]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/helper.c
target/arm: Move GTimer definitions to new 'gtimer.h' header
[mirror_qemu.git] / target / arm / helper.c
1 /*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33 #include "target/arm/gtimer.h"
34
35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
36
37 static void switch_mode(CPUARMState *env, int mode);
38
39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
40 {
41 assert(ri->fieldoffset);
42 if (cpreg_field_is_64bit(ri)) {
43 return CPREG_FIELD64(env, ri);
44 } else {
45 return CPREG_FIELD32(env, ri);
46 }
47 }
48
49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
50 {
51 assert(ri->fieldoffset);
52 if (cpreg_field_is_64bit(ri)) {
53 CPREG_FIELD64(env, ri) = value;
54 } else {
55 CPREG_FIELD32(env, ri) = value;
56 }
57 }
58
59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
60 {
61 return (char *)env + ri->fieldoffset;
62 }
63
64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
65 {
66 /* Raw read of a coprocessor register (as needed for migration, etc). */
67 if (ri->type & ARM_CP_CONST) {
68 return ri->resetvalue;
69 } else if (ri->raw_readfn) {
70 return ri->raw_readfn(env, ri);
71 } else if (ri->readfn) {
72 return ri->readfn(env, ri);
73 } else {
74 return raw_read(env, ri);
75 }
76 }
77
78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
79 uint64_t v)
80 {
81 /*
82 * Raw write of a coprocessor register (as needed for migration, etc).
83 * Note that constant registers are treated as write-ignored; the
84 * caller should check for success by whether a readback gives the
85 * value written.
86 */
87 if (ri->type & ARM_CP_CONST) {
88 return;
89 } else if (ri->raw_writefn) {
90 ri->raw_writefn(env, ri, v);
91 } else if (ri->writefn) {
92 ri->writefn(env, ri, v);
93 } else {
94 raw_write(env, ri, v);
95 }
96 }
97
98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
99 {
100 /*
101 * Return true if the regdef would cause an assertion if you called
102 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
103 * program bug for it not to have the NO_RAW flag).
104 * NB that returning false here doesn't necessarily mean that calling
105 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
106 * read/write access functions which are safe for raw use" from "has
107 * read/write access functions which have side effects but has forgotten
108 * to provide raw access functions".
109 * The tests here line up with the conditions in read/write_raw_cp_reg()
110 * and assertions in raw_read()/raw_write().
111 */
112 if ((ri->type & ARM_CP_CONST) ||
113 ri->fieldoffset ||
114 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
115 return false;
116 }
117 return true;
118 }
119
120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
121 {
122 /* Write the coprocessor state from cpu->env to the (index,value) list. */
123 int i;
124 bool ok = true;
125
126 for (i = 0; i < cpu->cpreg_array_len; i++) {
127 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
128 const ARMCPRegInfo *ri;
129 uint64_t newval;
130
131 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
132 if (!ri) {
133 ok = false;
134 continue;
135 }
136 if (ri->type & ARM_CP_NO_RAW) {
137 continue;
138 }
139
140 newval = read_raw_cp_reg(&cpu->env, ri);
141 if (kvm_sync) {
142 /*
143 * Only sync if the previous list->cpustate sync succeeded.
144 * Rather than tracking the success/failure state for every
145 * item in the list, we just recheck "does the raw write we must
146 * have made in write_list_to_cpustate() read back OK" here.
147 */
148 uint64_t oldval = cpu->cpreg_values[i];
149
150 if (oldval == newval) {
151 continue;
152 }
153
154 write_raw_cp_reg(&cpu->env, ri, oldval);
155 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
156 continue;
157 }
158
159 write_raw_cp_reg(&cpu->env, ri, newval);
160 }
161 cpu->cpreg_values[i] = newval;
162 }
163 return ok;
164 }
165
166 bool write_list_to_cpustate(ARMCPU *cpu)
167 {
168 int i;
169 bool ok = true;
170
171 for (i = 0; i < cpu->cpreg_array_len; i++) {
172 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
173 uint64_t v = cpu->cpreg_values[i];
174 const ARMCPRegInfo *ri;
175
176 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
177 if (!ri) {
178 ok = false;
179 continue;
180 }
181 if (ri->type & ARM_CP_NO_RAW) {
182 continue;
183 }
184 /*
185 * Write value and confirm it reads back as written
186 * (to catch read-only registers and partially read-only
187 * registers where the incoming migration value doesn't match)
188 */
189 write_raw_cp_reg(&cpu->env, ri, v);
190 if (read_raw_cp_reg(&cpu->env, ri) != v) {
191 ok = false;
192 }
193 }
194 return ok;
195 }
196
197 static void add_cpreg_to_list(gpointer key, gpointer opaque)
198 {
199 ARMCPU *cpu = opaque;
200 uint32_t regidx = (uintptr_t)key;
201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
202
203 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
204 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
205 /* The value array need not be initialized at this point */
206 cpu->cpreg_array_len++;
207 }
208 }
209
210 static void count_cpreg(gpointer key, gpointer opaque)
211 {
212 ARMCPU *cpu = opaque;
213 const ARMCPRegInfo *ri;
214
215 ri = g_hash_table_lookup(cpu->cp_regs, key);
216
217 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
218 cpu->cpreg_array_len++;
219 }
220 }
221
222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
223 {
224 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
225 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
226
227 if (aidx > bidx) {
228 return 1;
229 }
230 if (aidx < bidx) {
231 return -1;
232 }
233 return 0;
234 }
235
236 void init_cpreg_list(ARMCPU *cpu)
237 {
238 /*
239 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
240 * Note that we require cpreg_tuples[] to be sorted by key ID.
241 */
242 GList *keys;
243 int arraylen;
244
245 keys = g_hash_table_get_keys(cpu->cp_regs);
246 keys = g_list_sort(keys, cpreg_key_compare);
247
248 cpu->cpreg_array_len = 0;
249
250 g_list_foreach(keys, count_cpreg, cpu);
251
252 arraylen = cpu->cpreg_array_len;
253 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
254 cpu->cpreg_values = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
257 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
258 cpu->cpreg_array_len = 0;
259
260 g_list_foreach(keys, add_cpreg_to_list, cpu);
261
262 assert(cpu->cpreg_array_len == arraylen);
263
264 g_list_free(keys);
265 }
266
267 static bool arm_pan_enabled(CPUARMState *env)
268 {
269 if (is_a64(env)) {
270 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
271 return false;
272 }
273 return env->pstate & PSTATE_PAN;
274 } else {
275 return env->uncached_cpsr & CPSR_PAN;
276 }
277 }
278
279 /*
280 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
281 */
282 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
283 const ARMCPRegInfo *ri,
284 bool isread)
285 {
286 if (!is_a64(env) && arm_current_el(env) == 3 &&
287 arm_is_secure_below_el3(env)) {
288 return CP_ACCESS_TRAP_UNCATEGORIZED;
289 }
290 return CP_ACCESS_OK;
291 }
292
293 /*
294 * Some secure-only AArch32 registers trap to EL3 if used from
295 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
296 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
297 * We assume that the .access field is set to PL1_RW.
298 */
299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
300 const ARMCPRegInfo *ri,
301 bool isread)
302 {
303 if (arm_current_el(env) == 3) {
304 return CP_ACCESS_OK;
305 }
306 if (arm_is_secure_below_el3(env)) {
307 if (env->cp15.scr_el3 & SCR_EEL2) {
308 return CP_ACCESS_TRAP_EL2;
309 }
310 return CP_ACCESS_TRAP_EL3;
311 }
312 /* This will be EL1 NS and EL2 NS, which just UNDEF */
313 return CP_ACCESS_TRAP_UNCATEGORIZED;
314 }
315
316 /*
317 * Check for traps to performance monitor registers, which are controlled
318 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
319 */
320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
321 bool isread)
322 {
323 int el = arm_current_el(env);
324 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
325
326 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
327 return CP_ACCESS_TRAP_EL2;
328 }
329 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
330 return CP_ACCESS_TRAP_EL3;
331 }
332 return CP_ACCESS_OK;
333 }
334
335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
337 bool isread)
338 {
339 if (arm_current_el(env) == 1) {
340 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
341 if (arm_hcr_el2_eff(env) & trap) {
342 return CP_ACCESS_TRAP_EL2;
343 }
344 }
345 return CP_ACCESS_OK;
346 }
347
348 /* Check for traps from EL1 due to HCR_EL2.TSW. */
349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
350 bool isread)
351 {
352 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
353 return CP_ACCESS_TRAP_EL2;
354 }
355 return CP_ACCESS_OK;
356 }
357
358 /* Check for traps from EL1 due to HCR_EL2.TACR. */
359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
360 bool isread)
361 {
362 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
363 return CP_ACCESS_TRAP_EL2;
364 }
365 return CP_ACCESS_OK;
366 }
367
368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
370 bool isread)
371 {
372 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
373 return CP_ACCESS_TRAP_EL2;
374 }
375 return CP_ACCESS_OK;
376 }
377
378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
380 bool isread)
381 {
382 if (arm_current_el(env) == 1 &&
383 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
384 return CP_ACCESS_TRAP_EL2;
385 }
386 return CP_ACCESS_OK;
387 }
388
389 #ifdef TARGET_AARCH64
390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
392 bool isread)
393 {
394 if (arm_current_el(env) == 1 &&
395 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
396 return CP_ACCESS_TRAP_EL2;
397 }
398 return CP_ACCESS_OK;
399 }
400 #endif
401
402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
403 {
404 ARMCPU *cpu = env_archcpu(env);
405
406 raw_write(env, ri, value);
407 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
408 }
409
410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
411 {
412 ARMCPU *cpu = env_archcpu(env);
413
414 if (raw_read(env, ri) != value) {
415 /*
416 * Unlike real hardware the qemu TLB uses virtual addresses,
417 * not modified virtual addresses, so this causes a TLB flush.
418 */
419 tlb_flush(CPU(cpu));
420 raw_write(env, ri, value);
421 }
422 }
423
424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
425 uint64_t value)
426 {
427 ARMCPU *cpu = env_archcpu(env);
428
429 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
430 && !extended_addresses_enabled(env)) {
431 /*
432 * For VMSA (when not using the LPAE long descriptor page table
433 * format) this register includes the ASID, so do a TLB flush.
434 * For PMSA it is purely a process ID and no action is needed.
435 */
436 tlb_flush(CPU(cpu));
437 }
438 raw_write(env, ri, value);
439 }
440
441 static int alle1_tlbmask(CPUARMState *env)
442 {
443 /*
444 * Note that the 'ALL' scope must invalidate both stage 1 and
445 * stage 2 translations, whereas most other scopes only invalidate
446 * stage 1 translations.
447 */
448 return (ARMMMUIdxBit_E10_1 |
449 ARMMMUIdxBit_E10_1_PAN |
450 ARMMMUIdxBit_E10_0 |
451 ARMMMUIdxBit_Stage2 |
452 ARMMMUIdxBit_Stage2_S);
453 }
454
455
456 /* IS variants of TLB operations must affect all cores */
457 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
458 uint64_t value)
459 {
460 CPUState *cs = env_cpu(env);
461
462 tlb_flush_all_cpus_synced(cs);
463 }
464
465 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
466 uint64_t value)
467 {
468 CPUState *cs = env_cpu(env);
469
470 tlb_flush_all_cpus_synced(cs);
471 }
472
473 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
474 uint64_t value)
475 {
476 CPUState *cs = env_cpu(env);
477
478 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
479 }
480
481 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
482 uint64_t value)
483 {
484 CPUState *cs = env_cpu(env);
485
486 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
487 }
488
489 /*
490 * Non-IS variants of TLB operations are upgraded to
491 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
492 * force broadcast of these operations.
493 */
494 static bool tlb_force_broadcast(CPUARMState *env)
495 {
496 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
497 }
498
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
501 {
502 /* Invalidate all (TLBIALL) */
503 CPUState *cs = env_cpu(env);
504
505 if (tlb_force_broadcast(env)) {
506 tlb_flush_all_cpus_synced(cs);
507 } else {
508 tlb_flush(cs);
509 }
510 }
511
512 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 uint64_t value)
514 {
515 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
516 CPUState *cs = env_cpu(env);
517
518 value &= TARGET_PAGE_MASK;
519 if (tlb_force_broadcast(env)) {
520 tlb_flush_page_all_cpus_synced(cs, value);
521 } else {
522 tlb_flush_page(cs, value);
523 }
524 }
525
526 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
528 {
529 /* Invalidate by ASID (TLBIASID) */
530 CPUState *cs = env_cpu(env);
531
532 if (tlb_force_broadcast(env)) {
533 tlb_flush_all_cpus_synced(cs);
534 } else {
535 tlb_flush(cs);
536 }
537 }
538
539 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
540 uint64_t value)
541 {
542 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
543 CPUState *cs = env_cpu(env);
544
545 value &= TARGET_PAGE_MASK;
546 if (tlb_force_broadcast(env)) {
547 tlb_flush_page_all_cpus_synced(cs, value);
548 } else {
549 tlb_flush_page(cs, value);
550 }
551 }
552
553 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
554 uint64_t value)
555 {
556 CPUState *cs = env_cpu(env);
557
558 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
559 }
560
561 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
562 uint64_t value)
563 {
564 CPUState *cs = env_cpu(env);
565
566 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
567 }
568
569
570 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
571 uint64_t value)
572 {
573 CPUState *cs = env_cpu(env);
574
575 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
576 }
577
578 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579 uint64_t value)
580 {
581 CPUState *cs = env_cpu(env);
582
583 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
584 }
585
586 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
587 uint64_t value)
588 {
589 CPUState *cs = env_cpu(env);
590 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
591
592 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
593 }
594
595 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
596 uint64_t value)
597 {
598 CPUState *cs = env_cpu(env);
599 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
600
601 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
602 ARMMMUIdxBit_E2);
603 }
604
605 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
606 uint64_t value)
607 {
608 CPUState *cs = env_cpu(env);
609 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
610
611 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
612 }
613
614 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
615 uint64_t value)
616 {
617 CPUState *cs = env_cpu(env);
618 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
619
620 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
621 }
622
623 static const ARMCPRegInfo cp_reginfo[] = {
624 /*
625 * Define the secure and non-secure FCSE identifier CP registers
626 * separately because there is no secure bank in V8 (no _EL3). This allows
627 * the secure register to be properly reset and migrated. There is also no
628 * v8 EL1 version of the register so the non-secure instance stands alone.
629 */
630 { .name = "FCSEIDR",
631 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
632 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
633 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
634 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
635 { .name = "FCSEIDR_S",
636 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
637 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
638 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
639 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
640 /*
641 * Define the secure and non-secure context identifier CP registers
642 * separately because there is no secure bank in V8 (no _EL3). This allows
643 * the secure register to be properly reset and migrated. In the
644 * non-secure case, the 32-bit register will have reset and migration
645 * disabled during registration as it is handled by the 64-bit instance.
646 */
647 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
648 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
649 .access = PL1_RW, .accessfn = access_tvm_trvm,
650 .fgt = FGT_CONTEXTIDR_EL1,
651 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
652 .secure = ARM_CP_SECSTATE_NS,
653 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
654 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
655 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
656 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
657 .access = PL1_RW, .accessfn = access_tvm_trvm,
658 .secure = ARM_CP_SECSTATE_S,
659 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
660 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
661 };
662
663 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
664 /*
665 * NB: Some of these registers exist in v8 but with more precise
666 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
667 */
668 /* MMU Domain access control / MPU write buffer control */
669 { .name = "DACR",
670 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
671 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
672 .writefn = dacr_write, .raw_writefn = raw_write,
673 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
674 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
675 /*
676 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
677 * For v6 and v5, these mappings are overly broad.
678 */
679 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
680 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
681 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
682 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
683 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
684 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
685 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
686 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
687 /* Cache maintenance ops; some of this space may be overridden later. */
688 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
689 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
690 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
691 };
692
693 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
694 /*
695 * Not all pre-v6 cores implemented this WFI, so this is slightly
696 * over-broad.
697 */
698 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
699 .access = PL1_W, .type = ARM_CP_WFI },
700 };
701
702 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
703 /*
704 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
705 * is UNPREDICTABLE; we choose to NOP as most implementations do).
706 */
707 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
708 .access = PL1_W, .type = ARM_CP_WFI },
709 /*
710 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
711 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
712 * OMAPCP will override this space.
713 */
714 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
715 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
716 .resetvalue = 0 },
717 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
718 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
719 .resetvalue = 0 },
720 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
721 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
722 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
723 .resetvalue = 0 },
724 /*
725 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
726 * implementing it as RAZ means the "debug architecture version" bits
727 * will read as a reserved value, which should cause Linux to not try
728 * to use the debug hardware.
729 */
730 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
731 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
732 /*
733 * MMU TLB control. Note that the wildcarding means we cover not just
734 * the unified TLB ops but also the dside/iside/inner-shareable variants.
735 */
736 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
737 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
738 .type = ARM_CP_NO_RAW },
739 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
740 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
741 .type = ARM_CP_NO_RAW },
742 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
743 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
744 .type = ARM_CP_NO_RAW },
745 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
746 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
747 .type = ARM_CP_NO_RAW },
748 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
749 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
750 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
751 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
752 };
753
754 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
755 uint64_t value)
756 {
757 uint32_t mask = 0;
758
759 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
760 if (!arm_feature(env, ARM_FEATURE_V8)) {
761 /*
762 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
763 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
764 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
765 */
766 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
767 /* VFP coprocessor: cp10 & cp11 [23:20] */
768 mask |= R_CPACR_ASEDIS_MASK |
769 R_CPACR_D32DIS_MASK |
770 R_CPACR_CP11_MASK |
771 R_CPACR_CP10_MASK;
772
773 if (!arm_feature(env, ARM_FEATURE_NEON)) {
774 /* ASEDIS [31] bit is RAO/WI */
775 value |= R_CPACR_ASEDIS_MASK;
776 }
777
778 /*
779 * VFPv3 and upwards with NEON implement 32 double precision
780 * registers (D0-D31).
781 */
782 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
783 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
784 value |= R_CPACR_D32DIS_MASK;
785 }
786 }
787 value &= mask;
788 }
789
790 /*
791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
793 */
794 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
795 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
796 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
797 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
798 }
799
800 env->cp15.cpacr_el1 = value;
801 }
802
803 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
804 {
805 /*
806 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
807 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
808 */
809 uint64_t value = env->cp15.cpacr_el1;
810
811 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
812 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
813 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
814 }
815 return value;
816 }
817
818
819 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
820 {
821 /*
822 * Call cpacr_write() so that we reset with the correct RAO bits set
823 * for our CPU features.
824 */
825 cpacr_write(env, ri, 0);
826 }
827
828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
829 bool isread)
830 {
831 if (arm_feature(env, ARM_FEATURE_V8)) {
832 /* Check if CPACR accesses are to be trapped to EL2 */
833 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
834 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
835 return CP_ACCESS_TRAP_EL2;
836 /* Check if CPACR accesses are to be trapped to EL3 */
837 } else if (arm_current_el(env) < 3 &&
838 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
839 return CP_ACCESS_TRAP_EL3;
840 }
841 }
842
843 return CP_ACCESS_OK;
844 }
845
846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
847 bool isread)
848 {
849 /* Check if CPTR accesses are set to trap to EL3 */
850 if (arm_current_el(env) == 2 &&
851 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
852 return CP_ACCESS_TRAP_EL3;
853 }
854
855 return CP_ACCESS_OK;
856 }
857
858 static const ARMCPRegInfo v6_cp_reginfo[] = {
859 /* prefetch by MVA in v6, NOP in v7 */
860 { .name = "MVA_prefetch",
861 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
862 .access = PL1_W, .type = ARM_CP_NOP },
863 /*
864 * We need to break the TB after ISB to execute self-modifying code
865 * correctly and also to take any pending interrupts immediately.
866 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
867 */
868 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
869 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
870 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
871 .access = PL0_W, .type = ARM_CP_NOP },
872 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
873 .access = PL0_W, .type = ARM_CP_NOP },
874 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
875 .access = PL1_RW, .accessfn = access_tvm_trvm,
876 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
877 offsetof(CPUARMState, cp15.ifar_ns) },
878 .resetvalue = 0, },
879 /*
880 * Watchpoint Fault Address Register : should actually only be present
881 * for 1136, 1176, 11MPCore.
882 */
883 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
884 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
885 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
886 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
887 .fgt = FGT_CPACR_EL1,
888 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
889 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
890 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
891 };
892
893 typedef struct pm_event {
894 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
895 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
896 bool (*supported)(CPUARMState *);
897 /*
898 * Retrieve the current count of the underlying event. The programmed
899 * counters hold a difference from the return value from this function
900 */
901 uint64_t (*get_count)(CPUARMState *);
902 /*
903 * Return how many nanoseconds it will take (at a minimum) for count events
904 * to occur. A negative value indicates the counter will never overflow, or
905 * that the counter has otherwise arranged for the overflow bit to be set
906 * and the PMU interrupt to be raised on overflow.
907 */
908 int64_t (*ns_per_count)(uint64_t);
909 } pm_event;
910
911 static bool event_always_supported(CPUARMState *env)
912 {
913 return true;
914 }
915
916 static uint64_t swinc_get_count(CPUARMState *env)
917 {
918 /*
919 * SW_INCR events are written directly to the pmevcntr's by writes to
920 * PMSWINC, so there is no underlying count maintained by the PMU itself
921 */
922 return 0;
923 }
924
925 static int64_t swinc_ns_per(uint64_t ignored)
926 {
927 return -1;
928 }
929
930 /*
931 * Return the underlying cycle count for the PMU cycle counters. If we're in
932 * usermode, simply return 0.
933 */
934 static uint64_t cycles_get_count(CPUARMState *env)
935 {
936 #ifndef CONFIG_USER_ONLY
937 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
938 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
939 #else
940 return cpu_get_host_ticks();
941 #endif
942 }
943
944 #ifndef CONFIG_USER_ONLY
945 static int64_t cycles_ns_per(uint64_t cycles)
946 {
947 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
948 }
949
950 static bool instructions_supported(CPUARMState *env)
951 {
952 /* Precise instruction counting */
953 return icount_enabled() == ICOUNT_PRECISE;
954 }
955
956 static uint64_t instructions_get_count(CPUARMState *env)
957 {
958 assert(icount_enabled() == ICOUNT_PRECISE);
959 return (uint64_t)icount_get_raw();
960 }
961
962 static int64_t instructions_ns_per(uint64_t icount)
963 {
964 assert(icount_enabled() == ICOUNT_PRECISE);
965 return icount_to_ns((int64_t)icount);
966 }
967 #endif
968
969 static bool pmuv3p1_events_supported(CPUARMState *env)
970 {
971 /* For events which are supported in any v8.1 PMU */
972 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
973 }
974
975 static bool pmuv3p4_events_supported(CPUARMState *env)
976 {
977 /* For events which are supported in any v8.1 PMU */
978 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
979 }
980
981 static uint64_t zero_event_get_count(CPUARMState *env)
982 {
983 /* For events which on QEMU never fire, so their count is always zero */
984 return 0;
985 }
986
987 static int64_t zero_event_ns_per(uint64_t cycles)
988 {
989 /* An event which never fires can never overflow */
990 return -1;
991 }
992
993 static const pm_event pm_events[] = {
994 { .number = 0x000, /* SW_INCR */
995 .supported = event_always_supported,
996 .get_count = swinc_get_count,
997 .ns_per_count = swinc_ns_per,
998 },
999 #ifndef CONFIG_USER_ONLY
1000 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1001 .supported = instructions_supported,
1002 .get_count = instructions_get_count,
1003 .ns_per_count = instructions_ns_per,
1004 },
1005 { .number = 0x011, /* CPU_CYCLES, Cycle */
1006 .supported = event_always_supported,
1007 .get_count = cycles_get_count,
1008 .ns_per_count = cycles_ns_per,
1009 },
1010 #endif
1011 { .number = 0x023, /* STALL_FRONTEND */
1012 .supported = pmuv3p1_events_supported,
1013 .get_count = zero_event_get_count,
1014 .ns_per_count = zero_event_ns_per,
1015 },
1016 { .number = 0x024, /* STALL_BACKEND */
1017 .supported = pmuv3p1_events_supported,
1018 .get_count = zero_event_get_count,
1019 .ns_per_count = zero_event_ns_per,
1020 },
1021 { .number = 0x03c, /* STALL */
1022 .supported = pmuv3p4_events_supported,
1023 .get_count = zero_event_get_count,
1024 .ns_per_count = zero_event_ns_per,
1025 },
1026 };
1027
1028 /*
1029 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1030 * events (i.e. the statistical profiling extension), this implementation
1031 * should first be updated to something sparse instead of the current
1032 * supported_event_map[] array.
1033 */
1034 #define MAX_EVENT_ID 0x3c
1035 #define UNSUPPORTED_EVENT UINT16_MAX
1036 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1037
1038 /*
1039 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1040 * of ARM event numbers to indices in our pm_events array.
1041 *
1042 * Note: Events in the 0x40XX range are not currently supported.
1043 */
1044 void pmu_init(ARMCPU *cpu)
1045 {
1046 unsigned int i;
1047
1048 /*
1049 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1050 * events to them
1051 */
1052 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1053 supported_event_map[i] = UNSUPPORTED_EVENT;
1054 }
1055 cpu->pmceid0 = 0;
1056 cpu->pmceid1 = 0;
1057
1058 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1059 const pm_event *cnt = &pm_events[i];
1060 assert(cnt->number <= MAX_EVENT_ID);
1061 /* We do not currently support events in the 0x40xx range */
1062 assert(cnt->number <= 0x3f);
1063
1064 if (cnt->supported(&cpu->env)) {
1065 supported_event_map[cnt->number] = i;
1066 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1067 if (cnt->number & 0x20) {
1068 cpu->pmceid1 |= event_mask;
1069 } else {
1070 cpu->pmceid0 |= event_mask;
1071 }
1072 }
1073 }
1074 }
1075
1076 /*
1077 * Check at runtime whether a PMU event is supported for the current machine
1078 */
1079 static bool event_supported(uint16_t number)
1080 {
1081 if (number > MAX_EVENT_ID) {
1082 return false;
1083 }
1084 return supported_event_map[number] != UNSUPPORTED_EVENT;
1085 }
1086
1087 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1088 bool isread)
1089 {
1090 /*
1091 * Performance monitor registers user accessibility is controlled
1092 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1093 * trapping to EL2 or EL3 for other accesses.
