844 */
845 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
846 int irq = vms->irqmap[VIRT_MMIO] + i;
847 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
848
849 sysbus_create_simple("virtio-mmio", base, pic[irq]);
850 }
851
852 /* We add dtb nodes in reverse order so that they appear in the finished
853 * device tree lowest address first.
854 *
855 * Note that this mapping is independent of the loop above. The previous
856 * loop influences virtio device to virtio transport assignment, whereas
857 * this loop controls how virtio transports are laid out in the dtb.
858 */
859 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
860 char *nodename;
861 int irq = vms->irqmap[VIRT_MMIO] + i;
862 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
863
864 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
865 qemu_fdt_add_subnode(vms->fdt, nodename);
866 qemu_fdt_setprop_string(vms->fdt, nodename,
867 "compatible", "virtio,mmio");
868 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
869 2, base, 2, size);
870 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
871 GIC_FDT_IRQ_TYPE_SPI, irq,
872 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
873 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
874 g_free(nodename);
875 }
876 }
877
878 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
879
880 static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
881 const char *name,
882 const char *alias_prop_name)
883 {
884 /*
885 * Create a single flash device. We use the same parameters as
886 * the flash devices on the Versatile Express board.
887 */
888 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
889
890 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
891 qdev_prop_set_uint8(dev, "width", 4);
892 qdev_prop_set_uint8(dev, "device-width", 2);
893 qdev_prop_set_bit(dev, "big-endian", false);
894 qdev_prop_set_uint16(dev, "id0", 0x89);
895 qdev_prop_set_uint16(dev, "id1", 0x18);
896 qdev_prop_set_uint16(dev, "id2", 0x00);
897 qdev_prop_set_uint16(dev, "id3", 0x00);
898 qdev_prop_set_string(dev, "name", name);
899 object_property_add_child(OBJECT(vms), name, OBJECT(dev),
900 &error_abort);
901 object_property_add_alias(OBJECT(vms), alias_prop_name,
902 OBJECT(dev), "drive", &error_abort);
903 return PFLASH_CFI01(dev);
904 }
905
906 static void virt_flash_create(VirtMachineState *vms)
907 {
908 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
909 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
910 }
911
912 static void virt_flash_map1(PFlashCFI01 *flash,
913 hwaddr base, hwaddr size,
914 MemoryRegion *sysmem)
915 {
916 DeviceState *dev = DEVICE(flash);
917
918 assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
919 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
920 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
921 qdev_init_nofail(dev);
922
923 memory_region_add_subregion(sysmem, base,
924 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
925 0));
926 }
927
928 static void virt_flash_map(VirtMachineState *vms,
929 MemoryRegion *sysmem,
930 MemoryRegion *secure_sysmem)
931 {
932 /*
933 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
934 * sysmem is the system memory space. secure_sysmem is the secure view
935 * of the system, and the first flash device should be made visible only
936 * there. The second flash device is visible to both secure and nonsecure.
937 * If sysmem == secure_sysmem this means there is no separate Secure
938 * address space and both flash devices are generally visible.
939 */
940 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
941 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
942
943 virt_flash_map1(vms->flash[0], flashbase, flashsize,
944 secure_sysmem);
945 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
946 sysmem);
947 }
948
949 static void virt_flash_fdt(VirtMachineState *vms,
950 MemoryRegion *sysmem,
951 MemoryRegion *secure_sysmem)
952 {
953 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
954 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
955 char *nodename;
956
957 if (sysmem == secure_sysmem) {
958 /* Report both flash devices as a single node in the DT */
959 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
960 qemu_fdt_add_subnode(vms->fdt, nodename);
961 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
962 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
963 2, flashbase, 2, flashsize,
964 2, flashbase + flashsize, 2, flashsize);
965 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
966 g_free(nodename);
967 } else {
968 /*
969 * Report the devices as separate nodes so we can mark one as
970 * only visible to the secure world.
