]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/pnv_xive.c
qom: Put name parameter before value / visitor parameter
[mirror_qemu.git] / hw / intc / pnv_xive.c
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2019, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "monitor/monitor.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/pnv.h"
21 #include "hw/ppc/pnv_core.h"
22 #include "hw/ppc/pnv_xscom.h"
23 #include "hw/ppc/pnv_xive.h"
24 #include "hw/ppc/xive_regs.h"
25 #include "hw/qdev-properties.h"
26 #include "hw/ppc/ppc.h"
27
28 #include <libfdt.h>
29
30 #include "pnv_xive_regs.h"
31
32 #undef XIVE_DEBUG
33
34 /*
35 * Virtual structures table (VST)
36 */
37 #define SBE_PER_BYTE 4
38
39 typedef struct XiveVstInfo {
40 const char *name;
41 uint32_t size;
42 uint32_t max_blocks;
43 } XiveVstInfo;
44
45 static const XiveVstInfo vst_infos[] = {
46 [VST_TSEL_IVT] = { "EAT", sizeof(XiveEAS), 16 },
47 [VST_TSEL_SBE] = { "SBE", 1, 16 },
48 [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
49 [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
50
51 /*
52 * Interrupt fifo backing store table (not modeled) :
53 *
54 * 0 - IPI,
55 * 1 - HWD,
56 * 2 - First escalate,
57 * 3 - Second escalate,
58 * 4 - Redistribution,
59 * 5 - IPI cascaded queue ?
60 */
61 [VST_TSEL_IRQ] = { "IRQ", 1, 6 },
62 };
63
64 #define xive_error(xive, fmt, ...) \
65 qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \
66 (xive)->chip->chip_id, ## __VA_ARGS__);
67
68 /*
69 * QEMU version of the GETFIELD/SETFIELD macros
70 *
71 * TODO: It might be better to use the existing extract64() and
72 * deposit64() but this means that all the register definitions will
73 * change and become incompatible with the ones found in skiboot.
74 *
75 * Keep it as it is for now until we find a common ground.
76 */
77 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
78 {
79 return (word & mask) >> ctz64(mask);
80 }
81
82 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
83 uint64_t value)
84 {
85 return (word & ~mask) | ((value << ctz64(mask)) & mask);
86 }
87
88 /*
89 * When PC_TCTXT_CHIPID_OVERRIDE is configured, the PC_TCTXT_CHIPID
90 * field overrides the hardwired chip ID in the Powerbus operations
91 * and for CAM compares
92 */
93 static uint8_t pnv_xive_block_id(PnvXive *xive)
94 {
95 uint8_t blk = xive->chip->chip_id;
96 uint64_t cfg_val = xive->regs[PC_TCTXT_CFG >> 3];
97
98 if (cfg_val & PC_TCTXT_CHIPID_OVERRIDE) {
99 blk = GETFIELD(PC_TCTXT_CHIPID, cfg_val);
100 }
101
102 return blk;
103 }
104
105 /*
106 * Remote access to controllers. HW uses MMIOs. For now, a simple scan
107 * of the chips is good enough.
108 *
109 * TODO: Block scope support
110 */
111 static PnvXive *pnv_xive_get_remote(uint8_t blk)
112 {
113 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
114 int i;
115
116 for (i = 0; i < pnv->num_chips; i++) {
117 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
118 PnvXive *xive = &chip9->xive;
119
120 if (pnv_xive_block_id(xive) == blk) {
121 return xive;
122 }
123 }
124 return NULL;
125 }
126
127 /*
128 * VST accessors for SBE, EAT, ENDT, NVT
129 *
130 * Indirect VST tables are arrays of VSDs pointing to a page (of same
131 * size). Each page is a direct VST table.
132 */
133
134 #define XIVE_VSD_SIZE 8
135
136 /* Indirect page size can be 4K, 64K, 2M, 16M. */
137 static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
138 {
139 return page_shift == 12 || page_shift == 16 ||
140 page_shift == 21 || page_shift == 24;
141 }
142
143 static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
144 uint64_t vsd, uint32_t idx)
145 {
146 const XiveVstInfo *info = &vst_infos[type];
147 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
148 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
149 uint32_t idx_max;
150
151 idx_max = vst_tsize / info->size - 1;
152 if (idx > idx_max) {
153 #ifdef XIVE_DEBUG
154 xive_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?",
155 info->name, idx, idx_max);
156 #endif
157 return 0;
158 }
159
160 return vst_addr + idx * info->size;
161 }
162
163 static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
164 uint64_t vsd, uint32_t idx)
165 {
166 const XiveVstInfo *info = &vst_infos[type];
167 uint64_t vsd_addr;
168 uint32_t vsd_idx;
169 uint32_t page_shift;
170 uint32_t vst_per_page;
171
172 /* Get the page size of the indirect table. */
173 vsd_addr = vsd & VSD_ADDRESS_MASK;
174 vsd = ldq_be_dma(&address_space_memory, vsd_addr);
175
176 if (!(vsd & VSD_ADDRESS_MASK)) {
177 #ifdef XIVE_DEBUG
178 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
179 #endif
180 return 0;
181 }
182
183 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
184
185 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
186 xive_error(xive, "VST: invalid %s page shift %d", info->name,
187 page_shift);
188 return 0;
189 }
190
191 vst_per_page = (1ull << page_shift) / info->size;
192 vsd_idx = idx / vst_per_page;
193
194 /* Load the VSD we are looking for, if not already done */
195 if (vsd_idx) {
196 vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
197 vsd = ldq_be_dma(&address_space_memory, vsd_addr);
198
199 if (!(vsd & VSD_ADDRESS_MASK)) {
200 #ifdef XIVE_DEBUG
201 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
202 #endif
203 return 0;
204 }
205
206 /*
207 * Check that the pages have a consistent size across the
208 * indirect table
209 */
210 if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
211 xive_error(xive, "VST: %s entry %x indirect page size differ !?",
212 info->name, idx);
213 return 0;
214 }
215 }
216
217 return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
218 }
219
220 static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
221 uint32_t idx)
222 {
223 const XiveVstInfo *info = &vst_infos[type];
224 uint64_t vsd;
225
226 if (blk >= info->max_blocks) {
227 xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
228 blk, info->name, idx);
229 return 0;
230 }
231
232 vsd = xive->vsds[type][blk];
233
234 /* Remote VST access */
235 if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
236 xive = pnv_xive_get_remote(blk);
237
238 return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0;
239 }
240
241 if (VSD_INDIRECT & vsd) {
242 return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
243 }
244
245 return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
246 }
247
248 static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
249 uint32_t idx, void *data)
250 {
251 const XiveVstInfo *info = &vst_infos[type];
252 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
253
254 if (!addr) {
255 return -1;
256 }
257
258 cpu_physical_memory_read(addr, data, info->size);
259 return 0;
260 }
261
262 #define XIVE_VST_WORD_ALL -1
263
264 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
265 uint32_t idx, void *data, uint32_t word_number)
266 {
267 const XiveVstInfo *info = &vst_infos[type];
268 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
269
270 if (!addr) {
271 return -1;
272 }
273
274 if (word_number == XIVE_VST_WORD_ALL) {
275 cpu_physical_memory_write(addr, data, info->size);
276 } else {
277 cpu_physical_memory_write(addr + word_number * 4,
278 data + word_number * 4, 4);
279 }
280 return 0;
281 }
282
283 static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
284 XiveEND *end)
285 {
286 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
287 }
288
289 static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
290 XiveEND *end, uint8_t word_number)
291 {
292 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
293 word_number);
294 }
295
296 static int pnv_xive_end_update(PnvXive *xive)
297 {
298 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
299 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
300 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
301 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
302 int i;
303 uint64_t eqc_watch[4];
304
305 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
306 eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
307 }
308
309 return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
310 XIVE_VST_WORD_ALL);
311 }
312
313 static void pnv_xive_end_cache_load(PnvXive *xive)
314 {
315 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
316 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
317 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
318 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
319 uint64_t eqc_watch[4] = { 0 };
320 int i;
321
322 if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
323 xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
324 }
325
326 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
327 xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
328 }
329 }
330
331 static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
332 XiveNVT *nvt)
333 {
334 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
335 }
336
337 static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
338 XiveNVT *nvt, uint8_t word_number)
339 {
340 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
341 word_number);
342 }
343
344 static int pnv_xive_nvt_update(PnvXive *xive)
345 {
346 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
347 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
348 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
349 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
350 int i;
351 uint64_t vpc_watch[8];
352
353 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
354 vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
355 }
356
357 return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
358 XIVE_VST_WORD_ALL);
359 }
360
361 static void pnv_xive_nvt_cache_load(PnvXive *xive)
362 {
363 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
364 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
365 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
366 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
367 uint64_t vpc_watch[8] = { 0 };
368 int i;
369
370 if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
371 xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
372 }
373
374 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
375 xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
376 }
377 }
378
379 static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
380 XiveEAS *eas)
381 {
382 PnvXive *xive = PNV_XIVE(xrtr);
383
384 /*
385 * EAT lookups should be local to the IC
386 */
387 if (pnv_xive_block_id(xive) != blk) {
388 xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
389 return -1;
390 }
391
392 return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
393 }
394
395 /*
396 * One bit per thread id. The first register PC_THREAD_EN_REG0 covers
397 * the first cores 0-15 (normal) of the chip or 0-7 (fused). The
398 * second register covers cores 16-23 (normal) or 8-11 (fused).
