]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.c
target/arm: Move GTimer definitions to new 'gtimer.h' header
[mirror_qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "cpu-features.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #ifdef CONFIG_TCG
41 #include "hw/intc/armv7m_nvic.h"
42 #endif /* CONFIG_TCG */
43 #endif /* !CONFIG_USER_ONLY */
44 #include "sysemu/tcg.h"
45 #include "sysemu/qtest.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm_arm.h"
48 #include "disas/capstone.h"
49 #include "fpu/softfloat.h"
50 #include "cpregs.h"
51 #include "target/arm/cpu-qom.h"
52 #include "target/arm/gtimer.h"
53
54 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
55 {
56 ARMCPU *cpu = ARM_CPU(cs);
57 CPUARMState *env = &cpu->env;
58
59 if (is_a64(env)) {
60 env->pc = value;
61 env->thumb = false;
62 } else {
63 env->regs[15] = value & ~1;
64 env->thumb = value & 1;
65 }
66 }
67
68 static vaddr arm_cpu_get_pc(CPUState *cs)
69 {
70 ARMCPU *cpu = ARM_CPU(cs);
71 CPUARMState *env = &cpu->env;
72
73 if (is_a64(env)) {
74 return env->pc;
75 } else {
76 return env->regs[15];
77 }
78 }
79
80 #ifdef CONFIG_TCG
81 void arm_cpu_synchronize_from_tb(CPUState *cs,
82 const TranslationBlock *tb)
83 {
84 /* The program counter is always up to date with CF_PCREL. */
85 if (!(tb_cflags(tb) & CF_PCREL)) {
86 CPUARMState *env = cpu_env(cs);
87 /*
88 * It's OK to look at env for the current mode here, because it's
89 * never possible for an AArch64 TB to chain to an AArch32 TB.
90 */
91 if (is_a64(env)) {
92 env->pc = tb->pc;
93 } else {
94 env->regs[15] = tb->pc;
95 }
96 }
97 }
98
99 void arm_restore_state_to_opc(CPUState *cs,
100 const TranslationBlock *tb,
101 const uint64_t *data)
102 {
103 CPUARMState *env = cpu_env(cs);
104
105 if (is_a64(env)) {
106 if (tb_cflags(tb) & CF_PCREL) {
107 env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
108 } else {
109 env->pc = data[0];
110 }
111 env->condexec_bits = 0;
112 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
113 } else {
114 if (tb_cflags(tb) & CF_PCREL) {
115 env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
116 } else {
117 env->regs[15] = data[0];
118 }
119 env->condexec_bits = data[1];
120 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
121 }
122 }
123 #endif /* CONFIG_TCG */
124
125 static bool arm_cpu_has_work(CPUState *cs)
126 {
127 ARMCPU *cpu = ARM_CPU(cs);
128
129 return (cpu->power_state != PSCI_OFF)
130 && cs->interrupt_request &
131 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
132 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
133 | CPU_INTERRUPT_EXITTB);
134 }
135
136 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
137 void *opaque)
138 {
139 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
140
141 entry->hook = hook;
142 entry->opaque = opaque;
143
144 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
145 }
146
147 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
148 void *opaque)
149 {
150 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
151
152 entry->hook = hook;
153 entry->opaque = opaque;
154
155 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
156 }
157
158 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
159 {
160 /* Reset a single ARMCPRegInfo register */
161 ARMCPRegInfo *ri = value;
162 ARMCPU *cpu = opaque;
163
164 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
165 return;
166 }
167
168 if (ri->resetfn) {
169 ri->resetfn(&cpu->env, ri);
170 return;
171 }
172
173 /* A zero offset is never possible as it would be regs[0]
174 * so we use it to indicate that reset is being handled elsewhere.
175 * This is basically only used for fields in non-core coprocessors
176 * (like the pxa2xx ones).
177 */
178 if (!ri->fieldoffset) {
179 return;
180 }
181
182 if (cpreg_field_is_64bit(ri)) {
183 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
184 } else {
185 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
186 }
187 }
188
189 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
190 {
191 /* Purely an assertion check: we've already done reset once,
192 * so now check that running the reset for the cpreg doesn't
193 * change its value. This traps bugs where two different cpregs
194 * both try to reset the same state field but to different values.
195 */
196 ARMCPRegInfo *ri = value;
197 ARMCPU *cpu = opaque;
198 uint64_t oldvalue, newvalue;
199
200 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
201 return;
202 }
203
204 oldvalue = read_raw_cp_reg(&cpu->env, ri);
205 cp_reg_reset(key, value, opaque);
206 newvalue = read_raw_cp_reg(&cpu->env, ri);
207 assert(oldvalue == newvalue);
208 }
209
210 static void arm_cpu_reset_hold(Object *obj)
211 {
212 CPUState *s = CPU(obj);
213 ARMCPU *cpu = ARM_CPU(s);
214 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
215 CPUARMState *env = &cpu->env;
216
217 if (acc->parent_phases.hold) {
218 acc->parent_phases.hold(obj);
219 }
220
221 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
222
223 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
224 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
225
226 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
227 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
228 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
229 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
230
231 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
232
233 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
234 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
235 }
236
237 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
238 /* 64 bit CPUs always start in 64 bit mode */
239 env->aarch64 = true;
240 #if defined(CONFIG_USER_ONLY)
241 env->pstate = PSTATE_MODE_EL0t;
242 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
243 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
244 /* Enable all PAC keys. */
245 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
246 SCTLR_EnDA | SCTLR_EnDB);
247 /* Trap on btype=3 for PACIxSP. */
248 env->cp15.sctlr_el[1] |= SCTLR_BT0;
249 /* Trap on implementation defined registers. */
250 if (cpu_isar_feature(aa64_tidcp1, cpu)) {
251 env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
252 }
253 /* and to the FP/Neon instructions */
254 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
255 CPACR_EL1, FPEN, 3);
256 /* and to the SVE instructions, with default vector length */
257 if (cpu_isar_feature(aa64_sve, cpu)) {
258 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
259 CPACR_EL1, ZEN, 3);
260 env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
261 }
262 /* and for SME instructions, with default vector length, and TPIDR2 */
263 if (cpu_isar_feature(aa64_sme, cpu)) {
264 env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
265 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
266 CPACR_EL1, SMEN, 3);
267 env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
268 if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
269 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
270 SMCR, FA64, 1);
271 }
272 }
273 /*
274 * Enable 48-bit address space (TODO: take reserved_va into account).
275 * Enable TBI0 but not TBI1.
276 * Note that this must match useronly_clean_ptr.
277 */
278 env->cp15.tcr_el[1] = 5 | (1ULL << 37);
279
280 /* Enable MTE */
281 if (cpu_isar_feature(aa64_mte, cpu)) {
282 /* Enable tag access, but leave TCF0 as No Effect (0). */
283 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
284 /*
285 * Exclude all tags, so that tag 0 is always used.
286 * This corresponds to Linux current->thread.gcr_incl = 0.
287 *
288 * Set RRND, so that helper_irg() will generate a seed later.
289 * Here in cpu_reset(), the crypto subsystem has not yet been
290 * initialized.
291 */
292 env->cp15.gcr_el1 = 0x1ffff;
293 }
294 /*
295 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
296 * This is not yet exposed from the Linux kernel in any way.
297 */
298 env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
299 /* Disable access to Debug Communication Channel (DCC). */
300 env->cp15.mdscr_el1 |= 1 << 12;
301 /* Enable FEAT_MOPS */
302 env->cp15.sctlr_el[1] |= SCTLR_MSCEN;
303 #else
304 /* Reset into the highest available EL */
305 if (arm_feature(env, ARM_FEATURE_EL3)) {
306 env->pstate = PSTATE_MODE_EL3h;
307 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
308 env->pstate = PSTATE_MODE_EL2h;
309 } else {
310 env->pstate = PSTATE_MODE_EL1h;
311 }
312
313 /* Sample rvbar at reset. */
314 env->cp15.rvbar = cpu->rvbar_prop;
315 env->pc = env->cp15.rvbar;
316 #endif
317 } else {
318 #if defined(CONFIG_USER_ONLY)
319 /* Userspace expects access to cp10 and cp11 for FP/Neon */
320 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
321 CPACR, CP10, 3);
322 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
323 CPACR, CP11, 3);
324 #endif
325 if (arm_feature(env, ARM_FEATURE_V8)) {
326 env->cp15.rvbar = cpu->rvbar_prop;
327 env->regs[15] = cpu->rvbar_prop;
328 }
329 }
330
331 #if defined(CONFIG_USER_ONLY)
332 env->uncached_cpsr = ARM_CPU_MODE_USR;
333 /* For user mode we must enable access to coprocessors */
334 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
335 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
336 env->cp15.c15_cpar = 3;
337 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
338 env->cp15.c15_cpar = 1;
339 }
340 #else
341
342 /*
343 * If the highest available EL is EL2, AArch32 will start in Hyp
344 * mode; otherwise it starts in SVC. Note that if we start in
345 * AArch64 then these values in the uncached_cpsr will be ignored.
346 */
347 if (arm_feature(env, ARM_FEATURE_EL2) &&
348 !arm_feature(env, ARM_FEATURE_EL3)) {
349 env->uncached_cpsr = ARM_CPU_MODE_HYP;
350 } else {
351 env->uncached_cpsr = ARM_CPU_MODE_SVC;
352 }
353 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
354
355 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
356 * executing as AArch32 then check if highvecs are enabled and
357 * adjust the PC accordingly.