971 */
972 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
973 qemu_fdt_add_subnode(vms->fdt, nodename);
974 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
975 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
976 2, flashbase, 2, flashsize);
977 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
978 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
979 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
980 g_free(nodename);
981
982 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
983 qemu_fdt_add_subnode(vms->fdt, nodename);
984 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
985 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
986 2, flashbase + flashsize, 2, flashsize);
987 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
988 g_free(nodename);
989 }
990 }
991
992 static bool virt_firmware_init(VirtMachineState *vms,
993 MemoryRegion *sysmem,
994 MemoryRegion *secure_sysmem)
995 {
996 int i;
997 BlockBackend *pflash_blk0;
998
999 /* Map legacy -drive if=pflash to machine properties */
1000 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1001 pflash_cfi01_legacy_drive(vms->flash[i],
1002 drive_get(IF_PFLASH, 0, i));
1003 }
1004
1005 virt_flash_map(vms, sysmem, secure_sysmem);
1006
1007 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1008
1009 if (bios_name) {
1010 char *fname;
1011 MemoryRegion *mr;
1012 int image_size;
1013
1014 if (pflash_blk0) {
1015 error_report("The contents of the first flash device may be "
1016 "specified with -bios or with -drive if=pflash... "
1017 "but you cannot use both options at once");
1018 exit(1);
1019 }
1020
1021 /* Fall back to -bios */
1022
1023 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1024 if (!fname) {
1025 error_report("Could not find ROM image '%s'", bios_name);
1026 exit(1);
1027 }
1028 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1029 image_size = load_image_mr(fname, mr);
1030 g_free(fname);
1031 if (image_size < 0) {
1032 error_report("Could not load ROM image '%s'", bios_name);
1033 exit(1);
1034 }
1035 }
1036
1037 return pflash_blk0 || bios_name;
1038 }
1039
1040 static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
1041 {
1042 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1043 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
1044 FWCfgState *fw_cfg;
1045 char *nodename;
1046
1047 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
1048 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
1049
1050 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
1051 qemu_fdt_add_subnode(vms->fdt, nodename);
1052 qemu_fdt_setprop_string(vms->fdt, nodename,
1053 "compatible", "qemu,fw-cfg-mmio");
1054 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1055 2, base, 2, size);
1056 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1057 g_free(nodename);
1058 return fw_cfg;
1059 }
1060
1061 static void create_pcie_irq_map(const VirtMachineState *vms,
1062 uint32_t gic_phandle,
1063 int first_irq, const char *nodename)
1064 {
1065 int devfn, pin;
1066 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1067 uint32_t *irq_map = full_irq_map;
1068
1069 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1070 for (pin = 0; pin < 4; pin++) {
1071 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1072 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1073 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1074 int i;
1075
1076 uint32_t map[] = {
1077 devfn << 8, 0, 0, /* devfn */
1078 pin + 1, /* PCI pin */
1079 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1080
1081 /* Convert map to big endian */
1082 for (i = 0; i < 10; i++) {
1083 irq_map[i] = cpu_to_be32(map[i]);
1084 }
1085 irq_map += 10;
1086 }
1087 }
1088
1089 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1090 full_irq_map, sizeof(full_irq_map));
1091
1092 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1093 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1094 0x7 /* PCI irq */);
1095 }
1096
1097 static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1098 PCIBus *bus)
1099 {
1100 char *node;
1101 const char compat[] = "arm,smmu-v3";
1102 int irq = vms->irqmap[VIRT_SMMU];
1103 int i;
1104 hwaddr base = vms->memmap[VIRT_SMMU].base;
1105 hwaddr size = vms->memmap[VIRT_SMMU].size;
1106 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1107 DeviceState *dev;
1108
1109 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1110 return;
1111 }
1112
1113 dev = qdev_create(NULL, "arm-smmuv3");
1114
1115 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1116 &error_abort);
1117 qdev_init_nofail(dev);
1118 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1119 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1120 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1121 }
1122
1123 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1124 qemu_fdt_add_subnode(vms->fdt, node);
1125 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1126 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1127
1128 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1129 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1130 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1131 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1132 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1133
1134 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1135 sizeof(irq_names));
1136
1137 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1138 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1139 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1140
1141 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1142
1143 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1144 g_free(node);
1145 }
1146
1147 static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1148 {
1149 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1150 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1151 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1152 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1153 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1154 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1155 hwaddr base_ecam, size_ecam;
1156 hwaddr base = base_mmio;
1157 int nr_pcie_buses;
1158 int irq = vms->irqmap[VIRT_PCIE];
1159 MemoryRegion *mmio_alias;
1160 MemoryRegion *mmio_reg;
1161 MemoryRegion *ecam_alias;
1162 MemoryRegion *ecam_reg;
1163 DeviceState *dev;
1164 char *nodename;
1165 int i, ecam_id;
1166 PCIHostState *pci;
1167
1168 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1169 qdev_init_nofail(dev);
1170
1171 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1172 base_ecam = vms->memmap[ecam_id].base;
1173 size_ecam = vms->memmap[ecam_id].size;
1174 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1175 /* Map only the first size_ecam bytes of ECAM space */
1176 ecam_alias = g_new0(MemoryRegion, 1);
1177 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1178 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1179 ecam_reg, 0, size_ecam);
1180 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1181
1182 /* Map the MMIO window into system address space so as to expose
1183 * the section of PCI MMIO space which starts at the same base address
1184 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1185 * the window).