399 */
400 static bool pnv_xive_is_cpu_enabled(PnvXive *xive, PowerPCCPU *cpu)
401 {
402 int pir = ppc_cpu_pir(cpu);
403 uint32_t fc = PNV9_PIR2FUSEDCORE(pir);
404 uint64_t reg = fc < 8 ? PC_THREAD_EN_REG0 : PC_THREAD_EN_REG1;
405 uint32_t bit = pir & 0x3f;
406
407 return xive->regs[reg >> 3] & PPC_BIT(bit);
408 }
409
410 static int pnv_xive_match_nvt(XivePresenter *xptr, uint8_t format,
411 uint8_t nvt_blk, uint32_t nvt_idx,
412 bool cam_ignore, uint8_t priority,
413 uint32_t logic_serv, XiveTCTXMatch *match)
414 {
415 PnvXive *xive = PNV_XIVE(xptr);
416 PnvChip *chip = xive->chip;
417 int count = 0;
418 int i, j;
419
420 for (i = 0; i < chip->nr_cores; i++) {
421 PnvCore *pc = chip->cores[i];
422 CPUCore *cc = CPU_CORE(pc);
423
424 for (j = 0; j < cc->nr_threads; j++) {
425 PowerPCCPU *cpu = pc->threads[j];
426 XiveTCTX *tctx;
427 int ring;
428
429 if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
430 continue;
431 }
432
433 tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
434
435 /*
436 * Check the thread context CAM lines and record matches.
437 */
438 ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk,
439 nvt_idx, cam_ignore, logic_serv);
440 /*
441 * Save the context and follow on to catch duplicates, that we
442 * don't support yet.
443 */
444 if (ring != -1) {
445 if (match->tctx) {
446 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a "
447 "thread context NVT %x/%x\n",
448 nvt_blk, nvt_idx);
449 return -1;
450 }
451
452 match->ring = ring;
453 match->tctx = tctx;
454 count++;
455 }
456 }
457 }
458
459 return count;
460 }
461
462 static uint8_t pnv_xive_get_block_id(XiveRouter *xrtr)
463 {
464 return pnv_xive_block_id(PNV_XIVE(xrtr));
465 }
466
467 /*
468 * The TIMA MMIO space is shared among the chips and to identify the
469 * chip from which the access is being done, we extract the chip id
470 * from the PIR.
471 */
472 static PnvXive *pnv_xive_tm_get_xive(PowerPCCPU *cpu)
473 {
474 int pir = ppc_cpu_pir(cpu);
475 XivePresenter *xptr = XIVE_TCTX(pnv_cpu_state(cpu)->intc)->xptr;
476 PnvXive *xive = PNV_XIVE(xptr);
477
478 if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
479 xive_error(xive, "IC: CPU %x is not enabled", pir);
480 }
481 return xive;
482 }
483
484 /*
485 * The internal sources (IPIs) of the interrupt controller have no
486 * knowledge of the XIVE chip on which they reside. Encode the block
487 * id in the source interrupt number before forwarding the source
488 * event notification to the Router. This is required on a multichip
489 * system.
490 */
491 static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno)
492 {
493 PnvXive *xive = PNV_XIVE(xn);
494 uint8_t blk = pnv_xive_block_id(xive);
495
496 xive_router_notify(xn, XIVE_EAS(blk, srcno));
497 }
498
499 /*
500 * XIVE helpers
501 */
502
503 static uint64_t pnv_xive_vc_size(PnvXive *xive)
504 {
505 return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
506 }
507
508 static uint64_t pnv_xive_edt_shift(PnvXive *xive)
509 {
510 return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
511 }
512
513 static uint64_t pnv_xive_pc_size(PnvXive *xive)
514 {
515 return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
516 }
517
518 static uint32_t pnv_xive_nr_ipis(PnvXive *xive, uint8_t blk)
519 {
520 uint64_t vsd = xive->vsds[VST_TSEL_SBE][blk];
521 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
522
523 return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE;
524 }
525
526 /*
527 * Compute the number of entries per indirect subpage.
528 */
529 static uint64_t pnv_xive_vst_per_subpage(PnvXive *xive, uint32_t type)
530 {
531 uint8_t blk = pnv_xive_block_id(xive);
532 uint64_t vsd = xive->vsds[type][blk];
533 const XiveVstInfo *info = &vst_infos[type];
534 uint64_t vsd_addr;
535 uint32_t page_shift;
536
537 /* For direct tables, fake a valid value */
538 if (!(VSD_INDIRECT & vsd)) {
539 return 1;
540 }
541
542 /* Get the page size of the indirect table. */
543 vsd_addr = vsd & VSD_ADDRESS_MASK;
544 vsd = ldq_be_dma(&address_space_memory, vsd_addr);
545
546 if (!(vsd & VSD_ADDRESS_MASK)) {
547 #ifdef XIVE_DEBUG
548 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
549 #endif
550 return 0;
551 }
552
553 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
554
555 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
556 xive_error(xive, "VST: invalid %s page shift %d", info->name,
557 page_shift);
558 return 0;
559 }
560
561 return (1ull << page_shift) / info->size;
562 }
563
564 /*
565 * EDT Table
566 *
567 * The Virtualization Controller MMIO region containing the IPI ESB
568 * pages and END ESB pages is sub-divided into "sets" which map
569 * portions of the VC region to the different ESB pages. It is
570 * configured at runtime through the EDT "Domain Table" to let the
571 * firmware decide how to split the VC address space between IPI ESB
572 * pages and END ESB pages.