358 */
359 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
360 env->regs[15] = 0xFFFF0000;
361 }
362
363 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
364 #endif
365
366 if (arm_feature(env, ARM_FEATURE_M)) {
367 #ifndef CONFIG_USER_ONLY
368 uint32_t initial_msp; /* Loaded from 0x0 */
369 uint32_t initial_pc; /* Loaded from 0x4 */
370 uint8_t *rom;
371 uint32_t vecbase;
372 #endif
373
374 if (cpu_isar_feature(aa32_lob, cpu)) {
375 /*
376 * LTPSIZE is constant 4 if MVE not implemented, and resets
377 * to an UNKNOWN value if MVE is implemented. We choose to
378 * always reset to 4.
379 */
380 env->v7m.ltpsize = 4;
381 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
382 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
383 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
384 }
385
386 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
387 env->v7m.secure = true;
388 } else {
389 /* This bit resets to 0 if security is supported, but 1 if
390 * it is not. The bit is not present in v7M, but we set it
391 * here so we can avoid having to make checks on it conditional
392 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
393 */
394 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
395 /*
396 * Set NSACR to indicate "NS access permitted to everything";
397 * this avoids having to have all the tests of it being
398 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
399 * v8.1M the guest-visible value of NSACR in a CPU without the
400 * Security Extension is 0xcff.
401 */
402 env->v7m.nsacr = 0xcff;
403 }
404
405 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
406 * that it resets to 1, so QEMU always does that rather than making
407 * it dependent on CPU model. In v8M it is RES1.
408 */
409 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
410 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
411 if (arm_feature(env, ARM_FEATURE_V8)) {
412 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
413 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
414 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
415 }
416 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
417 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
418 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
419 }
420
421 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
422 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
423 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
424 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
425 }
426
427 #ifndef CONFIG_USER_ONLY
428 /* Unlike A/R profile, M profile defines the reset LR value */
429 env->regs[14] = 0xffffffff;
430
431 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
432 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
433
434 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
435 vecbase = env->v7m.vecbase[env->v7m.secure];
436 rom = rom_ptr_for_as(s->as, vecbase, 8);
437 if (rom) {
438 /* Address zero is covered by ROM which hasn't yet been
439 * copied into physical memory.
440 */
441 initial_msp = ldl_p(rom);
442 initial_pc = ldl_p(rom + 4);
443 } else {
444 /* Address zero not covered by a ROM blob, or the ROM blob
445 * is in non-modifiable memory and this is a second reset after
446 * it got copied into memory. In the latter case, rom_ptr
447 * will return a NULL pointer and we should use ldl_phys instead.
448 */
449 initial_msp = ldl_phys(s->as, vecbase);
450 initial_pc = ldl_phys(s->as, vecbase + 4);
451 }
452
453 qemu_log_mask(CPU_LOG_INT,
454 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
455 initial_msp, initial_pc);
456
457 env->regs[13] = initial_msp & 0xFFFFFFFC;
458 env->regs[15] = initial_pc & ~1;
459 env->thumb = initial_pc & 1;
460 #else
461 /*
462 * For user mode we run non-secure and with access to the FPU.
463 * The FPU context is active (ie does not need further setup)
464 * and is owned by non-secure.
465 */
466 env->v7m.secure = false;
467 env->v7m.nsacr = 0xcff;
468 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
469 env->v7m.fpccr[M_REG_S] &=
470 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
471 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
472 #endif
473 }
474
475 /* M profile requires that reset clears the exclusive monitor;
476 * A profile does not, but clearing it makes more sense than having it
477 * set with an exclusive access on address zero.
478 */
479 arm_clear_exclusive(env);
480
481 if (arm_feature(env, ARM_FEATURE_PMSA)) {
482 if (cpu->pmsav7_dregion > 0) {
483 if (arm_feature(env, ARM_FEATURE_V8)) {
484 memset(env->pmsav8.rbar[M_REG_NS], 0,
485 sizeof(*env->pmsav8.rbar[M_REG_NS])
486 * cpu->pmsav7_dregion);
487 memset(env->pmsav8.rlar[M_REG_NS], 0,
488 sizeof(*env->pmsav8.rlar[M_REG_NS])
489 * cpu->pmsav7_dregion);
490 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
491 memset(env->pmsav8.rbar[M_REG_S], 0,
492 sizeof(*env->pmsav8.rbar[M_REG_S])
493 * cpu->pmsav7_dregion);
494 memset(env->pmsav8.rlar[M_REG_S], 0,
495 sizeof(*env->pmsav8.rlar[M_REG_S])
496 * cpu->pmsav7_dregion);
497 }
498 } else if (arm_feature(env, ARM_FEATURE_V7)) {
499 memset(env->pmsav7.drbar, 0,
500 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
501 memset(env->pmsav7.drsr, 0,
502 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
503 memset(env->pmsav7.dracr, 0,
504 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
505 }
506 }
507
508 if (cpu->pmsav8r_hdregion > 0) {
509 memset(env->pmsav8.hprbar, 0,
510 sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
511 memset(env->pmsav8.hprlar, 0,
512 sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
513 }
514
515 env->pmsav7.rnr[M_REG_NS] = 0;
516 env->pmsav7.rnr[M_REG_S] = 0;
517 env->pmsav8.mair0[M_REG_NS] = 0;
518 env->pmsav8.mair0[M_REG_S] = 0;
519 env->pmsav8.mair1[M_REG_NS] = 0;
520 env->pmsav8.mair1[M_REG_S] = 0;
521 }
522
523 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
524 if (cpu->sau_sregion > 0) {
525 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
526 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
527 }
528 env->sau.rnr = 0;
529 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
530 * the Cortex-M33 does.
531 */
532 env->sau.ctrl = 0;
533 }
534
535 set_flush_to_zero(1, &env->vfp.standard_fp_status);
536 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
537 set_default_nan_mode(1, &env->vfp.standard_fp_status);
538 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
539 set_float_detect_tininess(float_tininess_before_rounding,
540 &env->vfp.fp_status);
541 set_float_detect_tininess(float_tininess_before_rounding,
542 &env->vfp.standard_fp_status);
543 set_float_detect_tininess(float_tininess_before_rounding,
544 &env->vfp.fp_status_f16);
545 set_float_detect_tininess(float_tininess_before_rounding,
546 &env->vfp.standard_fp_status_f16);
547 #ifndef CONFIG_USER_ONLY
548 if (kvm_enabled()) {
549 kvm_arm_reset_vcpu(cpu);
550 }
551 #endif
552
553 if (tcg_enabled()) {
554 hw_breakpoint_update_all(cpu);
555 hw_watchpoint_update_all(cpu);
556
557 arm_rebuild_hflags(env);
558 }
559 }
560
561 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
562 {
563 ARMCPU *cpu = ARM_CPU(cpustate);
564 CPUARMState *env = &cpu->env;
565 bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
566 bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
567
568 /*
569 * Check we have the EL we're aiming for. If that is the
570 * highest implemented EL, then cpu_reset has already done
571 * all the work.
572 */
573 switch (target_el) {
574 case 3:
575 assert(have_el3);
576 return;
577 case 2:
578 assert(have_el2);
579 if (!have_el3) {
580 return;
581 }
582 break;
583 case 1:
584 if (!have_el3 && !have_el2) {
585 return;
586 }
587 break;
588 default:
589 g_assert_not_reached();
590 }
591
592 if (have_el3) {
593 /*
594 * Set the EL3 state so code can run at EL2. This should match
595 * the requirements set by Linux in its booting spec.
596 */
597 if (env->aarch64) {
598 env->cp15.scr_el3 |= SCR_RW;
599 if (cpu_isar_feature(aa64_pauth, cpu)) {
600 env->cp15.scr_el3 |= SCR_API | SCR_APK;
601 }
602 if (cpu_isar_feature(aa64_mte, cpu)) {
603 env->cp15.scr_el3 |= SCR_ATA;
604 }
605 if (cpu_isar_feature(aa64_sve, cpu)) {
606 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
607 env->vfp.zcr_el[3] = 0xf;
608 }
609 if (cpu_isar_feature(aa64_sme, cpu)) {
610 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
611 env->cp15.scr_el3 |= SCR_ENTP2;
612 env->vfp.smcr_el[3] = 0xf;
613 }
614 if (cpu_isar_feature(aa64_hcx, cpu)) {
615 env->cp15.scr_el3 |= SCR_HXEN;
616 }
617 if (cpu_isar_feature(aa64_fgt, cpu)) {
618 env->cp15.scr_el3 |= SCR_FGTEN;
619 }
620 }
621
622 if (target_el == 2) {
623 /* If the guest is at EL2 then Linux expects the HVC insn to work */
624 env->cp15.scr_el3 |= SCR_HCE;
625 }
626
627 /* Put CPU into non-secure state */
628 env->cp15.scr_el3 |= SCR_NS;
629 /* Set NSACR.{CP11,CP10} so NS can access the FPU */
630 env->cp15.nsacr |= 3 << 10;
631 }
632
633 if (have_el2 && target_el < 2) {
634 /* Set EL2 state so code can run at EL1. */
635 if (env->aarch64) {
636 env->cp15.hcr_el2 |= HCR_RW;
637 }
638 }
639
640 /* Set the CPU to the desired state */
641 if (env->aarch64) {
642 env->pstate = aarch64_pstate_mode(target_el, true);
643 } else {
644 static const uint32_t mode_for_el[] = {
645 0,
646 ARM_CPU_MODE_SVC,
647 ARM_CPU_MODE_HYP,
648 ARM_CPU_MODE_SVC,
649 };
650
651 cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
652 }
653 }
654
655
656 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
657
658 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
659 unsigned int target_el,
660 unsigned int cur_el, bool secure,
661 uint64_t hcr_el2)
662 {
663 CPUARMState *env = cpu_env(cs);
664 bool pstate_unmasked;
665 bool unmasked = false;
666
667 /*
668 * Don't take exceptions if they target a lower EL.