1094 */
1095 int el = arm_current_el(env);
1096 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1097
1098 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1099 return CP_ACCESS_TRAP;
1100 }
1101 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1102 return CP_ACCESS_TRAP_EL2;
1103 }
1104 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1105 return CP_ACCESS_TRAP_EL3;
1106 }
1107
1108 return CP_ACCESS_OK;
1109 }
1110
1111 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1112 const ARMCPRegInfo *ri,
1113 bool isread)
1114 {
1115 /* ER: event counter read trap control */
1116 if (arm_feature(env, ARM_FEATURE_V8)
1117 && arm_current_el(env) == 0
1118 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1119 && isread) {
1120 return CP_ACCESS_OK;
1121 }
1122
1123 return pmreg_access(env, ri, isread);
1124 }
1125
1126 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1127 const ARMCPRegInfo *ri,
1128 bool isread)
1129 {
1130 /* SW: software increment write trap control */
1131 if (arm_feature(env, ARM_FEATURE_V8)
1132 && arm_current_el(env) == 0
1133 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1134 && !isread) {
1135 return CP_ACCESS_OK;
1136 }
1137
1138 return pmreg_access(env, ri, isread);
1139 }
1140
1141 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1142 const ARMCPRegInfo *ri,
1143 bool isread)
1144 {
1145 /* ER: event counter read trap control */
1146 if (arm_feature(env, ARM_FEATURE_V8)
1147 && arm_current_el(env) == 0
1148 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1149 return CP_ACCESS_OK;
1150 }
1151
1152 return pmreg_access(env, ri, isread);
1153 }
1154
1155 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1156 const ARMCPRegInfo *ri,
1157 bool isread)
1158 {
1159 /* CR: cycle counter read trap control */
1160 if (arm_feature(env, ARM_FEATURE_V8)
1161 && arm_current_el(env) == 0
1162 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1163 && isread) {
1164 return CP_ACCESS_OK;
1165 }
1166
1167 return pmreg_access(env, ri, isread);
1168 }
1169
1170 /*
1171 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1172 * We use these to decide whether we need to wrap a write to MDCR_EL2
1173 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1174 */
1175 #define MDCR_EL2_PMU_ENABLE_BITS \
1176 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1177 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1178
1179 /*
1180 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1181 * the current EL, security state, and register configuration.
1182 */
1183 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1184 {
1185 uint64_t filter;
1186 bool e, p, u, nsk, nsu, nsh, m;
1187 bool enabled, prohibited = false, filtered;
1188 bool secure = arm_is_secure(env);
1189 int el = arm_current_el(env);
1190 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1191 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1192
1193 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1194 return false;
1195 }
1196
1197 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1198 (counter < hpmn || counter == 31)) {
1199 e = env->cp15.c9_pmcr & PMCRE;
1200 } else {
1201 e = mdcr_el2 & MDCR_HPME;
1202 }
1203 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1204
1205 /* Is event counting prohibited? */
1206 if (el == 2 && (counter < hpmn || counter == 31)) {
1207 prohibited = mdcr_el2 & MDCR_HPMD;
1208 }
1209 if (secure) {
1210 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1211 }
1212
1213 if (counter == 31) {
1214 /*
1215 * The cycle counter defaults to running. PMCR.DP says "disable
1216 * the cycle counter when event counting is prohibited".
1217 * Some MDCR bits disable the cycle counter specifically.
1218 */
1219 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1220 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1221 if (secure) {
1222 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1223 }
1224 if (el == 2) {
1225 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1226 }
1227 }
1228 }
1229
1230 if (counter == 31) {
1231 filter = env->cp15.pmccfiltr_el0;
1232 } else {
1233 filter = env->cp15.c14_pmevtyper[counter];
1234 }
1235
1236 p = filter & PMXEVTYPER_P;
1237 u = filter & PMXEVTYPER_U;
1238 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1239 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1240 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1241 m = arm_el_is_aa64(env, 1) &&
1242 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1243
1244 if (el == 0) {
1245 filtered = secure ? u : u != nsu;
1246 } else if (el == 1) {
1247 filtered = secure ? p : p != nsk;
1248 } else if (el == 2) {
1249 filtered = !nsh;
1250 } else { /* EL3 */
1251 filtered = m != p;
1252 }
1253
1254 if (counter != 31) {
1255 /*
1256 * If not checking PMCCNTR, ensure the counter is setup to an event we
1257 * support
1258 */
1259 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1260 if (!event_supported(event)) {
1261 return false;
1262 }
1263 }
1264
1265 return enabled && !prohibited && !filtered;
1266 }
1267
1268 static void pmu_update_irq(CPUARMState *env)
1269 {
1270 ARMCPU *cpu = env_archcpu(env);
1271 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1272 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1273 }
1274
1275 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1276 {
1277 /*
1278 * Return true if the clock divider is enabled and the cycle counter
1279 * is supposed to tick only once every 64 clock cycles. This is
1280 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1281 * (64-bit) cycle counter PMCR.D has no effect.
1282 */
1283 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1284 }
1285
1286 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1287 {
1288 /* Return true if the specified event counter is configured to be 64 bit */
1289
1290 /* This isn't intended to be used with the cycle counter */
1291 assert(counter < 31);
1292
1293 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1294 return false;
1295 }
1296
1297 if (arm_feature(env, ARM_FEATURE_EL2)) {
1298 /*
1299 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1300 * current security state, so we don't use arm_mdcr_el2_eff() here.
1301 */
1302 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1303 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1304
1305 if (counter >= hpmn) {
1306 return hlp;
1307 }
1308 }
1309 return env->cp15.c9_pmcr & PMCRLP;
1310 }
1311
1312 /*
1313 * Ensure c15_ccnt is the guest-visible count so that operations such as
1314 * enabling/disabling the counter or filtering, modifying the count itself,
1315 * etc. can be done logically. This is essentially a no-op if the counter is
1316 * not enabled at the time of the call.
1317 */
1318 static void pmccntr_op_start(CPUARMState *env)
1319 {
1320 uint64_t cycles = cycles_get_count(env);
1321
1322 if (pmu_counter_enabled(env, 31)) {
1323 uint64_t eff_cycles = cycles;
1324 if (pmccntr_clockdiv_enabled(env)) {
1325 eff_cycles /= 64;
1326 }
1327
1328 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1329
1330 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1331 1ull << 63 : 1ull << 31;
1332 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1333 env->cp15.c9_pmovsr |= (1ULL << 31);
1334 pmu_update_irq(env);
1335 }
1336
1337 env->cp15.c15_ccnt = new_pmccntr;
1338 }
1339 env->cp15.c15_ccnt_delta = cycles;
1340 }
1341
1342 /*
1343 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1344 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1345 * pmccntr_op_start.
1346 */
1347 static void pmccntr_op_finish(CPUARMState *env)
1348 {
1349 if (pmu_counter_enabled(env, 31)) {
1350 #ifndef CONFIG_USER_ONLY
1351 /* Calculate when the counter will next overflow */
1352 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1353 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1354 remaining_cycles = (uint32_t)remaining_cycles;
1355 }
1356 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1357
1358 if (overflow_in > 0) {
1359 int64_t overflow_at;
1360
1361 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1362 overflow_in, &overflow_at)) {
1363 ARMCPU *cpu = env_archcpu(env);
1364 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1365 }
1366 }
1367 #endif
1368
1369 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1370 if (pmccntr_clockdiv_enabled(env)) {
1371 prev_cycles /= 64;
1372 }
1373 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1374 }
1375 }
1376
1377 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1378 {
1379
1380 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1381 uint64_t count = 0;
1382 if (event_supported(event)) {
1383 uint16_t event_idx = supported_event_map[event];
1384 count = pm_events[event_idx].get_count(env);
1385 }
1386
1387 if (pmu_counter_enabled(env, counter)) {
1388 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1389 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1390 1ULL << 63 : 1ULL << 31;
1391
1392 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1393 env->cp15.c9_pmovsr |= (1 << counter);
1394 pmu_update_irq(env);
1395 }
1396 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1397 }
1398 env->cp15.c14_pmevcntr_delta[counter] = count;
1399 }
1400
1401 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1402 {
1403 if (pmu_counter_enabled(env, counter)) {
1404 #ifndef CONFIG_USER_ONLY
1405 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1406 uint16_t event_idx = supported_event_map[event];
1407 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1408 int64_t overflow_in;
1409
1410 if (!pmevcntr_is_64_bit(env, counter)) {
1411 delta = (uint32_t)delta;
1412 }
1413 overflow_in = pm_events[event_idx].ns_per_count(delta);
1414
1415 if (overflow_in > 0) {
1416 int64_t overflow_at;
1417
1418 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1419 overflow_in, &overflow_at)) {
1420 ARMCPU *cpu = env_archcpu(env);
1421 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1422 }
1423 }
1424 #endif
1425
1426 env->cp15.c14_pmevcntr_delta[counter] -=
1427 env->cp15.c14_pmevcntr[counter];
1428 }
1429 }
1430
1431 void pmu_op_start(CPUARMState *env)
1432 {
1433 unsigned int i;
1434 pmccntr_op_start(env);
1435 for (i = 0; i < pmu_num_counters(env); i++) {
1436 pmevcntr_op_start(env, i);
1437 }
1438 }
1439
1440 void pmu_op_finish(CPUARMState *env)
1441 {
1442 unsigned int i;
1443 pmccntr_op_finish(env);
1444 for (i = 0; i < pmu_num_counters(env); i++) {
1445 pmevcntr_op_finish(env, i);
1446 }
1447 }
1448
1449 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1450 {
1451 pmu_op_start(&cpu->env);
1452 }
1453
1454 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1455 {
1456 pmu_op_finish(&cpu->env);
1457 }
1458
1459 void arm_pmu_timer_cb(void *opaque)
1460 {
1461 ARMCPU *cpu = opaque;
1462
1463 /*
1464 * Update all the counter values based on the current underlying counts,
1465 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1466 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1467 * counter may expire.
1468 */
1469 pmu_op_start(&cpu->env);
1470 pmu_op_finish(&cpu->env);
1471 }
1472
1473 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1474 uint64_t value)
1475 {
1476 pmu_op_start(env);
1477
1478 if (value & PMCRC) {
1479 /* The counter has been reset */
1480 env->cp15.c15_ccnt = 0;
1481 }
1482
1483 if (value & PMCRP) {
1484 unsigned int i;
1485 for (i = 0; i < pmu_num_counters(env); i++) {
1486 env->cp15.c14_pmevcntr[i] = 0;
1487 }
1488 }
1489
1490 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1491 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1492
1493 pmu_op_finish(env);
1494 }
1495
1496 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1497 {
1498 uint64_t pmcr = env->cp15.c9_pmcr;
1499
1500 /*
1501 * If EL2 is implemented and enabled for the current security state, reads
1502 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
1503 */
1504 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
1505 pmcr &= ~PMCRN_MASK;
1506 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
1507 }
1508
1509 return pmcr;
1510 }
1511
1512 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1513 uint64_t value)
1514 {
1515 unsigned int i;
1516 uint64_t overflow_mask, new_pmswinc;
1517
1518 for (i = 0; i < pmu_num_counters(env); i++) {
1519 /* Increment a counter's count iff: */
1520 if ((value & (1 << i)) && /* counter's bit is set */
1521 /* counter is enabled and not filtered */
1522 pmu_counter_enabled(env, i) &&
1523 /* counter is SW_INCR */
1524 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1525 pmevcntr_op_start(env, i);
1526
1527 /*
1528 * Detect if this write causes an overflow since we can't predict
1529 * PMSWINC overflows like we can for other events
1530 */
1531 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1532
1533 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1534 1ULL << 63 : 1ULL << 31;
1535
1536 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1537 env->cp15.c9_pmovsr |= (1 << i);
1538 pmu_update_irq(env);
1539 }
1540
1541 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1542
1543 pmevcntr_op_finish(env, i);
1544 }
1545 }
1546 }
1547
1548 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1549 {
1550 uint64_t ret;
1551 pmccntr_op_start(env);
1552 ret = env->cp15.c15_ccnt;
1553 pmccntr_op_finish(env);
1554 return ret;
1555 }
1556
1557 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1558 uint64_t value)
1559 {
1560 /*
1561 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1562 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1563 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1564 * accessed.
1565 */
1566 env->cp15.c9_pmselr = value & 0x1f;
1567 }
1568
1569 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1570 uint64_t value)
1571 {
1572 pmccntr_op_start(env);
1573 env->cp15.c15_ccnt = value;
1574 pmccntr_op_finish(env);
1575 }
1576
1577 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1578 uint64_t value)
1579 {
1580 uint64_t cur_val = pmccntr_read(env, NULL);
1581
1582 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1583 }
1584
1585 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1586 uint64_t value)
1587 {
1588 pmccntr_op_start(env);
1589 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1590 pmccntr_op_finish(env);
1591 }
1592
1593 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1594 uint64_t value)
1595 {
1596 pmccntr_op_start(env);
1597 /* M is not accessible from AArch32 */
1598 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1599 (value & PMCCFILTR);
1600 pmccntr_op_finish(env);
1601 }
1602
1603 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1604 {
1605 /* M is not visible in AArch32 */
1606 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1607 }
1608
1609 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1610 uint64_t value)
1611 {
1612 pmu_op_start(env);
1613 value &= pmu_counter_mask(env);
1614 env->cp15.c9_pmcnten |= value;
1615 pmu_op_finish(env);
1616 }
1617
1618 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1619 uint64_t value)
1620 {
1621 pmu_op_start(env);
1622 value &= pmu_counter_mask(env);
1623 env->cp15.c9_pmcnten &= ~value;
1624 pmu_op_finish(env);
1625 }
1626
1627 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1628 uint64_t value)
1629 {
1630 value &= pmu_counter_mask(env);
1631 env->cp15.c9_pmovsr &= ~value;
1632 pmu_update_irq(env);
1633 }
1634
1635 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1636 uint64_t value)
1637 {
1638 value &= pmu_counter_mask(env);
1639 env->cp15.c9_pmovsr |= value;
1640 pmu_update_irq(env);
1641 }
1642
1643 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1644 uint64_t value, const uint8_t counter)
1645 {
1646 if (counter == 31) {
1647 pmccfiltr_write(env, ri, value);
1648 } else if (counter < pmu_num_counters(env)) {
1649 pmevcntr_op_start(env, counter);
1650
1651 /*
1652 * If this counter's event type is changing, store the current
1653 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1654 * pmevcntr_op_finish has the correct baseline when it converts back to
1655 * a delta.
1656 */
1657 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1658 PMXEVTYPER_EVTCOUNT;
1659 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1660 if (old_event != new_event) {
1661 uint64_t count = 0;
1662 if (event_supported(new_event)) {
1663 uint16_t event_idx = supported_event_map[new_event];
1664 count = pm_events[event_idx].get_count(env);
1665 }
1666 env->cp15.c14_pmevcntr_delta[counter] = count;
1667 }
1668
1669 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1670 pmevcntr_op_finish(env, counter);
1671 }
1672 /*
1673 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1674 * PMSELR value is equal to or greater than the number of implemented
1675 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1676 */
1677 }
1678
1679 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1680 const uint8_t counter)
1681 {
1682 if (counter == 31) {
1683 return env->cp15.pmccfiltr_el0;
1684 } else if (counter < pmu_num_counters(env)) {
1685 return env->cp15.c14_pmevtyper[counter];
1686 } else {
1687 /*
1688 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1689 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1690 */
1691 return 0;
1692 }
1693 }
1694
1695 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1696 uint64_t value)
1697 {
1698 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1699 pmevtyper_write(env, ri, value, counter);
1700 }
1701
1702 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1703 uint64_t value)
1704 {
1705 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1706 env->cp15.c14_pmevtyper[counter] = value;
1707
1708 /*
1709 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1710 * pmu_op_finish calls when loading saved state for a migration. Because
1711 * we're potentially updating the type of event here, the value written to
1712 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1713 * different counter type. Therefore, we need to set this value to the
1714 * current count for the counter type we're writing so that pmu_op_finish
1715 * has the correct count for its calculation.
1716 */
1717 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1718 if (event_supported(event)) {
1719 uint16_t event_idx = supported_event_map[event];
1720 env->cp15.c14_pmevcntr_delta[counter] =
1721 pm_events[event_idx].get_count(env);
1722 }
1723 }
1724
1725 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1726 {
1727 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1728 return pmevtyper_read(env, ri, counter);
1729 }
1730
1731 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1732 uint64_t value)
1733 {
1734 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1735 }
1736
1737 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1738 {
1739 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1740 }
1741
1742 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1743 uint64_t value, uint8_t counter)
1744 {
1745 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1746 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1747 value &= MAKE_64BIT_MASK(0, 32);
1748 }
1749 if (counter < pmu_num_counters(env)) {
1750 pmevcntr_op_start(env, counter);
1751 env->cp15.c14_pmevcntr[counter] = value;
1752 pmevcntr_op_finish(env, counter);
1753 }
1754 /*
1755 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1756 * are CONSTRAINED UNPREDICTABLE.
1757 */
1758 }
1759
1760 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1761 uint8_t counter)
1762 {
1763 if (counter < pmu_num_counters(env)) {
1764 uint64_t ret;
1765 pmevcntr_op_start(env, counter);
1766 ret = env->cp15.c14_pmevcntr[counter];
1767 pmevcntr_op_finish(env, counter);
1768 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1769 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1770 ret &= MAKE_64BIT_MASK(0, 32);
1771 }
1772 return ret;
1773 } else {
1774 /*
1775 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1776 * are CONSTRAINED UNPREDICTABLE.
1777 */
1778 return 0;
1779 }
1780 }
1781
1782 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1783 uint64_t value)
1784 {
1785 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1786 pmevcntr_write(env, ri, value, counter);
1787 }
1788
1789 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1790 {
1791 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1792 return pmevcntr_read(env, ri, counter);
1793 }
1794
1795 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1796 uint64_t value)
1797 {
1798 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1799 assert(counter < pmu_num_counters(env));
1800 env->cp15.c14_pmevcntr[counter] = value;
1801 pmevcntr_write(env, ri, value, counter);
1802 }
1803
1804 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1805 {
1806 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1807 assert(counter < pmu_num_counters(env));
1808 return env->cp15.c14_pmevcntr[counter];
1809 }
1810
1811 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1812 uint64_t value)
1813 {
1814 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1815 }
1816
1817 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1818 {
1819 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1820 }
1821
1822 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823 uint64_t value)
1824 {
1825 if (arm_feature(env, ARM_FEATURE_V8)) {
1826 env->cp15.c9_pmuserenr = value & 0xf;
1827 } else {
1828 env->cp15.c9_pmuserenr = value & 1;
1829 }
1830 }
1831
1832 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1833 uint64_t value)
1834 {
1835 /* We have no event counters so only the C bit can be changed */
1836 value &= pmu_counter_mask(env);
1837 env->cp15.c9_pminten |= value;
1838 pmu_update_irq(env);
1839 }
1840
1841 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1842 uint64_t value)
1843 {
1844 value &= pmu_counter_mask(env);
1845 env->cp15.c9_pminten &= ~value;
1846 pmu_update_irq(env);
1847 }
1848
1849 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850 uint64_t value)
1851 {
1852 /*
1853 * Note that even though the AArch64 view of this register has bits
1854 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1855 * architectural requirements for bits which are RES0 only in some
1856 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1857 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1858 */
1859 raw_write(env, ri, value & ~0x1FULL);
1860 }
1861
1862 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1863 {
1864 /* Begin with base v8.0 state. */
1865 uint64_t valid_mask = 0x3fff;
1866 ARMCPU *cpu = env_archcpu(env);
1867 uint64_t changed;
1868
1869 /*
1870 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1871 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1872 * Instead, choose the format based on the mode of EL3.
1873 */
1874 if (arm_el_is_aa64(env, 3)) {
1875 value |= SCR_FW | SCR_AW; /* RES1 */
1876 valid_mask &= ~SCR_NET; /* RES0 */
1877
1878 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1879 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1880 value |= SCR_RW; /* RAO/WI */
1881 }
1882 if (cpu_isar_feature(aa64_ras, cpu)) {
1883 valid_mask |= SCR_TERR;
1884 }
1885 if (cpu_isar_feature(aa64_lor, cpu)) {
1886 valid_mask |= SCR_TLOR;
1887 }
1888 if (cpu_isar_feature(aa64_pauth, cpu)) {
1889 valid_mask |= SCR_API | SCR_APK;
1890 }
1891 if (cpu_isar_feature(aa64_sel2, cpu)) {
1892 valid_mask |= SCR_EEL2;
1893 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1894 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1895 value |= SCR_NS;
1896 }
1897 if (cpu_isar_feature(aa64_mte, cpu)) {
1898 valid_mask |= SCR_ATA;
1899 }
1900 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1901 valid_mask |= SCR_ENSCXT;
1902 }
1903 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1904 valid_mask |= SCR_EASE | SCR_NMEA;
1905 }
1906 if (cpu_isar_feature(aa64_sme, cpu)) {
1907 valid_mask |= SCR_ENTP2;
1908 }
1909 if (cpu_isar_feature(aa64_hcx, cpu)) {
1910 valid_mask |= SCR_HXEN;
1911 }
1912 if (cpu_isar_feature(aa64_fgt, cpu)) {
1913 valid_mask |= SCR_FGTEN;
1914 }
1915 if (cpu_isar_feature(aa64_rme, cpu)) {
1916 valid_mask |= SCR_NSE | SCR_GPF;
1917 }
1918 } else {
1919 valid_mask &= ~(SCR_RW | SCR_ST);
1920 if (cpu_isar_feature(aa32_ras, cpu)) {
1921 valid_mask |= SCR_TERR;
1922 }
1923 }
1924
1925 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1926 valid_mask &= ~SCR_HCE;
1927
1928 /*
1929 * On ARMv7, SMD (or SCD as it is called in v7) is only
1930 * supported if EL2 exists. The bit is UNK/SBZP when
1931 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1932 * when EL2 is unavailable.
1933 * On ARMv8, this bit is always available.
1934 */
1935 if (arm_feature(env, ARM_FEATURE_V7) &&
1936 !arm_feature(env, ARM_FEATURE_V8)) {
1937 valid_mask &= ~SCR_SMD;
1938 }
1939 }
1940
1941 /* Clear all-context RES0 bits. */
1942 value &= valid_mask;
1943 changed = env->cp15.scr_el3 ^ value;
1944 env->cp15.scr_el3 = value;
1945
1946 /*
1947 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1948 * we must invalidate all TLBs below EL3.
1949 */
1950 if (changed & (SCR_NS | SCR_NSE)) {
1951 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1952 ARMMMUIdxBit_E20_0 |
1953 ARMMMUIdxBit_E10_1 |
1954 ARMMMUIdxBit_E20_2 |
1955 ARMMMUIdxBit_E10_1_PAN |
1956 ARMMMUIdxBit_E20_2_PAN |
1957 ARMMMUIdxBit_E2));
1958 }
1959 }
1960
1961 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1962 {
1963 /*
1964 * scr_write will set the RES1 bits on an AArch64-only CPU.
1965 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1966 */
1967 scr_write(env, ri, 0);
1968 }
1969
1970 static CPAccessResult access_tid4(CPUARMState *env,
1971 const ARMCPRegInfo *ri,
1972 bool isread)
1973 {
1974 if (arm_current_el(env) == 1 &&
1975 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1976 return CP_ACCESS_TRAP_EL2;
1977 }
1978
1979 return CP_ACCESS_OK;
1980 }
1981
1982 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1983 {
1984 ARMCPU *cpu = env_archcpu(env);
1985
1986 /*
1987 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1988 * bank
1989 */
1990 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1991 ri->secure & ARM_CP_SECSTATE_S);
1992
1993 return cpu->ccsidr[index];
1994 }
1995
1996 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1997 uint64_t value)
1998 {
1999 raw_write(env, ri, value & 0xf);
2000 }
2001
2002 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2003 {
2004 CPUState *cs = env_cpu(env);
2005 bool el1 = arm_current_el(env) == 1;
2006 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2007 uint64_t ret = 0;
2008
2009 if (hcr_el2 & HCR_IMO) {
2010 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2011 ret |= CPSR_I;
2012 }
2013 } else {
2014 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2015 ret |= CPSR_I;
2016 }
2017 }
2018
2019 if (hcr_el2 & HCR_FMO) {
2020 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2021 ret |= CPSR_F;
2022 }
2023 } else {
2024 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2025 ret |= CPSR_F;
2026 }
2027 }
2028
2029 if (hcr_el2 & HCR_AMO) {
2030 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
2031 ret |= CPSR_A;
2032 }
2033 }
2034
2035 return ret;
2036 }
2037
2038 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2039 bool isread)
2040 {
2041 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2042 return CP_ACCESS_TRAP_EL2;
2043 }
2044
2045 return CP_ACCESS_OK;
2046 }
2047
2048 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2049 bool isread)
2050 {
2051 if (arm_feature(env, ARM_FEATURE_V8)) {
2052 return access_aa64_tid1(env, ri, isread);
2053 }
2054
2055 return CP_ACCESS_OK;
2056 }
2057
2058 static const ARMCPRegInfo v7_cp_reginfo[] = {
2059 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2060 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2061 .access = PL1_W, .type = ARM_CP_NOP },
2062 /*
2063 * Performance monitors are implementation defined in v7,
2064 * but with an ARM recommended set of registers, which we
2065 * follow.