573 */
574
575 /*
576 * Computes the overall size of the IPI or the END ESB pages
577 */
578 static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
579 {
580 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
581 uint64_t size = 0;
582 int i;
583
584 for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
585 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
586
587 if (edt_type == type) {
588 size += edt_size;
589 }
590 }
591
592 return size;
593 }
594
595 /*
596 * Maps an offset of the VC region in the IPI or END region using the
597 * layout defined by the EDT "Domaine Table"
598 */
599 static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
600 uint64_t type)
601 {
602 int i;
603 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
604 uint64_t edt_offset = vc_offset;
605
606 for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
607 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
608
609 if (edt_type != type) {
610 edt_offset -= edt_size;
611 }
612 }
613
614 return edt_offset;
615 }
616
617 static void pnv_xive_edt_resize(PnvXive *xive)
618 {
619 uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
620 uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
621
622 memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
623 memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
624
625 memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
626 memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
627 }
628
629 /*
630 * XIVE Table configuration. Only EDT is supported.
631 */
632 static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
633 {
634 uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
635 uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
636 uint64_t *xive_table;
637 uint8_t max_index;
638
639 switch (tsel) {
640 case CQ_TAR_TSEL_BLK:
641 max_index = ARRAY_SIZE(xive->blk);
642 xive_table = xive->blk;
643 break;
644 case CQ_TAR_TSEL_MIG:
645 max_index = ARRAY_SIZE(xive->mig);
646 xive_table = xive->mig;
647 break;
648 case CQ_TAR_TSEL_EDT:
649 max_index = ARRAY_SIZE(xive->edt);
650 xive_table = xive->edt;
651 break;
652 case CQ_TAR_TSEL_VDT:
653 max_index = ARRAY_SIZE(xive->vdt);
654 xive_table = xive->vdt;
655 break;
656 default:
657 xive_error(xive, "IC: invalid table %d", (int) tsel);
658 return -1;
659 }
660
661 if (tsel_index >= max_index) {
662 xive_error(xive, "IC: invalid index %d", (int) tsel_index);
663 return -1;
664 }
665
666 xive_table[tsel_index] = val;
667
668 if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
669 xive->regs[CQ_TAR >> 3] =
670 SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
671 }
672
673 /*
674 * EDT configuration is complete. Resize the MMIO windows exposing
675 * the IPI and the END ESBs in the VC region.
676 */
677 if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
678 pnv_xive_edt_resize(xive);
679 }
680
681 return 0;
682 }
683
684 /*
685 * Virtual Structure Tables (VST) configuration
686 */
687 static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
688 uint8_t blk, uint64_t vsd)
689 {
690 XiveENDSource *end_xsrc = &xive->end_source;
691 XiveSource *xsrc = &xive->ipi_source;
692 const XiveVstInfo *info = &vst_infos[type];
693 uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
694 uint64_t vst_tsize = 1ull << page_shift;
695 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
696
697 /* Basic checks */
698
699 if (VSD_INDIRECT & vsd) {
700 if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
701 xive_error(xive, "VST: %s indirect tables are not enabled",
702 info->name);
703 return;
704 }
705
706 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
707 xive_error(xive, "VST: invalid %s page shift %d", info->name,
708 page_shift);
709 return;
710 }
711 }
712
713 if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
714 xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
715 " page shift %d", info->name, vst_addr, page_shift);
716 return;
717 }
718
719 /* Record the table configuration (in SRAM on HW) */
720 xive->vsds[type][blk] = vsd;
721
722 /* Now tune the models with the configuration provided by the FW */
723
724 switch (type) {
725 case VST_TSEL_IVT: /* Nothing to be done */
726 break;
727
728 case VST_TSEL_EQDT:
729 /*
730 * Backing store pages for the END.
731 *
732 * If the table is direct, we can compute the number of PQ
733 * entries provisioned by FW (such as skiboot) and resize the
734 * END ESB window accordingly.
735 */
736 if (!(VSD_INDIRECT & vsd)) {
737 memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size)
738 * (1ull << xsrc->esb_shift));
739 }
740 memory_region_add_subregion(&xive->end_edt_mmio, 0,
741 &end_xsrc->esb_mmio);
742 break;
743
744 case VST_TSEL_SBE:
745 /*
746 * Backing store pages for the source PQ bits. The model does
747 * not use these PQ bits backed in RAM because the XiveSource
748 * model has its own.
749 *
750 * If the table is direct, we can compute the number of PQ
751 * entries provisioned by FW (such as skiboot) and resize the
752 * ESB window accordingly.
753 */
754 if (!(VSD_INDIRECT & vsd)) {
755 memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE
756 * (1ull << xsrc->esb_shift));
757 }
758 memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
759 break;
760
761 case VST_TSEL_VPDT: /* Not modeled */
762 case VST_TSEL_IRQ: /* Not modeled */
763 /*
764 * These tables contains the backing store pages for the
765 * interrupt fifos of the VC sub-engine in case of overflow.
766 */
767 break;
768
769 default:
770 g_assert_not_reached();
771 }
772 }
773
774 /*
775 * Both PC and VC sub-engines are configured as each use the Virtual
776 * Structure Tables : SBE, EAS, END and NVT.