1186 */
1187 mmio_alias = g_new0(MemoryRegion, 1);
1188 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1189 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1190 mmio_reg, base_mmio, size_mmio);
1191 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1192
1193 if (vms->highmem) {
1194 /* Map high MMIO space */
1195 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1196
1197 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1198 mmio_reg, base_mmio_high, size_mmio_high);
1199 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1200 high_mmio_alias);
1201 }
1202
1203 /* Map IO port space */
1204 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1205
1206 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1207 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1208 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1209 }
1210
1211 pci = PCI_HOST_BRIDGE(dev);
1212 if (pci->bus) {
1213 for (i = 0; i < nb_nics; i++) {
1214 NICInfo *nd = &nd_table[i];
1215
1216 if (!nd->model) {
1217 nd->model = g_strdup("virtio");
1218 }
1219
1220 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1221 }
1222 }
1223
1224 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1225 qemu_fdt_add_subnode(vms->fdt, nodename);
1226 qemu_fdt_setprop_string(vms->fdt, nodename,
1227 "compatible", "pci-host-ecam-generic");
1228 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1229 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1230 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1231 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1232 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1233 nr_pcie_buses - 1);
1234 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1235
1236 if (vms->msi_phandle) {
1237 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1238 vms->msi_phandle);
1239 }
1240
1241 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1242 2, base_ecam, 2, size_ecam);
1243
1244 if (vms->highmem) {
1245 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1246 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1247 2, base_pio, 2, size_pio,
1248 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1249 2, base_mmio, 2, size_mmio,
1250 1, FDT_PCI_RANGE_MMIO_64BIT,
1251 2, base_mmio_high,
1252 2, base_mmio_high, 2, size_mmio_high);
1253 } else {
1254 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1255 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1256 2, base_pio, 2, size_pio,
1257 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1258 2, base_mmio, 2, size_mmio);
1259 }
1260
1261 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1262 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1263
1264 if (vms->iommu) {
1265 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1266
1267 create_smmu(vms, pic, pci->bus);
1268
1269 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1270 0x0, vms->iommu_phandle, 0x0, 0x10000);
1271 }
1272
1273 g_free(nodename);
1274 }
1275
1276 static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1277 {
1278 DeviceState *dev;
1279 SysBusDevice *s;
1280 int i;
1281 MemoryRegion *sysmem = get_system_memory();
1282
1283 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1284 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1285 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1286 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1287 qdev_init_nofail(dev);
1288 vms->platform_bus_dev = dev;
1289
1290 s = SYS_BUS_DEVICE(dev);
1291 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1292 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1293 sysbus_connect_irq(s, i, pic[irqn]);
1294 }
1295
1296 memory_region_add_subregion(sysmem,
1297 vms->memmap[VIRT_PLATFORM_BUS].base,
1298 sysbus_mmio_get_region(s, 0));
1299 }
1300
1301 static void create_secure_ram(VirtMachineState *vms,
1302 MemoryRegion *secure_sysmem)
1303 {
1304 MemoryRegion *secram = g_new(MemoryRegion, 1);
1305 char *nodename;
1306 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1307 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1308
1309 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1310 &error_fatal);
1311 memory_region_add_subregion(secure_sysmem, base, secram);
1312
1313 nodename = g_strdup_printf("/secram@%" PRIx64, base);
1314 qemu_fdt_add_subnode(vms->fdt, nodename);
1315 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1316 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1317 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1318 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1319
1320 g_free(nodename);
1321 }
1322
1323 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1324 {
1325 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1326 bootinfo);
1327
1328 *fdt_size = board->fdt_size;
1329 return board->fdt;
1330 }
1331
1332 static void virt_build_smbios(VirtMachineState *vms)
1333 {
1334 MachineClass *mc = MACHINE_GET_CLASS(vms);
1335 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1336 uint8_t *smbios_tables, *smbios_anchor;
1337 size_t smbios_tables_len, smbios_anchor_len;
1338 const char *product = "QEMU Virtual Machine";
1339
1340 if (kvm_enabled()) {
1341 product = "KVM Virtual Machine";
1342 }
1343
1344 smbios_set_defaults("QEMU", product,
1345 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1346 true, SMBIOS_ENTRY_POINT_30);
1347
1348 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
1349 &smbios_anchor, &smbios_anchor_len);
1350
1351 if (smbios_anchor) {
1352 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1353 smbios_tables, smbios_tables_len);
1354 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1355 smbios_anchor, smbios_anchor_len);
1356 }
1357 }
1358
1359 static
1360 void virt_machine_done(Notifier *notifier, void *data)
1361 {
1362 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1363 machine_done);
1364 ARMCPU *cpu = ARM_CPU(first_cpu);
1365 struct arm_boot_info *info = &vms->bootinfo;
1366 AddressSpace *as = arm_boot_address_space(cpu, info);
1367
1368 /*
1369 * If the user provided a dtb, we assume the dynamic sysbus nodes
1370 * already are integrated there. This corresponds to a use case where
1371 * the dynamic sysbus nodes are complex and their generation is not yet
1372 * supported. In that case the user can take charge of the guest dt
1373 * while qemu takes charge of the qom stuff.