2066 *
2067 * Performance registers fall into three categories:
2068 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2069 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2070 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2071 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2072 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2073 */
2074 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2075 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2076 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2077 .writefn = pmcntenset_write,
2078 .accessfn = pmreg_access,
2079 .fgt = FGT_PMCNTEN,
2080 .raw_writefn = raw_write },
2081 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2082 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2083 .access = PL0_RW, .accessfn = pmreg_access,
2084 .fgt = FGT_PMCNTEN,
2085 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2086 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2087 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2088 .access = PL0_RW,
2089 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2090 .accessfn = pmreg_access,
2091 .fgt = FGT_PMCNTEN,
2092 .writefn = pmcntenclr_write,
2093 .type = ARM_CP_ALIAS | ARM_CP_IO },
2094 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2095 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2096 .access = PL0_RW, .accessfn = pmreg_access,
2097 .fgt = FGT_PMCNTEN,
2098 .type = ARM_CP_ALIAS | ARM_CP_IO,
2099 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2100 .writefn = pmcntenclr_write },
2101 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2102 .access = PL0_RW, .type = ARM_CP_IO,
2103 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2104 .accessfn = pmreg_access,
2105 .fgt = FGT_PMOVS,
2106 .writefn = pmovsr_write,
2107 .raw_writefn = raw_write },
2108 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2109 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2110 .access = PL0_RW, .accessfn = pmreg_access,
2111 .fgt = FGT_PMOVS,
2112 .type = ARM_CP_ALIAS | ARM_CP_IO,
2113 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2114 .writefn = pmovsr_write,
2115 .raw_writefn = raw_write },
2116 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2117 .access = PL0_W, .accessfn = pmreg_access_swinc,
2118 .fgt = FGT_PMSWINC_EL0,
2119 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2120 .writefn = pmswinc_write },
2121 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2122 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2123 .access = PL0_W, .accessfn = pmreg_access_swinc,
2124 .fgt = FGT_PMSWINC_EL0,
2125 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2126 .writefn = pmswinc_write },
2127 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2128 .access = PL0_RW, .type = ARM_CP_ALIAS,
2129 .fgt = FGT_PMSELR_EL0,
2130 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2131 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2132 .raw_writefn = raw_write},
2133 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2134 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2135 .access = PL0_RW, .accessfn = pmreg_access_selr,
2136 .fgt = FGT_PMSELR_EL0,
2137 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2138 .writefn = pmselr_write, .raw_writefn = raw_write, },
2139 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2140 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2141 .fgt = FGT_PMCCNTR_EL0,
2142 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2143 .accessfn = pmreg_access_ccntr },
2144 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2145 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2146 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2147 .fgt = FGT_PMCCNTR_EL0,
2148 .type = ARM_CP_IO,
2149 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2150 .readfn = pmccntr_read, .writefn = pmccntr_write,
2151 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2152 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2153 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2154 .access = PL0_RW, .accessfn = pmreg_access,
2155 .fgt = FGT_PMCCFILTR_EL0,
2156 .type = ARM_CP_ALIAS | ARM_CP_IO,
2157 .resetvalue = 0, },
2158 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2159 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2160 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2161 .access = PL0_RW, .accessfn = pmreg_access,
2162 .fgt = FGT_PMCCFILTR_EL0,
2163 .type = ARM_CP_IO,
2164 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2165 .resetvalue = 0, },
2166 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2167 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2168 .accessfn = pmreg_access,
2169 .fgt = FGT_PMEVTYPERN_EL0,
2170 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2171 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2172 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2173 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2174 .accessfn = pmreg_access,
2175 .fgt = FGT_PMEVTYPERN_EL0,
2176 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2177 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2178 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2179 .accessfn = pmreg_access_xevcntr,
2180 .fgt = FGT_PMEVCNTRN_EL0,
2181 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2182 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2183 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2184 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2185 .accessfn = pmreg_access_xevcntr,
2186 .fgt = FGT_PMEVCNTRN_EL0,
2187 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2188 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2189 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2190 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2191 .resetvalue = 0,
2192 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2193 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2194 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2195 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2196 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2197 .resetvalue = 0,
2198 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2199 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2200 .access = PL1_RW, .accessfn = access_tpm,
2201 .fgt = FGT_PMINTEN,
2202 .type = ARM_CP_ALIAS | ARM_CP_IO,
2203 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2204 .resetvalue = 0,
2205 .writefn = pmintenset_write, .raw_writefn = raw_write },
2206 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2207 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2208 .access = PL1_RW, .accessfn = access_tpm,
2209 .fgt = FGT_PMINTEN,
2210 .type = ARM_CP_IO,
2211 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2212 .writefn = pmintenset_write, .raw_writefn = raw_write,
2213 .resetvalue = 0x0 },
2214 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2215 .access = PL1_RW, .accessfn = access_tpm,
2216 .fgt = FGT_PMINTEN,
2217 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2218 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2219 .writefn = pmintenclr_write, },
2220 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2221 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2222 .access = PL1_RW, .accessfn = access_tpm,
2223 .fgt = FGT_PMINTEN,
2224 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2225 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2226 .writefn = pmintenclr_write },
2227 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2228 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2229 .access = PL1_R,
2230 .accessfn = access_tid4,
2231 .fgt = FGT_CCSIDR_EL1,
2232 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2233 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2234 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2235 .access = PL1_RW,
2236 .accessfn = access_tid4,
2237 .fgt = FGT_CSSELR_EL1,
2238 .writefn = csselr_write, .resetvalue = 0,
2239 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2240 offsetof(CPUARMState, cp15.csselr_ns) } },
2241 /*
2242 * Auxiliary ID register: this actually has an IMPDEF value but for now
2243 * just RAZ for all cores:
2244 */
2245 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2246 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2247 .access = PL1_R, .type = ARM_CP_CONST,
2248 .accessfn = access_aa64_tid1,
2249 .fgt = FGT_AIDR_EL1,
2250 .resetvalue = 0 },
2251 /*
2252 * Auxiliary fault status registers: these also are IMPDEF, and we
2253 * choose to RAZ/WI for all cores.
2254 */
2255 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2256 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2257 .access = PL1_RW, .accessfn = access_tvm_trvm,
2258 .fgt = FGT_AFSR0_EL1,
2259 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
2260 .type = ARM_CP_CONST, .resetvalue = 0 },
2261 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2262 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2263 .access = PL1_RW, .accessfn = access_tvm_trvm,
2264 .fgt = FGT_AFSR1_EL1,
2265 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
2266 .type = ARM_CP_CONST, .resetvalue = 0 },
2267 /*
2268 * MAIR can just read-as-written because we don't implement caches
2269 * and so don't need to care about memory attributes.
2270 */
2271 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2272 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2273 .access = PL1_RW, .accessfn = access_tvm_trvm,
2274 .fgt = FGT_MAIR_EL1,
2275 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
2276 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2277 .resetvalue = 0 },
2278 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2279 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2280 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2281 .resetvalue = 0 },
2282 /*
2283 * For non-long-descriptor page tables these are PRRR and NMRR;
2284 * regardless they still act as reads-as-written for QEMU.
2285 */
2286 /*
2287 * MAIR0/1 are defined separately from their 64-bit counterpart which
2288 * allows them to assign the correct fieldoffset based on the endianness
2289 * handled in the field definitions.
2290 */
2291 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2292 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2293 .access = PL1_RW, .accessfn = access_tvm_trvm,
2294 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2295 offsetof(CPUARMState, cp15.mair0_ns) },
2296 .resetfn = arm_cp_reset_ignore },
2297 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2298 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2299 .access = PL1_RW, .accessfn = access_tvm_trvm,
2300 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2301 offsetof(CPUARMState, cp15.mair1_ns) },
2302 .resetfn = arm_cp_reset_ignore },
2303 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2304 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2305 .fgt = FGT_ISR_EL1,
2306 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2307 /* 32 bit ITLB invalidates */
2308 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2309 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2310 .writefn = tlbiall_write },
2311 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2312 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2313 .writefn = tlbimva_write },
2314 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2315 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2316 .writefn = tlbiasid_write },
2317 /* 32 bit DTLB invalidates */
2318 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2319 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2320 .writefn = tlbiall_write },
2321 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2322 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2323 .writefn = tlbimva_write },
2324 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2325 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2326 .writefn = tlbiasid_write },
2327 /* 32 bit TLB invalidates */
2328 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2329 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2330 .writefn = tlbiall_write },
2331 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2332 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2333 .writefn = tlbimva_write },
2334 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2335 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2336 .writefn = tlbiasid_write },
2337 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2338 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2339 .writefn = tlbimvaa_write },
2340 };
2341
2342 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2343 /* 32 bit TLB invalidates, Inner Shareable */
2344 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2345 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2346 .writefn = tlbiall_is_write },
2347 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2348 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2349 .writefn = tlbimva_is_write },
2350 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2351 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2352 .writefn = tlbiasid_is_write },
2353 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2354 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2355 .writefn = tlbimvaa_is_write },
2356 };
2357
2358 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2359 /* PMOVSSET is not implemented in v7 before v7ve */
2360 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2361 .access = PL0_RW, .accessfn = pmreg_access,
2362 .fgt = FGT_PMOVS,
2363 .type = ARM_CP_ALIAS | ARM_CP_IO,
2364 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2365 .writefn = pmovsset_write,
2366 .raw_writefn = raw_write },
2367 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2368 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2369 .access = PL0_RW, .accessfn = pmreg_access,
2370 .fgt = FGT_PMOVS,
2371 .type = ARM_CP_ALIAS | ARM_CP_IO,
2372 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2373 .writefn = pmovsset_write,
2374 .raw_writefn = raw_write },
2375 };
2376
2377 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2378 uint64_t value)
2379 {
2380 value &= 1;
2381 env->teecr = value;
2382 }
2383
2384 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2385 bool isread)
2386 {
2387 /*
2388 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2389 * at all, so we don't need to check whether we're v8A.
2390 */
2391 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2392 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2393 return CP_ACCESS_TRAP_EL2;
2394 }
2395 return CP_ACCESS_OK;
2396 }
2397
2398 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2399 bool isread)
2400 {
2401 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2402 return CP_ACCESS_TRAP;
2403 }
2404 return teecr_access(env, ri, isread);
2405 }
2406
2407 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2408 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2409 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2410 .resetvalue = 0,
2411 .writefn = teecr_write, .accessfn = teecr_access },
2412 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2413 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2414 .accessfn = teehbr_access, .resetvalue = 0 },
2415 };
2416
2417 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2418 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2419 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2420 .access = PL0_RW,
2421 .fgt = FGT_TPIDR_EL0,
2422 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2423 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2424 .access = PL0_RW,
2425 .fgt = FGT_TPIDR_EL0,
2426 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2427 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2428 .resetfn = arm_cp_reset_ignore },
2429 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2430 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2431 .access = PL0_R | PL1_W,
2432 .fgt = FGT_TPIDRRO_EL0,
2433 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2434 .resetvalue = 0},
2435 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2436 .access = PL0_R | PL1_W,
2437 .fgt = FGT_TPIDRRO_EL0,
2438 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2439 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2440 .resetfn = arm_cp_reset_ignore },
2441 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2442 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2443 .access = PL1_RW,
2444 .fgt = FGT_TPIDR_EL1,
2445 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2446 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2447 .access = PL1_RW,
2448 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2449 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2450 .resetvalue = 0 },
2451 };
2452
2453 #ifndef CONFIG_USER_ONLY
2454
2455 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2456 bool isread)
2457 {
2458 /*
2459 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2460 * Writable only at the highest implemented exception level.
2461 */
2462 int el = arm_current_el(env);
2463 uint64_t hcr;
2464 uint32_t cntkctl;
2465
2466 switch (el) {
2467 case 0:
2468 hcr = arm_hcr_el2_eff(env);
2469 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2470 cntkctl = env->cp15.cnthctl_el2;
2471 } else {
2472 cntkctl = env->cp15.c14_cntkctl;
2473 }
2474 if (!extract32(cntkctl, 0, 2)) {
2475 return CP_ACCESS_TRAP;
2476 }
2477 break;
2478 case 1:
2479 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2480 arm_is_secure_below_el3(env)) {
2481 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2482 return CP_ACCESS_TRAP_UNCATEGORIZED;
2483 }
2484 break;
2485 case 2:
2486 case 3:
2487 break;
2488 }
2489
2490 if (!isread && el < arm_highest_el(env)) {
2491 return CP_ACCESS_TRAP_UNCATEGORIZED;
2492 }
2493
2494 return CP_ACCESS_OK;
2495 }
2496
2497 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2498 bool isread)
2499 {
2500 unsigned int cur_el = arm_current_el(env);
2501 bool has_el2 = arm_is_el2_enabled(env);
2502 uint64_t hcr = arm_hcr_el2_eff(env);
2503
2504 switch (cur_el) {
2505 case 0:
2506 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2507 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2508 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2509 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2510 }
2511
2512 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2513 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2514 return CP_ACCESS_TRAP;
2515 }
2516 /* fall through */
2517 case 1:
2518 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2519 if (has_el2 && timeridx == GTIMER_PHYS &&
2520 (hcr & HCR_E2H
2521 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2522 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2523 return CP_ACCESS_TRAP_EL2;
2524 }
2525 break;
2526 }
2527 return CP_ACCESS_OK;
2528 }
2529
2530 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2531 bool isread)
2532 {
2533 unsigned int cur_el = arm_current_el(env);
2534 bool has_el2 = arm_is_el2_enabled(env);
2535 uint64_t hcr = arm_hcr_el2_eff(env);
2536
2537 switch (cur_el) {
2538 case 0:
2539 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2540 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2541 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2542 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2543 }
2544
2545 /*
2546 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2547 * EL0 if EL0[PV]TEN is zero.
2548 */
2549 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2550 return CP_ACCESS_TRAP;
2551 }
2552 /* fall through */
2553
2554 case 1:
2555 if (has_el2 && timeridx == GTIMER_PHYS) {
2556 if (hcr & HCR_E2H) {
2557 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2558 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2559 return CP_ACCESS_TRAP_EL2;
2560 }
2561 } else {
2562 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2563 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2564 return CP_ACCESS_TRAP_EL2;
2565 }
2566 }
2567 }
2568 break;
2569 }
2570 return CP_ACCESS_OK;
2571 }
2572
2573 static CPAccessResult gt_pct_access(CPUARMState *env,
2574 const ARMCPRegInfo *ri,
2575 bool isread)
2576 {
2577 return gt_counter_access(env, GTIMER_PHYS, isread);
2578 }
2579
2580 static CPAccessResult gt_vct_access(CPUARMState *env,
2581 const ARMCPRegInfo *ri,
2582 bool isread)
2583 {
2584 return gt_counter_access(env, GTIMER_VIRT, isread);
2585 }
2586
2587 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2588 bool isread)
2589 {
2590 return gt_timer_access(env, GTIMER_PHYS, isread);
2591 }
2592
2593 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2594 bool isread)
2595 {
2596 return gt_timer_access(env, GTIMER_VIRT, isread);
2597 }
2598
2599 static CPAccessResult gt_stimer_access(CPUARMState *env,
2600 const ARMCPRegInfo *ri,
2601 bool isread)
2602 {
2603 /*
2604 * The AArch64 register view of the secure physical timer is
2605 * always accessible from EL3, and configurably accessible from
2606 * Secure EL1.
2607 */
2608 switch (arm_current_el(env)) {
2609 case 1:
2610 if (!arm_is_secure(env)) {
2611 return CP_ACCESS_TRAP;
2612 }
2613 if (!(env->cp15.scr_el3 & SCR_ST)) {
2614 return CP_ACCESS_TRAP_EL3;
2615 }
2616 return CP_ACCESS_OK;
2617 case 0:
2618 case 2:
2619 return CP_ACCESS_TRAP;
2620 case 3:
2621 return CP_ACCESS_OK;
2622 default:
2623 g_assert_not_reached();
2624 }
2625 }
2626
2627 static uint64_t gt_get_countervalue(CPUARMState *env)
2628 {
2629 ARMCPU *cpu = env_archcpu(env);
2630
2631 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2632 }
2633
2634 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2635 {
2636 CPUARMState *env = &cpu->env;
2637 uint64_t cnthctl = env->cp15.cnthctl_el2;
2638 ARMSecuritySpace ss = arm_security_space(env);
2639 /* ISTATUS && !IMASK */
2640 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2641
2642 /*
2643 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2644 * It is RES0 in Secure and NonSecure state.
2645 */
2646 if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2647 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) ||
2648 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) {
2649 irqstate = 0;
2650 }
2651
2652 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2653 trace_arm_gt_update_irq(timeridx, irqstate);
2654 }
2655
2656 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2657 {
2658 /*
2659 * Changing security state between Root and Secure/NonSecure, which may
2660 * happen when switching EL, can change the effective value of CNTHCTL_EL2
2661 * mask bits. Update the IRQ state accordingly.
2662 */
2663 gt_update_irq(cpu, GTIMER_VIRT);
2664 gt_update_irq(cpu, GTIMER_PHYS);
2665 }
2666
2667 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2668 {
2669 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2670
2671 if (gt->ctl & 1) {
2672 /*
2673 * Timer enabled: calculate and set current ISTATUS, irq, and
2674 * reset timer to when ISTATUS next has to change
2675 */
2676 uint64_t offset = timeridx == GTIMER_VIRT ?
2677 cpu->env.cp15.cntvoff_el2 : 0;
2678 uint64_t count = gt_get_countervalue(&cpu->env);
2679 /* Note that this must be unsigned 64 bit arithmetic: */
2680 int istatus = count - offset >= gt->cval;
2681 uint64_t nexttick;
2682
2683 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2684
2685 if (istatus) {
2686 /*
2687 * Next transition is when (count - offset) rolls back over to 0.
2688 * If offset > count then this is when count == offset;
2689 * if offset <= count then this is when count == offset + 2^64
2690 * For the latter case we set nexttick to an "as far in future
2691 * as possible" value and let the code below handle it.
2692 */
2693 if (offset > count) {
2694 nexttick = offset;
2695 } else {
2696 nexttick = UINT64_MAX;
2697 }
2698 } else {
2699 /*
2700 * Next transition is when (count - offset) == cval, i.e.
2701 * when count == (cval + offset).
2702 * If that would overflow, then again we set up the next interrupt
2703 * for "as far in the future as possible" for the code below.
2704 */
2705 if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2706 nexttick = UINT64_MAX;
2707 }
2708 }
2709 /*
2710 * Note that the desired next expiry time might be beyond the
2711 * signed-64-bit range of a QEMUTimer -- in this case we just
2712 * set the timer for as far in the future as possible. When the
2713 * timer expires we will reset the timer for any remaining period.
2714 */
2715 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2716 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2717 } else {
2718 timer_mod(cpu->gt_timer[timeridx], nexttick);
2719 }
2720 trace_arm_gt_recalc(timeridx, nexttick);
2721 } else {
2722 /* Timer disabled: ISTATUS and timer output always clear */
2723 gt->ctl &= ~4;
2724 timer_del(cpu->gt_timer[timeridx]);
2725 trace_arm_gt_recalc_disabled(timeridx);
2726 }
2727 gt_update_irq(cpu, timeridx);
2728 }
2729
2730 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2731 int timeridx)
2732 {
2733 ARMCPU *cpu = env_archcpu(env);
2734
2735 timer_del(cpu->gt_timer[timeridx]);
2736 }
2737
2738 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2739 {
2740 return gt_get_countervalue(env);
2741 }
2742
2743 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2744 {
2745 uint64_t hcr;
2746
2747 switch (arm_current_el(env)) {
2748 case 2:
2749 hcr = arm_hcr_el2_eff(env);
2750 if (hcr & HCR_E2H) {
2751 return 0;
2752 }
2753 break;
2754 case 0:
2755 hcr = arm_hcr_el2_eff(env);
2756 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2757 return 0;
2758 }
2759 break;
2760 }
2761
2762 return env->cp15.cntvoff_el2;
2763 }
2764
2765 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2766 {
2767 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2768 }
2769
2770 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2771 int timeridx,
2772 uint64_t value)
2773 {
2774 trace_arm_gt_cval_write(timeridx, value);
2775 env->cp15.c14_timer[timeridx].cval = value;
2776 gt_recalc_timer(env_archcpu(env), timeridx);
2777 }
2778
2779 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2780 int timeridx)
2781 {
2782 uint64_t offset = 0;
2783
2784 switch (timeridx) {
2785 case GTIMER_VIRT:
2786 case GTIMER_HYPVIRT:
2787 offset = gt_virt_cnt_offset(env);
2788 break;
2789 }
2790
2791 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2792 (gt_get_countervalue(env) - offset));
2793 }
2794
2795 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2796 int timeridx,
2797 uint64_t value)
2798 {
2799 uint64_t offset = 0;
2800
2801 switch (timeridx) {
2802 case GTIMER_VIRT:
2803 case GTIMER_HYPVIRT:
2804 offset = gt_virt_cnt_offset(env);
2805 break;
2806 }
2807
2808 trace_arm_gt_tval_write(timeridx, value);
2809 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2810 sextract64(value, 0, 32);
2811 gt_recalc_timer(env_archcpu(env), timeridx);
2812 }
2813
2814 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2815 int timeridx,
2816 uint64_t value)
2817 {
2818 ARMCPU *cpu = env_archcpu(env);
2819 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2820
2821 trace_arm_gt_ctl_write(timeridx, value);
2822 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2823 if ((oldval ^ value) & 1) {
2824 /* Enable toggled */
2825 gt_recalc_timer(cpu, timeridx);
2826 } else if ((oldval ^ value) & 2) {
2827 /*
2828 * IMASK toggled: don't need to recalculate,
2829 * just set the interrupt line based on ISTATUS
2830 */
2831 trace_arm_gt_imask_toggle(timeridx);
2832 gt_update_irq(cpu, timeridx);
2833 }
2834 }
2835
2836 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2837 {
2838 gt_timer_reset(env, ri, GTIMER_PHYS);
2839 }
2840
2841 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2842 uint64_t value)
2843 {
2844 gt_cval_write(env, ri, GTIMER_PHYS, value);
2845 }
2846
2847 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2848 {
2849 return gt_tval_read(env, ri, GTIMER_PHYS);
2850 }
2851
2852 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2853 uint64_t value)
2854 {
2855 gt_tval_write(env, ri, GTIMER_PHYS, value);
2856 }
2857
2858 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2859 uint64_t value)
2860 {
2861 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2862 }
2863
2864 static int gt_phys_redir_timeridx(CPUARMState *env)
2865 {
2866 switch (arm_mmu_idx(env)) {
2867 case ARMMMUIdx_E20_0:
2868 case ARMMMUIdx_E20_2:
2869 case ARMMMUIdx_E20_2_PAN:
2870 return GTIMER_HYP;
2871 default:
2872 return GTIMER_PHYS;
2873 }
2874 }
2875
2876 static int gt_virt_redir_timeridx(CPUARMState *env)
2877 {
2878 switch (arm_mmu_idx(env)) {
2879 case ARMMMUIdx_E20_0:
2880 case ARMMMUIdx_E20_2:
2881 case ARMMMUIdx_E20_2_PAN:
2882 return GTIMER_HYPVIRT;
2883 default:
2884 return GTIMER_VIRT;
2885 }
2886 }
2887
2888 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2889 const ARMCPRegInfo *ri)
2890 {
2891 int timeridx = gt_phys_redir_timeridx(env);
2892 return env->cp15.c14_timer[timeridx].cval;
2893 }
2894
2895 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2896 uint64_t value)
2897 {
2898 int timeridx = gt_phys_redir_timeridx(env);
2899 gt_cval_write(env, ri, timeridx, value);
2900 }
2901
2902 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2903 const ARMCPRegInfo *ri)
2904 {
2905 int timeridx = gt_phys_redir_timeridx(env);
2906 return gt_tval_read(env, ri, timeridx);
2907 }
2908
2909 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2910 uint64_t value)
2911 {
2912 int timeridx = gt_phys_redir_timeridx(env);
2913 gt_tval_write(env, ri, timeridx, value);
2914 }
2915
2916 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2917 const ARMCPRegInfo *ri)
2918 {
2919 int timeridx = gt_phys_redir_timeridx(env);
2920 return env->cp15.c14_timer[timeridx].ctl;
2921 }
2922
2923 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2924 uint64_t value)
2925 {
2926 int timeridx = gt_phys_redir_timeridx(env);
2927 gt_ctl_write(env, ri, timeridx, value);
2928 }
2929
2930 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2931 {
2932 gt_timer_reset(env, ri, GTIMER_VIRT);
2933 }
2934
2935 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2936 uint64_t value)
2937 {
2938 gt_cval_write(env, ri, GTIMER_VIRT, value);
2939 }
2940
2941 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2942 {
2943 return gt_tval_read(env, ri, GTIMER_VIRT);
2944 }
2945
2946 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2947 uint64_t value)
2948 {
2949 gt_tval_write(env, ri, GTIMER_VIRT, value);
2950 }
2951
2952 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2953 uint64_t value)
2954 {
2955 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2956 }
2957
2958 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2959 uint64_t value)
2960 {
2961 ARMCPU *cpu = env_archcpu(env);
2962 uint32_t oldval = env->cp15.cnthctl_el2;
2963
2964 raw_write(env, ri, value);
2965
2966 if ((oldval ^ value) & CNTHCTL_CNTVMASK) {
2967 gt_update_irq(cpu, GTIMER_VIRT);
2968 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) {
2969 gt_update_irq(cpu, GTIMER_PHYS);
2970 }
2971 }
2972
2973 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2974 uint64_t value)
2975 {
2976 ARMCPU *cpu = env_archcpu(env);
2977
2978 trace_arm_gt_cntvoff_write(value);
2979 raw_write(env, ri, value);
2980 gt_recalc_timer(cpu, GTIMER_VIRT);
2981 }
2982
2983 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2984 const ARMCPRegInfo *ri)
2985 {
2986 int timeridx = gt_virt_redir_timeridx(env);
2987 return env->cp15.c14_timer[timeridx].cval;
2988 }
2989
2990 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2991 uint64_t value)
2992 {
2993 int timeridx = gt_virt_redir_timeridx(env);
2994 gt_cval_write(env, ri, timeridx, value);
2995 }
2996
2997 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2998 const ARMCPRegInfo *ri)
2999 {
3000 int timeridx = gt_virt_redir_timeridx(env);
3001 return gt_tval_read(env, ri, timeridx);
3002 }
3003
3004 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005 uint64_t value)
3006 {
3007 int timeridx = gt_virt_redir_timeridx(env);
3008 gt_tval_write(env, ri, timeridx, value);
3009 }
3010
3011 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3012 const ARMCPRegInfo *ri)
3013 {
3014 int timeridx = gt_virt_redir_timeridx(env);
3015 return env->cp15.c14_timer[timeridx].ctl;
3016 }
3017
3018 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3019 uint64_t value)
3020 {
3021 int timeridx = gt_virt_redir_timeridx(env);
3022 gt_ctl_write(env, ri, timeridx, value);
3023 }
3024
3025 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3026 {
3027 gt_timer_reset(env, ri, GTIMER_HYP);
3028 }
3029
3030 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3031 uint64_t value)
3032 {
3033 gt_cval_write(env, ri, GTIMER_HYP, value);
3034 }
3035
3036 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3037 {
3038 return gt_tval_read(env, ri, GTIMER_HYP);
3039 }
3040
3041 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3042 uint64_t value)
3043 {
3044 gt_tval_write(env, ri, GTIMER_HYP, value);
3045 }
3046
3047 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3048 uint64_t value)
3049 {
3050 gt_ctl_write(env, ri, GTIMER_HYP, value);
3051 }
3052
3053 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3054 {
3055 gt_timer_reset(env, ri, GTIMER_SEC);
3056 }
3057
3058 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3059 uint64_t value)
3060 {
3061 gt_cval_write(env, ri, GTIMER_SEC, value);
3062 }
3063
3064 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3065 {
3066 return gt_tval_read(env, ri, GTIMER_SEC);
3067 }
3068
3069 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3070 uint64_t value)
3071 {
3072 gt_tval_write(env, ri, GTIMER_SEC, value);
3073 }
3074
3075 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3076 uint64_t value)
3077 {
3078 gt_ctl_write(env, ri, GTIMER_SEC, value);
3079 }
3080
3081 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3082 {
3083 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3084 }
3085
3086 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3087 uint64_t value)
3088 {
3089 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3090 }
3091
3092 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3093 {
3094 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3095 }
3096
3097 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3098 uint64_t value)
3099 {
3100 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3101 }
3102
3103 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3104 uint64_t value)
3105 {
3106 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3107 }
3108
3109 void arm_gt_ptimer_cb(void *opaque)
3110 {
3111 ARMCPU *cpu = opaque;
3112
3113 gt_recalc_timer(cpu, GTIMER_PHYS);
3114 }
3115
3116 void arm_gt_vtimer_cb(void *opaque)
3117 {
3118 ARMCPU *cpu = opaque;
3119
3120 gt_recalc_timer(cpu, GTIMER_VIRT);
3121 }
3122
3123 void arm_gt_htimer_cb(void *opaque)
3124 {
3125 ARMCPU *cpu = opaque;
3126
3127 gt_recalc_timer(cpu, GTIMER_HYP);
3128 }
3129
3130 void arm_gt_stimer_cb(void *opaque)
3131 {
3132 ARMCPU *cpu = opaque;
3133
3134 gt_recalc_timer(cpu, GTIMER_SEC);
3135 }
3136
3137 void arm_gt_hvtimer_cb(void *opaque)
3138 {
3139 ARMCPU *cpu = opaque;
3140
3141 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3142 }
3143
3144 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3145 {
3146 ARMCPU *cpu = env_archcpu(env);
3147
3148 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3149 }
3150
3151 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3152 /*
3153 * Note that CNTFRQ is purely reads-as-written for the benefit
3154 * of software; writing it doesn't actually change the timer frequency.