777 */
778 static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
779 {
780 uint8_t mode = GETFIELD(VSD_MODE, vsd);
781 uint8_t type = GETFIELD(VST_TABLE_SELECT,
782 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
783 uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
784 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
785 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
786
787 if (type > VST_TSEL_IRQ) {
788 xive_error(xive, "VST: invalid table type %d", type);
789 return;
790 }
791
792 if (blk >= vst_infos[type].max_blocks) {
793 xive_error(xive, "VST: invalid block id %d for"
794 " %s table", blk, vst_infos[type].name);
795 return;
796 }
797
798 /*
799 * Only take the VC sub-engine configuration into account because
800 * the XiveRouter model combines both VC and PC sub-engines
801 */
802 if (pc_engine) {
803 return;
804 }
805
806 if (!vst_addr) {
807 xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
808 return;
809 }
810
811 switch (mode) {
812 case VSD_MODE_FORWARD:
813 xive->vsds[type][blk] = vsd;
814 break;
815
816 case VSD_MODE_EXCLUSIVE:
817 pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
818 break;
819
820 default:
821 xive_error(xive, "VST: unsupported table mode %d", mode);
822 return;
823 }
824 }
825
826 /*
827 * Interrupt controller MMIO region. The layout is compatible between
828 * 4K and 64K pages :
829 *
830 * Page 0 sub-engine BARs
831 * 0x000 - 0x3FF IC registers
832 * 0x400 - 0x7FF PC registers
833 * 0x800 - 0xFFF VC registers
834 *
835 * Page 1 Notify page (writes only)
836 * 0x000 - 0x7FF HW interrupt triggers (PSI, PHB)
837 * 0x800 - 0xFFF forwards and syncs
838 *
839 * Page 2 LSI Trigger page (writes only) (not modeled)
840 * Page 3 LSI SB EOI page (reads only) (not modeled)
841 *
842 * Page 4-7 indirect TIMA
843 */
844
845 /*
846 * IC - registers MMIO
847 */
848 static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
849 uint64_t val, unsigned size)
850 {
851 PnvXive *xive = PNV_XIVE(opaque);
852 MemoryRegion *sysmem = get_system_memory();
853 uint32_t reg = offset >> 3;
854 bool is_chip0 = xive->chip->chip_id == 0;
855
856 switch (offset) {
857
858 /*
859 * XIVE CQ (PowerBus bridge) settings
860 */
861 case CQ_MSGSND: /* msgsnd for doorbells */
862 case CQ_FIRMASK_OR: /* FIR error reporting */
863 break;
864 case CQ_PBI_CTL:
865 if (val & CQ_PBI_PC_64K) {
866 xive->pc_shift = 16;
867 }
868 if (val & CQ_PBI_VC_64K) {
869 xive->vc_shift = 16;
870 }
871 break;
872 case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
873 /*
874 * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
875 */
876 break;
877
878 /*
879 * XIVE Virtualization Controller settings
880 */
881 case VC_GLOBAL_CONFIG:
882 break;
883
884 /*
885 * XIVE Presenter Controller settings
886 */
887 case PC_GLOBAL_CONFIG:
888 /*
889 * PC_GCONF_CHIPID_OVR
890 * Overrides Int command Chip ID with the Chip ID field (DEBUG)
891 */
892 break;
893 case PC_TCTXT_CFG:
894 /*
895 * TODO: block group support
896 */
897 break;
898 case PC_TCTXT_TRACK:
899 /*
900 * PC_TCTXT_TRACK_EN:
901 * enable block tracking and exchange of block ownership
902 * information between Interrupt controllers
903 */
904 break;
905
906 /*
907 * Misc settings
908 */
909 case VC_SBC_CONFIG: /* Store EOI configuration */
910 /*
911 * Configure store EOI if required by firwmare (skiboot has removed
912 * support recently though)
913 */
914 if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
915 xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
916 }
917 break;
918
919 case VC_EQC_CONFIG: /* TODO: silent escalation */
920 case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
921 break;
922
923 /*
924 * XIVE BAR settings (XSCOM only)
925 */
926 case CQ_RST_CTL:
927 /* bit4: resets all BAR registers */
928 break;
929
930 case CQ_IC_BAR: /* IC BAR. 8 pages */
931 xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
932 if (!(val & CQ_IC_BAR_VALID)) {
933 xive->ic_base = 0;
934 if (xive->regs[reg] & CQ_IC_BAR_VALID) {
935 memory_region_del_subregion(&xive->ic_mmio,
936 &xive->ic_reg_mmio);
937 memory_region_del_subregion(&xive->ic_mmio,
938 &xive->ic_notify_mmio);
939 memory_region_del_subregion(&xive->ic_mmio,
940 &xive->ic_lsi_mmio);
941 memory_region_del_subregion(&xive->ic_mmio,
942 &xive->tm_indirect_mmio);
943
944 memory_region_del_subregion(sysmem, &xive->ic_mmio);
945 }
946 } else {
947 xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
948 if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
949 memory_region_add_subregion(sysmem, xive->ic_base,
950 &xive->ic_mmio);
951
952 memory_region_add_subregion(&xive->ic_mmio, 0,
953 &xive->ic_reg_mmio);
954 memory_region_add_subregion(&xive->ic_mmio,
955 1ul << xive->ic_shift,
956 &xive->ic_notify_mmio);
957 memory_region_add_subregion(&xive->ic_mmio,
958 2ul << xive->ic_shift,
959 &xive->ic_lsi_mmio);
960 memory_region_add_subregion(&xive->ic_mmio,
961 4ull << xive->ic_shift,
962 &xive->tm_indirect_mmio);
963 }
964 }
965 break;
966
967 case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
968 case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
969 xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
970 if (!(val & CQ_TM_BAR_VALID)) {
971 xive->tm_base = 0;
972 if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
973 memory_region_del_subregion(sysmem, &xive->tm_mmio);
974 }
975 } else {
976 xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
977 if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
978 memory_region_add_subregion(sysmem, xive->tm_base,
979 &xive->tm_mmio);
980 }
981 }
982 break;
983
984 case CQ_PC_BARM:
985 xive->regs[reg] = val;
986 memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
987 break;
988 case CQ_PC_BAR: /* From 32M to 512G */
989 if (!(val & CQ_PC_BAR_VALID)) {
990 xive->pc_base = 0;
991 if (xive->regs[reg] & CQ_PC_BAR_VALID) {
992 memory_region_del_subregion(sysmem, &xive->pc_mmio);
993 }
994 } else {
995 xive->pc_base = val & ~(CQ_PC_BAR_VALID);
996 if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
997 memory_region_add_subregion(sysmem, xive->pc_base,
998 &xive->pc_mmio);
999 }
1000 }
1001 break;
1002
1003 case CQ_VC_BARM:
1004 xive->regs[reg] = val;
1005 memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
1006 break;
1007 case CQ_VC_BAR: /* From 64M to 4TB */
1008 if (!(val & CQ_VC_BAR_VALID)) {
1009 xive->vc_base = 0;
1010 if (xive->regs[reg] & CQ_VC_BAR_VALID) {
1011 memory_region_del_subregion(sysmem, &xive->vc_mmio);
1012 }
1013 } else {
1014 xive->vc_base = val & ~(CQ_VC_BAR_VALID);
1015 if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
1016 memory_region_add_subregion(sysmem, xive->vc_base,
1017 &xive->vc_mmio);
1018 }
1019 }
1020 break;
1021
1022 /*
1023 * XIVE Table settings.
1024 */
1025 case CQ_TAR: /* Table Address */
1026 break;
1027 case CQ_TDR: /* Table Data */
1028 pnv_xive_table_set_data(xive, val);
1029 break;
1030
1031 /*
1032 * XIVE VC & PC Virtual Structure Table settings
1033 */
1034 case VC_VSD_TABLE_ADDR:
1035 case PC_VSD_TABLE_ADDR: /* Virtual table selector */
1036 break;
1037 case VC_VSD_TABLE_DATA: /* Virtual table setting */
1038 case PC_VSD_TABLE_DATA:
1039 pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
1040 break;
1041
1042 /*
1043 * Interrupt fifo overflow in memory backing store (Not modeled)
1044 */
1045 case VC_IRQ_CONFIG_IPI:
1046 case VC_IRQ_CONFIG_HW:
1047 case VC_IRQ_CONFIG_CASCADE1:
1048 case VC_IRQ_CONFIG_CASCADE2:
1049 case VC_IRQ_CONFIG_REDIST:
1050 case VC_IRQ_CONFIG_IPI_CASC:
1051 break;
1052
1053 /*
1054 * XIVE hardware thread enablement
1055 */
1056 case PC_THREAD_EN_REG0: /* Physical Thread Enable */
1057 case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
1058 break;
1059
1060 case PC_THREAD_EN_REG0_SET:
1061 xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
1062 break;
1063 case PC_THREAD_EN_REG1_SET:
1064 xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
1065 break;
1066 case PC_THREAD_EN_REG0_CLR:
1067 xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
1068 break;
1069 case PC_THREAD_EN_REG1_CLR:
1070 xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
1071 break;
1072
1073 /*
1074 * Indirect TIMA access set up. Defines the PIR of the HW thread
1075 * to use.