1374 */
1375 if (info->dtb_filename == NULL) {
1376 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1377 vms->memmap[VIRT_PLATFORM_BUS].base,
1378 vms->memmap[VIRT_PLATFORM_BUS].size,
1379 vms->irqmap[VIRT_PLATFORM_BUS]);
1380 }
1381 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1382 exit(1);
1383 }
1384
1385 virt_acpi_setup(vms);
1386 virt_build_smbios(vms);
1387 }
1388
1389 static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1390 {
1391 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1392 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1393
1394 if (!vmc->disallow_affinity_adjustment) {
1395 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1396 * GIC's target-list limitations. 32-bit KVM hosts currently
1397 * always create clusters of 4 CPUs, but that is expected to
1398 * change when they gain support for gicv3. When KVM is enabled
1399 * it will override the changes we make here, therefore our
1400 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1401 * and to improve SGI efficiency.
1402 */
1403 if (vms->gic_version == 3) {
1404 clustersz = GICV3_TARGETLIST_BITS;
1405 } else {
1406 clustersz = GIC_TARGETLIST_BITS;
1407 }
1408 }
1409 return arm_cpu_mp_affinity(idx, clustersz);
1410 }
1411
1412 static void virt_set_memmap(VirtMachineState *vms)
1413 {
1414 MachineState *ms = MACHINE(vms);
1415 hwaddr base, device_memory_base, device_memory_size;
1416 int i;
1417
1418 vms->memmap = extended_memmap;
1419
1420 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1421 vms->memmap[i] = base_memmap[i];
1422 }
1423
1424 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1425 error_report("unsupported number of memory slots: %"PRIu64,
1426 ms->ram_slots);
1427 exit(EXIT_FAILURE);
1428 }
1429
1430 /*
1431 * We compute the base of the high IO region depending on the
1432 * amount of initial and device memory. The device memory start/size
1433 * is aligned on 1GiB. We never put the high IO region below 256GiB
1434 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1435 * The device region size assumes 1GiB page max alignment per slot.
1436 */
1437 device_memory_base =
1438 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1439 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1440
1441 /* Base address of the high IO region */
1442 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1443 if (base < device_memory_base) {
1444 error_report("maxmem/slots too huge");
1445 exit(EXIT_FAILURE);
1446 }
1447 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1448 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1449 }
1450
1451 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1452 hwaddr size = extended_memmap[i].size;
1453
1454 base = ROUND_UP(base, size);
1455 vms->memmap[i].base = base;
1456 vms->memmap[i].size = size;
1457 base += size;
1458 }
1459 vms->highest_gpa = base - 1;
1460 if (device_memory_size > 0) {
1461 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1462 ms->device_memory->base = device_memory_base;
1463 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1464 "device-memory", device_memory_size);
1465 }
1466 }
1467
1468 static void machvirt_init(MachineState *machine)
1469 {
1470 VirtMachineState *vms = VIRT_MACHINE(machine);
1471 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1472 MachineClass *mc = MACHINE_GET_CLASS(machine);
1473 const CPUArchIdList *possible_cpus;
1474 qemu_irq pic[NUM_IRQS];
1475 MemoryRegion *sysmem = get_system_memory();
1476 MemoryRegion *secure_sysmem = NULL;
1477 int n, virt_max_cpus;
1478 MemoryRegion *ram = g_new(MemoryRegion, 1);
1479 bool firmware_loaded;
1480 bool aarch64 = true;
1481
1482 /*
1483 * In accelerated mode, the memory map is computed earlier in kvm_type()
1484 * to create a VM with the right number of IPA bits.
1485 */
1486 if (!vms->memmap) {
1487 virt_set_memmap(vms);
1488 }
1489
1490 /* We can probe only here because during property set
1491 * KVM is not available yet
1492 */
1493 if (vms->gic_version <= 0) {
1494 /* "host" or "max" */
1495 if (!kvm_enabled()) {
1496 if (vms->gic_version == 0) {
1497 error_report("gic-version=host requires KVM");
1498 exit(1);
1499 } else {
1500 /* "max": currently means 3 for TCG */
1501 vms->gic_version = 3;
1502 }
1503 } else {
1504 vms->gic_version = kvm_arm_vgic_probe();
1505 if (!vms->gic_version) {
1506 error_report(
1507 "Unable to determine GIC version supported by host");
1508 exit(1);
1509 }
1510 }
1511 }
1512
1513 if (!cpu_type_valid(machine->cpu_type)) {
1514 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1515 exit(1);
1516 }
1517
1518 if (vms->secure) {
1519 if (kvm_enabled()) {
1520 error_report("mach-virt: KVM does not support Security extensions");
1521 exit(1);
1522 }
1523
1524 /*
1525 * The Secure view of the world is the same as the NonSecure,
1526 * but with a few extra devices. Create it as a container region
1527 * containing the system memory at low priority; any secure-only
1528 * devices go in at higher priority and take precedence.