3155 * Our reset value matches the fixed frequency we implement the timer at.
3156 */
3157 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3158 .type = ARM_CP_ALIAS,
3159 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3160 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3161 },
3162 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3163 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3164 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3165 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3166 .resetfn = arm_gt_cntfrq_reset,
3167 },
3168 /* overall control: mostly access permissions */
3169 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3170 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3171 .access = PL1_RW,
3172 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3173 .resetvalue = 0,
3174 },
3175 /* per-timer control */
3176 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3177 .secure = ARM_CP_SECSTATE_NS,
3178 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3179 .accessfn = gt_ptimer_access,
3180 .fieldoffset = offsetoflow32(CPUARMState,
3181 cp15.c14_timer[GTIMER_PHYS].ctl),
3182 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3183 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3184 },
3185 { .name = "CNTP_CTL_S",
3186 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3187 .secure = ARM_CP_SECSTATE_S,
3188 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3189 .accessfn = gt_ptimer_access,
3190 .fieldoffset = offsetoflow32(CPUARMState,
3191 cp15.c14_timer[GTIMER_SEC].ctl),
3192 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3193 },
3194 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3195 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3196 .type = ARM_CP_IO, .access = PL0_RW,
3197 .accessfn = gt_ptimer_access,
3198 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
3199 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3200 .resetvalue = 0,
3201 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3202 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3203 },
3204 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3205 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3206 .accessfn = gt_vtimer_access,
3207 .fieldoffset = offsetoflow32(CPUARMState,
3208 cp15.c14_timer[GTIMER_VIRT].ctl),
3209 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3210 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3211 },
3212 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3213 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3214 .type = ARM_CP_IO, .access = PL0_RW,
3215 .accessfn = gt_vtimer_access,
3216 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
3217 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3218 .resetvalue = 0,
3219 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3220 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3221 },
3222 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3223 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3224 .secure = ARM_CP_SECSTATE_NS,
3225 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3226 .accessfn = gt_ptimer_access,
3227 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3228 },
3229 { .name = "CNTP_TVAL_S",
3230 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3231 .secure = ARM_CP_SECSTATE_S,
3232 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3233 .accessfn = gt_ptimer_access,
3234 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3235 },
3236 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3237 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3238 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3239 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3240 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3241 },
3242 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3243 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3244 .accessfn = gt_vtimer_access,
3245 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3246 },
3247 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3248 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3249 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3250 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3251 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3252 },
3253 /* The counter itself */
3254 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3255 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3256 .accessfn = gt_pct_access,
3257 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3258 },
3259 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3260 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3261 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3262 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3263 },
3264 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3265 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3266 .accessfn = gt_vct_access,
3267 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3268 },
3269 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3270 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3271 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3272 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3273 },
3274 /* Comparison value, indicating when the timer goes off */
3275 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3276 .secure = ARM_CP_SECSTATE_NS,
3277 .access = PL0_RW,
3278 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3279 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3280 .accessfn = gt_ptimer_access,
3281 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3282 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3283 },
3284 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3285 .secure = ARM_CP_SECSTATE_S,
3286 .access = PL0_RW,
3287 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3288 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3289 .accessfn = gt_ptimer_access,
3290 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3291 },
3292 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3293 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3294 .access = PL0_RW,
3295 .type = ARM_CP_IO,
3296 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
3297 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3298 .resetvalue = 0, .accessfn = gt_ptimer_access,
3299 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3300 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3301 },
3302 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3303 .access = PL0_RW,
3304 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3305 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3306 .accessfn = gt_vtimer_access,
3307 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3308 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3309 },
3310 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3311 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3312 .access = PL0_RW,
3313 .type = ARM_CP_IO,
3314 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
3315 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3316 .resetvalue = 0, .accessfn = gt_vtimer_access,
3317 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3318 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3319 },
3320 /*
3321 * Secure timer -- this is actually restricted to only EL3
3322 * and configurably Secure-EL1 via the accessfn.
3323 */
3324 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3325 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3326 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3327 .accessfn = gt_stimer_access,
3328 .readfn = gt_sec_tval_read,
3329 .writefn = gt_sec_tval_write,
3330 .resetfn = gt_sec_timer_reset,
3331 },
3332 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3333 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3334 .type = ARM_CP_IO, .access = PL1_RW,
3335 .accessfn = gt_stimer_access,
3336 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3337 .resetvalue = 0,
3338 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3339 },
3340 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3341 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3342 .type = ARM_CP_IO, .access = PL1_RW,
3343 .accessfn = gt_stimer_access,
3344 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3345 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3346 },
3347 };
3348
3349 #else
3350
3351 /*
3352 * In user-mode most of the generic timer registers are inaccessible
3353 * however modern kernels (4.12+) allow access to cntvct_el0
3354 */
3355
3356 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3357 {
3358 ARMCPU *cpu = env_archcpu(env);
3359
3360 /*
3361 * Currently we have no support for QEMUTimer in linux-user so we
3362 * can't call gt_get_countervalue(env), instead we directly
3363 * call the lower level functions.
3364 */
3365 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3366 }
3367
3368 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3369 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3370 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3371 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3372 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3373 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3374 },
3375 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3376 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3377 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3378 .readfn = gt_virt_cnt_read,
3379 },
3380 };
3381
3382 #endif
3383
3384 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3385 {
3386 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3387 raw_write(env, ri, value);
3388 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3389 raw_write(env, ri, value & 0xfffff6ff);
3390 } else {
3391 raw_write(env, ri, value & 0xfffff1ff);
3392 }
3393 }
3394
3395 #ifndef CONFIG_USER_ONLY
3396 /* get_phys_addr() isn't present for user-mode-only targets */
3397
3398 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3399 bool isread)
3400 {
3401 if (ri->opc2 & 4) {
3402 /*
3403 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3404 * Secure EL1 (which can only happen if EL3 is AArch64).
3405 * They are simply UNDEF if executed from NS EL1.
3406 * They function normally from EL2 or EL3.
3407 */
3408 if (arm_current_el(env) == 1) {
3409 if (arm_is_secure_below_el3(env)) {
3410 if (env->cp15.scr_el3 & SCR_EEL2) {
3411 return CP_ACCESS_TRAP_EL2;
3412 }
3413 return CP_ACCESS_TRAP_EL3;
3414 }
3415 return CP_ACCESS_TRAP_UNCATEGORIZED;
3416 }
3417 }
3418 return CP_ACCESS_OK;
3419 }
3420
3421 #ifdef CONFIG_TCG
3422 static int par_el1_shareability(GetPhysAddrResult *res)
3423 {
3424 /*
3425 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3426 * memory -- see pseudocode PAREncodeShareability().
3427 */
3428 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3429 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3430 return 2;
3431 }
3432 return res->cacheattrs.shareability;
3433 }
3434
3435 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3436 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3437 ARMSecuritySpace ss)
3438 {
3439 bool ret;
3440 uint64_t par64;
3441 bool format64 = false;
3442 ARMMMUFaultInfo fi = {};
3443 GetPhysAddrResult res = {};
3444
3445 /*
3446 * I_MXTJT: Granule protection checks are not performed on the final address
3447 * of a successful translation.
3448 */
3449 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3450 &res, &fi);
3451
3452 /*
3453 * ATS operations only do S1 or S1+S2 translations, so we never
3454 * have to deal with the ARMCacheAttrs format for S2 only.
3455 */
3456 assert(!res.cacheattrs.is_s2_format);
3457
3458 if (ret) {
3459 /*
3460 * Some kinds of translation fault must cause exceptions rather
3461 * than being reported in the PAR.
3462 */
3463 int current_el = arm_current_el(env);
3464 int target_el;
3465 uint32_t syn, fsr, fsc;
3466 bool take_exc = false;
3467
3468 if (fi.s1ptw && current_el == 1
3469 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3470 /*
3471 * Synchronous stage 2 fault on an access made as part of the
3472 * translation table walk for AT S1E0* or AT S1E1* insn
3473 * executed from NS EL1. If this is a synchronous external abort
3474 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3475 * to EL3. Otherwise the fault is taken as an exception to EL2,
3476 * and HPFAR_EL2 holds the faulting IPA.
3477 */
3478 if (fi.type == ARMFault_SyncExternalOnWalk &&
3479 (env->cp15.scr_el3 & SCR_EA)) {
3480 target_el = 3;
3481 } else {
3482 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3483 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3484 env->cp15.hpfar_el2 |= HPFAR_NS;
3485 }
3486 target_el = 2;
3487 }
3488 take_exc = true;
3489 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3490 /*
3491 * Synchronous external aborts during a translation table walk
3492 * are taken as Data Abort exceptions.
3493 */
3494 if (fi.stage2) {
3495 if (current_el == 3) {
3496 target_el = 3;
3497 } else {
3498 target_el = 2;
3499 }
3500 } else {
3501 target_el = exception_target_el(env);
3502 }
3503 take_exc = true;
3504 }
3505
3506 if (take_exc) {
3507 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3508 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3509 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3510 fsr = arm_fi_to_lfsc(&fi);
3511 fsc = extract32(fsr, 0, 6);
3512 } else {
3513 fsr = arm_fi_to_sfsc(&fi);
3514 fsc = 0x3f;
3515 }
3516 /*
3517 * Report exception with ESR indicating a fault due to a
3518 * translation table walk for a cache maintenance instruction.
3519 */
3520 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3521 fi.ea, 1, fi.s1ptw, 1, fsc);
3522 env->exception.vaddress = value;
3523 env->exception.fsr = fsr;
3524 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3525 }
3526 }
3527
3528 if (is_a64(env)) {
3529 format64 = true;
3530 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3531 /*
3532 * ATS1Cxx:
3533 * * TTBCR.EAE determines whether the result is returned using the
3534 * 32-bit or the 64-bit PAR format
3535 * * Instructions executed in Hyp mode always use the 64bit format
3536 *
3537 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3538 * * The Non-secure TTBCR.EAE bit is set to 1
3539 * * The implementation includes EL2, and the value of HCR.VM is 1
3540 *
3541 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3542 *
3543 * ATS1Hx always uses the 64bit format.
3544 */
3545 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3546
3547 if (arm_feature(env, ARM_FEATURE_EL2)) {
3548 if (mmu_idx == ARMMMUIdx_E10_0 ||
3549 mmu_idx == ARMMMUIdx_E10_1 ||
3550 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3551 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3552 } else {
3553 format64 |= arm_current_el(env) == 2;
3554 }
3555 }
3556 }
3557
3558 if (format64) {
3559 /* Create a 64-bit PAR */
3560 par64 = (1 << 11); /* LPAE bit always set */
3561 if (!ret) {
3562 par64 |= res.f.phys_addr & ~0xfffULL;
3563 if (!res.f.attrs.secure) {
3564 par64 |= (1 << 9); /* NS */
3565 }
3566 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3567 par64 |= par_el1_shareability(&res) << 7; /* SH */
3568 } else {
3569 uint32_t fsr = arm_fi_to_lfsc(&fi);
3570
3571 par64 |= 1; /* F */
3572 par64 |= (fsr & 0x3f) << 1; /* FS */
3573 if (fi.stage2) {
3574 par64 |= (1 << 9); /* S */
3575 }
3576 if (fi.s1ptw) {
3577 par64 |= (1 << 8); /* PTW */
3578 }
3579 }
3580 } else {
3581 /*
3582 * fsr is a DFSR/IFSR value for the short descriptor
3583 * translation table format (with WnR always clear).
3584 * Convert it to a 32-bit PAR.
3585 */
3586 if (!ret) {
3587 /* We do not set any attribute bits in the PAR */
3588 if (res.f.lg_page_size == 24
3589 && arm_feature(env, ARM_FEATURE_V7)) {
3590 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3591 } else {
3592 par64 = res.f.phys_addr & 0xfffff000;
3593 }
3594 if (!res.f.attrs.secure) {
3595 par64 |= (1 << 9); /* NS */
3596 }
3597 } else {
3598 uint32_t fsr = arm_fi_to_sfsc(&fi);
3599
3600 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3601 ((fsr & 0xf) << 1) | 1;
3602 }
3603 }
3604 return par64;
3605 }
3606 #endif /* CONFIG_TCG */
3607
3608 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3609 {
3610 #ifdef CONFIG_TCG
3611 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3612 uint64_t par64;
3613 ARMMMUIdx mmu_idx;
3614 int el = arm_current_el(env);
3615 ARMSecuritySpace ss = arm_security_space(env);
3616
3617 switch (ri->opc2 & 6) {
3618 case 0:
3619 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3620 switch (el) {
3621 case 3:
3622 mmu_idx = ARMMMUIdx_E3;
3623 break;
3624 case 2:
3625 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3626 /* fall through */
3627 case 1:
3628 if (ri->crm == 9 && arm_pan_enabled(env)) {
3629 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3630 } else {
3631 mmu_idx = ARMMMUIdx_Stage1_E1;
3632 }
3633 break;
3634 default:
3635 g_assert_not_reached();
3636 }
3637 break;
3638 case 2:
3639 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3640 switch (el) {
3641 case 3:
3642 mmu_idx = ARMMMUIdx_E10_0;
3643 break;
3644 case 2:
3645 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3646 mmu_idx = ARMMMUIdx_Stage1_E0;
3647 break;
3648 case 1:
3649 mmu_idx = ARMMMUIdx_Stage1_E0;
3650 break;
3651 default:
3652 g_assert_not_reached();
3653 }
3654 break;
3655 case 4:
3656 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3657 mmu_idx = ARMMMUIdx_E10_1;
3658 ss = ARMSS_NonSecure;
3659 break;
3660 case 6:
3661 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3662 mmu_idx = ARMMMUIdx_E10_0;
3663 ss = ARMSS_NonSecure;
3664 break;
3665 default:
3666 g_assert_not_reached();
3667 }
3668
3669 par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3670
3671 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3672 #else
3673 /* Handled by hardware accelerator. */
3674 g_assert_not_reached();
3675 #endif /* CONFIG_TCG */
3676 }
3677
3678 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3679 uint64_t value)
3680 {
3681 #ifdef CONFIG_TCG
3682 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3683 uint64_t par64;
3684
3685 /* There is no SecureEL2 for AArch32. */
3686 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3687 ARMSS_NonSecure);
3688
3689 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3690 #else
3691 /* Handled by hardware accelerator. */
3692 g_assert_not_reached();
3693 #endif /* CONFIG_TCG */
3694 }
3695
3696 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3697 bool isread)
3698 {
3699 /*
3700 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3701 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3702 * only happen when executing at EL3 because that combination also causes an
3703 * illegal exception return. We don't need to check FEAT_RME either, because
3704 * scr_write() ensures that the NSE bit is not set otherwise.
3705 */
3706 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3707 return CP_ACCESS_TRAP;
3708 }
3709 return CP_ACCESS_OK;
3710 }
3711
3712 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3713 bool isread)
3714 {
3715 if (arm_current_el(env) == 3 &&
3716 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3717 return CP_ACCESS_TRAP;
3718 }
3719 return at_e012_access(env, ri, isread);
3720 }
3721
3722 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
3723 bool isread)
3724 {
3725 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
3726 return CP_ACCESS_TRAP_EL2;
3727 }
3728 return at_e012_access(env, ri, isread);
3729 }
3730
3731 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3732 uint64_t value)
3733 {
3734 #ifdef CONFIG_TCG
3735 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3736 ARMMMUIdx mmu_idx;
3737 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3738 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3739
3740 switch (ri->opc2 & 6) {
3741 case 0:
3742 switch (ri->opc1) {
3743 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3744 if (ri->crm == 9 && arm_pan_enabled(env)) {
3745 mmu_idx = regime_e20 ?
3746 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3747 } else {
3748 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3749 }
3750 break;
3751 case 4: /* AT S1E2R, AT S1E2W */
3752 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3753 break;
3754 case 6: /* AT S1E3R, AT S1E3W */
3755 mmu_idx = ARMMMUIdx_E3;
3756 break;
3757 default:
3758 g_assert_not_reached();
3759 }
3760 break;
3761 case 2: /* AT S1E0R, AT S1E0W */
3762 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3763 break;
3764 case 4: /* AT S12E1R, AT S12E1W */
3765 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3766 break;
3767 case 6: /* AT S12E0R, AT S12E0W */
3768 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3769 break;
3770 default:
3771 g_assert_not_reached();
3772 }
3773
3774 env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3775 mmu_idx, arm_security_space(env));
3776 #else
3777 /* Handled by hardware accelerator. */
3778 g_assert_not_reached();
3779 #endif /* CONFIG_TCG */
3780 }
3781 #endif
3782
3783 /* Return basic MPU access permission bits. */
3784 static uint32_t simple_mpu_ap_bits(uint32_t val)
3785 {
3786 uint32_t ret;
3787 uint32_t mask;
3788 int i;
3789 ret = 0;
3790 mask = 3;
3791 for (i = 0; i < 16; i += 2) {
3792 ret |= (val >> i) & mask;
3793 mask <<= 2;
3794 }
3795 return ret;
3796 }
3797
3798 /* Pad basic MPU access permission bits to extended format. */
3799 static uint32_t extended_mpu_ap_bits(uint32_t val)
3800 {
3801 uint32_t ret;
3802 uint32_t mask;
3803 int i;
3804 ret = 0;
3805 mask = 3;
3806 for (i = 0; i < 16; i += 2) {
3807 ret |= (val & mask) << i;
3808 mask <<= 2;
3809 }
3810 return ret;
3811 }
3812
3813 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3814 uint64_t value)
3815 {
3816 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3817 }
3818
3819 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3820 {
3821 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3822 }
3823
3824 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3825 uint64_t value)
3826 {
3827 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3828 }
3829
3830 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3831 {
3832 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3833 }
3834
3835 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3836 {
3837 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3838
3839 if (!u32p) {
3840 return 0;
3841 }
3842
3843 u32p += env->pmsav7.rnr[M_REG_NS];
3844 return *u32p;
3845 }
3846
3847 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3848 uint64_t value)
3849 {
3850 ARMCPU *cpu = env_archcpu(env);
3851 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3852
3853 if (!u32p) {
3854 return;
3855 }
3856
3857 u32p += env->pmsav7.rnr[M_REG_NS];
3858 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3859 *u32p = value;
3860 }
3861
3862 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3863 uint64_t value)
3864 {
3865 ARMCPU *cpu = env_archcpu(env);
3866 uint32_t nrgs = cpu->pmsav7_dregion;
3867
3868 if (value >= nrgs) {
3869 qemu_log_mask(LOG_GUEST_ERROR,
3870 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3871 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3872 return;
3873 }
3874
3875 raw_write(env, ri, value);
3876 }
3877
3878 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3879 uint64_t value)
3880 {
3881 ARMCPU *cpu = env_archcpu(env);
3882
3883 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3884 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3885 }
3886
3887 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3888 {
3889 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3890 }
3891
3892 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3893 uint64_t value)
3894 {
3895 ARMCPU *cpu = env_archcpu(env);
3896
3897 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3898 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3899 }
3900
3901 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3902 {
3903 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3904 }
3905
3906 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3907 uint64_t value)
3908 {
3909 ARMCPU *cpu = env_archcpu(env);
3910
3911 /*
3912 * Ignore writes that would select not implemented region.
3913 * This is architecturally UNPREDICTABLE.
3914 */
3915 if (value >= cpu->pmsav7_dregion) {
3916 return;
3917 }
3918
3919 env->pmsav7.rnr[M_REG_NS] = value;
3920 }
3921
3922 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3923 uint64_t value)
3924 {
3925 ARMCPU *cpu = env_archcpu(env);
3926
3927 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3928 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3929 }
3930
3931 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3932 {
3933 return env->pmsav8.hprbar[env->pmsav8.hprselr];
3934 }
3935
3936 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3937 uint64_t value)
3938 {
3939 ARMCPU *cpu = env_archcpu(env);
3940
3941 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3942 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3943 }
3944
3945 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3946 {
3947 return env->pmsav8.hprlar[env->pmsav8.hprselr];
3948 }
3949
3950 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3951 uint64_t value)
3952 {
3953 uint32_t n;
3954 uint32_t bit;
3955 ARMCPU *cpu = env_archcpu(env);
3956
3957 /* Ignore writes to unimplemented regions */
3958 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3959 value &= MAKE_64BIT_MASK(0, rmax);
3960
3961 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3962
3963 /* Register alias is only valid for first 32 indexes */
3964 for (n = 0; n < rmax; ++n) {
3965 bit = extract32(value, n, 1);
3966 env->pmsav8.hprlar[n] = deposit32(
3967 env->pmsav8.hprlar[n], 0, 1, bit);
3968 }
3969 }
3970
3971 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3972 {
3973 uint32_t n;
3974 uint32_t result = 0x0;
3975 ARMCPU *cpu = env_archcpu(env);
3976
3977 /* Register alias is only valid for first 32 indexes */
3978 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3979 if (env->pmsav8.hprlar[n] & 0x1) {
3980 result |= (0x1 << n);
3981 }
3982 }
3983 return result;
3984 }
3985
3986 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3987 uint64_t value)
3988 {
3989 ARMCPU *cpu = env_archcpu(env);
3990
3991 /*
3992 * Ignore writes that would select not implemented region.
3993 * This is architecturally UNPREDICTABLE.
3994 */
3995 if (value >= cpu->pmsav8r_hdregion) {
3996 return;
3997 }
3998
3999 env->pmsav8.hprselr = value;
4000 }
4001
4002 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
4003 uint64_t value)
4004 {
4005 ARMCPU *cpu = env_archcpu(env);
4006 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4007 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4008
4009 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4010
4011 if (ri->opc1 & 4) {
4012 if (index >= cpu->pmsav8r_hdregion) {
4013 return;
4014 }
4015 if (ri->opc2 & 0x1) {
4016 env->pmsav8.hprlar[index] = value;
4017 } else {
4018 env->pmsav8.hprbar[index] = value;
4019 }
4020 } else {
4021 if (index >= cpu->pmsav7_dregion) {
4022 return;
4023 }
4024 if (ri->opc2 & 0x1) {
4025 env->pmsav8.rlar[M_REG_NS][index] = value;
4026 } else {
4027 env->pmsav8.rbar[M_REG_NS][index] = value;
4028 }
4029 }
4030 }
4031
4032 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4033 {
4034 ARMCPU *cpu = env_archcpu(env);
4035 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4036 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4037
4038 if (ri->opc1 & 4) {
4039 if (index >= cpu->pmsav8r_hdregion) {
4040 return 0x0;
4041 }
4042 if (ri->opc2 & 0x1) {
4043 return env->pmsav8.hprlar[index];
4044 } else {
4045 return env->pmsav8.hprbar[index];
4046 }
4047 } else {
4048 if (index >= cpu->pmsav7_dregion) {
4049 return 0x0;
4050 }
4051 if (ri->opc2 & 0x1) {
4052 return env->pmsav8.rlar[M_REG_NS][index];
4053 } else {
4054 return env->pmsav8.rbar[M_REG_NS][index];
4055 }
4056 }
4057 }
4058
4059 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4060 { .name = "PRBAR",
4061 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4062 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4063 .accessfn = access_tvm_trvm,
4064 .readfn = prbar_read, .writefn = prbar_write },
4065 { .name = "PRLAR",
4066 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4067 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4068 .accessfn = access_tvm_trvm,
4069 .readfn = prlar_read, .writefn = prlar_write },
4070 { .name = "PRSELR", .resetvalue = 0,
4071 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4072 .access = PL1_RW, .accessfn = access_tvm_trvm,
4073 .writefn = prselr_write,
4074 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4075 { .name = "HPRBAR", .resetvalue = 0,
4076 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4077 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4078 .readfn = hprbar_read, .writefn = hprbar_write },
4079 { .name = "HPRLAR",
4080 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4081 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4082 .readfn = hprlar_read, .writefn = hprlar_write },
4083 { .name = "HPRSELR", .resetvalue = 0,
4084 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4085 .access = PL2_RW,
4086 .writefn = hprselr_write,
4087 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4088 { .name = "HPRENR",
4089 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4090 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4091 .readfn = hprenr_read, .writefn = hprenr_write },
4092 };
4093
4094 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4095 /*
4096 * Reset for all these registers is handled in arm_cpu_reset(),
4097 * because the PMSAv7 is also used by M-profile CPUs, which do
4098 * not register cpregs but still need the state to be reset.