1076 */
1077 case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
1078 break;
1079
1080 /*
1081 * XIVE PC & VC cache updates for EAS, NVT and END
1082 */
1083 case VC_IVC_SCRUB_MASK:
1084 case VC_IVC_SCRUB_TRIG:
1085 break;
1086
1087 case VC_EQC_CWATCH_SPEC:
1088 val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
1089 break;
1090 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1091 break;
1092 case VC_EQC_CWATCH_DAT0:
1093 /* writing to DATA0 triggers the cache write */
1094 xive->regs[reg] = val;
1095 pnv_xive_end_update(xive);
1096 break;
1097 case VC_EQC_SCRUB_MASK:
1098 case VC_EQC_SCRUB_TRIG:
1099 /*
1100 * The scrubbing registers flush the cache in RAM and can also
1101 * invalidate.
1102 */
1103 break;
1104
1105 case PC_VPC_CWATCH_SPEC:
1106 val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
1107 break;
1108 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1109 break;
1110 case PC_VPC_CWATCH_DAT0:
1111 /* writing to DATA0 triggers the cache write */
1112 xive->regs[reg] = val;
1113 pnv_xive_nvt_update(xive);
1114 break;
1115 case PC_VPC_SCRUB_MASK:
1116 case PC_VPC_SCRUB_TRIG:
1117 /*
1118 * The scrubbing registers flush the cache in RAM and can also
1119 * invalidate.
1120 */
1121 break;
1122
1123
1124 /*
1125 * XIVE PC & VC cache invalidation
1126 */
1127 case PC_AT_KILL:
1128 break;
1129 case VC_AT_MACRO_KILL:
1130 break;
1131 case PC_AT_KILL_MASK:
1132 case VC_AT_MACRO_KILL_MASK:
1133 break;
1134
1135 default:
1136 xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
1137 return;
1138 }
1139
1140 xive->regs[reg] = val;
1141 }
1142
1143 static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
1144 {
1145 PnvXive *xive = PNV_XIVE(opaque);
1146 uint64_t val = 0;
1147 uint32_t reg = offset >> 3;
1148
1149 switch (offset) {
1150 case CQ_CFG_PB_GEN:
1151 case CQ_IC_BAR:
1152 case CQ_TM1_BAR:
1153 case CQ_TM2_BAR:
1154 case CQ_PC_BAR:
1155 case CQ_PC_BARM:
1156 case CQ_VC_BAR:
1157 case CQ_VC_BARM:
1158 case CQ_TAR:
1159 case CQ_TDR:
1160 case CQ_PBI_CTL:
1161
1162 case PC_TCTXT_CFG:
1163 case PC_TCTXT_TRACK:
1164 case PC_TCTXT_INDIR0:
1165 case PC_TCTXT_INDIR1:
1166 case PC_TCTXT_INDIR2:
1167 case PC_TCTXT_INDIR3:
1168 case PC_GLOBAL_CONFIG:
1169
1170 case PC_VPC_SCRUB_MASK:
1171
1172 case VC_GLOBAL_CONFIG:
1173 case VC_AIB_TX_ORDER_TAG2:
1174
1175 case VC_IRQ_CONFIG_IPI:
1176 case VC_IRQ_CONFIG_HW:
1177 case VC_IRQ_CONFIG_CASCADE1:
1178 case VC_IRQ_CONFIG_CASCADE2:
1179 case VC_IRQ_CONFIG_REDIST:
1180 case VC_IRQ_CONFIG_IPI_CASC:
1181
1182 case VC_EQC_SCRUB_MASK:
1183 case VC_IVC_SCRUB_MASK:
1184 case VC_SBC_CONFIG:
1185 case VC_AT_MACRO_KILL_MASK:
1186 case VC_VSD_TABLE_ADDR:
1187 case PC_VSD_TABLE_ADDR:
1188 case VC_VSD_TABLE_DATA:
1189 case PC_VSD_TABLE_DATA:
1190 case PC_THREAD_EN_REG0:
1191 case PC_THREAD_EN_REG1:
1192 val = xive->regs[reg];
1193 break;
1194
1195 /*
1196 * XIVE hardware thread enablement
1197 */
1198 case PC_THREAD_EN_REG0_SET:
1199 case PC_THREAD_EN_REG0_CLR:
1200 val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1201 break;
1202 case PC_THREAD_EN_REG1_SET:
1203 case PC_THREAD_EN_REG1_CLR:
1204 val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1205 break;
1206
1207 case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1208 val = 0xffffff0000000000;
1209 break;
1210
1211 /*
1212 * XIVE PC & VC cache updates for EAS, NVT and END
1213 */
1214 case VC_EQC_CWATCH_SPEC:
1215 xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
1216 val = xive->regs[reg];
1217 break;
1218 case VC_EQC_CWATCH_DAT0:
1219 /*
1220 * Load DATA registers from cache with data requested by the
1221 * SPEC register
1222 */
1223 pnv_xive_end_cache_load(xive);
1224 val = xive->regs[reg];
1225 break;
1226 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1227 val = xive->regs[reg];
1228 break;
1229
1230 case PC_VPC_CWATCH_SPEC:
1231 xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
1232 val = xive->regs[reg];
1233 break;
1234 case PC_VPC_CWATCH_DAT0:
1235 /*
1236 * Load DATA registers from cache with data requested by the
1237 * SPEC register
1238 */
1239 pnv_xive_nvt_cache_load(xive);
1240 val = xive->regs[reg];
1241 break;
1242 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1243 val = xive->regs[reg];
1244 break;
1245
1246 case PC_VPC_SCRUB_TRIG:
1247 case VC_IVC_SCRUB_TRIG:
1248 case VC_EQC_SCRUB_TRIG:
1249 xive->regs[reg] &= ~VC_SCRUB_VALID;
1250 val = xive->regs[reg];
1251 break;
1252
1253 /*
1254 * XIVE PC & VC cache invalidation
1255 */
1256 case PC_AT_KILL:
1257 xive->regs[reg] &= ~PC_AT_KILL_VALID;
1258 val = xive->regs[reg];
1259 break;
1260 case VC_AT_MACRO_KILL:
1261 xive->regs[reg] &= ~VC_KILL_VALID;
1262 val = xive->regs[reg];
1263 break;
1264
1265 /*
1266 * XIVE synchronisation
1267 */
1268 case VC_EQC_CONFIG:
1269 val = VC_EQC_SYNC_MASK;
1270 break;
1271
1272 default:
1273 xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1274 }
1275
1276 return val;
1277 }
1278
1279 static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1280 .read = pnv_xive_ic_reg_read,
1281 .write = pnv_xive_ic_reg_write,
1282 .endianness = DEVICE_BIG_ENDIAN,
1283 .valid = {
1284 .min_access_size = 8,
1285 .max_access_size = 8,
1286 },
1287 .impl = {
1288 .min_access_size = 8,
1289 .max_access_size = 8,
1290 },
1291 };
1292
1293 /*
1294 * IC - Notify MMIO port page (write only)
1295 */
1296 #define PNV_XIVE_FORWARD_IPI 0x800 /* Forward IPI */
1297 #define PNV_XIVE_FORWARD_HW 0x880 /* Forward HW */
1298 #define PNV_XIVE_FORWARD_OS_ESC 0x900 /* Forward OS escalation */
1299 #define PNV_XIVE_FORWARD_HW_ESC 0x980 /* Forward Hyp escalation */
1300 #define PNV_XIVE_FORWARD_REDIS 0xa00 /* Forward Redistribution */
1301 #define PNV_XIVE_RESERVED5 0xa80 /* Cache line 5 PowerBUS operation */
1302 #define PNV_XIVE_RESERVED6 0xb00 /* Cache line 6 PowerBUS operation */
1303 #define PNV_XIVE_RESERVED7 0xb80 /* Cache line 7 PowerBUS operation */
1304
1305 /* VC synchronisation */
1306 #define PNV_XIVE_SYNC_IPI 0xc00 /* Sync IPI */
1307 #define PNV_XIVE_SYNC_HW 0xc80 /* Sync HW */
1308 #define PNV_XIVE_SYNC_OS_ESC 0xd00 /* Sync OS escalation */
1309 #define PNV_XIVE_SYNC_HW_ESC 0xd80 /* Sync Hyp escalation */
1310 #define PNV_XIVE_SYNC_REDIS 0xe00 /* Sync Redistribution */
1311
1312 /* PC synchronisation */
1313 #define PNV_XIVE_SYNC_PULL 0xe80 /* Sync pull context */
1314 #define PNV_XIVE_SYNC_PUSH 0xf00 /* Sync push context */
1315 #define PNV_XIVE_SYNC_VPC 0xf80 /* Sync remove VPC store */
1316
1317 static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1318 {
1319 uint8_t blk;
1320 uint32_t idx;
1321
1322 if (val & XIVE_TRIGGER_END) {
1323 xive_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64,
1324 addr, val);
1325 return;
1326 }
1327
1328 /*
1329 * Forward the source event notification directly to the Router.