1529 */
1530 secure_sysmem = g_new(MemoryRegion, 1);
1531 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1532 UINT64_MAX);
1533 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1534 }
1535
1536 firmware_loaded = virt_firmware_init(vms, sysmem,
1537 secure_sysmem ?: sysmem);
1538
1539 /* If we have an EL3 boot ROM then the assumption is that it will
1540 * implement PSCI itself, so disable QEMU's internal implementation
1541 * so it doesn't get in the way. Instead of starting secondary
1542 * CPUs in PSCI powerdown state we will start them all running and
1543 * let the boot ROM sort them out.
1544 * The usual case is that we do use QEMU's PSCI implementation;
1545 * if the guest has EL2 then we will use SMC as the conduit,
1546 * and otherwise we will use HVC (for backwards compatibility and
1547 * because if we're using KVM then we must use HVC).
1548 */
1549 if (vms->secure && firmware_loaded) {
1550 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1551 } else if (vms->virt) {
1552 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1553 } else {
1554 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1555 }
1556
1557 /* The maximum number of CPUs depends on the GIC version, or on how
1558 * many redistributors we can fit into the memory map.
1559 */
1560 if (vms->gic_version == 3) {
1561 virt_max_cpus =
1562 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1563 virt_max_cpus +=
1564 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1565 } else {
1566 virt_max_cpus = GIC_NCPU;
1567 }
1568
1569 if (max_cpus > virt_max_cpus) {
1570 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1571 "supported by machine 'mach-virt' (%d)",
1572 max_cpus, virt_max_cpus);
1573 exit(1);
1574 }
1575
1576 vms->smp_cpus = smp_cpus;
1577
1578 if (vms->virt && kvm_enabled()) {
1579 error_report("mach-virt: KVM does not support providing "
1580 "Virtualization extensions to the guest CPU");
1581 exit(1);
1582 }
1583
1584 create_fdt(vms);
1585
1586 possible_cpus = mc->possible_cpu_arch_ids(machine);
1587 for (n = 0; n < possible_cpus->len; n++) {
1588 Object *cpuobj;
1589 CPUState *cs;
1590
1591 if (n >= smp_cpus) {
1592 break;
1593 }
1594
1595 cpuobj = object_new(possible_cpus->cpus[n].type);
1596 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1597 "mp-affinity", NULL);
1598
1599 cs = CPU(cpuobj);
1600 cs->cpu_index = n;
1601
1602 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1603 &error_fatal);
1604
1605 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1606
1607 if (!vms->secure) {
1608 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1609 }
1610
1611 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1612 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1613 }
1614
1615 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1616 object_property_set_int(cpuobj, vms->psci_conduit,
1617 "psci-conduit", NULL);
1618
1619 /* Secondary CPUs start in PSCI powered-down state */
1620 if (n > 0) {
1621 object_property_set_bool(cpuobj, true,
1622 "start-powered-off", NULL);
1623 }
1624 }
1625
1626 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1627 object_property_set_bool(cpuobj, false, "pmu", NULL);
1628 }
1629
1630 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1631 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1632 "reset-cbar", &error_abort);
1633 }
1634
1635 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1636 &error_abort);
1637 if (vms->secure) {
1638 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1639 "secure-memory", &error_abort);
1640 }
1641
1642 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1643 object_unref(cpuobj);
1644 }
1645 fdt_add_timer_nodes(vms);
1646 fdt_add_cpu_nodes(vms);
1647
1648 if (!kvm_enabled()) {
1649 ARMCPU *cpu = ARM_CPU(first_cpu);
1650 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1651
1652 if (aarch64 && vms->highmem) {
1653 int requested_pa_size, pamax = arm_pamax(cpu);
1654
1655 requested_pa_size = 64 - clz64(vms->highest_gpa);
1656 if (pamax < requested_pa_size) {
1657 error_report("VCPU supports less PA bits (%d) than requested "
1658 "by the memory map (%d)", pamax, requested_pa_size);
1659 exit(1);
1660 }
1661 }
1662 }
1663
1664 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1665 machine->ram_size);
1666 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1667 if (machine->device_memory) {
1668 memory_region_add_subregion(sysmem, machine->device_memory->base,
1669 &machine->device_memory->mr);
1670 }
1671
1672 virt_flash_fdt(vms, sysmem, secure_sysmem);
1673
1674 create_gic(vms, pic);
1675
1676 fdt_add_pmu_nodes(vms);
1677
1678 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1679
1680 if (vms->secure) {
1681 create_secure_ram(vms, secure_sysmem);
1682 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1683 }
1684
1685 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1686
1687 create_rtc(vms, pic);
1688
1689 create_pcie(vms, pic);
1690
1691 create_gpio(vms, pic);
1692
1693 /* Create mmio transports, so the user can create virtio backends
1694 * (which will be automatically plugged in to the transports). If
1695 * no backend is created the transport will just sit harmlessly idle.