4099 */
4100 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4101 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4102 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4103 .readfn = pmsav7_read, .writefn = pmsav7_write,
4104 .resetfn = arm_cp_reset_ignore },
4105 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4106 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4107 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4108 .readfn = pmsav7_read, .writefn = pmsav7_write,
4109 .resetfn = arm_cp_reset_ignore },
4110 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4111 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4112 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4113 .readfn = pmsav7_read, .writefn = pmsav7_write,
4114 .resetfn = arm_cp_reset_ignore },
4115 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4116 .access = PL1_RW,
4117 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4118 .writefn = pmsav7_rgnr_write,
4119 .resetfn = arm_cp_reset_ignore },
4120 };
4121
4122 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4123 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4124 .access = PL1_RW, .type = ARM_CP_ALIAS,
4125 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4126 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4127 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4128 .access = PL1_RW, .type = ARM_CP_ALIAS,
4129 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4130 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4131 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4132 .access = PL1_RW,
4133 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4134 .resetvalue = 0, },
4135 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4136 .access = PL1_RW,
4137 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4138 .resetvalue = 0, },
4139 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4140 .access = PL1_RW,
4141 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4142 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4143 .access = PL1_RW,
4144 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4145 /* Protection region base and size registers */
4146 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4147 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4148 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4149 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4150 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4151 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4152 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4153 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4154 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4155 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4156 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4157 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4158 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4159 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4160 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4161 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4162 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4163 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4164 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4165 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4166 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4167 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4168 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4169 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4170 };
4171
4172 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4173 uint64_t value)
4174 {
4175 ARMCPU *cpu = env_archcpu(env);
4176
4177 if (!arm_feature(env, ARM_FEATURE_V8)) {
4178 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4179 /*
4180 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4181 * using Long-descriptor translation table format
4182 */
4183 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4184 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4185 /*
4186 * In an implementation that includes the Security Extensions
4187 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4188 * Short-descriptor translation table format.
4189 */
4190 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4191 } else {
4192 value &= TTBCR_N;
4193 }
4194 }
4195
4196 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4197 /*
4198 * With LPAE the TTBCR could result in a change of ASID
4199 * via the TTBCR.A1 bit, so do a TLB flush.
4200 */
4201 tlb_flush(CPU(cpu));
4202 }
4203 raw_write(env, ri, value);
4204 }
4205
4206 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4207 uint64_t value)
4208 {
4209 ARMCPU *cpu = env_archcpu(env);
4210
4211 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4212 tlb_flush(CPU(cpu));
4213 raw_write(env, ri, value);
4214 }
4215
4216 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4217 uint64_t value)
4218 {
4219 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4220 if (cpreg_field_is_64bit(ri) &&
4221 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4222 ARMCPU *cpu = env_archcpu(env);
4223 tlb_flush(CPU(cpu));
4224 }
4225 raw_write(env, ri, value);
4226 }
4227
4228 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4229 uint64_t value)
4230 {
4231 /*
4232 * If we are running with E2&0 regime, then an ASID is active.
4233 * Flush if that might be changing. Note we're not checking
4234 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4235 * holds the active ASID, only checking the field that might.
4236 */
4237 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4238 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4239 uint16_t mask = ARMMMUIdxBit_E20_2 |
4240 ARMMMUIdxBit_E20_2_PAN |
4241 ARMMMUIdxBit_E20_0;
4242 tlb_flush_by_mmuidx(env_cpu(env), mask);
4243 }
4244 raw_write(env, ri, value);
4245 }
4246
4247 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4248 uint64_t value)
4249 {
4250 ARMCPU *cpu = env_archcpu(env);
4251 CPUState *cs = CPU(cpu);
4252
4253 /*
4254 * A change in VMID to the stage2 page table (Stage2) invalidates
4255 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4256 */
4257 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4258 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4259 }
4260 raw_write(env, ri, value);
4261 }
4262
4263 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4264 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4265 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4266 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4267 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4268 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4269 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4270 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4271 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4272 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4273 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4274 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4275 offsetof(CPUARMState, cp15.dfar_ns) } },
4276 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4277 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4278 .access = PL1_RW, .accessfn = access_tvm_trvm,
4279 .fgt = FGT_FAR_EL1,
4280 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
4281 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4282 .resetvalue = 0, },
4283 };
4284
4285 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4286 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4287 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4288 .access = PL1_RW, .accessfn = access_tvm_trvm,
4289 .fgt = FGT_ESR_EL1,
4290 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
4291 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4292 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4293 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4294 .access = PL1_RW, .accessfn = access_tvm_trvm,
4295 .fgt = FGT_TTBR0_EL1,
4296 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
4297 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4298 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4299 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4300 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4301 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4302 .access = PL1_RW, .accessfn = access_tvm_trvm,
4303 .fgt = FGT_TTBR1_EL1,
4304 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
4305 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4306 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4307 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4308 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4309 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4310 .access = PL1_RW, .accessfn = access_tvm_trvm,
4311 .fgt = FGT_TCR_EL1,
4312 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
4313 .writefn = vmsa_tcr_el12_write,
4314 .raw_writefn = raw_write,
4315 .resetvalue = 0,
4316 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4317 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4318 .access = PL1_RW, .accessfn = access_tvm_trvm,
4319 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4320 .raw_writefn = raw_write,
4321 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4322 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4323 };
4324
4325 /*
4326 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4327 * qemu tlbs nor adjusting cached masks.
4328 */
4329 static const ARMCPRegInfo ttbcr2_reginfo = {
4330 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4331 .access = PL1_RW, .accessfn = access_tvm_trvm,
4332 .type = ARM_CP_ALIAS,
4333 .bank_fieldoffsets = {
4334 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4335 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4336 },
4337 };
4338
4339 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4340 uint64_t value)
4341 {
4342 env->cp15.c15_ticonfig = value & 0xe7;
4343 /* The OS_TYPE bit in this register changes the reported CPUID! */
4344 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4345 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4346 }
4347
4348 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4349 uint64_t value)
4350 {
4351 env->cp15.c15_threadid = value & 0xffff;
4352 }
4353
4354 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4355 uint64_t value)
4356 {
4357 /* Wait-for-interrupt (deprecated) */
4358 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4359 }
4360
4361 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4362 uint64_t value)
4363 {
4364 /*
4365 * On OMAP there are registers indicating the max/min index of dcache lines
4366 * containing a dirty line; cache flush operations have to reset these.
4367 */
4368 env->cp15.c15_i_max = 0x000;
4369 env->cp15.c15_i_min = 0xff0;
4370 }
4371
4372 static const ARMCPRegInfo omap_cp_reginfo[] = {
4373 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4374 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4375 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4376 .resetvalue = 0, },
4377 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4378 .access = PL1_RW, .type = ARM_CP_NOP },
4379 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4380 .access = PL1_RW,
4381 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4382 .writefn = omap_ticonfig_write },
4383 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4384 .access = PL1_RW,
4385 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4386 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4387 .access = PL1_RW, .resetvalue = 0xff0,
4388 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4389 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4390 .access = PL1_RW,
4391 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4392 .writefn = omap_threadid_write },
4393 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4394 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4395 .type = ARM_CP_NO_RAW,
4396 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4397 /*
4398 * TODO: Peripheral port remap register:
4399 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4400 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4401 * when MMU is off.
4402 */
4403 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4404 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4405 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4406 .writefn = omap_cachemaint_write },
4407 { .name = "C9", .cp = 15, .crn = 9,
4408 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4409 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4410 };
4411
4412 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4413 uint64_t value)
4414 {
4415 env->cp15.c15_cpar = value & 0x3fff;
4416 }
4417
4418 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4419 { .name = "XSCALE_CPAR",
4420 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4421 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4422 .writefn = xscale_cpar_write, },
4423 { .name = "XSCALE_AUXCR",
4424 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4425 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4426 .resetvalue = 0, },
4427 /*
4428 * XScale specific cache-lockdown: since we have no cache we NOP these
4429 * and hope the guest does not really rely on cache behaviour.
4430 */
4431 { .name = "XSCALE_LOCK_ICACHE_LINE",
4432 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4433 .access = PL1_W, .type = ARM_CP_NOP },
4434 { .name = "XSCALE_UNLOCK_ICACHE",
4435 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4436 .access = PL1_W, .type = ARM_CP_NOP },
4437 { .name = "XSCALE_DCACHE_LOCK",
4438 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4439 .access = PL1_RW, .type = ARM_CP_NOP },
4440 { .name = "XSCALE_UNLOCK_DCACHE",
4441 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4442 .access = PL1_W, .type = ARM_CP_NOP },
4443 };
4444
4445 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4446 /*
4447 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4448 * implementation of this implementation-defined space.
4449 * Ideally this should eventually disappear in favour of actually
4450 * implementing the correct behaviour for all cores.
4451 */
4452 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4453 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4454 .access = PL1_RW,
4455 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4456 .resetvalue = 0 },
4457 };
4458
4459 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4460 /* Cache status: RAZ because we have no cache so it's always clean */
4461 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4462 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4463 .resetvalue = 0 },
4464 };
4465
4466 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4467 /* We never have a block transfer operation in progress */
4468 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4469 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4470 .resetvalue = 0 },
4471 /* The cache ops themselves: these all NOP for QEMU */
4472 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4473 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4474 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4475 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4476 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4477 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4478 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4479 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4480 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4481 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4482 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4483 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4484 };
4485
4486 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4487 /*
4488 * The cache test-and-clean instructions always return (1 << 30)
4489 * to indicate that there are no dirty cache lines.
4490 */
4491 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4492 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4493 .resetvalue = (1 << 30) },
4494 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4495 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4496 .resetvalue = (1 << 30) },
4497 };
4498
4499 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4500 /* Ignore ReadBuffer accesses */
4501 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4502 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4503 .access = PL1_RW, .resetvalue = 0,
4504 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4505 };
4506
4507 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4508 {
4509 unsigned int cur_el = arm_current_el(env);
4510
4511 if (arm_is_el2_enabled(env) && cur_el == 1) {
4512 return env->cp15.vpidr_el2;
4513 }
4514 return raw_read(env, ri);
4515 }
4516
4517 static uint64_t mpidr_read_val(CPUARMState *env)
4518 {
4519 ARMCPU *cpu = env_archcpu(env);
4520 uint64_t mpidr = cpu->mp_affinity;
4521
4522 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4523 mpidr |= (1U << 31);
4524 /*
4525 * Cores which are uniprocessor (non-coherent)
4526 * but still implement the MP extensions set
4527 * bit 30. (For instance, Cortex-R5).
4528 */
4529 if (cpu->mp_is_up) {
4530 mpidr |= (1u << 30);
4531 }
4532 }
4533 return mpidr;
4534 }
4535
4536 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4537 {
4538 unsigned int cur_el = arm_current_el(env);
4539
4540 if (arm_is_el2_enabled(env) && cur_el == 1) {
4541 return env->cp15.vmpidr_el2;
4542 }
4543 return mpidr_read_val(env);
4544 }
4545
4546 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4547 /* NOP AMAIR0/1 */
4548 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4549 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4550 .access = PL1_RW, .accessfn = access_tvm_trvm,
4551 .fgt = FGT_AMAIR_EL1,
4552 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
4553 .type = ARM_CP_CONST, .resetvalue = 0 },
4554 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4555 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4556 .access = PL1_RW, .accessfn = access_tvm_trvm,
4557 .type = ARM_CP_CONST, .resetvalue = 0 },
4558 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4559 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4560 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4561 offsetof(CPUARMState, cp15.par_ns)} },
4562 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4563 .access = PL1_RW, .accessfn = access_tvm_trvm,
4564 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4565 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4566 offsetof(CPUARMState, cp15.ttbr0_ns) },
4567 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4568 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4569 .access = PL1_RW, .accessfn = access_tvm_trvm,
4570 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4571 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4572 offsetof(CPUARMState, cp15.ttbr1_ns) },
4573 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4574 };
4575
4576 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4577 {
4578 return vfp_get_fpcr(env);
4579 }
4580
4581 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4582 uint64_t value)
4583 {
4584 vfp_set_fpcr(env, value);
4585 }
4586
4587 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4588 {
4589 return vfp_get_fpsr(env);
4590 }
4591
4592 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4593 uint64_t value)
4594 {
4595 vfp_set_fpsr(env, value);
4596 }
4597
4598 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4599 bool isread)
4600 {
4601 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4602 return CP_ACCESS_TRAP;
4603 }
4604 return CP_ACCESS_OK;
4605 }
4606
4607 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4608 uint64_t value)
4609 {
4610 env->daif = value & PSTATE_DAIF;
4611 }
4612
4613 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4614 {
4615 return env->pstate & PSTATE_PAN;
4616 }
4617
4618 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4619 uint64_t value)
4620 {
4621 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4622 }
4623
4624 static const ARMCPRegInfo pan_reginfo = {
4625 .name = "PAN", .state = ARM_CP_STATE_AA64,
4626 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4627 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4628 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4629 };
4630
4631 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4632 {
4633 return env->pstate & PSTATE_UAO;
4634 }
4635
4636 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4637 uint64_t value)
4638 {
4639 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4640 }
4641
4642 static const ARMCPRegInfo uao_reginfo = {
4643 .name = "UAO", .state = ARM_CP_STATE_AA64,
4644 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4645 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4646 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4647 };
4648
4649 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4650 {
4651 return env->pstate & PSTATE_DIT;
4652 }
4653
4654 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4655 uint64_t value)
4656 {
4657 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4658 }
4659
4660 static const ARMCPRegInfo dit_reginfo = {
4661 .name = "DIT", .state = ARM_CP_STATE_AA64,
4662 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4663 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4664 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4665 };
4666
4667 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4668 {
4669 return env->pstate & PSTATE_SSBS;
4670 }
4671
4672 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4673 uint64_t value)
4674 {
4675 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4676 }
4677
4678 static const ARMCPRegInfo ssbs_reginfo = {
4679 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4680 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4681 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4682 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4683 };
4684
4685 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4686 const ARMCPRegInfo *ri,
4687 bool isread)
4688 {
4689 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4690 switch (arm_current_el(env)) {
4691 case 0:
4692 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4693 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4694 return CP_ACCESS_TRAP;
4695 }
4696 /* fall through */
4697 case 1:
4698 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4699 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4700 return CP_ACCESS_TRAP_EL2;
4701 }
4702 break;
4703 }
4704 return CP_ACCESS_OK;
4705 }
4706
4707 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4708 {
4709 /* Cache invalidate/clean to Point of Unification... */
4710 switch (arm_current_el(env)) {
4711 case 0:
4712 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4713 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4714 return CP_ACCESS_TRAP;
4715 }
4716 /* fall through */
4717 case 1:
4718 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4719 if (arm_hcr_el2_eff(env) & hcrflags) {
4720 return CP_ACCESS_TRAP_EL2;
4721 }
4722 break;
4723 }
4724 return CP_ACCESS_OK;
4725 }
4726
4727 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4728 bool isread)
4729 {
4730 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4731 }
4732
4733 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4734 bool isread)
4735 {
4736 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4737 }
4738
4739 /*
4740 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4741 * Page D4-1736 (DDI0487A.b)
4742 */
4743
4744 static int vae1_tlbmask(CPUARMState *env)
4745 {
4746 uint64_t hcr = arm_hcr_el2_eff(env);
4747 uint16_t mask;
4748
4749 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4750 mask = ARMMMUIdxBit_E20_2 |
4751 ARMMMUIdxBit_E20_2_PAN |
4752 ARMMMUIdxBit_E20_0;
4753 } else {
4754 mask = ARMMMUIdxBit_E10_1 |
4755 ARMMMUIdxBit_E10_1_PAN |
4756 ARMMMUIdxBit_E10_0;
4757 }
4758 return mask;
4759 }
4760
4761 static int vae2_tlbmask(CPUARMState *env)
4762 {
4763 uint64_t hcr = arm_hcr_el2_eff(env);
4764 uint16_t mask;
4765
4766 if (hcr & HCR_E2H) {
4767 mask = ARMMMUIdxBit_E20_2 |
4768 ARMMMUIdxBit_E20_2_PAN |
4769 ARMMMUIdxBit_E20_0;
4770 } else {
4771 mask = ARMMMUIdxBit_E2;
4772 }
4773 return mask;
4774 }
4775
4776 /* Return 56 if TBI is enabled, 64 otherwise. */
4777 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4778 uint64_t addr)
4779 {
4780 uint64_t tcr = regime_tcr(env, mmu_idx);
4781 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4782 int select = extract64(addr, 55, 1);
4783
4784 return (tbi >> select) & 1 ? 56 : 64;
4785 }
4786
4787 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4788 {
4789 uint64_t hcr = arm_hcr_el2_eff(env);
4790 ARMMMUIdx mmu_idx;
4791
4792 /* Only the regime of the mmu_idx below is significant. */
4793 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4794 mmu_idx = ARMMMUIdx_E20_0;
4795 } else {
4796 mmu_idx = ARMMMUIdx_E10_0;
4797 }
4798
4799 return tlbbits_for_regime(env, mmu_idx, addr);
4800 }
4801
4802 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4803 {
4804 uint64_t hcr = arm_hcr_el2_eff(env);
4805 ARMMMUIdx mmu_idx;
4806
4807 /*
4808 * Only the regime of the mmu_idx below is significant.
4809 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4810 * only has one.
4811 */
4812 if (hcr & HCR_E2H) {
4813 mmu_idx = ARMMMUIdx_E20_2;
4814 } else {
4815 mmu_idx = ARMMMUIdx_E2;
4816 }
4817
4818 return tlbbits_for_regime(env, mmu_idx, addr);
4819 }
4820
4821 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4822 uint64_t value)
4823 {
4824 CPUState *cs = env_cpu(env);
4825 int mask = vae1_tlbmask(env);
4826
4827 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4828 }
4829
4830 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4831 uint64_t value)
4832 {
4833 CPUState *cs = env_cpu(env);
4834 int mask = vae1_tlbmask(env);
4835
4836 if (tlb_force_broadcast(env)) {
4837 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4838 } else {
4839 tlb_flush_by_mmuidx(cs, mask);
4840 }
4841 }
4842
4843 static int e2_tlbmask(CPUARMState *env)
4844 {
4845 return (ARMMMUIdxBit_E20_0 |
4846 ARMMMUIdxBit_E20_2 |
4847 ARMMMUIdxBit_E20_2_PAN |
4848 ARMMMUIdxBit_E2);
4849 }
4850
4851 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4852 uint64_t value)
4853 {
4854 CPUState *cs = env_cpu(env);
4855 int mask = alle1_tlbmask(env);
4856
4857 tlb_flush_by_mmuidx(cs, mask);
4858 }
4859
4860 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4861 uint64_t value)
4862 {
4863 CPUState *cs = env_cpu(env);
4864 int mask = e2_tlbmask(env);
4865
4866 tlb_flush_by_mmuidx(cs, mask);
4867 }
4868
4869 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4870 uint64_t value)
4871 {
4872 ARMCPU *cpu = env_archcpu(env);
4873 CPUState *cs = CPU(cpu);
4874
4875 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4876 }
4877
4878 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4879 uint64_t value)
4880 {
4881 CPUState *cs = env_cpu(env);
4882 int mask = alle1_tlbmask(env);
4883
4884 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4885 }
4886
4887 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4888 uint64_t value)
4889 {
4890 CPUState *cs = env_cpu(env);
4891 int mask = e2_tlbmask(env);
4892
4893 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4894 }
4895
4896 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4897 uint64_t value)
4898 {
4899 CPUState *cs = env_cpu(env);
4900
4901 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4902 }
4903
4904 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4905 uint64_t value)
4906 {
4907 /*
4908 * Invalidate by VA, EL2
4909 * Currently handles both VAE2 and VALE2, since we don't support
4910 * flush-last-level-only.
4911 */
4912 CPUState *cs = env_cpu(env);
4913 int mask = vae2_tlbmask(env);
4914 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4915 int bits = vae2_tlbbits(env, pageaddr);
4916
4917 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4918 }
4919
4920 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4921 uint64_t value)
4922 {
4923 /*
4924 * Invalidate by VA, EL3
4925 * Currently handles both VAE3 and VALE3, since we don't support
4926 * flush-last-level-only.
4927 */
4928 ARMCPU *cpu = env_archcpu(env);
4929 CPUState *cs = CPU(cpu);
4930 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4931
4932 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4933 }
4934
4935 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4936 uint64_t value)
4937 {
4938 CPUState *cs = env_cpu(env);
4939 int mask = vae1_tlbmask(env);
4940 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4941 int bits = vae1_tlbbits(env, pageaddr);
4942
4943 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4944 }
4945
4946 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4947 uint64_t value)
4948 {
4949 /*
4950 * Invalidate by VA, EL1&0 (AArch64 version).
4951 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4952 * since we don't support flush-for-specific-ASID-only or
4953 * flush-last-level-only.
4954 */
4955 CPUState *cs = env_cpu(env);
4956 int mask = vae1_tlbmask(env);
4957 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4958 int bits = vae1_tlbbits(env, pageaddr);
4959
4960 if (tlb_force_broadcast(env)) {
4961 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4962 } else {
4963 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4964 }
4965 }
4966
4967 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4968 uint64_t value)
4969 {
4970 CPUState *cs = env_cpu(env);
4971 int mask = vae2_tlbmask(env);
4972 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4973 int bits = vae2_tlbbits(env, pageaddr);
4974
4975 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4976 }
4977
4978 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4979 uint64_t value)
4980 {
4981 CPUState *cs = env_cpu(env);
4982 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4983 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4984
4985 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4986 ARMMMUIdxBit_E3, bits);
4987 }
4988
4989 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4990 {
4991 /*
4992 * The MSB of value is the NS field, which only applies if SEL2
4993 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4994 */
4995 return (value >= 0
4996 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4997 && arm_is_secure_below_el3(env)
4998 ? ARMMMUIdxBit_Stage2_S
4999 : ARMMMUIdxBit_Stage2);
5000 }
5001
5002 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5003 uint64_t value)
5004 {
5005 CPUState *cs = env_cpu(env);
5006 int mask = ipas2e1_tlbmask(env, value);
5007 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5008
5009 if (tlb_force_broadcast(env)) {
5010 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5011 } else {
5012 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
5013 }
5014 }
5015
5016 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5017 uint64_t value)
5018 {
5019 CPUState *cs = env_cpu(env);
5020 int mask = ipas2e1_tlbmask(env, value);
5021 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5022
5023 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5024 }
5025
5026 #ifdef TARGET_AARCH64
5027 typedef struct {
5028 uint64_t base;
5029 uint64_t length;
5030 } TLBIRange;
5031
5032 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
5033 {
5034 /*
5035 * Note that the TLBI range TG field encoding differs from both
5036 * TG0 and TG1 encodings.
5037 */
5038 switch (tg) {
5039 case 1:
5040 return Gran4K;
5041 case 2:
5042 return Gran16K;
5043 case 3:
5044 return Gran64K;
5045 default:
5046 return GranInvalid;
5047 }
5048 }
5049
5050 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5051 uint64_t value)
5052 {
5053 unsigned int page_size_granule, page_shift, num, scale, exponent;
5054 /* Extract one bit to represent the va selector in use. */
5055 uint64_t select = sextract64(value, 36, 1);
5056 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5057 TLBIRange ret = { };
5058 ARMGranuleSize gran;
5059
5060 page_size_granule = extract64(value, 46, 2);
5061 gran = tlbi_range_tg_to_gran_size(page_size_granule);
5062
5063 /* The granule encoded in value must match the granule in use. */
5064 if (gran != param.gran) {
5065 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5066 page_size_granule);
5067 return ret;
5068 }
5069
5070 page_shift = arm_granule_bits(gran);
5071 num = extract64(value, 39, 5);
5072 scale = extract64(value, 44, 2);
5073 exponent = (5 * scale) + 1;
5074
5075 ret.length = (num + 1) << (exponent + page_shift);
5076
5077 if (param.select) {
5078 ret.base = sextract64(value, 0, 37);
5079 } else {
5080 ret.base = extract64(value, 0, 37);
5081 }
5082 if (param.ds) {
5083 /*
5084 * With DS=1, BaseADDR is always shifted 16 so that it is able
5085 * to address all 52 va bits. The input address is perforce
5086 * aligned on a 64k boundary regardless of translation granule.
5087 */
5088 page_shift = 16;
5089 }
5090 ret.base <<= page_shift;
5091
5092 return ret;
5093 }
5094
5095 static void do_rvae_write(CPUARMState *env, uint64_t value,
5096 int idxmap, bool synced)
5097 {
5098 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5099 TLBIRange range;
5100 int bits;
5101
5102 range = tlbi_aa64_get_range(env, one_idx, value);
5103 bits = tlbbits_for_regime(env, one_idx, range.base);
5104
5105 if (synced) {
5106 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5107 range.base,
5108 range.length,
5109 idxmap,
5110 bits);
5111 } else {
5112 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5113 range.length, idxmap, bits);
5114 }
5115 }
5116
5117 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5118 const ARMCPRegInfo *ri,
5119 uint64_t value)
5120 {
5121 /*
5122 * Invalidate by VA range, EL1&0.
5123 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5124 * since we don't support flush-for-specific-ASID-only or
5125 * flush-last-level-only.
5126 */
5127
5128 do_rvae_write(env, value, vae1_tlbmask(env),
5129 tlb_force_broadcast(env));
5130 }
5131
5132 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5133 const ARMCPRegInfo *ri,
5134 uint64_t value)
5135 {
5136 /*
5137 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5138 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5139 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5140 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5141 * shareable specific flushes.
5142 */
5143
5144 do_rvae_write(env, value, vae1_tlbmask(env), true);
5145 }
5146
5147 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5148 const ARMCPRegInfo *ri,
5149 uint64_t value)
5150 {
5151 /*
5152 * Invalidate by VA range, EL2.
5153 * Currently handles all of RVAE2 and RVALE2,
5154 * since we don't support flush-for-specific-ASID-only or
5155 * flush-last-level-only.
5156 */
5157
5158 do_rvae_write(env, value, vae2_tlbmask(env),
5159 tlb_force_broadcast(env));
5160
5161
5162 }
5163
5164 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5165 const ARMCPRegInfo *ri,
5166 uint64_t value)
5167 {
5168 /*
5169 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5170 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5171 * since we don't support flush-for-specific-ASID-only,
5172 * flush-last-level-only or inner/outer shareable specific flushes.
5173 */
5174
5175 do_rvae_write(env, value, vae2_tlbmask(env), true);
5176
5177 }
5178
5179 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5180 const ARMCPRegInfo *ri,
5181 uint64_t value)
5182 {
5183 /*
5184 * Invalidate by VA range, EL3.
5185 * Currently handles all of RVAE3 and RVALE3,
5186 * since we don't support flush-for-specific-ASID-only or
5187 * flush-last-level-only.