1330 * The source interrupt number should already be correctly encoded
1331 * with the chip block id by the sending device (PHB, PSI).
1332 */
1333 blk = XIVE_EAS_BLOCK(val);
1334 idx = XIVE_EAS_INDEX(val);
1335
1336 xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx));
1337 }
1338
1339 static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1340 unsigned size)
1341 {
1342 PnvXive *xive = PNV_XIVE(opaque);
1343
1344 /* VC: HW triggers */
1345 switch (addr) {
1346 case 0x000 ... 0x7FF:
1347 pnv_xive_ic_hw_trigger(opaque, addr, val);
1348 break;
1349
1350 /* VC: Forwarded IRQs */
1351 case PNV_XIVE_FORWARD_IPI:
1352 case PNV_XIVE_FORWARD_HW:
1353 case PNV_XIVE_FORWARD_OS_ESC:
1354 case PNV_XIVE_FORWARD_HW_ESC:
1355 case PNV_XIVE_FORWARD_REDIS:
1356 /* TODO: forwarded IRQs. Should be like HW triggers */
1357 xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1358 addr, val);
1359 break;
1360
1361 /* VC syncs */
1362 case PNV_XIVE_SYNC_IPI:
1363 case PNV_XIVE_SYNC_HW:
1364 case PNV_XIVE_SYNC_OS_ESC:
1365 case PNV_XIVE_SYNC_HW_ESC:
1366 case PNV_XIVE_SYNC_REDIS:
1367 break;
1368
1369 /* PC syncs */
1370 case PNV_XIVE_SYNC_PULL:
1371 case PNV_XIVE_SYNC_PUSH:
1372 case PNV_XIVE_SYNC_VPC:
1373 break;
1374
1375 default:
1376 xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1377 }
1378 }
1379
1380 static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1381 unsigned size)
1382 {
1383 PnvXive *xive = PNV_XIVE(opaque);
1384
1385 /* loads are invalid */
1386 xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1387 return -1;
1388 }
1389
1390 static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1391 .read = pnv_xive_ic_notify_read,
1392 .write = pnv_xive_ic_notify_write,
1393 .endianness = DEVICE_BIG_ENDIAN,
1394 .valid = {
1395 .min_access_size = 8,
1396 .max_access_size = 8,
1397 },
1398 .impl = {
1399 .min_access_size = 8,
1400 .max_access_size = 8,
1401 },
1402 };
1403
1404 /*
1405 * IC - LSI MMIO handlers (not modeled)
1406 */
1407
1408 static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1409 uint64_t val, unsigned size)
1410 {
1411 PnvXive *xive = PNV_XIVE(opaque);
1412
1413 xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1414 }
1415
1416 static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1417 {
1418 PnvXive *xive = PNV_XIVE(opaque);
1419
1420 xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1421 return -1;
1422 }
1423
1424 static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1425 .read = pnv_xive_ic_lsi_read,
1426 .write = pnv_xive_ic_lsi_write,
1427 .endianness = DEVICE_BIG_ENDIAN,
1428 .valid = {
1429 .min_access_size = 8,
1430 .max_access_size = 8,
1431 },
1432 .impl = {
1433 .min_access_size = 8,
1434 .max_access_size = 8,
1435 },
1436 };
1437
1438 /*
1439 * IC - Indirect TIMA MMIO handlers
1440 */
1441
1442 /*
1443 * When the TIMA is accessed from the indirect page, the thread id of
1444 * the target CPU is configured in the PC_TCTXT_INDIR0 register before
1445 * use. This is used for resets and for debug purpose also.
1446 */
1447 static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1448 {
1449 PnvChip *chip = xive->chip;
1450 uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1451 PowerPCCPU *cpu = NULL;
1452 int pir;
1453
1454 if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1455 xive_error(xive, "IC: no indirect TIMA access in progress");
1456 return NULL;
1457 }
1458
1459 pir = (chip->chip_id << 8) | GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir);
1460 cpu = pnv_chip_find_cpu(chip, pir);
1461 if (!cpu) {
1462 xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1463 return NULL;
1464 }
1465
1466 /* Check that HW thread is XIVE enabled */
1467 if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
1468 xive_error(xive, "IC: CPU %x is not enabled", pir);
1469 }
1470
1471 return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1472 }
1473
1474 static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1475 uint64_t value, unsigned size)
1476 {
1477 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1478
1479 xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
1480 }
1481
1482 static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1483 unsigned size)
1484 {
1485 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1486
1487 return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
1488 }
1489
1490 static const MemoryRegionOps xive_tm_indirect_ops = {
1491 .read = xive_tm_indirect_read,
1492 .write = xive_tm_indirect_write,
1493 .endianness = DEVICE_BIG_ENDIAN,
1494 .valid = {
1495 .min_access_size = 1,
1496 .max_access_size = 8,
1497 },
1498 .impl = {
1499 .min_access_size = 1,
1500 .max_access_size = 8,
1501 },
1502 };
1503
1504 static void pnv_xive_tm_write(void *opaque, hwaddr offset,
1505 uint64_t value, unsigned size)
1506 {
1507 PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1508 PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1509 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1510
1511 xive_tctx_tm_write(XIVE_PRESENTER(xive), tctx, offset, value, size);
1512 }
1513
1514 static uint64_t pnv_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
1515 {
1516 PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1517 PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1518 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1519
1520 return xive_tctx_tm_read(XIVE_PRESENTER(xive), tctx, offset, size);
1521 }
1522
1523 const MemoryRegionOps pnv_xive_tm_ops = {
1524 .read = pnv_xive_tm_read,
1525 .write = pnv_xive_tm_write,
1526 .endianness = DEVICE_BIG_ENDIAN,
1527 .valid = {
1528 .min_access_size = 1,
1529 .max_access_size = 8,
1530 },
1531 .impl = {
1532 .min_access_size = 1,
1533 .max_access_size = 8,
1534 },
1535 };
1536
1537 /*
1538 * Interrupt controller XSCOM region.