1696 */
1697 create_virtio_devices(vms, pic);
1698
1699 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1700 rom_set_fw(vms->fw_cfg);
1701
1702 create_platform_bus(vms, pic);
1703
1704 vms->bootinfo.ram_size = machine->ram_size;
1705 vms->bootinfo.kernel_filename = machine->kernel_filename;
1706 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1707 vms->bootinfo.initrd_filename = machine->initrd_filename;
1708 vms->bootinfo.nb_cpus = smp_cpus;
1709 vms->bootinfo.board_id = -1;
1710 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1711 vms->bootinfo.get_dtb = machvirt_dtb;
1712 vms->bootinfo.skip_dtb_autoload = true;
1713 vms->bootinfo.firmware_loaded = firmware_loaded;
1714 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1715
1716 vms->machine_done.notify = virt_machine_done;
1717 qemu_add_machine_init_done_notifier(&vms->machine_done);
1718 }
1719
1720 static bool virt_get_secure(Object *obj, Error **errp)
1721 {
1722 VirtMachineState *vms = VIRT_MACHINE(obj);
1723
1724 return vms->secure;
1725 }
1726
1727 static void virt_set_secure(Object *obj, bool value, Error **errp)
1728 {
1729 VirtMachineState *vms = VIRT_MACHINE(obj);
1730
1731 vms->secure = value;
1732 }
1733
1734 static bool virt_get_virt(Object *obj, Error **errp)
1735 {
1736 VirtMachineState *vms = VIRT_MACHINE(obj);
1737
1738 return vms->virt;
1739 }
1740
1741 static void virt_set_virt(Object *obj, bool value, Error **errp)
1742 {
1743 VirtMachineState *vms = VIRT_MACHINE(obj);
1744
1745 vms->virt = value;
1746 }
1747
1748 static bool virt_get_highmem(Object *obj, Error **errp)
1749 {
1750 VirtMachineState *vms = VIRT_MACHINE(obj);
1751
1752 return vms->highmem;
1753 }
1754
1755 static void virt_set_highmem(Object *obj, bool value, Error **errp)
1756 {
1757 VirtMachineState *vms = VIRT_MACHINE(obj);
1758
1759 vms->highmem = value;
1760 }
1761
1762 static bool virt_get_its(Object *obj, Error **errp)
1763 {
1764 VirtMachineState *vms = VIRT_MACHINE(obj);
1765
1766 return vms->its;
1767 }
1768
1769 static void virt_set_its(Object *obj, bool value, Error **errp)
1770 {
1771 VirtMachineState *vms = VIRT_MACHINE(obj);
1772
1773 vms->its = value;
1774 }
1775
1776 static char *virt_get_gic_version(Object *obj, Error **errp)
1777 {
1778 VirtMachineState *vms = VIRT_MACHINE(obj);
1779 const char *val = vms->gic_version == 3 ? "3" : "2";
1780
1781 return g_strdup(val);
1782 }
1783
1784 static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1785 {
1786 VirtMachineState *vms = VIRT_MACHINE(obj);
1787
1788 if (!strcmp(value, "3")) {
1789 vms->gic_version = 3;
1790 } else if (!strcmp(value, "2")) {
1791 vms->gic_version = 2;
1792 } else if (!strcmp(value, "host")) {
1793 vms->gic_version = 0; /* Will probe later */
1794 } else if (!strcmp(value, "max")) {
1795 vms->gic_version = -1; /* Will probe later */
1796 } else {
1797 error_setg(errp, "Invalid gic-version value");
1798 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1799 }
1800 }
1801
1802 static char *virt_get_iommu(Object *obj, Error **errp)
1803 {
1804 VirtMachineState *vms = VIRT_MACHINE(obj);
1805
1806 switch (vms->iommu) {
1807 case VIRT_IOMMU_NONE:
1808 return g_strdup("none");
1809 case VIRT_IOMMU_SMMUV3:
1810 return g_strdup("smmuv3");
1811 default:
1812 g_assert_not_reached();
1813 }
1814 }
1815
1816 static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1817 {
1818 VirtMachineState *vms = VIRT_MACHINE(obj);
1819
1820 if (!strcmp(value, "smmuv3")) {
1821 vms->iommu = VIRT_IOMMU_SMMUV3;
1822 } else if (!strcmp(value, "none")) {
1823 vms->iommu = VIRT_IOMMU_NONE;
1824 } else {
1825 error_setg(errp, "Invalid iommu value");
1826 error_append_hint(errp, "Valid values are none, smmuv3.\n");
1827 }
1828 }
1829
1830 static CpuInstanceProperties
1831 virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1832 {
1833 MachineClass *mc = MACHINE_GET_CLASS(ms);
1834 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1835
1836 assert(cpu_index < possible_cpus->len);
1837 return possible_cpus->cpus[cpu_index].props;
1838 }
1839