5188 */
5189
5190 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5191 }
5192
5193 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5194 const ARMCPRegInfo *ri,
5195 uint64_t value)
5196 {
5197 /*
5198 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5199 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5200 * since we don't support flush-for-specific-ASID-only,
5201 * flush-last-level-only or inner/outer specific flushes.
5202 */
5203
5204 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5205 }
5206
5207 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5208 uint64_t value)
5209 {
5210 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5211 tlb_force_broadcast(env));
5212 }
5213
5214 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5215 const ARMCPRegInfo *ri,
5216 uint64_t value)
5217 {
5218 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5219 }
5220 #endif
5221
5222 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5223 bool isread)
5224 {
5225 int cur_el = arm_current_el(env);
5226
5227 if (cur_el < 2) {
5228 uint64_t hcr = arm_hcr_el2_eff(env);
5229
5230 if (cur_el == 0) {
5231 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5232 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5233 return CP_ACCESS_TRAP_EL2;
5234 }
5235 } else {
5236 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5237 return CP_ACCESS_TRAP;
5238 }
5239 if (hcr & HCR_TDZ) {
5240 return CP_ACCESS_TRAP_EL2;
5241 }
5242 }
5243 } else if (hcr & HCR_TDZ) {
5244 return CP_ACCESS_TRAP_EL2;
5245 }
5246 }
5247 return CP_ACCESS_OK;
5248 }
5249
5250 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5251 {
5252 ARMCPU *cpu = env_archcpu(env);
5253 int dzp_bit = 1 << 4;
5254
5255 /* DZP indicates whether DC ZVA access is allowed */
5256 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5257 dzp_bit = 0;
5258 }
5259 return cpu->dcz_blocksize | dzp_bit;
5260 }
5261
5262 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5263 bool isread)
5264 {
5265 if (!(env->pstate & PSTATE_SP)) {
5266 /*
5267 * Access to SP_EL0 is undefined if it's being used as
5268 * the stack pointer.
5269 */
5270 return CP_ACCESS_TRAP_UNCATEGORIZED;
5271 }
5272 return CP_ACCESS_OK;
5273 }
5274
5275 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5276 {
5277 return env->pstate & PSTATE_SP;
5278 }
5279
5280 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5281 {
5282 update_spsel(env, val);
5283 }
5284
5285 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5286 uint64_t value)
5287 {
5288 ARMCPU *cpu = env_archcpu(env);
5289
5290 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5291 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5292 value &= ~SCTLR_M;
5293 }
5294
5295 /* ??? Lots of these bits are not implemented. */
5296
5297 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5298 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5299 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5300 } else {
5301 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5302 SCTLR_ATA0 | SCTLR_ATA);
5303 }
5304 }
5305
5306 if (raw_read(env, ri) == value) {
5307 /*
5308 * Skip the TLB flush if nothing actually changed; Linux likes
5309 * to do a lot of pointless SCTLR writes.
5310 */
5311 return;
5312 }
5313
5314 raw_write(env, ri, value);
5315
5316 /* This may enable/disable the MMU, so do a TLB flush. */
5317 tlb_flush(CPU(cpu));
5318
5319 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5320 /*
5321 * Normally we would always end the TB on an SCTLR write; see the
5322 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5323 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5324 * of hflags from the translator, so do it here.
5325 */
5326 arm_rebuild_hflags(env);
5327 }
5328 }
5329
5330 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5331 uint64_t value)
5332 {
5333 /*
5334 * Some MDCR_EL3 bits affect whether PMU counters are running:
5335 * if we are trying to change any of those then we must
5336 * bracket this update with PMU start/finish calls.
5337 */
5338 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5339
5340 if (pmu_op) {
5341 pmu_op_start(env);
5342 }
5343 env->cp15.mdcr_el3 = value;
5344 if (pmu_op) {
5345 pmu_op_finish(env);
5346 }
5347 }
5348
5349 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5350 uint64_t value)
5351 {
5352 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5353 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5354 }
5355
5356 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5357 uint64_t value)
5358 {
5359 /*
5360 * Some MDCR_EL2 bits affect whether PMU counters are running:
5361 * if we are trying to change any of those then we must
5362 * bracket this update with PMU start/finish calls.
5363 */
5364 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5365
5366 if (pmu_op) {
5367 pmu_op_start(env);
5368 }
5369 env->cp15.mdcr_el2 = value;
5370 if (pmu_op) {
5371 pmu_op_finish(env);
5372 }
5373 }
5374
5375 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
5376 bool isread)
5377 {
5378 if (arm_current_el(env) == 1) {
5379 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
5380
5381 if (hcr_nv == (HCR_NV | HCR_NV1)) {
5382 return CP_ACCESS_TRAP_EL2;
5383 }
5384 }
5385 return CP_ACCESS_OK;
5386 }
5387
5388 #ifdef CONFIG_USER_ONLY
5389 /*
5390 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5391 * code to get around W^X restrictions, where one region is writable and the
5392 * other is executable.
5393 *
5394 * Since the executable region is never written to we cannot detect code
5395 * changes when running in user mode, and rely on the emulated JIT telling us
5396 * that the code has changed by executing this instruction.
5397 */
5398 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5399 uint64_t value)
5400 {
5401 uint64_t icache_line_mask, start_address, end_address;
5402 const ARMCPU *cpu;
5403
5404 cpu = env_archcpu(env);
5405
5406 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5407 start_address = value & ~icache_line_mask;
5408 end_address = value | icache_line_mask;
5409
5410 mmap_lock();
5411
5412 tb_invalidate_phys_range(start_address, end_address);
5413
5414 mmap_unlock();
5415 }
5416 #endif
5417
5418 static const ARMCPRegInfo v8_cp_reginfo[] = {
5419 /*
5420 * Minimal set of EL0-visible registers. This will need to be expanded
5421 * significantly for system emulation of AArch64 CPUs.
5422 */
5423 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5424 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5425 .access = PL0_RW, .type = ARM_CP_NZCV },
5426 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5427 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5428 .type = ARM_CP_NO_RAW,
5429 .access = PL0_RW, .accessfn = aa64_daif_access,
5430 .fieldoffset = offsetof(CPUARMState, daif),
5431 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5432 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5433 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5434 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5435 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5436 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5437 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5438 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5439 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5440 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5441 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5442 .access = PL0_R, .type = ARM_CP_NO_RAW,
5443 .fgt = FGT_DCZID_EL0,
5444 .readfn = aa64_dczid_read },
5445 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5446 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5447 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5448 #ifndef CONFIG_USER_ONLY
5449 /* Avoid overhead of an access check that always passes in user-mode */
5450 .accessfn = aa64_zva_access,
5451 .fgt = FGT_DCZVA,
5452 #endif
5453 },
5454 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5455 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5456 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5457 /*
5458 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5459 * don't emulate caches.
5460 */
5461 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5462 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5463 .access = PL1_W, .type = ARM_CP_NOP,
5464 .fgt = FGT_ICIALLUIS,
5465 .accessfn = access_ticab },
5466 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5467 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5468 .access = PL1_W, .type = ARM_CP_NOP,
5469 .fgt = FGT_ICIALLU,
5470 .accessfn = access_tocu },
5471 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5472 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5473 .access = PL0_W,
5474 .fgt = FGT_ICIVAU,
5475 .accessfn = access_tocu,
5476 #ifdef CONFIG_USER_ONLY
5477 .type = ARM_CP_NO_RAW,
5478 .writefn = ic_ivau_write
5479 #else
5480 .type = ARM_CP_NOP
5481 #endif
5482 },
5483 /* Cache ops: all NOPs since we don't emulate caches */
5484 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5485 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5486 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5487 .fgt = FGT_DCIVAC,
5488 .type = ARM_CP_NOP },
5489 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5490 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5491 .fgt = FGT_DCISW,
5492 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5493 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5494 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5495 .access = PL0_W, .type = ARM_CP_NOP,
5496 .fgt = FGT_DCCVAC,
5497 .accessfn = aa64_cacheop_poc_access },
5498 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5499 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5500 .fgt = FGT_DCCSW,
5501 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5502 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5503 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5504 .access = PL0_W, .type = ARM_CP_NOP,
5505 .fgt = FGT_DCCVAU,
5506 .accessfn = access_tocu },
5507 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5508 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5509 .access = PL0_W, .type = ARM_CP_NOP,
5510 .fgt = FGT_DCCIVAC,
5511 .accessfn = aa64_cacheop_poc_access },
5512 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5513 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5514 .fgt = FGT_DCCISW,
5515 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5516 /* TLBI operations */
5517 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5518 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5519 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5520 .fgt = FGT_TLBIVMALLE1IS,
5521 .writefn = tlbi_aa64_vmalle1is_write },
5522 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5523 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5524 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5525 .fgt = FGT_TLBIVAE1IS,
5526 .writefn = tlbi_aa64_vae1is_write },
5527 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5528 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5529 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5530 .fgt = FGT_TLBIASIDE1IS,
5531 .writefn = tlbi_aa64_vmalle1is_write },
5532 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5533 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5534 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5535 .fgt = FGT_TLBIVAAE1IS,
5536 .writefn = tlbi_aa64_vae1is_write },
5537 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5538 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5539 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5540 .fgt = FGT_TLBIVALE1IS,
5541 .writefn = tlbi_aa64_vae1is_write },
5542 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5543 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5544 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5545 .fgt = FGT_TLBIVAALE1IS,
5546 .writefn = tlbi_aa64_vae1is_write },
5547 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5548 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5549 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5550 .fgt = FGT_TLBIVMALLE1,
5551 .writefn = tlbi_aa64_vmalle1_write },
5552 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5553 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5554 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5555 .fgt = FGT_TLBIVAE1,
5556 .writefn = tlbi_aa64_vae1_write },
5557 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5558 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5559 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5560 .fgt = FGT_TLBIASIDE1,
5561 .writefn = tlbi_aa64_vmalle1_write },
5562 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5563 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5564 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5565 .fgt = FGT_TLBIVAAE1,
5566 .writefn = tlbi_aa64_vae1_write },
5567 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5568 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5569 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5570 .fgt = FGT_TLBIVALE1,
5571 .writefn = tlbi_aa64_vae1_write },
5572 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5573 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5574 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5575 .fgt = FGT_TLBIVAALE1,
5576 .writefn = tlbi_aa64_vae1_write },
5577 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5578 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5579 .access = PL2_W, .type = ARM_CP_NO_RAW,
5580 .writefn = tlbi_aa64_ipas2e1is_write },
5581 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5582 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5583 .access = PL2_W, .type = ARM_CP_NO_RAW,
5584 .writefn = tlbi_aa64_ipas2e1is_write },
5585 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5586 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5587 .access = PL2_W, .type = ARM_CP_NO_RAW,
5588 .writefn = tlbi_aa64_alle1is_write },
5589 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5590 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5591 .access = PL2_W, .type = ARM_CP_NO_RAW,
5592 .writefn = tlbi_aa64_alle1is_write },
5593 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5594 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5595 .access = PL2_W, .type = ARM_CP_NO_RAW,
5596 .writefn = tlbi_aa64_ipas2e1_write },
5597 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5598 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5599 .access = PL2_W, .type = ARM_CP_NO_RAW,
5600 .writefn = tlbi_aa64_ipas2e1_write },
5601 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5602 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5603 .access = PL2_W, .type = ARM_CP_NO_RAW,
5604 .writefn = tlbi_aa64_alle1_write },
5605 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5606 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5607 .access = PL2_W, .type = ARM_CP_NO_RAW,
5608 .writefn = tlbi_aa64_alle1is_write },
5609 #ifndef CONFIG_USER_ONLY
5610 /* 64 bit address translation operations */
5611 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5612 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5613 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5614 .fgt = FGT_ATS1E1R,
5615 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5616 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5617 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5618 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5619 .fgt = FGT_ATS1E1W,
5620 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5621 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5622 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5623 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5624 .fgt = FGT_ATS1E0R,
5625 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5626 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5627 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5628 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5629 .fgt = FGT_ATS1E0W,
5630 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5631 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5632 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5633 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5634 .accessfn = at_e012_access, .writefn = ats_write64 },
5635 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5636 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5637 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5638 .accessfn = at_e012_access, .writefn = ats_write64 },
5639 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5640 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5641 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5642 .accessfn = at_e012_access, .writefn = ats_write64 },
5643 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5644 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5645 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5646 .accessfn = at_e012_access, .writefn = ats_write64 },
5647 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5648 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5649 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5650 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5651 .writefn = ats_write64 },
5652 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5653 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5654 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5655 .writefn = ats_write64 },
5656 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5657 .type = ARM_CP_ALIAS,
5658 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5659 .access = PL1_RW, .resetvalue = 0,
5660 .fgt = FGT_PAR_EL1,
5661 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5662 .writefn = par_write },
5663 #endif
5664 /* TLB invalidate last level of translation table walk */
5665 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5666 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5667 .writefn = tlbimva_is_write },
5668 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5669 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5670 .writefn = tlbimvaa_is_write },
5671 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5672 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5673 .writefn = tlbimva_write },
5674 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5675 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5676 .writefn = tlbimvaa_write },
5677 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5678 .type = ARM_CP_NO_RAW, .access = PL2_W,
5679 .writefn = tlbimva_hyp_write },
5680 { .name = "TLBIMVALHIS",
5681 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5682 .type = ARM_CP_NO_RAW, .access = PL2_W,
5683 .writefn = tlbimva_hyp_is_write },
5684 { .name = "TLBIIPAS2",
5685 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5686 .type = ARM_CP_NO_RAW, .access = PL2_W,
5687 .writefn = tlbiipas2_hyp_write },
5688 { .name = "TLBIIPAS2IS",
5689 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5690 .type = ARM_CP_NO_RAW, .access = PL2_W,
5691 .writefn = tlbiipas2is_hyp_write },
5692 { .name = "TLBIIPAS2L",
5693 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5694 .type = ARM_CP_NO_RAW, .access = PL2_W,
5695 .writefn = tlbiipas2_hyp_write },
5696 { .name = "TLBIIPAS2LIS",
5697 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5698 .type = ARM_CP_NO_RAW, .access = PL2_W,
5699 .writefn = tlbiipas2is_hyp_write },
5700 /* 32 bit cache operations */
5701 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5702 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5703 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5704 .type = ARM_CP_NOP, .access = PL1_W },
5705 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5706 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5707 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5708 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5709 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5710 .type = ARM_CP_NOP, .access = PL1_W },
5711 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5712 .type = ARM_CP_NOP, .access = PL1_W },
5713 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5714 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5715 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5716 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5717 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5718 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5719 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5720 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5721 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5722 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5723 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5724 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5725 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5726 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5727 /* MMU Domain access control / MPU write buffer control */
5728 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5729 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5730 .writefn = dacr_write, .raw_writefn = raw_write,
5731 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5732 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5733 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5734 .type = ARM_CP_ALIAS,
5735 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5736 .access = PL1_RW, .accessfn = access_nv1,
5737 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
5738 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5739 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5740 .type = ARM_CP_ALIAS,
5741 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5742 .access = PL1_RW, .accessfn = access_nv1,
5743 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
5744 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5745 /*
5746 * We rely on the access checks not allowing the guest to write to the
5747 * state field when SPSel indicates that it's being used as the stack
5748 * pointer.
5749 */
5750 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5751 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5752 .access = PL1_RW, .accessfn = sp_el0_access,
5753 .type = ARM_CP_ALIAS,
5754 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5755 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5756 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5757 .nv2_redirect_offset = 0x240,
5758 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5759 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5760 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5761 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5762 .type = ARM_CP_NO_RAW,
5763 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5764 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5765 .type = ARM_CP_ALIAS,
5766 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5767 .access = PL2_RW,
5768 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5769 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5770 .type = ARM_CP_ALIAS,
5771 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5772 .access = PL2_RW,
5773 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5774 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5775 .type = ARM_CP_ALIAS,
5776 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5777 .access = PL2_RW,
5778 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5779 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5780 .type = ARM_CP_ALIAS,
5781 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5782 .access = PL2_RW,
5783 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5784 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5785 .type = ARM_CP_IO,
5786 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5787 .resetvalue = 0,
5788 .access = PL3_RW,
5789 .writefn = mdcr_el3_write,
5790 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5791 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5792 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5793 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5794 .writefn = sdcr_write,
5795 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5796 };
5797
5798 /* These are present only when EL1 supports AArch32 */
5799 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5800 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5801 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5802 .access = PL2_RW,
5803 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5804 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5805 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5806 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5807 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5808 .writefn = dacr_write, .raw_writefn = raw_write,
5809 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5810 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5811 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5812 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5813 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5814 };
5815
5816 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5817 {
5818 ARMCPU *cpu = env_archcpu(env);
5819
5820 if (arm_feature(env, ARM_FEATURE_V8)) {
5821 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5822 } else {
5823 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5824 }
5825
5826 if (arm_feature(env, ARM_FEATURE_EL3)) {
5827 valid_mask &= ~HCR_HCD;
5828 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5829 /*
5830 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5831 * However, if we're using the SMC PSCI conduit then QEMU is
5832 * effectively acting like EL3 firmware and so the guest at
5833 * EL2 should retain the ability to prevent EL1 from being
5834 * able to make SMC calls into the ersatz firmware, so in
5835 * that case HCR.TSC should be read/write.
5836 */
5837 valid_mask &= ~HCR_TSC;
5838 }
5839
5840 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5841 if (cpu_isar_feature(aa64_vh, cpu)) {
5842 valid_mask |= HCR_E2H;
5843 }
5844 if (cpu_isar_feature(aa64_ras, cpu)) {
5845 valid_mask |= HCR_TERR | HCR_TEA;
5846 }
5847 if (cpu_isar_feature(aa64_lor, cpu)) {
5848 valid_mask |= HCR_TLOR;
5849 }
5850 if (cpu_isar_feature(aa64_pauth, cpu)) {
5851 valid_mask |= HCR_API | HCR_APK;
5852 }
5853 if (cpu_isar_feature(aa64_mte, cpu)) {
5854 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5855 }
5856 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5857 valid_mask |= HCR_ENSCXT;
5858 }
5859 if (cpu_isar_feature(aa64_fwb, cpu)) {
5860 valid_mask |= HCR_FWB;
5861 }
5862 if (cpu_isar_feature(aa64_rme, cpu)) {
5863 valid_mask |= HCR_GPF;
5864 }
5865 if (cpu_isar_feature(aa64_nv, cpu)) {
5866 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
5867 }
5868 if (cpu_isar_feature(aa64_nv2, cpu)) {
5869 valid_mask |= HCR_NV2;
5870 }
5871 }
5872
5873 if (cpu_isar_feature(any_evt, cpu)) {
5874 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5875 } else if (cpu_isar_feature(any_half_evt, cpu)) {
5876 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5877 }
5878
5879 /* Clear RES0 bits. */
5880 value &= valid_mask;
5881
5882 /*
5883 * These bits change the MMU setup:
5884 * HCR_VM enables stage 2 translation
5885 * HCR_PTW forbids certain page-table setups
5886 * HCR_DC disables stage1 and enables stage2 translation
5887 * HCR_DCT enables tagging on (disabled) stage1 translation
5888 * HCR_FWB changes the interpretation of stage2 descriptor bits
5889 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
5890 */
5891 if ((env->cp15.hcr_el2 ^ value) &
5892 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
5893 tlb_flush(CPU(cpu));
5894 }
5895 env->cp15.hcr_el2 = value;
5896
5897 /*
5898 * Updates to VI and VF require us to update the status of
5899 * virtual interrupts, which are the logical OR of these bits
5900 * and the state of the input lines from the GIC. (This requires
5901 * that we have the BQL, which is done by marking the
5902 * reginfo structs as ARM_CP_IO.)
5903 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5904 * possible for it to be taken immediately, because VIRQ and
5905 * VFIQ are masked unless running at EL0 or EL1, and HCR
5906 * can only be written at EL2.
5907 */
5908 g_assert(bql_locked());
5909 arm_cpu_update_virq(cpu);
5910 arm_cpu_update_vfiq(cpu);
5911 arm_cpu_update_vserr(cpu);
5912 }
5913
5914 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5915 {
5916 do_hcr_write(env, value, 0);
5917 }
5918
5919 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5920 uint64_t value)
5921 {
5922 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5923 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5924 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5925 }
5926
5927 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5928 uint64_t value)
5929 {
5930 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5931 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5932 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5933 }
5934
5935 /*
5936 * Return the effective value of HCR_EL2, at the given security state.
5937 * Bits that are not included here:
5938 * RW (read from SCR_EL3.RW as needed)
5939 */
5940 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
5941 {
5942 uint64_t ret = env->cp15.hcr_el2;
5943
5944 assert(space != ARMSS_Root);
5945
5946 if (!arm_is_el2_enabled_secstate(env, space)) {
5947 /*
5948 * "This register has no effect if EL2 is not enabled in the
5949 * current Security state". This is ARMv8.4-SecEL2 speak for
5950 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5951 *
5952 * Prior to that, the language was "In an implementation that
5953 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5954 * as if this field is 0 for all purposes other than a direct
5955 * read or write access of HCR_EL2". With lots of enumeration
5956 * on a per-field basis. In current QEMU, this is condition
5957 * is arm_is_secure_below_el3.
5958 *
5959 * Since the v8.4 language applies to the entire register, and
5960 * appears to be backward compatible, use that.
5961 */
5962 return 0;
5963 }
5964
5965 /*
5966 * For a cpu that supports both aarch64 and aarch32, we can set bits
5967 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5968 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5969 */
5970 if (!arm_el_is_aa64(env, 2)) {
5971 uint64_t aa32_valid;
5972
5973 /*
5974 * These bits are up-to-date as of ARMv8.6.
5975 * For HCR, it's easiest to list just the 2 bits that are invalid.
5976 * For HCR2, list those that are valid.
5977 */
5978 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5979 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5980 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5981 ret &= aa32_valid;
5982 }
5983
5984 if (ret & HCR_TGE) {
5985 /* These bits are up-to-date as of ARMv8.6. */
5986 if (ret & HCR_E2H) {
5987 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5988 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5989 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5990 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5991 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5992 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5993 } else {
5994 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5995 }
5996 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5997 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5998 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5999 HCR_TLOR);
6000 }
6001
6002 return ret;
6003 }
6004
6005 uint64_t arm_hcr_el2_eff(CPUARMState *env)
6006 {
6007 if (arm_feature(env, ARM_FEATURE_M)) {
6008 return 0;
6009 }
6010 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
6011 }
6012
6013 /*
6014 * Corresponds to ARM pseudocode function ELIsInHost().
6015 */
6016 bool el_is_in_host(CPUARMState *env, int el)
6017 {
6018 uint64_t mask;
6019
6020 /*
6021 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
6022 * Perform the simplest bit tests first, and validate EL2 afterward.
6023 */
6024 if (el & 1) {
6025 return false; /* EL1 or EL3 */
6026 }
6027
6028 /*
6029 * Note that hcr_write() checks isar_feature_aa64_vh(),
6030 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
6031 */
6032 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
6033 if ((env->cp15.hcr_el2 & mask) != mask) {
6034 return false;
6035 }
6036
6037 /* TGE and/or E2H set: double check those bits are currently legal. */
6038 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
6039 }
6040
6041 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
6042 uint64_t value)
6043 {
6044 uint64_t valid_mask = 0;
6045
6046 /* FEAT_MOPS adds MSCEn and MCE2 */
6047 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6048 valid_mask |= HCRX_MSCEN | HCRX_MCE2;
6049 }
6050
6051 /* Clear RES0 bits. */
6052 env->cp15.hcrx_el2 = value & valid_mask;
6053 }
6054
6055 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
6056 bool isread)
6057 {
6058 if (arm_current_el(env) == 2
6059 && arm_feature(env, ARM_FEATURE_EL3)
6060 && !(env->cp15.scr_el3 & SCR_HXEN)) {
6061 return CP_ACCESS_TRAP_EL3;
6062 }
6063 return CP_ACCESS_OK;
6064 }
6065
6066 static const ARMCPRegInfo hcrx_el2_reginfo = {
6067 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6068 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6069 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6070 .nv2_redirect_offset = 0xa0,
6071 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6072 };
6073
6074 /* Return the effective value of HCRX_EL2. */
6075 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6076 {
6077 /*
6078 * The bits in this register behave as 0 for all purposes other than
6079 * direct reads of the register if SCR_EL3.HXEn is 0.
6080 * If EL2 is not enabled in the current security state, then the
6081 * bit may behave as if 0, or as if 1, depending on the bit.
6082 * For the moment, we treat the EL2-disabled case as taking
6083 * priority over the HXEn-disabled case. This is true for the only
6084 * bit for a feature which we implement where the answer is different
6085 * for the two cases (MSCEn for FEAT_MOPS).
6086 * This may need to be revisited for future bits.