669 * This check should catch any exceptions that would not be taken
670 * but left pending.
671 */
672 if (cur_el > target_el) {
673 return false;
674 }
675
676 switch (excp_idx) {
677 case EXCP_FIQ:
678 pstate_unmasked = !(env->daif & PSTATE_F);
679 break;
680
681 case EXCP_IRQ:
682 pstate_unmasked = !(env->daif & PSTATE_I);
683 break;
684
685 case EXCP_VFIQ:
686 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
687 /* VFIQs are only taken when hypervized. */
688 return false;
689 }
690 return !(env->daif & PSTATE_F);
691 case EXCP_VIRQ:
692 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
693 /* VIRQs are only taken when hypervized. */
694 return false;
695 }
696 return !(env->daif & PSTATE_I);
697 case EXCP_VSERR:
698 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
699 /* VIRQs are only taken when hypervized. */
700 return false;
701 }
702 return !(env->daif & PSTATE_A);
703 default:
704 g_assert_not_reached();
705 }
706
707 /*
708 * Use the target EL, current execution state and SCR/HCR settings to
709 * determine whether the corresponding CPSR bit is used to mask the
710 * interrupt.
711 */
712 if ((target_el > cur_el) && (target_el != 1)) {
713 /* Exceptions targeting a higher EL may not be maskable */
714 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
715 switch (target_el) {
716 case 2:
717 /*
718 * According to ARM DDI 0487H.a, an interrupt can be masked
719 * when HCR_E2H and HCR_TGE are both set regardless of the
720 * current Security state. Note that we need to revisit this
721 * part again once we need to support NMI.
722 */
723 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
724 unmasked = true;
725 }
726 break;
727 case 3:
728 /* Interrupt cannot be masked when the target EL is 3 */
729 unmasked = true;
730 break;
731 default:
732 g_assert_not_reached();
733 }
734 } else {
735 /*
736 * The old 32-bit-only environment has a more complicated
737 * masking setup. HCR and SCR bits not only affect interrupt
738 * routing but also change the behaviour of masking.
739 */
740 bool hcr, scr;
741
742 switch (excp_idx) {
743 case EXCP_FIQ:
744 /*
745 * If FIQs are routed to EL3 or EL2 then there are cases where
746 * we override the CPSR.F in determining if the exception is
747 * masked or not. If neither of these are set then we fall back
748 * to the CPSR.F setting otherwise we further assess the state
749 * below.
750 */
751 hcr = hcr_el2 & HCR_FMO;
752 scr = (env->cp15.scr_el3 & SCR_FIQ);
753
754 /*
755 * When EL3 is 32-bit, the SCR.FW bit controls whether the
756 * CPSR.F bit masks FIQ interrupts when taken in non-secure
757 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
758 * when non-secure but only when FIQs are only routed to EL3.
759 */
760 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
761 break;
762 case EXCP_IRQ:
763 /*
764 * When EL3 execution state is 32-bit, if HCR.IMO is set then
765 * we may override the CPSR.I masking when in non-secure state.
766 * The SCR.IRQ setting has already been taken into consideration
767 * when setting the target EL, so it does not have a further
768 * affect here.
769 */
770 hcr = hcr_el2 & HCR_IMO;
771 scr = false;
772 break;
773 default:
774 g_assert_not_reached();
775 }
776
777 if ((scr || hcr) && !secure) {
778 unmasked = true;
779 }
780 }
781 }
782
783 /*
784 * The PSTATE bits only mask the interrupt if we have not overridden the
785 * ability above.
786 */
787 return unmasked || pstate_unmasked;
788 }
789
790 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
791 {
792 CPUClass *cc = CPU_GET_CLASS(cs);
793 CPUARMState *env = cpu_env(cs);
794 uint32_t cur_el = arm_current_el(env);
795 bool secure = arm_is_secure(env);
796 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
797 uint32_t target_el;
798 uint32_t excp_idx;
799
800 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
801
802 if (interrupt_request & CPU_INTERRUPT_FIQ) {
803 excp_idx = EXCP_FIQ;
804 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
805 if (arm_excp_unmasked(cs, excp_idx, target_el,
806 cur_el, secure, hcr_el2)) {
807 goto found;
808 }
809 }
810 if (interrupt_request & CPU_INTERRUPT_HARD) {
811 excp_idx = EXCP_IRQ;
812 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
813 if (arm_excp_unmasked(cs, excp_idx, target_el,
814 cur_el, secure, hcr_el2)) {
815 goto found;
816 }
817 }
818 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
819 excp_idx = EXCP_VIRQ;
820 target_el = 1;
821 if (arm_excp_unmasked(cs, excp_idx, target_el,
822 cur_el, secure, hcr_el2)) {
823 goto found;
824 }
825 }
826 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
827 excp_idx = EXCP_VFIQ;
828 target_el = 1;
829 if (arm_excp_unmasked(cs, excp_idx, target_el,
830 cur_el, secure, hcr_el2)) {
831 goto found;
832 }
833 }
834 if (interrupt_request & CPU_INTERRUPT_VSERR) {
835 excp_idx = EXCP_VSERR;
836 target_el = 1;
837 if (arm_excp_unmasked(cs, excp_idx, target_el,
838 cur_el, secure, hcr_el2)) {
839 /* Taking a virtual abort clears HCR_EL2.VSE */
840 env->cp15.hcr_el2 &= ~HCR_VSE;
841 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
842 goto found;
843 }
844 }
845 return false;
846
847 found:
848 cs->exception_index = excp_idx;
849 env->exception.target_el = target_el;
850 cc->tcg_ops->do_interrupt(cs);
851 return true;
852 }
853
854 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
855
856 void arm_cpu_update_virq(ARMCPU *cpu)
857 {
858 /*
859 * Update the interrupt level for VIRQ, which is the logical OR of
860 * the HCR_EL2.VI bit and the input line level from the GIC.
861 */
862 CPUARMState *env = &cpu->env;
863 CPUState *cs = CPU(cpu);
864
865 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
866 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
867
868 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
869 if (new_state) {
870 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
871 } else {
872 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
873 }
874 }
875 }
876
877 void arm_cpu_update_vfiq(ARMCPU *cpu)
878 {
879 /*
880 * Update the interrupt level for VFIQ, which is the logical OR of
881 * the HCR_EL2.VF bit and the input line level from the GIC.
882 */
883 CPUARMState *env = &cpu->env;
884 CPUState *cs = CPU(cpu);
885
886 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
887 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
888
889 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
890 if (new_state) {
891 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
892 } else {
893 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
894 }
895 }
896 }
897
898 void arm_cpu_update_vserr(ARMCPU *cpu)
899 {
900 /*
901 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
902 */
903 CPUARMState *env = &cpu->env;
904 CPUState *cs = CPU(cpu);
905
906 bool new_state = env->cp15.hcr_el2 & HCR_VSE;
907
908 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
909 if (new_state) {
910 cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
911 } else {
912 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
913 }
914 }
915 }
916
917 #ifndef CONFIG_USER_ONLY
918 static void arm_cpu_set_irq(void *opaque, int irq, int level)
919 {
920 ARMCPU *cpu = opaque;
921 CPUARMState *env = &cpu->env;
922 CPUState *cs = CPU(cpu);
923 static const int mask[] = {
924 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
925 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
926 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
927 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
928 };
929
930 if (!arm_feature(env, ARM_FEATURE_EL2) &&
931 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
932 /*
933 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
934 * have EL2 support we don't care. (Unless the guest is doing something
935 * silly this will only be calls saying "level is still 0".)