1840 static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1841 {
1842 return idx % nb_numa_nodes;
1843 }
1844
1845 static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1846 {
1847 int n;
1848 VirtMachineState *vms = VIRT_MACHINE(ms);
1849
1850 if (ms->possible_cpus) {
1851 assert(ms->possible_cpus->len == max_cpus);
1852 return ms->possible_cpus;
1853 }
1854
1855 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1856 sizeof(CPUArchId) * max_cpus);
1857 ms->possible_cpus->len = max_cpus;
1858 for (n = 0; n < ms->possible_cpus->len; n++) {
1859 ms->possible_cpus->cpus[n].type = ms->cpu_type;
1860 ms->possible_cpus->cpus[n].arch_id =
1861 virt_cpu_mp_affinity(vms, n);
1862 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1863 ms->possible_cpus->cpus[n].props.thread_id = n;
1864 }
1865 return ms->possible_cpus;
1866 }
1867
1868 static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1869 DeviceState *dev, Error **errp)
1870 {
1871 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1872
1873 if (vms->platform_bus_dev) {
1874 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1875 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1876 SYS_BUS_DEVICE(dev));
1877 }
1878 }
1879 }
1880
1881 static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1882 DeviceState *dev)
1883 {
1884 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1885 return HOTPLUG_HANDLER(machine);
1886 }
1887
1888 return NULL;
1889 }
1890
1891 /*
1892 * for arm64 kvm_type [7-0] encodes the requested number of bits
1893 * in the IPA address space
1894 */
1895 static int virt_kvm_type(MachineState *ms, const char *type_str)
1896 {
1897 VirtMachineState *vms = VIRT_MACHINE(ms);
1898 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
1899 int requested_pa_size;
1900
1901 /* we freeze the memory map to compute the highest gpa */
1902 virt_set_memmap(vms);
1903
1904 requested_pa_size = 64 - clz64(vms->highest_gpa);
1905
1906 if (requested_pa_size > max_vm_pa_size) {
1907 error_report("-m and ,maxmem option values "
1908 "require an IPA range (%d bits) larger than "
1909 "the one supported by the host (%d bits)",
1910 requested_pa_size, max_vm_pa_size);
1911 exit(1);
1912 }
1913 /*
1914 * By default we return 0 which corresponds to an implicit legacy
1915 * 40b IPA setting. Otherwise we return the actual requested PA
1916 * logsize
1917 */
1918 return requested_pa_size > 40 ? requested_pa_size : 0;
1919 }
1920
1921 static void virt_machine_class_init(ObjectClass *oc, void *data)
1922 {
1923 MachineClass *mc = MACHINE_CLASS(oc);
1924 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1925
1926 mc->init = machvirt_init;
1927 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1928 * The value may be reduced later when we have more information about the
1929 * configuration of the particular instance.
1930 */
1931 mc->max_cpus = 512;
1932 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1933 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1934 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1935 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1936 mc->block_default_type = IF_VIRTIO;
1937 mc->no_cdrom = 1;
1938 mc->pci_allow_0_address = true;
1939 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1940 mc->minimum_page_bits = 12;
1941 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1942 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1943 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1944 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1945 mc->kvm_type = virt_kvm_type;
1946 assert(!mc->get_hotplug_handler);
1947 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1948 hc->plug = virt_machine_device_plug_cb;
1949 }
1950
1951 static void virt_instance_init(Object *obj)
1952 {
1953 VirtMachineState *vms = VIRT_MACHINE(obj);
1954 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1955
1956 /* EL3 is disabled by default on virt: this makes us consistent
1957 * between KVM and TCG for this board, and it also allows us to
1958 * boot UEFI blobs which assume no TrustZone support.