6087 */
6088 if (!arm_is_el2_enabled(env)) {
6089 uint64_t hcrx = 0;
6090 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6091 /* MSCEn behaves as 1 if EL2 is not enabled */
6092 hcrx |= HCRX_MSCEN;
6093 }
6094 return hcrx;
6095 }
6096 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6097 return 0;
6098 }
6099 return env->cp15.hcrx_el2;
6100 }
6101
6102 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6103 uint64_t value)
6104 {
6105 /*
6106 * For A-profile AArch32 EL3, if NSACR.CP10
6107 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6108 */
6109 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6110 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6111 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6112 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6113 }
6114 env->cp15.cptr_el[2] = value;
6115 }
6116
6117 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6118 {
6119 /*
6120 * For A-profile AArch32 EL3, if NSACR.CP10
6121 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6122 */
6123 uint64_t value = env->cp15.cptr_el[2];
6124
6125 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6126 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6127 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6128 }
6129 return value;
6130 }
6131
6132 static const ARMCPRegInfo el2_cp_reginfo[] = {
6133 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6134 .type = ARM_CP_IO,
6135 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6136 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6137 .nv2_redirect_offset = 0x78,
6138 .writefn = hcr_write, .raw_writefn = raw_write },
6139 { .name = "HCR", .state = ARM_CP_STATE_AA32,
6140 .type = ARM_CP_ALIAS | ARM_CP_IO,
6141 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6142 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6143 .writefn = hcr_writelow },
6144 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6145 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6146 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6147 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6148 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6149 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6150 .access = PL2_RW,
6151 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6152 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6153 .type = ARM_CP_NV2_REDIRECT,
6154 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6155 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6156 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6157 .type = ARM_CP_NV2_REDIRECT,
6158 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6159 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6160 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6161 .type = ARM_CP_ALIAS,
6162 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6163 .access = PL2_RW,
6164 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6165 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6166 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6167 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6168 .access = PL2_RW,
6169 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6170 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6171 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6172 .access = PL2_RW, .writefn = vbar_write,
6173 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6174 .resetvalue = 0 },
6175 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6176 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6177 .access = PL3_RW, .type = ARM_CP_ALIAS,
6178 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6179 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6180 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6181 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6182 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6183 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6184 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6185 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6186 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6187 .resetvalue = 0 },
6188 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6189 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6190 .access = PL2_RW, .type = ARM_CP_ALIAS,
6191 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6192 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6193 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6194 .access = PL2_RW, .type = ARM_CP_CONST,
6195 .resetvalue = 0 },
6196 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6197 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6198 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6199 .access = PL2_RW, .type = ARM_CP_CONST,
6200 .resetvalue = 0 },
6201 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6202 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6203 .access = PL2_RW, .type = ARM_CP_CONST,
6204 .resetvalue = 0 },
6205 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6206 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6207 .access = PL2_RW, .type = ARM_CP_CONST,
6208 .resetvalue = 0 },
6209 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6210 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6211 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6212 .raw_writefn = raw_write,
6213 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6214 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6215 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6216 .type = ARM_CP_ALIAS,
6217 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6218 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6219 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6220 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6221 .access = PL2_RW,
6222 .nv2_redirect_offset = 0x40,
6223 /* no .writefn needed as this can't cause an ASID change */
6224 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6225 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6226 .cp = 15, .opc1 = 6, .crm = 2,
6227 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6228 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6229 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6230 .writefn = vttbr_write, .raw_writefn = raw_write },
6231 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6232 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6233 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6234 .nv2_redirect_offset = 0x20,
6235 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6236 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6237 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6238 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6239 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6240 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6241 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6242 .access = PL2_RW, .resetvalue = 0,
6243 .nv2_redirect_offset = 0x90,
6244 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6245 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6246 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6247 .access = PL2_RW, .resetvalue = 0,
6248 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6249 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6250 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6251 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6252 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6253 { .name = "TLBIALLNSNH",
6254 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6255 .type = ARM_CP_NO_RAW, .access = PL2_W,
6256 .writefn = tlbiall_nsnh_write },
6257 { .name = "TLBIALLNSNHIS",
6258 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6259 .type = ARM_CP_NO_RAW, .access = PL2_W,
6260 .writefn = tlbiall_nsnh_is_write },
6261 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6262 .type = ARM_CP_NO_RAW, .access = PL2_W,
6263 .writefn = tlbiall_hyp_write },
6264 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6265 .type = ARM_CP_NO_RAW, .access = PL2_W,
6266 .writefn = tlbiall_hyp_is_write },
6267 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6268 .type = ARM_CP_NO_RAW, .access = PL2_W,
6269 .writefn = tlbimva_hyp_write },
6270 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6271 .type = ARM_CP_NO_RAW, .access = PL2_W,
6272 .writefn = tlbimva_hyp_is_write },
6273 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6274 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6275 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6276 .writefn = tlbi_aa64_alle2_write },
6277 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6278 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6279 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6280 .writefn = tlbi_aa64_vae2_write },
6281 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6282 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6283 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6284 .writefn = tlbi_aa64_vae2_write },
6285 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6286 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6287 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6288 .writefn = tlbi_aa64_alle2is_write },
6289 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6290 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6291 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6292 .writefn = tlbi_aa64_vae2is_write },
6293 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6294 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6295 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6296 .writefn = tlbi_aa64_vae2is_write },
6297 #ifndef CONFIG_USER_ONLY
6298 /*
6299 * Unlike the other EL2-related AT operations, these must
6300 * UNDEF from EL3 if EL2 is not implemented, which is why we
6301 * define them here rather than with the rest of the AT ops.
6302 */
6303 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6304 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6305 .access = PL2_W, .accessfn = at_s1e2_access,
6306 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6307 .writefn = ats_write64 },
6308 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6309 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6310 .access = PL2_W, .accessfn = at_s1e2_access,
6311 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6312 .writefn = ats_write64 },
6313 /*
6314 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6315 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6316 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6317 * to behave as if SCR.NS was 1.
6318 */
6319 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6320 .access = PL2_W,
6321 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6322 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6323 .access = PL2_W,
6324 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6325 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6326 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6327 /*
6328 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6329 * reset values as IMPDEF. We choose to reset to 3 to comply with
6330 * both ARMv7 and ARMv8.
6331 */
6332 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6333 .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6334 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6335 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6336 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6337 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6338 .writefn = gt_cntvoff_write,
6339 .nv2_redirect_offset = 0x60,
6340 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6341 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6342 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6343 .writefn = gt_cntvoff_write,
6344 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6345 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6346 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6347 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6348 .type = ARM_CP_IO, .access = PL2_RW,
6349 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6350 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6351 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6352 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6353 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6354 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6355 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6356 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6357 .resetfn = gt_hyp_timer_reset,
6358 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6359 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6360 .type = ARM_CP_IO,
6361 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6362 .access = PL2_RW,
6363 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6364 .resetvalue = 0,
6365 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6366 #endif
6367 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6368 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6369 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6370 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6371 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6372 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6373 .access = PL2_RW,
6374 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6375 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6376 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6377 .access = PL2_RW,
6378 .nv2_redirect_offset = 0x80,
6379 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6380 };
6381
6382 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6383 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6384 .type = ARM_CP_ALIAS | ARM_CP_IO,
6385 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6386 .access = PL2_RW,
6387 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6388 .writefn = hcr_writehigh },
6389 };
6390
6391 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6392 bool isread)
6393 {
6394 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6395 return CP_ACCESS_OK;
6396 }
6397 return CP_ACCESS_TRAP_UNCATEGORIZED;
6398 }
6399
6400 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6401 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6402 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6403 .access = PL2_RW, .accessfn = sel2_access,
6404 .nv2_redirect_offset = 0x30,
6405 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6406 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6407 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6408 .access = PL2_RW, .accessfn = sel2_access,
6409 .nv2_redirect_offset = 0x48,
6410 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6411 };
6412
6413 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6414 bool isread)
6415 {
6416 /*
6417 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6418 * At Secure EL1 it traps to EL3 or EL2.
6419 */
6420 if (arm_current_el(env) == 3) {
6421 return CP_ACCESS_OK;
6422 }
6423 if (arm_is_secure_below_el3(env)) {
6424 if (env->cp15.scr_el3 & SCR_EEL2) {
6425 return CP_ACCESS_TRAP_EL2;
6426 }
6427 return CP_ACCESS_TRAP_EL3;
6428 }
6429 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6430 if (isread) {
6431 return CP_ACCESS_OK;
6432 }
6433 return CP_ACCESS_TRAP_UNCATEGORIZED;
6434 }
6435
6436 static const ARMCPRegInfo el3_cp_reginfo[] = {
6437 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6438 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6439 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6440 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6441 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6442 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6443 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6444 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6445 .writefn = scr_write, .raw_writefn = raw_write },
6446 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6447 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6448 .access = PL3_RW, .resetvalue = 0,
6449 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6450 { .name = "SDER",
6451 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6452 .access = PL3_RW, .resetvalue = 0,
6453 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6454 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6455 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6456 .writefn = vbar_write, .resetvalue = 0,
6457 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6458 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6459 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6460 .access = PL3_RW, .resetvalue = 0,
6461 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6462 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6463 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6464 .access = PL3_RW,
6465 /* no .writefn needed as this can't cause an ASID change */
6466 .resetvalue = 0,
6467 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6468 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6469 .type = ARM_CP_ALIAS,
6470 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6471 .access = PL3_RW,
6472 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6473 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6474 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6475 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6476 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6477 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6478 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6479 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6480 .type = ARM_CP_ALIAS,
6481 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6482 .access = PL3_RW,
6483 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6484 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6485 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6486 .access = PL3_RW, .writefn = vbar_write,
6487 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6488 .resetvalue = 0 },
6489 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6490 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6491 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6492 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6493 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6494 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6495 .access = PL3_RW, .resetvalue = 0,
6496 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6497 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6498 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6499 .access = PL3_RW, .type = ARM_CP_CONST,
6500 .resetvalue = 0 },
6501 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6502 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6503 .access = PL3_RW, .type = ARM_CP_CONST,
6504 .resetvalue = 0 },
6505 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6506 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6507 .access = PL3_RW, .type = ARM_CP_CONST,
6508 .resetvalue = 0 },
6509 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6510 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6511 .access = PL3_W, .type = ARM_CP_NO_RAW,
6512 .writefn = tlbi_aa64_alle3is_write },
6513 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6514 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6515 .access = PL3_W, .type = ARM_CP_NO_RAW,
6516 .writefn = tlbi_aa64_vae3is_write },
6517 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6518 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6519 .access = PL3_W, .type = ARM_CP_NO_RAW,
6520 .writefn = tlbi_aa64_vae3is_write },
6521 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6522 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6523 .access = PL3_W, .type = ARM_CP_NO_RAW,
6524 .writefn = tlbi_aa64_alle3_write },
6525 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6526 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6527 .access = PL3_W, .type = ARM_CP_NO_RAW,
6528 .writefn = tlbi_aa64_vae3_write },
6529 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6530 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6531 .access = PL3_W, .type = ARM_CP_NO_RAW,
6532 .writefn = tlbi_aa64_vae3_write },
6533 };
6534
6535 #ifndef CONFIG_USER_ONLY
6536
6537 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
6538 bool isread)
6539 {
6540 if (arm_current_el(env) == 1) {
6541 /* This must be a FEAT_NV access */
6542 /* TODO: FEAT_ECV will need to check CNTHCTL_EL2 here */
6543 return CP_ACCESS_OK;
6544 }
6545 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6546 return CP_ACCESS_TRAP;
6547 }
6548 return CP_ACCESS_OK;
6549 }
6550
6551 /* Test if system register redirection is to occur in the current state. */
6552 static bool redirect_for_e2h(CPUARMState *env)
6553 {
6554 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6555 }
6556
6557 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6558 {
6559 CPReadFn *readfn;
6560
6561 if (redirect_for_e2h(env)) {
6562 /* Switch to the saved EL2 version of the register. */
6563 ri = ri->opaque;
6564 readfn = ri->readfn;
6565 } else {
6566 readfn = ri->orig_readfn;
6567 }
6568 if (readfn == NULL) {
6569 readfn = raw_read;
6570 }
6571 return readfn(env, ri);
6572 }
6573
6574 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6575 uint64_t value)
6576 {
6577 CPWriteFn *writefn;
6578
6579 if (redirect_for_e2h(env)) {
6580 /* Switch to the saved EL2 version of the register. */
6581 ri = ri->opaque;
6582 writefn = ri->writefn;
6583 } else {
6584 writefn = ri->orig_writefn;
6585 }
6586 if (writefn == NULL) {
6587 writefn = raw_write;
6588 }
6589 writefn(env, ri, value);
6590 }
6591
6592 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
6593 {
6594 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6595 return ri->orig_readfn(env, ri->opaque);
6596 }
6597
6598 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
6599 uint64_t value)
6600 {
6601 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6602 return ri->orig_writefn(env, ri->opaque, value);
6603 }
6604
6605 static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
6606 const ARMCPRegInfo *ri,
6607 bool isread)
6608 {
6609 if (arm_current_el(env) == 1) {
6610 /*
6611 * This must be a FEAT_NV access (will either trap or redirect
6612 * to memory). None of the registers with _EL12 aliases want to
6613 * apply their trap controls for this kind of access, so don't
6614 * call the orig_accessfn or do the "UNDEF when E2H is 0" check.
6615 */
6616 return CP_ACCESS_OK;
6617 }
6618 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
6619 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6620 return CP_ACCESS_TRAP_UNCATEGORIZED;
6621 }
6622 if (ri->orig_accessfn) {
6623 return ri->orig_accessfn(env, ri->opaque, isread);
6624 }
6625 return CP_ACCESS_OK;
6626 }
6627
6628 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6629 {
6630 struct E2HAlias {
6631 uint32_t src_key, dst_key, new_key;
6632 const char *src_name, *dst_name, *new_name;
6633 bool (*feature)(const ARMISARegisters *id);
6634 };
6635
6636 #define K(op0, op1, crn, crm, op2) \
6637 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6638
6639 static const struct E2HAlias aliases[] = {
6640 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6641 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6642 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6643 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6644 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6645 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6646 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6647 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6648 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6649 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6650 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6651 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6652 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6653 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6654 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6655 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6656 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6657 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6658 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6659 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6660 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6661 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6662 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6663 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6664 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6665 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6666 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6667 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6668 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6669 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6670 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6671 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6672
6673 /*
6674 * Note that redirection of ZCR is mentioned in the description
6675 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6676 * not in the summary table.
6677 */
6678 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6679 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6680 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6681 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6682
6683 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6684 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6685
6686 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6687 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6688 isar_feature_aa64_scxtnum },
6689
6690 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6691 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6692 };
6693 #undef K
6694
6695 size_t i;
6696
6697 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6698 const struct E2HAlias *a = &aliases[i];
6699 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6700 bool ok;
6701
6702 if (a->feature && !a->feature(&cpu->isar)) {
6703 continue;
6704 }
6705
6706 src_reg = g_hash_table_lookup(cpu->cp_regs,
6707 (gpointer)(uintptr_t)a->src_key);
6708 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6709 (gpointer)(uintptr_t)a->dst_key);
6710 g_assert(src_reg != NULL);
6711 g_assert(dst_reg != NULL);
6712
6713 /* Cross-compare names to detect typos in the keys. */
6714 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6715 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6716
6717 /* None of the core system registers use opaque; we will. */
6718 g_assert(src_reg->opaque == NULL);
6719
6720 /* Create alias before redirection so we dup the right data. */
6721 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6722
6723 new_reg->name = a->new_name;
6724 new_reg->type |= ARM_CP_ALIAS;
6725 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6726 new_reg->access &= PL2_RW | PL3_RW;
6727 /* The new_reg op fields are as per new_key, not the target reg */
6728 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
6729 >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
6730 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
6731 >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
6732 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
6733 >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
6734 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
6735 >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
6736 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
6737 >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
6738 new_reg->opaque = src_reg;
6739 new_reg->orig_readfn = src_reg->readfn ?: raw_read;
6740 new_reg->orig_writefn = src_reg->writefn ?: raw_write;
6741 new_reg->orig_accessfn = src_reg->accessfn;
6742 if (!new_reg->raw_readfn) {
6743 new_reg->raw_readfn = raw_read;
6744 }
6745 if (!new_reg->raw_writefn) {
6746 new_reg->raw_writefn = raw_write;
6747 }
6748 new_reg->readfn = el2_e2h_e12_read;
6749 new_reg->writefn = el2_e2h_e12_write;
6750 new_reg->accessfn = el2_e2h_e12_access;
6751
6752 /*
6753 * If the _EL1 register is redirected to memory by FEAT_NV2,
6754 * then it shares the offset with the _EL12 register,
6755 * and which one is redirected depends on HCR_EL2.NV1.
6756 */
6757 if (new_reg->nv2_redirect_offset) {
6758 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
6759 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
6760 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
6761 }
6762
6763 ok = g_hash_table_insert(cpu->cp_regs,
6764 (gpointer)(uintptr_t)a->new_key, new_reg);
6765 g_assert(ok);
6766
6767 src_reg->opaque = dst_reg;
6768 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6769 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6770 if (!src_reg->raw_readfn) {
6771 src_reg->raw_readfn = raw_read;
6772 }
6773 if (!src_reg->raw_writefn) {
6774 src_reg->raw_writefn = raw_write;
6775 }
6776 src_reg->readfn = el2_e2h_read;
6777 src_reg->writefn = el2_e2h_write;
6778 }
6779 }
6780 #endif
6781
6782 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6783 bool isread)
6784 {
6785 int cur_el = arm_current_el(env);
6786
6787 if (cur_el < 2) {
6788 uint64_t hcr = arm_hcr_el2_eff(env);
6789
6790 if (cur_el == 0) {
6791 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6792 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6793 return CP_ACCESS_TRAP_EL2;
6794 }
6795 } else {
6796 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6797 return CP_ACCESS_TRAP;
6798 }
6799 if (hcr & HCR_TID2) {
6800 return CP_ACCESS_TRAP_EL2;
6801 }
6802 }
6803 } else if (hcr & HCR_TID2) {
6804 return CP_ACCESS_TRAP_EL2;
6805 }
6806 }
6807
6808 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6809 return CP_ACCESS_TRAP_EL2;
6810 }
6811
6812 return CP_ACCESS_OK;
6813 }
6814
6815 /*
6816 * Check for traps to RAS registers, which are controlled
6817 * by HCR_EL2.TERR and SCR_EL3.TERR.
6818 */
6819 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6820 bool isread)
6821 {
6822 int el = arm_current_el(env);
6823
6824 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6825 return CP_ACCESS_TRAP_EL2;
6826 }
6827 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6828 return CP_ACCESS_TRAP_EL3;
6829 }
6830 return CP_ACCESS_OK;
6831 }
6832
6833 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6834 {
6835 int el = arm_current_el(env);
6836
6837 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6838 return env->cp15.vdisr_el2;
6839 }
6840 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6841 return 0; /* RAZ/WI */
6842 }
6843 return env->cp15.disr_el1;
6844 }
6845
6846 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6847 {
6848 int el = arm_current_el(env);
6849
6850 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6851 env->cp15.vdisr_el2 = val;
6852 return;
6853 }
6854 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6855 return; /* RAZ/WI */
6856 }
6857 env->cp15.disr_el1 = val;
6858 }
6859
6860 /*
6861 * Minimal RAS implementation with no Error Records.
6862 * Which means that all of the Error Record registers:
6863 * ERXADDR_EL1
6864 * ERXCTLR_EL1
6865 * ERXFR_EL1
6866 * ERXMISC0_EL1
6867 * ERXMISC1_EL1
6868 * ERXMISC2_EL1
6869 * ERXMISC3_EL1
6870 * ERXPFGCDN_EL1 (RASv1p1)
6871 * ERXPFGCTL_EL1 (RASv1p1)
6872 * ERXPFGF_EL1 (RASv1p1)
6873 * ERXSTATUS_EL1
6874 * and
6875 * ERRSELR_EL1
6876 * may generate UNDEFINED, which is the effect we get by not
6877 * listing them at all.
6878 *
6879 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6880 * is higher priority than FGT-to-EL2 so we do not need to list them
6881 * in order to check for an FGT.
6882 */
6883 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6884 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6885 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6886 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6887 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6888 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6889 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6890 .access = PL1_R, .accessfn = access_terr,
6891 .fgt = FGT_ERRIDR_EL1,
6892 .type = ARM_CP_CONST, .resetvalue = 0 },
6893 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6894 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6895 .nv2_redirect_offset = 0x500,
6896 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6897 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6898 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6899 .nv2_redirect_offset = 0x508,
6900 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6901 };
6902
6903 /*
6904 * Return the exception level to which exceptions should be taken
6905 * via SVEAccessTrap. This excludes the check for whether the exception
6906 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6907 * be found by testing 0 < fp_exception_el < sve_exception_el.
6908 *
6909 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6910 * pseudocode does *not* separate out the FP trap checks, but has them
6911 * all in one function.
6912 */
6913 int sve_exception_el(CPUARMState *env, int el)
6914 {
6915 #ifndef CONFIG_USER_ONLY
6916 if (el <= 1 && !el_is_in_host(env, el)) {
6917 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6918 case 1:
6919 if (el != 0) {
6920 break;
6921 }
6922 /* fall through */
6923 case 0:
6924 case 2:
6925 return 1;
6926 }
6927 }
6928
6929 if (el <= 2 && arm_is_el2_enabled(env)) {
6930 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6931 if (env->cp15.hcr_el2 & HCR_E2H) {
6932 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6933 case 1:
6934 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6935 break;
6936 }
6937 /* fall through */
6938 case 0:
6939 case 2:
6940 return 2;
6941 }
6942 } else {
6943 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6944 return 2;
6945 }
6946 }
6947 }
6948
6949 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6950 if (arm_feature(env, ARM_FEATURE_EL3)
6951 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6952 return 3;
6953 }
6954 #endif
6955 return 0;
6956 }
6957
6958 /*
6959 * Return the exception level to which exceptions should be taken for SME.
6960 * C.f. the ARM pseudocode function CheckSMEAccess.
6961 */
6962 int sme_exception_el(CPUARMState *env, int el)
6963 {
6964 #ifndef CONFIG_USER_ONLY
6965 if (el <= 1 && !el_is_in_host(env, el)) {
6966 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6967 case 1:
6968 if (el != 0) {
6969 break;
6970 }
6971 /* fall through */
6972 case 0:
6973 case 2:
6974 return 1;
6975 }
6976 }
6977
6978 if (el <= 2 && arm_is_el2_enabled(env)) {
6979 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6980 if (env->cp15.hcr_el2 & HCR_E2H) {
6981 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6982 case 1:
6983 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6984 break;
6985 }
6986 /* fall through */
6987 case 0:
6988 case 2:
6989 return 2;
6990 }
6991 } else {
6992 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6993 return 2;
6994 }
6995 }
6996 }
6997
6998 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6999 if (arm_feature(env, ARM_FEATURE_EL3)
7000 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7001 return 3;
7002 }
7003 #endif
7004 return 0;
7005 }
7006
7007 /*
7008 * Given that SVE is enabled, return the vector length for EL.
7009 */
7010 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
7011 {
7012 ARMCPU *cpu = env_archcpu(env);
7013 uint64_t *cr = env->vfp.zcr_el;
7014 uint32_t map = cpu->sve_vq.map;
7015 uint32_t len = ARM_MAX_VQ - 1;
7016
7017 if (sm) {
7018 cr = env->vfp.smcr_el;
7019 map = cpu->sme_vq.map;
7020 }
7021
7022 if (el <= 1 && !el_is_in_host(env, el)) {
7023 len = MIN(len, 0xf & (uint32_t)cr[1]);
7024 }
7025 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7026 len = MIN(len, 0xf & (uint32_t)cr[2]);
7027 }
7028 if (arm_feature(env, ARM_FEATURE_EL3)) {
7029 len = MIN(len, 0xf & (uint32_t)cr[3]);
7030 }
7031
7032 map &= MAKE_64BIT_MASK(0, len + 1);
7033 if (map != 0) {
7034 return 31 - clz32(map);
7035 }
7036
7037 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
7038 assert(sm);
7039 return ctz32(cpu->sme_vq.map);
7040 }
7041
7042 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
7043 {
7044 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
7045 }
7046
7047 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7048 uint64_t value)
7049 {
7050 int cur_el = arm_current_el(env);
7051 int old_len = sve_vqm1_for_el(env, cur_el);
7052 int new_len;
7053
7054 /* Bits other than [3:0] are RAZ/WI. */
7055 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
7056 raw_write(env, ri, value & 0xf);
7057
7058 /*
7059 * Because we arrived here, we know both FP and SVE are enabled;
7060 * otherwise we would have trapped access to the ZCR_ELn register.
7061 */
7062 new_len = sve_vqm1_for_el(env, cur_el);
7063 if (new_len < old_len) {
7064 aarch64_sve_narrow_vq(env, new_len + 1);
7065 }
7066 }
7067
7068 static const ARMCPRegInfo zcr_reginfo[] = {
7069 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
7070 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
7071 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
7072 .access = PL1_RW, .type = ARM_CP_SVE,
7073 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
7074 .writefn = zcr_write, .raw_writefn = raw_write },
7075 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
7076 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
7077 .access = PL2_RW, .type = ARM_CP_SVE,
7078 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
7079 .writefn = zcr_write, .raw_writefn = raw_write },
7080 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
7081 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
7082 .access = PL3_RW, .type = ARM_CP_SVE,
7083 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
7084 .writefn = zcr_write, .raw_writefn = raw_write },
7085 };
7086
7087 #ifdef TARGET_AARCH64
7088 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
7089 bool isread)
7090 {
7091 int el = arm_current_el(env);
7092
7093 if (el == 0) {
7094 uint64_t sctlr = arm_sctlr(env, el);
7095 if (!(sctlr & SCTLR_EnTP2)) {
7096 return CP_ACCESS_TRAP;
7097 }
7098 }
7099 /* TODO: FEAT_FGT */
7100 if (el < 3
7101 && arm_feature(env, ARM_FEATURE_EL3)
7102 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
7103 return CP_ACCESS_TRAP_EL3;
7104 }
7105 return CP_ACCESS_OK;
7106 }
7107
7108 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
7109 bool isread)
7110 {
7111 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
7112 if (arm_current_el(env) == 2
7113 && arm_feature(env, ARM_FEATURE_EL3)
7114 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7115 return CP_ACCESS_TRAP_EL3;
7116 }
7117 return CP_ACCESS_OK;
7118 }
7119
7120 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
7121 bool isread)
7122 {
7123 if (arm_current_el(env) < 3
7124 && arm_feature(env, ARM_FEATURE_EL3)
7125 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7126 return CP_ACCESS_TRAP_EL3;
7127 }
7128 return CP_ACCESS_OK;
7129 }
7130
7131 /* ResetSVEState */
7132 static void arm_reset_sve_state(CPUARMState *env)
7133 {
7134 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
7135 /* Recall that FFR is stored as pregs[16]. */
7136 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
7137 vfp_set_fpcr(env, 0x0800009f);
7138 }
7139
7140 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
7141 {
7142 uint64_t change = (env->svcr ^ new) & mask;
7143
7144 if (change == 0) {
7145 return;
7146 }
7147 env->svcr ^= change;
7148
7149 if (change & R_SVCR_SM_MASK) {
7150 arm_reset_sve_state(env);
7151 }
7152
7153 /*
7154 * ResetSMEState.
7155 *
7156 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
7157 * on enable: while disabled, the storage is inaccessible and the
7158 * value does not matter. We're not saving the storage in vmstate
7159 * when disabled either.
7160 */
7161 if (change & new & R_SVCR_ZA_MASK) {
7162 memset(env->zarray, 0, sizeof(env->zarray));
7163 }
7164
7165 if (tcg_enabled()) {
7166 arm_rebuild_hflags(env);
7167 }
7168 }
7169
7170 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7171 uint64_t value)
7172 {
7173 aarch64_set_svcr(env, value, -1);
7174 }
7175
7176 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7177 uint64_t value)
7178 {
7179 int cur_el = arm_current_el(env);
7180 int old_len = sve_vqm1_for_el(env, cur_el);
7181 int new_len;
7182
7183 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7184 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7185 raw_write(env, ri, value);
7186
7187 /*
7188 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7189 * when SVL is widened (old values kept, or zeros). Choose to keep the
7190 * current values for simplicity. But for QEMU internals, we must still
7191 * apply the narrower SVL to the Zregs and Pregs -- see the comment
7192 * above aarch64_sve_narrow_vq.