1539 */
1540 static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1541 {
1542 switch (addr >> 3) {
1543 case X_VC_EQC_CONFIG:
1544 /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1545 return VC_EQC_SYNC_MASK;
1546 default:
1547 return pnv_xive_ic_reg_read(opaque, addr, size);
1548 }
1549 }
1550
1551 static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1552 uint64_t val, unsigned size)
1553 {
1554 pnv_xive_ic_reg_write(opaque, addr, val, size);
1555 }
1556
1557 static const MemoryRegionOps pnv_xive_xscom_ops = {
1558 .read = pnv_xive_xscom_read,
1559 .write = pnv_xive_xscom_write,
1560 .endianness = DEVICE_BIG_ENDIAN,
1561 .valid = {
1562 .min_access_size = 8,
1563 .max_access_size = 8,
1564 },
1565 .impl = {
1566 .min_access_size = 8,
1567 .max_access_size = 8,
1568 }
1569 };
1570
1571 /*
1572 * Virtualization Controller MMIO region containing the IPI and END ESB pages
1573 */
1574 static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1575 unsigned size)
1576 {
1577 PnvXive *xive = PNV_XIVE(opaque);
1578 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1579 uint64_t edt_type = 0;
1580 uint64_t edt_offset;
1581 MemTxResult result;
1582 AddressSpace *edt_as = NULL;
1583 uint64_t ret = -1;
1584
1585 if (edt_index < XIVE_TABLE_EDT_MAX) {
1586 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1587 }
1588
1589 switch (edt_type) {
1590 case CQ_TDR_EDT_IPI:
1591 edt_as = &xive->ipi_as;
1592 break;
1593 case CQ_TDR_EDT_EQ:
1594 edt_as = &xive->end_as;
1595 break;
1596 default:
1597 xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1598 return -1;
1599 }
1600
1601 /* Remap the offset for the targeted address space */
1602 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1603
1604 ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1605 &result);
1606
1607 if (result != MEMTX_OK) {
1608 xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1609 HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1610 offset, edt_offset);
1611 return -1;
1612 }
1613
1614 return ret;
1615 }
1616
1617 static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1618 uint64_t val, unsigned size)
1619 {
1620 PnvXive *xive = PNV_XIVE(opaque);
1621 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1622 uint64_t edt_type = 0;
1623 uint64_t edt_offset;
1624 MemTxResult result;
1625 AddressSpace *edt_as = NULL;
1626
1627 if (edt_index < XIVE_TABLE_EDT_MAX) {
1628 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1629 }
1630
1631 switch (edt_type) {
1632 case CQ_TDR_EDT_IPI:
1633 edt_as = &xive->ipi_as;
1634 break;
1635 case CQ_TDR_EDT_EQ:
1636 edt_as = &xive->end_as;
1637 break;
1638 default:
1639 xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1640 offset);
1641 return;
1642 }
1643
1644 /* Remap the offset for the targeted address space */
1645 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1646
1647 address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1648 if (result != MEMTX_OK) {
1649 xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1650 }
1651 }
1652
1653 static const MemoryRegionOps pnv_xive_vc_ops = {
1654 .read = pnv_xive_vc_read,
1655 .write = pnv_xive_vc_write,
1656 .endianness = DEVICE_BIG_ENDIAN,
1657 .valid = {
1658 .min_access_size = 8,
1659 .max_access_size = 8,
1660 },
1661 .impl = {
1662 .min_access_size = 8,
1663 .max_access_size = 8,
1664 },
1665 };
1666
1667 /*
1668 * Presenter Controller MMIO region. The Virtualization Controller
1669 * updates the IPB in the NVT table when required. Not modeled.
1670 */
1671 static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr,
1672 unsigned size)
1673 {
1674 PnvXive *xive = PNV_XIVE(opaque);
1675
1676 xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr);
1677 return -1;
1678 }
1679
1680 static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1681 uint64_t value, unsigned size)
1682 {
1683 PnvXive *xive = PNV_XIVE(opaque);
1684
1685 xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1686 }
1687
1688 static const MemoryRegionOps pnv_xive_pc_ops = {
1689 .read = pnv_xive_pc_read,
1690 .write = pnv_xive_pc_write,
1691 .endianness = DEVICE_BIG_ENDIAN,
1692 .valid = {
1693 .min_access_size = 8,
1694 .max_access_size = 8,
1695 },
1696 .impl = {
1697 .min_access_size = 8,
1698 .max_access_size = 8,
1699 },
1700 };
1701
1702 static void xive_nvt_pic_print_info(XiveNVT *nvt, uint32_t nvt_idx,
1703 Monitor *mon)
1704 {
1705 uint8_t eq_blk = xive_get_field32(NVT_W1_EQ_BLOCK, nvt->w1);
1706 uint32_t eq_idx = xive_get_field32(NVT_W1_EQ_INDEX, nvt->w1);
1707
1708 if (!xive_nvt_is_valid(nvt)) {
1709 return;
1710 }
1711
1712 monitor_printf(mon, " %08x end:%02x/%04x IPB:%02x\n", nvt_idx,
1713 eq_blk, eq_idx,
1714 xive_get_field32(NVT_W4_IPB, nvt->w4));
1715 }
1716
1717 void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
1718 {
1719 XiveRouter *xrtr = XIVE_ROUTER(xive);
1720 uint8_t blk = pnv_xive_block_id(xive);
1721 uint8_t chip_id = xive->chip->chip_id;
1722 uint32_t srcno0 = XIVE_EAS(blk, 0);
1723 uint32_t nr_ipis = pnv_xive_nr_ipis(xive, blk);
1724 XiveEAS eas;
1725 XiveEND end;
1726 XiveNVT nvt;
1727 int i;
1728 uint64_t xive_nvt_per_subpage;
1729
1730 monitor_printf(mon, "XIVE[%x] #%d Source %08x .. %08x\n", chip_id, blk,
1731 srcno0, srcno0 + nr_ipis - 1);
1732 xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1733
1734 monitor_printf(mon, "XIVE[%x] #%d EAT %08x .. %08x\n", chip_id, blk,
1735 srcno0, srcno0 + nr_ipis - 1);
1736 for (i = 0; i < nr_ipis; i++) {
1737 if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1738 break;
1739 }
1740 if (!xive_eas_is_masked(&eas)) {
1741 xive_eas_pic_print_info(&eas, i, mon);
1742 }
1743 }
1744
1745 monitor_printf(mon, "XIVE[%x] #%d ENDT\n", chip_id, blk);
1746 i = 0;
1747 while (!xive_router_get_end(xrtr, blk, i, &end)) {
1748 xive_end_pic_print_info(&end, i++, mon);
1749 }
1750
1751 monitor_printf(mon, "XIVE[%x] #%d END Escalation EAT\n", chip_id, blk);
1752 i = 0;
1753 while (!xive_router_get_end(xrtr, blk, i, &end)) {
1754 xive_end_eas_pic_print_info(&end, i++, mon);
1755 }
1756
1757 monitor_printf(mon, "XIVE[%x] #%d NVTT %08x .. %08x\n", chip_id, blk,
1758 0, XIVE_NVT_COUNT - 1);
1759 xive_nvt_per_subpage = pnv_xive_vst_per_subpage(xive, VST_TSEL_VPDT);
1760 for (i = 0; i < XIVE_NVT_COUNT; i += xive_nvt_per_subpage) {
1761 while (!xive_router_get_nvt(xrtr, blk, i, &nvt)) {
1762 xive_nvt_pic_print_info(&nvt, i++, mon);
1763 }
1764 }
1765 }
1766
1767 static void pnv_xive_reset(void *dev)
1768 {
1769 PnvXive *xive = PNV_XIVE(dev);
1770 XiveSource *xsrc = &xive->ipi_source;
1771 XiveENDSource *end_xsrc = &xive->end_source;
1772
1773 /* Default page size (Should be changed at runtime to 64k) */
1774 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1775
1776 /* Clear subregions */
1777 if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1778 memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1779 }
1780
1781 if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1782 memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1783 }
1784
1785 if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1786 memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1787 }
1788
1789 if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1790 memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1791 }
1792 }
1793
1794 static void pnv_xive_init(Object *obj)
1795 {
1796 PnvXive *xive = PNV_XIVE(obj);
1797
1798 object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1799 TYPE_XIVE_SOURCE);
1800 object_initialize_child(obj, "end_source", &xive->end_source,
1801 TYPE_XIVE_END_SOURCE);
1802 }
1803
1804 /*
1805 * Maximum number of IRQs and ENDs supported by HW
1806 */
1807 #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1808 #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1809
1810 static void pnv_xive_realize(DeviceState *dev, Error **errp)
1811 {
1812 PnvXive *xive = PNV_XIVE(dev);
1813 PnvXiveClass *pxc = PNV_XIVE_GET_CLASS(dev);
1814 XiveSource *xsrc = &xive->ipi_source;
1815 XiveENDSource *end_xsrc = &xive->end_source;
1816 Error *local_err = NULL;
1817
1818 pxc->parent_realize(dev, &local_err);
1819 if (local_err) {
1820 error_propagate(errp, local_err);
1821 return;
1822 }
1823
1824 assert(xive->chip);
1825
1826 /*
1827 * The XiveSource and XiveENDSource objects are realized with the
1828 * maximum allowed HW configuration. The ESB MMIO regions will be
1829 * resized dynamically when the controller is configured by the FW
1830 * to limit accesses to resources not provisioned.