936 */
937 return;
938 }
939
940 if (level) {
941 env->irq_line_state |= mask[irq];
942 } else {
943 env->irq_line_state &= ~mask[irq];
944 }
945
946 switch (irq) {
947 case ARM_CPU_VIRQ:
948 arm_cpu_update_virq(cpu);
949 break;
950 case ARM_CPU_VFIQ:
951 arm_cpu_update_vfiq(cpu);
952 break;
953 case ARM_CPU_IRQ:
954 case ARM_CPU_FIQ:
955 if (level) {
956 cpu_interrupt(cs, mask[irq]);
957 } else {
958 cpu_reset_interrupt(cs, mask[irq]);
959 }
960 break;
961 default:
962 g_assert_not_reached();
963 }
964 }
965
966 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
967 {
968 #ifdef CONFIG_KVM
969 ARMCPU *cpu = opaque;
970 CPUARMState *env = &cpu->env;
971 CPUState *cs = CPU(cpu);
972 uint32_t linestate_bit;
973 int irq_id;
974
975 switch (irq) {
976 case ARM_CPU_IRQ:
977 irq_id = KVM_ARM_IRQ_CPU_IRQ;
978 linestate_bit = CPU_INTERRUPT_HARD;
979 break;
980 case ARM_CPU_FIQ:
981 irq_id = KVM_ARM_IRQ_CPU_FIQ;
982 linestate_bit = CPU_INTERRUPT_FIQ;
983 break;
984 default:
985 g_assert_not_reached();
986 }
987
988 if (level) {
989 env->irq_line_state |= linestate_bit;
990 } else {
991 env->irq_line_state &= ~linestate_bit;
992 }
993 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
994 #endif
995 }
996
997 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
998 {
999 ARMCPU *cpu = ARM_CPU(cs);
1000 CPUARMState *env = &cpu->env;
1001
1002 cpu_synchronize_state(cs);
1003 return arm_cpu_data_is_big_endian(env);
1004 }
1005
1006 #endif
1007
1008 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1009 {
1010 ARMCPU *ac = ARM_CPU(cpu);
1011 CPUARMState *env = &ac->env;
1012 bool sctlr_b;
1013
1014 if (is_a64(env)) {
1015 info->cap_arch = CS_ARCH_ARM64;
1016 info->cap_insn_unit = 4;
1017 info->cap_insn_split = 4;
1018 } else {
1019 int cap_mode;
1020 if (env->thumb) {
1021 info->cap_insn_unit = 2;
1022 info->cap_insn_split = 4;
1023 cap_mode = CS_MODE_THUMB;
1024 } else {
1025 info->cap_insn_unit = 4;
1026 info->cap_insn_split = 4;
1027 cap_mode = CS_MODE_ARM;
1028 }
1029 if (arm_feature(env, ARM_FEATURE_V8)) {
1030 cap_mode |= CS_MODE_V8;
1031 }
1032 if (arm_feature(env, ARM_FEATURE_M)) {
1033 cap_mode |= CS_MODE_MCLASS;
1034 }
1035 info->cap_arch = CS_ARCH_ARM;
1036 info->cap_mode = cap_mode;
1037 }
1038
1039 sctlr_b = arm_sctlr_b(env);
1040 if (bswap_code(sctlr_b)) {
1041 #if TARGET_BIG_ENDIAN
1042 info->endian = BFD_ENDIAN_LITTLE;
1043 #else
1044 info->endian = BFD_ENDIAN_BIG;
1045 #endif
1046 }
1047 info->flags &= ~INSN_ARM_BE32;
1048 #ifndef CONFIG_USER_ONLY
1049 if (sctlr_b) {
1050 info->flags |= INSN_ARM_BE32;
1051 }
1052 #endif
1053 }
1054
1055 #ifdef TARGET_AARCH64
1056
1057 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1058 {
1059 ARMCPU *cpu = ARM_CPU(cs);
1060 CPUARMState *env = &cpu->env;
1061 uint32_t psr = pstate_read(env);
1062 int i, j;
1063 int el = arm_current_el(env);
1064 uint64_t hcr = arm_hcr_el2_eff(env);
1065 const char *ns_status;
1066 bool sve;
1067
1068 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1069 for (i = 0; i < 32; i++) {
1070 if (i == 31) {
1071 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1072 } else {
1073 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1074 (i + 2) % 3 ? " " : "\n");
1075 }
1076 }
1077
1078 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1079 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1080 } else {
1081 ns_status = "";
1082 }
1083 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1084 psr,
1085 psr & PSTATE_N ? 'N' : '-',
1086 psr & PSTATE_Z ? 'Z' : '-',
1087 psr & PSTATE_C ? 'C' : '-',
1088 psr & PSTATE_V ? 'V' : '-',
1089 ns_status,
1090 el,
1091 psr & PSTATE_SP ? 'h' : 't');
1092
1093 if (cpu_isar_feature(aa64_sme, cpu)) {
1094 qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c",
1095 env->svcr,
1096 (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1097 (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1098 }
1099 if (cpu_isar_feature(aa64_bti, cpu)) {
1100 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1101 }
1102 qemu_fprintf(f, "%s%s%s",
1103 (hcr & HCR_NV) ? " NV" : "",
1104 (hcr & HCR_NV1) ? " NV1" : "",
1105 (hcr & HCR_NV2) ? " NV2" : "");
1106 if (!(flags & CPU_DUMP_FPU)) {
1107 qemu_fprintf(f, "\n");
1108 return;
1109 }
1110 if (fp_exception_el(env, el) != 0) {
1111 qemu_fprintf(f, " FPU disabled\n");
1112 return;
1113 }
1114 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
1115 vfp_get_fpcr(env), vfp_get_fpsr(env));
1116
1117 if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1118 sve = sme_exception_el(env, el) == 0;
1119 } else if (cpu_isar_feature(aa64_sve, cpu)) {
1120 sve = sve_exception_el(env, el) == 0;
1121 } else {
1122 sve = false;
1123 }
1124
1125 if (sve) {
1126 int zcr_len = sve_vqm1_for_el(env, el);
1127
1128 for (i = 0; i <= FFR_PRED_NUM; i++) {
1129 bool eol;
1130 if (i == FFR_PRED_NUM) {
1131 qemu_fprintf(f, "FFR=");
1132 /* It's last, so end the line. */
1133 eol = true;
1134 } else {
1135 qemu_fprintf(f, "P%02d=", i);
1136 switch (zcr_len) {
1137 case 0:
1138 eol = i % 8 == 7;
1139 break;
1140 case 1:
1141 eol = i % 6 == 5;
1142 break;
1143 case 2:
1144 case 3:
1145 eol = i % 3 == 2;
1146 break;
1147 default:
1148 /* More than one quadword per predicate. */
1149 eol = true;
1150 break;
1151 }
1152 }
1153 for (j = zcr_len / 4; j >= 0; j--) {
1154 int digits;
1155 if (j * 4 + 4 <= zcr_len + 1) {
1156 digits = 16;
1157 } else {
1158 digits = (zcr_len % 4 + 1) * 4;
1159 }
1160 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1161 env->vfp.pregs[i].p[j],
1162 j ? ":" : eol ? "\n" : " ");
1163 }
1164 }
1165
1166 if (zcr_len == 0) {
1167 /*
1168 * With vl=16, there are only 37 columns per register,
1169 * so output two registers per line.
1170 */
1171 for (i = 0; i < 32; i++) {
1172 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1173 i, env->vfp.zregs[i].d[1],
1174 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1175 }
1176 } else {
1177 for (i = 0; i < 32; i++) {
1178 qemu_fprintf(f, "Z%02d=", i);
1179 for (j = zcr_len; j >= 0; j--) {
1180 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1181 env->vfp.zregs[i].d[j * 2 + 1],
1182 env->vfp.zregs[i].d[j * 2 + 0],
1183 j ? ":" : "\n");
1184 }
1185 }
1186 }
1187 } else {
1188 for (i = 0; i < 32; i++) {
1189 uint64_t *q = aa64_vfp_qreg(env, i);
1190 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1191 i, q[1], q[0], (i & 1 ? "\n" : " "));
1192 }
1193 }
1194
1195 if (cpu_isar_feature(aa64_sme, cpu) &&
1196 FIELD_EX64(env->svcr, SVCR, ZA) &&
1197 sme_exception_el(env, el) == 0) {
1198 int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1199 int svl = (zcr_len + 1) * 16;
1200 int svl_lg10 = svl < 100 ? 2 : 3;
1201
1202 for (i = 0; i < svl; i++) {
1203 qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1204 for (j = zcr_len; j >= 0; --j) {
1205 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1206 env->zarray[i].d[2 * j + 1],
1207 env->zarray[i].d[2 * j],
1208 j ? ':' : '\n');
1209 }
1210 }
1211 }
1212 }
1213
1214 #else
1215
1216 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1217 {
1218 g_assert_not_reached();
1219 }
1220
1221 #endif
1222
1223 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1224 {
1225 ARMCPU *cpu = ARM_CPU(cs);
1226 CPUARMState *env = &cpu->env;
1227 int i;
1228
1229 if (is_a64(env)) {
1230 aarch64_cpu_dump_state(cs, f, flags);
1231 return;
1232 }
1233
1234 for (i = 0; i < 16; i++) {
1235 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1236 if ((i % 4) == 3) {
1237 qemu_fprintf(f, "\n");
1238 } else {
1239 qemu_fprintf(f, " ");
1240 }
1241 }
1242
1243 if (arm_feature(env, ARM_FEATURE_M)) {
1244 uint32_t xpsr = xpsr_read(env);
1245 const char *mode;
1246 const char *ns_status = "";
1247
1248 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1249 ns_status = env->v7m.secure ? "S " : "NS ";
1250 }
1251
1252 if (xpsr & XPSR_EXCP) {
1253 mode = "handler";
1254 } else {
1255 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1256 mode = "unpriv-thread";
1257 } else {
1258 mode = "priv-thread";
1259 }
1260 }
1261
1262 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1263 xpsr,
1264 xpsr & XPSR_N ? 'N' : '-',
1265 xpsr & XPSR_Z ? 'Z' : '-',
1266 xpsr & XPSR_C ? 'C' : '-',
1267 xpsr & XPSR_V ? 'V' : '-',
1268 xpsr & XPSR_T ? 'T' : 'A',
1269 ns_status,
1270 mode);
1271 } else {
1272 uint32_t psr = cpsr_read(env);
1273 const char *ns_status = "";
1274
1275 if (arm_feature(env, ARM_FEATURE_EL3) &&
1276 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1277 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1278 }
1279
1280 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1281 psr,
1282 psr & CPSR_N ? 'N' : '-',
1283 psr & CPSR_Z ? 'Z' : '-',
1284 psr & CPSR_C ? 'C' : '-',
1285 psr & CPSR_V ? 'V' : '-',
1286 psr & CPSR_T ? 'T' : 'A',
1287 ns_status,
1288 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1289 }
1290
1291 if (flags & CPU_DUMP_FPU) {
1292 int numvfpregs = 0;
1293 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1294 numvfpregs = 32;
1295 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1296 numvfpregs = 16;
1297 }
1298 for (i = 0; i < numvfpregs; i++) {
1299 uint64_t v = *aa32_vfp_dreg(env, i);
1300 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1301 i * 2, (uint32_t)v,
1302 i * 2 + 1, (uint32_t)(v >> 32),
1303 i, v);
1304 }
1305 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1306 if (cpu_isar_feature(aa32_mve, cpu)) {
1307 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1308 }
1309 }
1310 }
1311
1312 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz)
1313 {
1314 uint32_t Aff1 = idx / clustersz;
1315 uint32_t Aff0 = idx % clustersz;
1316 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1317 }
1318
1319 uint64_t arm_cpu_mp_affinity(ARMCPU *cpu)
1320 {
1321 return cpu->mp_affinity;
1322 }
1323
1324 static void arm_cpu_initfn(Object *obj)
1325 {
1326 ARMCPU *cpu = ARM_CPU(obj);
1327
1328 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1329 NULL, g_free);
1330
1331 QLIST_INIT(&cpu->pre_el_change_hooks);
1332 QLIST_INIT(&cpu->el_change_hooks);
1333
1334 #ifdef CONFIG_USER_ONLY
1335 # ifdef TARGET_AARCH64
1336 /*
1337 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1338 * These values were chosen to fit within the default signal frame.