1959 */
1960 vms->secure = false;
1961 object_property_add_bool(obj, "secure", virt_get_secure,
1962 virt_set_secure, NULL);
1963 object_property_set_description(obj, "secure",
1964 "Set on/off to enable/disable the ARM "
1965 "Security Extensions (TrustZone)",
1966 NULL);
1967
1968 /* EL2 is also disabled by default, for similar reasons */
1969 vms->virt = false;
1970 object_property_add_bool(obj, "virtualization", virt_get_virt,
1971 virt_set_virt, NULL);
1972 object_property_set_description(obj, "virtualization",
1973 "Set on/off to enable/disable emulating a "
1974 "guest CPU which implements the ARM "
1975 "Virtualization Extensions",
1976 NULL);
1977
1978 /* High memory is enabled by default */
1979 vms->highmem = true;
1980 object_property_add_bool(obj, "highmem", virt_get_highmem,
1981 virt_set_highmem, NULL);
1982 object_property_set_description(obj, "highmem",
1983 "Set on/off to enable/disable using "
1984 "physical address space above 32 bits",
1985 NULL);
1986 /* Default GIC type is v2 */
1987 vms->gic_version = 2;
1988 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1989 virt_set_gic_version, NULL);
1990 object_property_set_description(obj, "gic-version",
1991 "Set GIC version. "
1992 "Valid values are 2, 3 and host", NULL);
1993
1994 vms->highmem_ecam = !vmc->no_highmem_ecam;
1995
1996 if (vmc->no_its) {
1997 vms->its = false;
1998 } else {
1999 /* Default allows ITS instantiation */
2000 vms->its = true;
2001 object_property_add_bool(obj, "its", virt_get_its,
2002 virt_set_its, NULL);
2003 object_property_set_description(obj, "its",
2004 "Set on/off to enable/disable "
2005 "ITS instantiation",
2006 NULL);
2007 }
2008
2009 /* Default disallows iommu instantiation */
2010 vms->iommu = VIRT_IOMMU_NONE;
2011 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2012 object_property_set_description(obj, "iommu",
2013 "Set the IOMMU type. "
2014 "Valid values are none and smmuv3",
2015 NULL);
2016
2017 vms->irqmap = a15irqmap;
2018
2019 virt_flash_create(vms);
2020 }
2021
2022 static const TypeInfo virt_machine_info = {
2023 .name = TYPE_VIRT_MACHINE,
2024 .parent = TYPE_MACHINE,
2025 .abstract = true,
2026 .instance_size = sizeof(VirtMachineState),
2027 .class_size = sizeof(VirtMachineClass),
2028 .class_init = virt_machine_class_init,
2029 .instance_init = virt_instance_init,
2030 .interfaces = (InterfaceInfo[]) {
2031 { TYPE_HOTPLUG_HANDLER },
2032 { }
2033 },
2034 };
2035
2036 static void machvirt_machine_init(void)
2037 {
2038 type_register_static(&virt_machine_info);
2039 }
2040 type_init(machvirt_machine_init);
2041
2042 static void virt_machine_4_1_options(MachineClass *mc)
2043 {
2044 }
2045 DEFINE_VIRT_MACHINE_AS_LATEST(4, 1)
2046
2047 static void virt_machine_4_0_options(MachineClass *mc)
2048 {
2049 virt_machine_4_1_options(mc);
2050 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
2051 }
2052 DEFINE_VIRT_MACHINE(4, 0)
2053
2054 static void virt_machine_3_1_options(MachineClass *mc)
2055 {
2056 virt_machine_4_0_options(mc);
2057 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
2058 }
2059 DEFINE_VIRT_MACHINE(3, 1)
2060
2061 static void virt_machine_3_0_options(MachineClass *mc)
2062 {
2063 virt_machine_3_1_options(mc);
2064 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
2065 }
2066 DEFINE_VIRT_MACHINE(3, 0)
2067
2068 static void virt_machine_2_12_options(MachineClass *mc)
2069 {
2070 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2071
2072 virt_machine_3_0_options(mc);
2073 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2074 vmc->no_highmem_ecam = true;
2075 mc->max_cpus = 255;
2076 }
2077 DEFINE_VIRT_MACHINE(2, 12)
2078
2079 static void virt_machine_2_11_options(MachineClass *mc)
2080 {
2081 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2082
2083 virt_machine_2_12_options(mc);
2084 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2085 vmc->smbios_old_sys_ver = true;
2086 }
2087 DEFINE_VIRT_MACHINE(2, 11)
2088
2089 static void virt_machine_2_10_options(MachineClass *mc)
2090 {
2091 virt_machine_2_11_options(mc);
2092 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2093 /* before 2.11 we never faulted accesses to bad addresses */
2094 mc->ignore_memory_transaction_failures = true;
2095 }
2096 DEFINE_VIRT_MACHINE(2, 10)
2097
2098 static void virt_machine_2_9_options(MachineClass *mc)
2099 {
2100 virt_machine_2_10_options(mc);
2101 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2102 }
2103 DEFINE_VIRT_MACHINE(2, 9)
2104
2105 static void virt_machine_2_8_options(MachineClass *mc)
2106 {
2107 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2108
2109 virt_machine_2_9_options(mc);
2110 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2111 /* For 2.8 and earlier we falsely claimed in the DT that
2112 * our timers were edge-triggered, not level-triggered.
2113 */
2114 vmc->claim_edge_triggered_timers = true;
2115 }
2116 DEFINE_VIRT_MACHINE(2, 8)
2117
2118 static void virt_machine_2_7_options(MachineClass *mc)
2119 {
2120 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2121
2122 virt_machine_2_8_options(mc);
2123 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2124 /* ITS was introduced with 2.8 */
2125 vmc->no_its = true;
2126 /* Stick with 1K pages for migration compatibility */
2127 mc->minimum_page_bits = 0;
2128 }
2129 DEFINE_VIRT_MACHINE(2, 7)
2130
2131 static void virt_machine_2_6_options(MachineClass *mc)
2132 {
2133 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2134
2135 virt_machine_2_7_options(mc);
2136 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2137 vmc->disallow_affinity_adjustment = true;
2138 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2139 vmc->no_pmu = true;
2140 }
2141 DEFINE_VIRT_MACHINE(2, 6)