1831 */
1832 object_property_set_int(OBJECT(xsrc), "nr-irqs", PNV_XIVE_NR_IRQS,
1833 &error_fatal);
1834 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
1835 if (!qdev_realize(DEVICE(xsrc), NULL, &local_err)) {
1836 error_propagate(errp, local_err);
1837 return;
1838 }
1839
1840 object_property_set_int(OBJECT(end_xsrc), "nr-ends", PNV_XIVE_NR_ENDS,
1841 &error_fatal);
1842 object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
1843 &error_abort);
1844 if (!qdev_realize(DEVICE(end_xsrc), NULL, &local_err)) {
1845 error_propagate(errp, local_err);
1846 return;
1847 }
1848
1849 /* Default page size. Generally changed at runtime to 64k */
1850 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1851
1852 /* XSCOM region, used for initial configuration of the BARs */
1853 memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1854 xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1855
1856 /* Interrupt controller MMIO regions */
1857 memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1858 PNV9_XIVE_IC_SIZE);
1859
1860 memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1861 xive, "xive-ic-reg", 1 << xive->ic_shift);
1862 memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1863 &pnv_xive_ic_notify_ops,
1864 xive, "xive-ic-notify", 1 << xive->ic_shift);
1865
1866 /* The Pervasive LSI trigger and EOI pages (not modeled) */
1867 memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1868 xive, "xive-ic-lsi", 2 << xive->ic_shift);
1869
1870 /* Thread Interrupt Management Area (Indirect) */
1871 memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
1872 &xive_tm_indirect_ops,
1873 xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
1874 /*
1875 * Overall Virtualization Controller MMIO region containing the
1876 * IPI ESB pages and END ESB pages. The layout is defined by the
1877 * EDT "Domain table" and the accesses are dispatched using
1878 * address spaces for each.
1879 */
1880 memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
1881 "xive-vc", PNV9_XIVE_VC_SIZE);
1882
1883 memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
1884 PNV9_XIVE_VC_SIZE);
1885 address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
1886 memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
1887 PNV9_XIVE_VC_SIZE);
1888 address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
1889
1890 /*
1891 * The MMIO windows exposing the IPI ESBs and the END ESBs in the
1892 * VC region. Their size is configured by the FW in the EDT table.
1893 */
1894 memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
1895 memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
1896
1897 /* Presenter Controller MMIO region (not modeled) */
1898 memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
1899 "xive-pc", PNV9_XIVE_PC_SIZE);
1900
1901 /* Thread Interrupt Management Area (Direct) */
1902 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &pnv_xive_tm_ops,
1903 xive, "xive-tima", PNV9_XIVE_TM_SIZE);
1904
1905 qemu_register_reset(pnv_xive_reset, dev);
1906 }
1907
1908 static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
1909 int xscom_offset)
1910 {
1911 const char compat[] = "ibm,power9-xive-x";
1912 char *name;
1913 int offset;
1914 uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
1915 uint32_t reg[] = {
1916 cpu_to_be32(lpc_pcba),
1917 cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
1918 };
1919
1920 name = g_strdup_printf("xive@%x", lpc_pcba);
1921 offset = fdt_add_subnode(fdt, xscom_offset, name);
1922 _FDT(offset);
1923 g_free(name);
1924
1925 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
1926 _FDT((fdt_setprop(fdt, offset, "compatible", compat,
1927 sizeof(compat))));
1928 return 0;
1929 }
1930
1931 static Property pnv_xive_properties[] = {
1932 DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
1933 DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
1934 DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
1935 DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
1936 /* The PnvChip id identifies the XIVE interrupt controller. */
1937 DEFINE_PROP_LINK("chip", PnvXive, chip, TYPE_PNV_CHIP, PnvChip *),
1938 DEFINE_PROP_END_OF_LIST(),
1939 };
1940
1941 static void pnv_xive_class_init(ObjectClass *klass, void *data)
1942 {
1943 DeviceClass *dc = DEVICE_CLASS(klass);
1944 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
1945 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
1946 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1947 XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
1948 PnvXiveClass *pxc = PNV_XIVE_CLASS(klass);
1949
1950 xdc->dt_xscom = pnv_xive_dt_xscom;
1951
1952 dc->desc = "PowerNV XIVE Interrupt Controller";
1953 device_class_set_parent_realize(dc, pnv_xive_realize, &pxc->parent_realize);
1954 dc->realize = pnv_xive_realize;
1955 device_class_set_props(dc, pnv_xive_properties);
1956
1957 xrc->get_eas = pnv_xive_get_eas;
1958 xrc->get_end = pnv_xive_get_end;
1959 xrc->write_end = pnv_xive_write_end;
1960 xrc->get_nvt = pnv_xive_get_nvt;
1961 xrc->write_nvt = pnv_xive_write_nvt;
1962 xrc->get_block_id = pnv_xive_get_block_id;
1963
1964 xnc->notify = pnv_xive_notify;
1965 xpc->match_nvt = pnv_xive_match_nvt;
1966 };
1967
1968 static const TypeInfo pnv_xive_info = {
1969 .name = TYPE_PNV_XIVE,
1970 .parent = TYPE_XIVE_ROUTER,
1971 .instance_init = pnv_xive_init,
1972 .instance_size = sizeof(PnvXive),
1973 .class_init = pnv_xive_class_init,
1974 .class_size = sizeof(PnvXiveClass),
1975 .interfaces = (InterfaceInfo[]) {
1976 { TYPE_PNV_XSCOM_INTERFACE },
1977 { }
1978 }
1979 };
1980
1981 static void pnv_xive_register_types(void)
1982 {
1983 type_register_static(&pnv_xive_info);
1984 }
1985
1986 type_init(pnv_xive_register_types)