1339 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1340 * and our corresponding cpu property.
1341 */
1342 cpu->sve_default_vq = 4;
1343 cpu->sme_default_vq = 2;
1344 # endif
1345 #else
1346 /* Our inbound IRQ and FIQ lines */
1347 if (kvm_enabled()) {
1348 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1349 * the same interface as non-KVM CPUs.
1350 */
1351 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1352 } else {
1353 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1354 }
1355
1356 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1357 ARRAY_SIZE(cpu->gt_timer_outputs));
1358
1359 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1360 "gicv3-maintenance-interrupt", 1);
1361 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1362 "pmu-interrupt", 1);
1363 #endif
1364
1365 /* DTB consumers generally don't in fact care what the 'compatible'
1366 * string is, so always provide some string and trust that a hypothetical
1367 * picky DTB consumer will also provide a helpful error message.
1368 */
1369 cpu->dtb_compatible = "qemu,unknown";
1370 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1371 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1372
1373 if (tcg_enabled() || hvf_enabled()) {
1374 /* TCG and HVF implement PSCI 1.1 */
1375 cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1376 }
1377 }
1378
1379 static Property arm_cpu_gt_cntfrq_property =
1380 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1381 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1382
1383 static Property arm_cpu_reset_cbar_property =
1384 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1385
1386 static Property arm_cpu_reset_hivecs_property =
1387 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1388
1389 #ifndef CONFIG_USER_ONLY
1390 static Property arm_cpu_has_el2_property =
1391 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1392
1393 static Property arm_cpu_has_el3_property =
1394 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1395 #endif
1396
1397 static Property arm_cpu_cfgend_property =
1398 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1399
1400 static Property arm_cpu_has_vfp_property =
1401 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1402
1403 static Property arm_cpu_has_vfp_d32_property =
1404 DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1405
1406 static Property arm_cpu_has_neon_property =
1407 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1408
1409 static Property arm_cpu_has_dsp_property =
1410 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1411
1412 static Property arm_cpu_has_mpu_property =
1413 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1414
1415 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1416 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1417 * the right value for that particular CPU type, and we don't want
1418 * to override that with an incorrect constant value.
1419 */
1420 static Property arm_cpu_pmsav7_dregion_property =
1421 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1422 pmsav7_dregion,
1423 qdev_prop_uint32, uint32_t);
1424
1425 static bool arm_get_pmu(Object *obj, Error **errp)
1426 {
1427 ARMCPU *cpu = ARM_CPU(obj);
1428
1429 return cpu->has_pmu;
1430 }
1431
1432 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1433 {
1434 ARMCPU *cpu = ARM_CPU(obj);
1435
1436 if (value) {
1437 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1438 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1439 return;
1440 }
1441 set_feature(&cpu->env, ARM_FEATURE_PMU);
1442 } else {
1443 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1444 }
1445 cpu->has_pmu = value;
1446 }
1447
1448 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1449 {
1450 /*
1451 * The exact approach to calculating guest ticks is:
1452 *
1453 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1454 * NANOSECONDS_PER_SECOND);
1455 *
1456 * We don't do that. Rather we intentionally use integer division
1457 * truncation below and in the caller for the conversion of host monotonic
1458 * time to guest ticks to provide the exact inverse for the semantics of
1459 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1460 * it loses precision when representing frequencies where
1461 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1462 * provide an exact inverse leads to scheduling timers with negative
1463 * periods, which in turn leads to sticky behaviour in the guest.
1464 *
1465 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1466 * cannot become zero.
1467 */
1468 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1469 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1470 }
1471
1472 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1473 {
1474 CPUARMState *env = &cpu->env;
1475 bool no_aa32 = false;
1476
1477 /*
1478 * Some features automatically imply others: set the feature
1479 * bits explicitly for these cases.
1480 */
1481
1482 if (arm_feature(env, ARM_FEATURE_M)) {
1483 set_feature(env, ARM_FEATURE_PMSA);
1484 }
1485
1486 if (arm_feature(env, ARM_FEATURE_V8)) {
1487 if (arm_feature(env, ARM_FEATURE_M)) {
1488 set_feature(env, ARM_FEATURE_V7);
1489 } else {
1490 set_feature(env, ARM_FEATURE_V7VE);
1491 }
1492 }
1493
1494 /*
1495 * There exist AArch64 cpus without AArch32 support. When KVM
1496 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1497 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1498 * As a general principle, we also do not make ID register
1499 * consistency checks anywhere unless using TCG, because only
1500 * for TCG would a consistency-check failure be a QEMU bug.
1501 */
1502 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1503 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1504 }
1505
1506 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1507 /*
1508 * v7 Virtualization Extensions. In real hardware this implies
1509 * EL2 and also the presence of the Security Extensions.
1510 * For QEMU, for backwards-compatibility we implement some
1511 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1512 * include the various other features that V7VE implies.
1513 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1514 * Security Extensions is ARM_FEATURE_EL3.
1515 */
1516 assert(!tcg_enabled() || no_aa32 ||
1517 cpu_isar_feature(aa32_arm_div, cpu));
1518 set_feature(env, ARM_FEATURE_LPAE);
1519 set_feature(env, ARM_FEATURE_V7);
1520 }
1521 if (arm_feature(env, ARM_FEATURE_V7)) {
1522 set_feature(env, ARM_FEATURE_VAPA);
1523 set_feature(env, ARM_FEATURE_THUMB2);
1524 set_feature(env, ARM_FEATURE_MPIDR);
1525 if (!arm_feature(env, ARM_FEATURE_M)) {
1526 set_feature(env, ARM_FEATURE_V6K);
1527 } else {
1528 set_feature(env, ARM_FEATURE_V6);
1529 }
1530
1531 /*
1532 * Always define VBAR for V7 CPUs even if it doesn't exist in
1533 * non-EL3 configs. This is needed by some legacy boards.
1534 */
1535 set_feature(env, ARM_FEATURE_VBAR);
1536 }
1537 if (arm_feature(env, ARM_FEATURE_V6K)) {
1538 set_feature(env, ARM_FEATURE_V6);
1539 set_feature(env, ARM_FEATURE_MVFR);
1540 }
1541 if (arm_feature(env, ARM_FEATURE_V6)) {
1542 set_feature(env, ARM_FEATURE_V5);
1543 if (!arm_feature(env, ARM_FEATURE_M)) {
1544 assert(!tcg_enabled() || no_aa32 ||
1545 cpu_isar_feature(aa32_jazelle, cpu));
1546 set_feature(env, ARM_FEATURE_AUXCR);
1547 }
1548 }
1549 if (arm_feature(env, ARM_FEATURE_V5)) {
1550 set_feature(env, ARM_FEATURE_V4T);
1551 }
1552 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1553 set_feature(env, ARM_FEATURE_V7MP);
1554 }
1555 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1556 set_feature(env, ARM_FEATURE_CBAR);
1557 }
1558 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1559 !arm_feature(env, ARM_FEATURE_M)) {
1560 set_feature(env, ARM_FEATURE_THUMB_DSP);
1561 }
1562 }
1563
1564 void arm_cpu_post_init(Object *obj)
1565 {
1566 ARMCPU *cpu = ARM_CPU(obj);
1567
1568 /*
1569 * Some features imply others. Figure this out now, because we
1570 * are going to look at the feature bits in deciding which
1571 * properties to add.
1572 */
1573 arm_cpu_propagate_feature_implications(cpu);
1574
1575 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1576 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1577 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1578 }
1579
1580 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1581 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1582 }
1583
1584 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1585 object_property_add_uint64_ptr(obj, "rvbar",
1586 &cpu->rvbar_prop,
1587 OBJ_PROP_FLAG_READWRITE);
1588 }
1589
1590 #ifndef CONFIG_USER_ONLY
1591 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1592 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1593 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1594 */
1595 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1596
1597 object_property_add_link(obj, "secure-memory",
1598 TYPE_MEMORY_REGION,
1599 (Object **)&cpu->secure_memory,
1600 qdev_prop_allow_set_link_before_realize,
1601 OBJ_PROP_LINK_STRONG);
1602 }
1603
1604 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1605 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1606 }
1607 #endif
1608
1609 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1610 cpu->has_pmu = true;
1611 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1612 }
1613
1614 /*
1615 * Allow user to turn off VFP and Neon support, but only for TCG --
1616 * KVM does not currently allow us to lie to the guest about its
1617 * ID/feature registers, so the guest always sees what the host has.
1618 */
1619 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1620 if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1621 cpu->has_vfp = true;
1622 cpu->has_vfp_d32 = true;
1623 if (tcg_enabled() || qtest_enabled()) {
1624 qdev_property_add_static(DEVICE(obj),
1625 &arm_cpu_has_vfp_property);
1626 }
1627 }
1628 } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1629 cpu->has_vfp = true;
1630 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1631 cpu->has_vfp_d32 = true;
1632 /*
1633 * The permitted values of the SIMDReg bits [3:0] on
1634 * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1635 * make sure that has_vfp_d32 can not be set to false.
1636 */
1637 if ((tcg_enabled() || qtest_enabled())
1638 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1639 && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1640 qdev_property_add_static(DEVICE(obj),
1641 &arm_cpu_has_vfp_d32_property);
1642 }
1643 }
1644 }
1645
1646 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1647 cpu->has_neon = true;
1648 if (!kvm_enabled()) {
1649 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1650 }
1651 }
1652
1653 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1654 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1655 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1656 }
1657
1658 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1659 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1660 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1661 qdev_property_add_static(DEVICE(obj),
1662 &arm_cpu_pmsav7_dregion_property);
1663 }
1664 }
1665
1666 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1667 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1668 qdev_prop_allow_set_link_before_realize,
1669 OBJ_PROP_LINK_STRONG);
1670 /*
1671 * M profile: initial value of the Secure VTOR. We can't just use
1672 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1673 * the property to be set after realize.
1674 */
1675 object_property_add_uint32_ptr(obj, "init-svtor",
1676 &cpu->init_svtor,
1677 OBJ_PROP_FLAG_READWRITE);
1678 }
1679 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1680 /*
1681 * Initial value of the NS VTOR (for cores without the Security
1682 * extension, this is the only VTOR)
1683 */
1684 object_property_add_uint32_ptr(obj, "init-nsvtor",
1685 &cpu->init_nsvtor,
1686 OBJ_PROP_FLAG_READWRITE);
1687 }
1688
1689 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1690 object_property_add_uint32_ptr(obj, "psci-conduit",
1691 &cpu->psci_conduit,
1692 OBJ_PROP_FLAG_READWRITE);
1693
1694 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1695
1696 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1697 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1698 }
1699
1700 if (kvm_enabled()) {
1701 kvm_arm_add_vcpu_properties(cpu);
1702 }
1703
1704 #ifndef CONFIG_USER_ONLY
1705 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1706 cpu_isar_feature(aa64_mte, cpu)) {
1707 object_property_add_link(obj, "tag-memory",
1708 TYPE_MEMORY_REGION,
1709 (Object **)&cpu->tag_memory,
1710 qdev_prop_allow_set_link_before_realize,
1711 OBJ_PROP_LINK_STRONG);
1712
1713 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1714 object_property_add_link(obj, "secure-tag-memory",
1715 TYPE_MEMORY_REGION,
1716 (Object **)&cpu->secure_tag_memory,
1717 qdev_prop_allow_set_link_before_realize,
1718 OBJ_PROP_LINK_STRONG);
1719 }
1720 }
1721 #endif
1722 }
1723
1724 static void arm_cpu_finalizefn(Object *obj)
1725 {
1726 ARMCPU *cpu = ARM_CPU(obj);
1727 ARMELChangeHook *hook, *next;
1728
1729 g_hash_table_destroy(cpu->cp_regs);
1730
1731 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1732 QLIST_REMOVE(hook, node);
1733 g_free(hook);
1734 }
1735 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1736 QLIST_REMOVE(hook, node);
1737 g_free(hook);
1738 }
1739 #ifndef CONFIG_USER_ONLY
1740 if (cpu->pmu_timer) {
1741 timer_free(cpu->pmu_timer);
1742 }
1743 #endif
1744 }
1745
1746 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1747 {
1748 Error *local_err = NULL;
1749
1750 #ifdef TARGET_AARCH64
1751 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1752 arm_cpu_sve_finalize(cpu, &local_err);
1753 if (local_err != NULL) {
1754 error_propagate(errp, local_err);
1755 return;
1756 }
1757
1758 /*
1759 * FEAT_SME is not architecturally dependent on FEAT_SVE (unless
1760 * FEAT_SME_FA64 is present). However our implementation currently
1761 * assumes it, so if the user asked for sve=off then turn off SME also.
1762 * (KVM doesn't currently support SME at all.)
1763 */
1764 if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) {
1765 object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort);
1766 }
1767
1768 arm_cpu_sme_finalize(cpu, &local_err);
1769 if (local_err != NULL) {
1770 error_propagate(errp, local_err);
1771 return;
1772 }
1773
1774 arm_cpu_pauth_finalize(cpu, &local_err);
1775 if (local_err != NULL) {
1776 error_propagate(errp, local_err);
1777 return;
1778 }
1779
1780 arm_cpu_lpa2_finalize(cpu, &local_err);
1781 if (local_err != NULL) {
1782 error_propagate(errp, local_err);
1783 return;
1784 }
1785 }
1786 #endif
1787
1788 if (kvm_enabled()) {
1789 kvm_arm_steal_time_finalize(cpu, &local_err);
1790 if (local_err != NULL) {
1791 error_propagate(errp, local_err);
1792 return;
1793 }
1794 }
1795 }
1796
1797 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1798 {
1799 CPUState *cs = CPU(dev);
1800 ARMCPU *cpu = ARM_CPU(dev);
1801 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1802 CPUARMState *env = &cpu->env;
1803 int pagebits;
1804 Error *local_err = NULL;
1805
1806 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
1807 /* Use pc-relative instructions in system-mode */
1808 cs->tcg_cflags |= CF_PCREL;
1809 #endif
1810
1811 /* If we needed to query the host kernel for the CPU features
1812 * then it's possible that might have failed in the initfn, but
1813 * this is the first point where we can report it.
1814 */
1815 if (cpu->host_cpu_probe_failed) {
1816 if (!kvm_enabled() && !hvf_enabled()) {
1817 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1818 } else {
1819 error_setg(errp, "Failed to retrieve host CPU features");
1820 }
1821 return;
1822 }
1823
1824 #ifndef CONFIG_USER_ONLY
1825 /* The NVIC and M-profile CPU are two halves of a single piece of
1826 * hardware; trying to use one without the other is a command line
1827 * error and will result in segfaults if not caught here.
1828 */
1829 if (arm_feature(env, ARM_FEATURE_M)) {
1830 if (!env->nvic) {
1831 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1832 return;
1833 }
1834 } else {
1835 if (env->nvic) {
1836 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1837 return;
1838 }
1839 }
1840
1841 if (!tcg_enabled() && !qtest_enabled()) {
1842 /*
1843 * We assume that no accelerator except TCG (and the "not really an
1844 * accelerator" qtest) can handle these features, because Arm hardware
1845 * virtualization can't virtualize them.
1846 *
1847 * Catch all the cases which might cause us to create more than one
1848 * address space for the CPU (otherwise we will assert() later in
1849 * cpu_address_space_init()).
1850 */
1851 if (arm_feature(env, ARM_FEATURE_M)) {
1852 error_setg(errp,
1853 "Cannot enable %s when using an M-profile guest CPU",
1854 current_accel_name());
1855 return;
1856 }
1857 if (cpu->has_el3) {
1858 error_setg(errp,
1859 "Cannot enable %s when guest CPU has EL3 enabled",
1860 current_accel_name());
1861 return;
1862 }
1863 if (cpu->tag_memory) {
1864 error_setg(errp,
1865 "Cannot enable %s when guest CPUs has MTE enabled",
1866 current_accel_name());
1867 return;
1868 }
1869 }
1870
1871 {
1872 uint64_t scale;
1873
1874 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1875 if (!cpu->gt_cntfrq_hz) {
1876 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1877 cpu->gt_cntfrq_hz);
1878 return;
1879 }
1880 scale = gt_cntfrq_period_ns(cpu);
1881 } else {
1882 scale = GTIMER_SCALE;
1883 }
1884
1885 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1886 arm_gt_ptimer_cb, cpu);
1887 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1888 arm_gt_vtimer_cb, cpu);
1889 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1890 arm_gt_htimer_cb, cpu);
1891 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1892 arm_gt_stimer_cb, cpu);
1893 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1894 arm_gt_hvtimer_cb, cpu);
1895 }
1896 #endif
1897
1898 cpu_exec_realizefn(cs, &local_err);
1899 if (local_err != NULL) {
1900 error_propagate(errp, local_err);
1901 return;
1902 }
1903
1904 arm_cpu_finalize_features(cpu, &local_err);
1905 if (local_err != NULL) {
1906 error_propagate(errp, local_err);
1907 return;
1908 }
1909
1910 #ifdef CONFIG_USER_ONLY
1911 /*
1912 * User mode relies on IC IVAU instructions to catch modification of
1913 * dual-mapped code.
1914 *
1915 * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
1916 * IC IVAU even if the emulated processor does not normally require it.
1917 */
1918 cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
1919 #endif
1920
1921 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1922 cpu->has_vfp != cpu->has_neon) {
1923 /*
1924 * This is an architectural requirement for AArch64; AArch32 is
1925 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1926 */
1927 error_setg(errp,
1928 "AArch64 CPUs must have both VFP and Neon or neither");
1929 return;
1930 }
1931
1932 if (cpu->has_vfp_d32 != cpu->has_neon) {
1933 error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1934 return;
1935 }
1936
1937 if (!cpu->has_vfp_d32) {
1938 uint32_t u;
1939
1940 u = cpu->isar.mvfr0;
1941 u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1942 cpu->isar.mvfr0 = u;
1943 }
1944
1945 if (!cpu->has_vfp) {
1946 uint64_t t;
1947 uint32_t u;
1948
1949 t = cpu->isar.id_aa64isar1;
1950 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1951 cpu->isar.id_aa64isar1 = t;
1952
1953 t = cpu->isar.id_aa64pfr0;
1954 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1955 cpu->isar.id_aa64pfr0 = t;
1956
1957 u = cpu->isar.id_isar6;
1958 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1959 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1960 cpu->isar.id_isar6 = u;
1961
1962 u = cpu->isar.mvfr0;
1963 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1964 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1965 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1966 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1967 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1968 if (!arm_feature(env, ARM_FEATURE_M)) {
1969 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1970 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1971 }
1972 cpu->isar.mvfr0 = u;
1973
1974 u = cpu->isar.mvfr1;
1975 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1976 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1977 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1978 if (arm_feature(env, ARM_FEATURE_M)) {
1979 u = FIELD_DP32(u, MVFR1, FP16, 0);
1980 }
1981 cpu->isar.mvfr1 = u;
1982
1983 u = cpu->isar.mvfr2;
1984 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1985 cpu->isar.mvfr2 = u;
1986 }
1987
1988 if (!cpu->has_neon) {
1989 uint64_t t;
1990 uint32_t u;
1991
1992 unset_feature(env, ARM_FEATURE_NEON);
1993
1994 t = cpu->isar.id_aa64isar0;
1995 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1996 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1997 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1998 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1999 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
2000 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
2001 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
2002 cpu->isar.id_aa64isar0 = t;
2003
2004 t = cpu->isar.id_aa64isar1;
2005 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
2006 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
2007 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
2008 cpu->isar.id_aa64isar1 = t;
2009
2010 t = cpu->isar.id_aa64pfr0;
2011 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
2012 cpu->isar.id_aa64pfr0 = t;
2013
2014 u = cpu->isar.id_isar5;
2015 u = FIELD_DP32(u, ID_ISAR5, AES, 0);
2016 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
2017 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
2018 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
2019 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
2020 cpu->isar.id_isar5 = u;
2021
2022 u = cpu->isar.id_isar6;
2023 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2024 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2025 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2026 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2027 cpu->isar.id_isar6 = u;
2028
2029 if (!arm_feature(env, ARM_FEATURE_M)) {
2030 u = cpu->isar.mvfr1;
2031 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2032 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2033 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2034 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2035 cpu->isar.mvfr1 = u;
2036
2037 u = cpu->isar.mvfr2;
2038 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2039 cpu->isar.mvfr2 = u;
2040 }
2041 }
2042
2043 if (!cpu->has_neon && !cpu->has_vfp) {
2044 uint64_t t;
2045 uint32_t u;
2046
2047 t = cpu->isar.id_aa64isar0;
2048 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2049 cpu->isar.id_aa64isar0 = t;
2050
2051 t = cpu->isar.id_aa64isar1;
2052 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2053 cpu->isar.id_aa64isar1 = t;
2054
2055 u = cpu->isar.mvfr0;
2056 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2057 cpu->isar.mvfr0 = u;
2058
2059 /* Despite the name, this field covers both VFP and Neon */
2060 u = cpu->isar.mvfr1;
2061 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2062 cpu->isar.mvfr1 = u;
2063 }
2064
2065 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2066 uint32_t u;
2067
2068 unset_feature(env, ARM_FEATURE_THUMB_DSP);
2069
2070 u = cpu->isar.id_isar1;
2071 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2072 cpu->isar.id_isar1 = u;
2073
2074 u = cpu->isar.id_isar2;
2075 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2076 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2077 cpu->isar.id_isar2 = u;
2078
2079 u = cpu->isar.id_isar3;
2080 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2081 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2082 cpu->isar.id_isar3 = u;
2083 }
2084
2085
2086 /*
2087 * We rely on no XScale CPU having VFP so we can use the same bits in the
2088 * TB flags field for VECSTRIDE and XSCALE_CPAR.
2089 */
2090 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
2091 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2092 !arm_feature(env, ARM_FEATURE_XSCALE));
2093
2094 if (arm_feature(env, ARM_FEATURE_V7) &&
2095 !arm_feature(env, ARM_FEATURE_M) &&
2096 !arm_feature(env, ARM_FEATURE_PMSA)) {
2097 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
2098 * can use 4K pages.
2099 */
2100 pagebits = 12;
2101 } else {
2102 /* For CPUs which might have tiny 1K pages, or which have an
2103 * MPU and might have small region sizes, stick with 1K pages.
2104 */
2105 pagebits = 10;
2106 }
2107 if (!set_preferred_target_page_bits(pagebits)) {
2108 /* This can only ever happen for hotplugging a CPU, or if
2109 * the board code incorrectly creates a CPU which it has
2110 * promised via minimum_page_size that it will not.
2111 */
2112 error_setg(errp, "This CPU requires a smaller page size than the "
2113 "system is using");
2114 return;
2115 }
2116
2117 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2118 * We don't support setting cluster ID ([16..23]) (known as Aff2
2119 * in later ARM ARM versions), or any of the higher affinity level fields,
2120 * so these bits always RAZ.
2121 */
2122 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2123 cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index,
2124 ARM_DEFAULT_CPUS_PER_CLUSTER);
2125 }
2126
2127 if (cpu->reset_hivecs) {
2128 cpu->reset_sctlr |= (1 << 13);
2129 }
2130
2131 if (cpu->cfgend) {
2132 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
2133 cpu->reset_sctlr |= SCTLR_EE;
2134 } else {
2135 cpu->reset_sctlr |= SCTLR_B;
2136 }
2137 }
2138
2139 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2140 /* If the has_el3 CPU property is disabled then we need to disable the
2141 * feature.
2142 */
2143 unset_feature(env, ARM_FEATURE_EL3);
2144
2145 /*
2146 * Disable the security extension feature bits in the processor
2147 * feature registers as well.
2148 */
2149 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2150 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2151 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2152 ID_AA64PFR0, EL3, 0);
2153
2154 /* Disable the realm management extension, which requires EL3. */
2155 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2156 ID_AA64PFR0, RME, 0);
2157 }
2158
2159 if (!cpu->has_el2) {
2160 unset_feature(env, ARM_FEATURE_EL2);
2161 }
2162
2163 if (!cpu->has_pmu) {
2164 unset_feature(env, ARM_FEATURE_PMU);
2165 }
2166 if (arm_feature(env, ARM_FEATURE_PMU)) {
2167 pmu_init(cpu);
2168
2169 if (!kvm_enabled()) {
2170 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2171 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2172 }
2173
2174 #ifndef CONFIG_USER_ONLY
2175 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2176 cpu);
2177 #endif
2178 } else {
2179 cpu->isar.id_aa64dfr0 =
2180 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2181 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2182 cpu->pmceid0 = 0;
2183 cpu->pmceid1 = 0;
2184 }
2185
2186 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2187 /*
2188 * Disable the hypervisor feature bits in the processor feature
2189 * registers if we don't have EL2.
2190 */
2191 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2192 ID_AA64PFR0, EL2, 0);
2193 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2194 ID_PFR1, VIRTUALIZATION, 0);
2195 }
2196
2197 if (cpu_isar_feature(aa64_mte, cpu)) {
2198 /*
2199 * The architectural range of GM blocksize is 2-6, however qemu
2200 * doesn't support blocksize of 2 (see HELPER(ldgm)).
2201 */
2202 if (tcg_enabled()) {
2203 assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2204 }
2205
2206 #ifndef CONFIG_USER_ONLY
2207 /*
2208 * If we do not have tag-memory provided by the machine,
2209 * reduce MTE support to instructions enabled at EL0.
2210 * This matches Cortex-A710 BROADCASTMTE input being LOW.
2211 */
2212 if (cpu->tag_memory == NULL) {
2213 cpu->isar.id_aa64pfr1 =
2214 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2215 }
2216 #endif
2217 }
2218
2219 if (tcg_enabled()) {
2220 /*
2221 * Don't report some architectural features in the ID registers
2222 * where TCG does not yet implement it (not even a minimal
2223 * stub version). This avoids guests falling over when they
2224 * try to access the non-existent system registers for them.
2225 */
2226 /* FEAT_SPE (Statistical Profiling Extension) */
2227 cpu->isar.id_aa64dfr0 =
2228 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2229 /* FEAT_TRBE (Trace Buffer Extension) */
2230 cpu->isar.id_aa64dfr0 =
2231 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2232 /* FEAT_TRF (Self-hosted Trace Extension) */
2233 cpu->isar.id_aa64dfr0 =
2234 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2235 cpu->isar.id_dfr0 =
2236 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2237 /* Trace Macrocell system register access */
2238 cpu->isar.id_aa64dfr0 =
2239 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2240 cpu->isar.id_dfr0 =
2241 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2242 /* Memory mapped trace */
2243 cpu->isar.id_dfr0 =
2244 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2245 /* FEAT_AMU (Activity Monitors Extension) */
2246 cpu->isar.id_aa64pfr0 =
2247 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2248 cpu->isar.id_pfr0 =
2249 FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2250 /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2251 cpu->isar.id_aa64pfr0 =
2252 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2253 }
2254
2255 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2256 * to false or by setting pmsav7-dregion to 0.
2257 */
2258 if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2259 cpu->has_mpu = false;
2260 cpu->pmsav7_dregion = 0;
2261 cpu->pmsav8r_hdregion = 0;
2262 }
2263
2264 if (arm_feature(env, ARM_FEATURE_PMSA) &&
2265 arm_feature(env, ARM_FEATURE_V7)) {
2266 uint32_t nr = cpu->pmsav7_dregion;
2267
2268 if (nr > 0xff) {
2269 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2270 return;
2271 }
2272
2273 if (nr) {
2274 if (arm_feature(env, ARM_FEATURE_V8)) {
2275 /* PMSAv8 */
2276 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2277 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2278 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2279 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2280 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2281 }
2282 } else {
2283 env->pmsav7.drbar = g_new0(uint32_t, nr);
2284 env->pmsav7.drsr = g_new0(uint32_t, nr);
2285 env->pmsav7.dracr = g_new0(uint32_t, nr);
2286 }
2287 }
2288
2289 if (cpu->pmsav8r_hdregion > 0xff) {
2290 error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2291 cpu->pmsav8r_hdregion);
2292 return;
2293 }
2294
2295 if (cpu->pmsav8r_hdregion) {
2296 env->pmsav8.hprbar = g_new0(uint32_t,
2297 cpu->pmsav8r_hdregion);
2298 env->pmsav8.hprlar = g_new0(uint32_t,
2299 cpu->pmsav8r_hdregion);
2300 }
2301 }
2302
2303 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2304 uint32_t nr = cpu->sau_sregion;
2305
2306 if (nr > 0xff) {
2307 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2308 return;
2309 }
2310
2311 if (nr) {
2312 env->sau.rbar = g_new0(uint32_t, nr);
2313 env->sau.rlar = g_new0(uint32_t, nr);
2314 }
2315 }
2316
2317 if (arm_feature(env, ARM_FEATURE_EL3)) {
2318 set_feature(env, ARM_FEATURE_VBAR);
2319 }
2320
2321 #ifndef CONFIG_USER_ONLY
2322 if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2323 arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2324 }
2325 #endif
2326
2327 register_cp_regs_for_features(cpu);
2328 arm_cpu_register_gdb_regs_for_features(cpu);
2329
2330 init_cpreg_list(cpu);
2331
2332 #ifndef CONFIG_USER_ONLY
2333 MachineState *ms = MACHINE(qdev_get_machine());
2334 unsigned int smp_cpus = ms->smp.cpus;
2335 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2336
2337 /*
2338 * We must set cs->num_ases to the final value before
2339 * the first call to cpu_address_space_init.
2340 */
2341 if (cpu->tag_memory != NULL) {
2342 cs->num_ases = 3 + has_secure;
2343 } else {
2344 cs->num_ases = 1 + has_secure;
2345 }
2346
2347 if (has_secure) {
2348 if (!cpu->secure_memory) {
2349 cpu->secure_memory = cs->memory;
2350 }
2351 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2352 cpu->secure_memory);
2353 }
2354
2355 if (cpu->tag_memory != NULL) {
2356 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2357 cpu->tag_memory);
2358 if (has_secure) {
2359 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2360 cpu->secure_tag_memory);
2361 }
2362 }
2363
2364 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2365
2366 /* No core_count specified, default to smp_cpus. */
2367 if (cpu->core_count == -1) {
2368 cpu->core_count = smp_cpus;
2369 }
2370 #endif
2371
2372 if (tcg_enabled()) {
2373 int dcz_blocklen = 4 << cpu->dcz_blocksize;
2374
2375 /*
2376 * We only support DCZ blocklen that fits on one page.
2377 *
2378 * Architectually this is always true. However TARGET_PAGE_SIZE
2379 * is variable and, for compatibility with -machine virt-2.7,
2380 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2381 * But even then, while the largest architectural DCZ blocklen
2382 * is 2KiB, no cpu actually uses such a large blocklen.
2383 */
2384 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2385
2386 /*
2387 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2388 * both nibbles of each byte storing tag data may be written at once.
2389 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2390 */
2391 if (cpu_isar_feature(aa64_mte, cpu)) {
2392 assert(dcz_blocklen >= 2 * TAG_GRANULE);
2393 }
2394 }
2395
2396 qemu_init_vcpu(cs);
2397 cpu_reset(cs);
2398
2399 acc->parent_realize(dev, errp);
2400 }
2401
2402 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2403 {
2404 ObjectClass *oc;
2405 char *typename;
2406 char **cpuname;
2407 const char *cpunamestr;
2408
2409 cpuname = g_strsplit(cpu_model, ",", 1);
2410 cpunamestr = cpuname[0];
2411 #ifdef CONFIG_USER_ONLY
2412 /* For backwards compatibility usermode emulation allows "-cpu any",
2413 * which has the same semantics as "-cpu max".
2414 */
2415 if (!strcmp(cpunamestr, "any")) {
2416 cpunamestr = "max";
2417 }
2418 #endif
2419 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2420 oc = object_class_by_name(typename);
2421 g_strfreev(cpuname);
2422 g_free(typename);
2423
2424 return oc;
2425 }
2426
2427 static Property arm_cpu_properties[] = {
2428 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2429 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2430 mp_affinity, ARM64_AFFINITY_INVALID),
2431 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2432 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2433 DEFINE_PROP_END_OF_LIST()
2434 };
2435
2436 static const gchar *arm_gdb_arch_name(CPUState *cs)
2437 {
2438 ARMCPU *cpu = ARM_CPU(cs);
2439 CPUARMState *env = &cpu->env;
2440
2441 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2442 return "iwmmxt";
2443 }
2444 return "arm";
2445 }
2446
2447 #ifndef CONFIG_USER_ONLY
2448 #include "hw/core/sysemu-cpu-ops.h"
2449
2450 static const struct SysemuCPUOps arm_sysemu_ops = {
2451 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2452 .asidx_from_attrs = arm_asidx_from_attrs,
2453 .write_elf32_note = arm_cpu_write_elf32_note,
2454 .write_elf64_note = arm_cpu_write_elf64_note,
2455 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2456 .legacy_vmsd = &vmstate_arm_cpu,
2457 };
2458 #endif
2459
2460 #ifdef CONFIG_TCG
2461 static const struct TCGCPUOps arm_tcg_ops = {
2462 .initialize = arm_translate_init,
2463 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2464 .debug_excp_handler = arm_debug_excp_handler,
2465 .restore_state_to_opc = arm_restore_state_to_opc,
2466
2467 #ifdef CONFIG_USER_ONLY
2468 .record_sigsegv = arm_cpu_record_sigsegv,
2469 .record_sigbus = arm_cpu_record_sigbus,
2470 #else
2471 .tlb_fill = arm_cpu_tlb_fill,
2472 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2473 .do_interrupt = arm_cpu_do_interrupt,
2474 .do_transaction_failed = arm_cpu_do_transaction_failed,
2475 .do_unaligned_access = arm_cpu_do_unaligned_access,
2476 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2477 .debug_check_watchpoint = arm_debug_check_watchpoint,
2478 .debug_check_breakpoint = arm_debug_check_breakpoint,
2479 #endif /* !CONFIG_USER_ONLY */
2480 };
2481 #endif /* CONFIG_TCG */
2482
2483 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2484 {
2485 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2486 CPUClass *cc = CPU_CLASS(acc);
2487 DeviceClass *dc = DEVICE_CLASS(oc);
2488 ResettableClass *rc = RESETTABLE_CLASS(oc);
2489
2490 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2491 &acc->parent_realize);
2492
2493 device_class_set_props(dc, arm_cpu_properties);
2494
2495 resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2496 &acc->parent_phases);
2497
2498 cc->class_by_name = arm_cpu_class_by_name;
2499 cc->has_work = arm_cpu_has_work;
2500 cc->dump_state = arm_cpu_dump_state;
2501 cc->set_pc = arm_cpu_set_pc;
2502 cc->get_pc = arm_cpu_get_pc;
2503 cc->gdb_read_register = arm_cpu_gdb_read_register;
2504 cc->gdb_write_register = arm_cpu_gdb_write_register;
2505 #ifndef CONFIG_USER_ONLY
2506 cc->sysemu_ops = &arm_sysemu_ops;
2507 #endif
2508 cc->gdb_num_core_regs = 26;
2509 cc->gdb_arch_name = arm_gdb_arch_name;
2510 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2511 cc->gdb_stop_before_watchpoint = true;
2512 cc->disas_set_info = arm_disas_set_info;
2513
2514 #ifdef CONFIG_TCG
2515 cc->tcg_ops = &arm_tcg_ops;
2516 #endif /* CONFIG_TCG */
2517 }
2518
2519 static void arm_cpu_instance_init(Object *obj)
2520 {
2521 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2522
2523 acc->info->initfn(obj);
2524 arm_cpu_post_init(obj);
2525 }
2526
2527 static void cpu_register_class_init(ObjectClass *oc, void *data)
2528 {
2529 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2530 CPUClass *cc = CPU_CLASS(acc);
2531
2532 acc->info = data;
2533 cc->gdb_core_xml_file = "arm-core.xml";
2534 }
2535
2536 void arm_cpu_register(const ARMCPUInfo *info)
2537 {
2538 TypeInfo type_info = {
2539 .parent = TYPE_ARM_CPU,
2540 .instance_init = arm_cpu_instance_init,
2541 .class_init = info->class_init ?: cpu_register_class_init,
2542 .class_data = (void *)info,
2543 };
2544
2545 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2546 type_register(&type_info);
2547 g_free((void *)type_info.name);
2548 }
2549
2550 static const TypeInfo arm_cpu_type_info = {
2551 .name = TYPE_ARM_CPU,
2552 .parent = TYPE_CPU,
2553 .instance_size = sizeof(ARMCPU),
2554 .instance_align = __alignof__(ARMCPU),
2555 .instance_init = arm_cpu_initfn,
2556 .instance_finalize = arm_cpu_finalizefn,
2557 .abstract = true,
2558 .class_size = sizeof(ARMCPUClass),
2559 .class_init = arm_cpu_class_init,
2560 };
2561
2562 static void arm_cpu_register_types(void)
2563 {
2564 type_register_static(&arm_cpu_type_info);
2565 }
2566
2567 type_init(arm_cpu_register_types)