7193 */
7194 new_len = sve_vqm1_for_el(env, cur_el);
7195 if (new_len < old_len) {
7196 aarch64_sve_narrow_vq(env, new_len + 1);
7197 }
7198 }
7199
7200 static const ARMCPRegInfo sme_reginfo[] = {
7201 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7202 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7203 .access = PL0_RW, .accessfn = access_tpidr2,
7204 .fgt = FGT_NTPIDR2_EL0,
7205 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7206 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7207 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7208 .access = PL0_RW, .type = ARM_CP_SME,
7209 .fieldoffset = offsetof(CPUARMState, svcr),
7210 .writefn = svcr_write, .raw_writefn = raw_write },
7211 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7212 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7213 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
7214 .access = PL1_RW, .type = ARM_CP_SME,
7215 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7216 .writefn = smcr_write, .raw_writefn = raw_write },
7217 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7218 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7219 .access = PL2_RW, .type = ARM_CP_SME,
7220 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7221 .writefn = smcr_write, .raw_writefn = raw_write },
7222 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7223 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7224 .access = PL3_RW, .type = ARM_CP_SME,
7225 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7226 .writefn = smcr_write, .raw_writefn = raw_write },
7227 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7228 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7229 .access = PL1_R, .accessfn = access_aa64_tid1,
7230 /*
7231 * IMPLEMENTOR = 0 (software)
7232 * REVISION = 0 (implementation defined)
7233 * SMPS = 0 (no streaming execution priority in QEMU)
7234 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
7235 */
7236 .type = ARM_CP_CONST, .resetvalue = 0, },
7237 /*
7238 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7239 */
7240 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7241 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7242 .access = PL1_RW, .accessfn = access_smpri,
7243 .fgt = FGT_NSMPRI_EL1,
7244 .type = ARM_CP_CONST, .resetvalue = 0 },
7245 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7246 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7247 .nv2_redirect_offset = 0x1f8,
7248 .access = PL2_RW, .accessfn = access_smprimap,
7249 .type = ARM_CP_CONST, .resetvalue = 0 },
7250 };
7251
7252 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7253 uint64_t value)
7254 {
7255 CPUState *cs = env_cpu(env);
7256
7257 tlb_flush(cs);
7258 }
7259
7260 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7261 uint64_t value)
7262 {
7263 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7264 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7265 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7266 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7267
7268 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7269 }
7270
7271 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7272 {
7273 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7274 env_archcpu(env)->reset_l0gptsz);
7275 }
7276
7277 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7278 uint64_t value)
7279 {
7280 CPUState *cs = env_cpu(env);
7281
7282 tlb_flush_all_cpus_synced(cs);
7283 }
7284
7285 static const ARMCPRegInfo rme_reginfo[] = {
7286 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7287 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7288 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7289 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7290 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7291 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7292 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7293 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7294 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7295 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7296 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7297 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7298 .access = PL3_W, .type = ARM_CP_NO_RAW,
7299 .writefn = tlbi_aa64_paall_write },
7300 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7301 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7302 .access = PL3_W, .type = ARM_CP_NO_RAW,
7303 .writefn = tlbi_aa64_paallos_write },
7304 /*
7305 * QEMU does not have a way to invalidate by physical address, thus
7306 * invalidating a range of physical addresses is accomplished by
7307 * flushing all tlb entries in the outer shareable domain,
7308 * just like PAALLOS.
7309 */
7310 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7311 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7312 .access = PL3_W, .type = ARM_CP_NO_RAW,
7313 .writefn = tlbi_aa64_paallos_write },
7314 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7315 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7316 .access = PL3_W, .type = ARM_CP_NO_RAW,
7317 .writefn = tlbi_aa64_paallos_write },
7318 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7319 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7320 .access = PL3_W, .type = ARM_CP_NOP },
7321 };
7322
7323 static const ARMCPRegInfo rme_mte_reginfo[] = {
7324 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7325 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7326 .access = PL3_W, .type = ARM_CP_NOP },
7327 };
7328 #endif /* TARGET_AARCH64 */
7329
7330 static void define_pmu_regs(ARMCPU *cpu)
7331 {
7332 /*
7333 * v7 performance monitor control register: same implementor
7334 * field as main ID register, and we implement four counters in
7335 * addition to the cycle count register.
7336 */
7337 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7338 ARMCPRegInfo pmcr = {
7339 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7340 .access = PL0_RW,
7341 .fgt = FGT_PMCR_EL0,
7342 .type = ARM_CP_IO | ARM_CP_ALIAS,
7343 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7344 .accessfn = pmreg_access,
7345 .readfn = pmcr_read, .raw_readfn = raw_read,
7346 .writefn = pmcr_write, .raw_writefn = raw_write,
7347 };
7348 ARMCPRegInfo pmcr64 = {
7349 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7350 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7351 .access = PL0_RW, .accessfn = pmreg_access,
7352 .fgt = FGT_PMCR_EL0,
7353 .type = ARM_CP_IO,
7354 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7355 .resetvalue = cpu->isar.reset_pmcr_el0,
7356 .readfn = pmcr_read, .raw_readfn = raw_read,
7357 .writefn = pmcr_write, .raw_writefn = raw_write,
7358 };
7359
7360 define_one_arm_cp_reg(cpu, &pmcr);
7361 define_one_arm_cp_reg(cpu, &pmcr64);
7362 for (i = 0; i < pmcrn; i++) {
7363 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7364 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7365 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7366 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7367 ARMCPRegInfo pmev_regs[] = {
7368 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7369 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7370 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7371 .fgt = FGT_PMEVCNTRN_EL0,
7372 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7373 .accessfn = pmreg_access_xevcntr },
7374 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7375 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7376 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7377 .type = ARM_CP_IO,
7378 .fgt = FGT_PMEVCNTRN_EL0,
7379 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7380 .raw_readfn = pmevcntr_rawread,
7381 .raw_writefn = pmevcntr_rawwrite },
7382 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7383 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7384 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7385 .fgt = FGT_PMEVTYPERN_EL0,
7386 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7387 .accessfn = pmreg_access },
7388 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7389 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7390 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7391 .fgt = FGT_PMEVTYPERN_EL0,
7392 .type = ARM_CP_IO,
7393 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7394 .raw_writefn = pmevtyper_rawwrite },
7395 };
7396 define_arm_cp_regs(cpu, pmev_regs);
7397 g_free(pmevcntr_name);
7398 g_free(pmevcntr_el0_name);
7399 g_free(pmevtyper_name);
7400 g_free(pmevtyper_el0_name);
7401 }
7402 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7403 ARMCPRegInfo v81_pmu_regs[] = {
7404 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7405 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7406 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7407 .fgt = FGT_PMCEIDN_EL0,
7408 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7409 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7410 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7411 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7412 .fgt = FGT_PMCEIDN_EL0,
7413 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7414 };
7415 define_arm_cp_regs(cpu, v81_pmu_regs);
7416 }
7417 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7418 static const ARMCPRegInfo v84_pmmir = {
7419 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7420 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7421 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7422 .fgt = FGT_PMMIR_EL1,
7423 .resetvalue = 0
7424 };
7425 define_one_arm_cp_reg(cpu, &v84_pmmir);
7426 }
7427 }
7428
7429 #ifndef CONFIG_USER_ONLY
7430 /*
7431 * We don't know until after realize whether there's a GICv3
7432 * attached, and that is what registers the gicv3 sysregs.
7433 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7434 * at runtime.
7435 */
7436 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7437 {
7438 ARMCPU *cpu = env_archcpu(env);
7439 uint64_t pfr1 = cpu->isar.id_pfr1;
7440
7441 if (env->gicv3state) {
7442 pfr1 |= 1 << 28;
7443 }
7444 return pfr1;
7445 }
7446
7447 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7448 {
7449 ARMCPU *cpu = env_archcpu(env);
7450 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7451
7452 if (env->gicv3state) {
7453 pfr0 |= 1 << 24;
7454 }
7455 return pfr0;
7456 }
7457 #endif
7458
7459 /*
7460 * Shared logic between LORID and the rest of the LOR* registers.
7461 * Secure state exclusion has already been dealt with.
7462 */
7463 static CPAccessResult access_lor_ns(CPUARMState *env,
7464 const ARMCPRegInfo *ri, bool isread)
7465 {
7466 int el = arm_current_el(env);
7467
7468 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7469 return CP_ACCESS_TRAP_EL2;
7470 }
7471 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7472 return CP_ACCESS_TRAP_EL3;
7473 }
7474 return CP_ACCESS_OK;
7475 }
7476
7477 static CPAccessResult access_lor_other(CPUARMState *env,
7478 const ARMCPRegInfo *ri, bool isread)
7479 {
7480 if (arm_is_secure_below_el3(env)) {
7481 /* Access denied in secure mode. */
7482 return CP_ACCESS_TRAP;
7483 }
7484 return access_lor_ns(env, ri, isread);
7485 }
7486
7487 /*
7488 * A trivial implementation of ARMv8.1-LOR leaves all of these
7489 * registers fixed at 0, which indicates that there are zero
7490 * supported Limited Ordering regions.
7491 */
7492 static const ARMCPRegInfo lor_reginfo[] = {
7493 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7494 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7495 .access = PL1_RW, .accessfn = access_lor_other,
7496 .fgt = FGT_LORSA_EL1,
7497 .type = ARM_CP_CONST, .resetvalue = 0 },
7498 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7499 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7500 .access = PL1_RW, .accessfn = access_lor_other,
7501 .fgt = FGT_LOREA_EL1,
7502 .type = ARM_CP_CONST, .resetvalue = 0 },
7503 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7504 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7505 .access = PL1_RW, .accessfn = access_lor_other,
7506 .fgt = FGT_LORN_EL1,
7507 .type = ARM_CP_CONST, .resetvalue = 0 },
7508 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7509 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7510 .access = PL1_RW, .accessfn = access_lor_other,
7511 .fgt = FGT_LORC_EL1,
7512 .type = ARM_CP_CONST, .resetvalue = 0 },
7513 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7514 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7515 .access = PL1_R, .accessfn = access_lor_ns,
7516 .fgt = FGT_LORID_EL1,
7517 .type = ARM_CP_CONST, .resetvalue = 0 },
7518 };
7519
7520 #ifdef TARGET_AARCH64
7521 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7522 bool isread)
7523 {
7524 int el = arm_current_el(env);
7525
7526 if (el < 2 &&
7527 arm_is_el2_enabled(env) &&
7528 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7529 return CP_ACCESS_TRAP_EL2;
7530 }
7531 if (el < 3 &&
7532 arm_feature(env, ARM_FEATURE_EL3) &&
7533 !(env->cp15.scr_el3 & SCR_APK)) {
7534 return CP_ACCESS_TRAP_EL3;
7535 }
7536 return CP_ACCESS_OK;
7537 }
7538
7539 static const ARMCPRegInfo pauth_reginfo[] = {
7540 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7541 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7542 .access = PL1_RW, .accessfn = access_pauth,
7543 .fgt = FGT_APDAKEY,
7544 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7545 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7546 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7547 .access = PL1_RW, .accessfn = access_pauth,
7548 .fgt = FGT_APDAKEY,
7549 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7550 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7551 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7552 .access = PL1_RW, .accessfn = access_pauth,
7553 .fgt = FGT_APDBKEY,
7554 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7555 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7556 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7557 .access = PL1_RW, .accessfn = access_pauth,
7558 .fgt = FGT_APDBKEY,
7559 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7560 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7561 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7562 .access = PL1_RW, .accessfn = access_pauth,
7563 .fgt = FGT_APGAKEY,
7564 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7565 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7566 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7567 .access = PL1_RW, .accessfn = access_pauth,
7568 .fgt = FGT_APGAKEY,
7569 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7570 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7571 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7572 .access = PL1_RW, .accessfn = access_pauth,
7573 .fgt = FGT_APIAKEY,
7574 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7575 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7576 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7577 .access = PL1_RW, .accessfn = access_pauth,
7578 .fgt = FGT_APIAKEY,
7579 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7580 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7581 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7582 .access = PL1_RW, .accessfn = access_pauth,
7583 .fgt = FGT_APIBKEY,
7584 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7585 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7586 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7587 .access = PL1_RW, .accessfn = access_pauth,
7588 .fgt = FGT_APIBKEY,
7589 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7590 };
7591
7592 static const ARMCPRegInfo tlbirange_reginfo[] = {
7593 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7594 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7595 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7596 .fgt = FGT_TLBIRVAE1IS,
7597 .writefn = tlbi_aa64_rvae1is_write },
7598 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7599 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7600 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7601 .fgt = FGT_TLBIRVAAE1IS,
7602 .writefn = tlbi_aa64_rvae1is_write },
7603 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7604 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7605 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7606 .fgt = FGT_TLBIRVALE1IS,
7607 .writefn = tlbi_aa64_rvae1is_write },
7608 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7609 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7610 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7611 .fgt = FGT_TLBIRVAALE1IS,
7612 .writefn = tlbi_aa64_rvae1is_write },
7613 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7614 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7615 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7616 .fgt = FGT_TLBIRVAE1OS,
7617 .writefn = tlbi_aa64_rvae1is_write },
7618 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7619 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7620 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7621 .fgt = FGT_TLBIRVAAE1OS,
7622 .writefn = tlbi_aa64_rvae1is_write },
7623 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7624 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7625 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7626 .fgt = FGT_TLBIRVALE1OS,
7627 .writefn = tlbi_aa64_rvae1is_write },
7628 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7629 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7630 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7631 .fgt = FGT_TLBIRVAALE1OS,
7632 .writefn = tlbi_aa64_rvae1is_write },
7633 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7634 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7635 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7636 .fgt = FGT_TLBIRVAE1,
7637 .writefn = tlbi_aa64_rvae1_write },
7638 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7639 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7640 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7641 .fgt = FGT_TLBIRVAAE1,
7642 .writefn = tlbi_aa64_rvae1_write },
7643 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7644 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7645 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7646 .fgt = FGT_TLBIRVALE1,
7647 .writefn = tlbi_aa64_rvae1_write },
7648 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7649 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7650 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7651 .fgt = FGT_TLBIRVAALE1,
7652 .writefn = tlbi_aa64_rvae1_write },
7653 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7654 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7655 .access = PL2_W, .type = ARM_CP_NO_RAW,
7656 .writefn = tlbi_aa64_ripas2e1is_write },
7657 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7658 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7659 .access = PL2_W, .type = ARM_CP_NO_RAW,
7660 .writefn = tlbi_aa64_ripas2e1is_write },
7661 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7662 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7663 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7664 .writefn = tlbi_aa64_rvae2is_write },
7665 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7666 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7667 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7668 .writefn = tlbi_aa64_rvae2is_write },
7669 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7670 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7671 .access = PL2_W, .type = ARM_CP_NO_RAW,
7672 .writefn = tlbi_aa64_ripas2e1_write },
7673 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7674 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7675 .access = PL2_W, .type = ARM_CP_NO_RAW,
7676 .writefn = tlbi_aa64_ripas2e1_write },
7677 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7678 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7679 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7680 .writefn = tlbi_aa64_rvae2is_write },
7681 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7682 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7683 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7684 .writefn = tlbi_aa64_rvae2is_write },
7685 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7686 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7687 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7688 .writefn = tlbi_aa64_rvae2_write },
7689 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7690 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7691 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7692 .writefn = tlbi_aa64_rvae2_write },
7693 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7694 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7695 .access = PL3_W, .type = ARM_CP_NO_RAW,
7696 .writefn = tlbi_aa64_rvae3is_write },
7697 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7698 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7699 .access = PL3_W, .type = ARM_CP_NO_RAW,
7700 .writefn = tlbi_aa64_rvae3is_write },
7701 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7702 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7703 .access = PL3_W, .type = ARM_CP_NO_RAW,
7704 .writefn = tlbi_aa64_rvae3is_write },
7705 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7706 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7707 .access = PL3_W, .type = ARM_CP_NO_RAW,
7708 .writefn = tlbi_aa64_rvae3is_write },
7709 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7710 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7711 .access = PL3_W, .type = ARM_CP_NO_RAW,
7712 .writefn = tlbi_aa64_rvae3_write },
7713 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7714 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7715 .access = PL3_W, .type = ARM_CP_NO_RAW,
7716 .writefn = tlbi_aa64_rvae3_write },
7717 };
7718
7719 static const ARMCPRegInfo tlbios_reginfo[] = {
7720 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7721 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7722 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7723 .fgt = FGT_TLBIVMALLE1OS,
7724 .writefn = tlbi_aa64_vmalle1is_write },
7725 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7726 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7727 .fgt = FGT_TLBIVAE1OS,
7728 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7729 .writefn = tlbi_aa64_vae1is_write },
7730 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7731 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7732 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7733 .fgt = FGT_TLBIASIDE1OS,
7734 .writefn = tlbi_aa64_vmalle1is_write },
7735 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7736 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7737 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7738 .fgt = FGT_TLBIVAAE1OS,
7739 .writefn = tlbi_aa64_vae1is_write },
7740 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7741 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7742 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7743 .fgt = FGT_TLBIVALE1OS,
7744 .writefn = tlbi_aa64_vae1is_write },
7745 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7746 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7747 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7748 .fgt = FGT_TLBIVAALE1OS,
7749 .writefn = tlbi_aa64_vae1is_write },
7750 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7751 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7752 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7753 .writefn = tlbi_aa64_alle2is_write },
7754 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7755 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7756 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7757 .writefn = tlbi_aa64_vae2is_write },
7758 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7759 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7760 .access = PL2_W, .type = ARM_CP_NO_RAW,
7761 .writefn = tlbi_aa64_alle1is_write },
7762 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7763 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7764 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7765 .writefn = tlbi_aa64_vae2is_write },
7766 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7767 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7768 .access = PL2_W, .type = ARM_CP_NO_RAW,
7769 .writefn = tlbi_aa64_alle1is_write },
7770 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7771 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7772 .access = PL2_W, .type = ARM_CP_NOP },
7773 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7774 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7775 .access = PL2_W, .type = ARM_CP_NOP },
7776 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7777 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7778 .access = PL2_W, .type = ARM_CP_NOP },
7779 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7780 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7781 .access = PL2_W, .type = ARM_CP_NOP },
7782 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7783 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7784 .access = PL3_W, .type = ARM_CP_NO_RAW,
7785 .writefn = tlbi_aa64_alle3is_write },
7786 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7787 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7788 .access = PL3_W, .type = ARM_CP_NO_RAW,
7789 .writefn = tlbi_aa64_vae3is_write },
7790 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7791 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7792 .access = PL3_W, .type = ARM_CP_NO_RAW,
7793 .writefn = tlbi_aa64_vae3is_write },
7794 };
7795
7796 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7797 {
7798 Error *err = NULL;
7799 uint64_t ret;
7800
7801 /* Success sets NZCV = 0000. */
7802 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7803
7804 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7805 /*
7806 * ??? Failed, for unknown reasons in the crypto subsystem.
7807 * The best we can do is log the reason and return the
7808 * timed-out indication to the guest. There is no reason
7809 * we know to expect this failure to be transitory, so the
7810 * guest may well hang retrying the operation.
7811 */
7812 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7813 ri->name, error_get_pretty(err));
7814 error_free(err);
7815
7816 env->ZF = 0; /* NZCF = 0100 */
7817 return 0;
7818 }
7819 return ret;
7820 }
7821
7822 /* We do not support re-seeding, so the two registers operate the same. */
7823 static const ARMCPRegInfo rndr_reginfo[] = {
7824 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7825 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7826 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7827 .access = PL0_R, .readfn = rndr_readfn },
7828 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7829 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7830 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7831 .access = PL0_R, .readfn = rndr_readfn },
7832 };
7833
7834 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7835 uint64_t value)
7836 {
7837 #ifdef CONFIG_TCG
7838 ARMCPU *cpu = env_archcpu(env);
7839 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7840 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7841 uint64_t vaddr_in = (uint64_t) value;
7842 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7843 void *haddr;
7844 int mem_idx = cpu_mmu_index(env, false);
7845
7846 /* This won't be crossing page boundaries */
7847 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7848 if (haddr) {
7849 #ifndef CONFIG_USER_ONLY
7850
7851 ram_addr_t offset;
7852 MemoryRegion *mr;
7853
7854 /* RCU lock is already being held */
7855 mr = memory_region_from_host(haddr, &offset);
7856
7857 if (mr) {
7858 memory_region_writeback(mr, offset, dline_size);
7859 }
7860 #endif /*CONFIG_USER_ONLY*/
7861 }
7862 #else
7863 /* Handled by hardware accelerator. */
7864 g_assert_not_reached();
7865 #endif /* CONFIG_TCG */
7866 }
7867
7868 static const ARMCPRegInfo dcpop_reg[] = {
7869 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7870 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7871 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7872 .fgt = FGT_DCCVAP,
7873 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7874 };
7875
7876 static const ARMCPRegInfo dcpodp_reg[] = {
7877 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7878 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7879 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7880 .fgt = FGT_DCCVADP,
7881 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7882 };
7883
7884 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7885 bool isread)
7886 {
7887 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7888 return CP_ACCESS_TRAP_EL2;
7889 }
7890
7891 return CP_ACCESS_OK;
7892 }
7893
7894 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7895 bool isread)
7896 {
7897 int el = arm_current_el(env);
7898 if (el < 2 && arm_is_el2_enabled(env)) {
7899 uint64_t hcr = arm_hcr_el2_eff(env);
7900 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7901 return CP_ACCESS_TRAP_EL2;
7902 }
7903 }
7904 if (el < 3 &&
7905 arm_feature(env, ARM_FEATURE_EL3) &&
7906 !(env->cp15.scr_el3 & SCR_ATA)) {
7907 return CP_ACCESS_TRAP_EL3;
7908 }
7909 return CP_ACCESS_OK;
7910 }
7911
7912 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
7913 bool isread)
7914 {
7915 CPAccessResult nv1 = access_nv1(env, ri, isread);
7916
7917 if (nv1 != CP_ACCESS_OK) {
7918 return nv1;
7919 }
7920 return access_mte(env, ri, isread);
7921 }
7922
7923 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
7924 bool isread)
7925 {
7926 /*
7927 * TFSR_EL2: similar to generic access_mte(), but we need to
7928 * account for FEAT_NV. At EL1 this must be a FEAT_NV access;
7929 * if NV2 is enabled then we will redirect this to TFSR_EL1
7930 * after doing the HCR and SCR ATA traps; otherwise this will
7931 * be a trap to EL2 and the HCR/SCR traps do not apply.
7932 */
7933 int el = arm_current_el(env);
7934
7935 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
7936 return CP_ACCESS_OK;
7937 }
7938 if (el < 2 && arm_is_el2_enabled(env)) {
7939 uint64_t hcr = arm_hcr_el2_eff(env);
7940 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7941 return CP_ACCESS_TRAP_EL2;
7942 }
7943 }
7944 if (el < 3 &&
7945 arm_feature(env, ARM_FEATURE_EL3) &&
7946 !(env->cp15.scr_el3 & SCR_ATA)) {
7947 return CP_ACCESS_TRAP_EL3;
7948 }
7949 return CP_ACCESS_OK;
7950 }
7951
7952 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7953 {
7954 return env->pstate & PSTATE_TCO;
7955 }
7956
7957 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7958 {
7959 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7960 }
7961
7962 static const ARMCPRegInfo mte_reginfo[] = {
7963 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7964 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7965 .access = PL1_RW, .accessfn = access_mte,
7966 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7967 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7968 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7969 .access = PL1_RW, .accessfn = access_tfsr_el1,
7970 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
7971 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7972 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7973 .type = ARM_CP_NV2_REDIRECT,
7974 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7975 .access = PL2_RW, .accessfn = access_tfsr_el2,
7976 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7977 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7978 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7979 .access = PL3_RW,
7980 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7981 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7982 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7983 .access = PL1_RW, .accessfn = access_mte,
7984 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7985 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7986 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7987 .access = PL1_RW, .accessfn = access_mte,
7988 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7989 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7990 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7991 .type = ARM_CP_NO_RAW,
7992 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7993 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7994 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7995 .type = ARM_CP_NOP, .access = PL1_W,
7996 .fgt = FGT_DCIVAC,
7997 .accessfn = aa64_cacheop_poc_access },
7998 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7999 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
8000 .fgt = FGT_DCISW,
8001 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8002 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
8003 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
8004 .type = ARM_CP_NOP, .access = PL1_W,
8005 .fgt = FGT_DCIVAC,
8006 .accessfn = aa64_cacheop_poc_access },
8007 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
8008 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
8009 .fgt = FGT_DCISW,
8010 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8011 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
8012 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
8013 .fgt = FGT_DCCSW,
8014 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8015 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
8016 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
8017 .fgt = FGT_DCCSW,
8018 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8019 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
8020 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
8021 .fgt = FGT_DCCISW,
8022 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8023 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
8024 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
8025 .fgt = FGT_DCCISW,
8026 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8027 };
8028
8029 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
8030 { .name = "TCO", .state = ARM_CP_STATE_AA64,
8031 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8032 .type = ARM_CP_CONST, .access = PL0_RW, },
8033 };
8034
8035 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
8036 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
8037 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
8038 .type = ARM_CP_NOP, .access = PL0_W,
8039 .fgt = FGT_DCCVAC,
8040 .accessfn = aa64_cacheop_poc_access },
8041 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
8042 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
8043 .type = ARM_CP_NOP, .access = PL0_W,
8044 .fgt = FGT_DCCVAC,
8045 .accessfn = aa64_cacheop_poc_access },
8046 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
8047 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
8048 .type = ARM_CP_NOP, .access = PL0_W,
8049 .fgt = FGT_DCCVAP,
8050 .accessfn = aa64_cacheop_poc_access },
8051 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
8052 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
8053 .type = ARM_CP_NOP, .access = PL0_W,
8054 .fgt = FGT_DCCVAP,
8055 .accessfn = aa64_cacheop_poc_access },
8056 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
8057 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
8058 .type = ARM_CP_NOP, .access = PL0_W,
8059 .fgt = FGT_DCCVADP,
8060 .accessfn = aa64_cacheop_poc_access },
8061 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
8062 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
8063 .type = ARM_CP_NOP, .access = PL0_W,
8064 .fgt = FGT_DCCVADP,
8065 .accessfn = aa64_cacheop_poc_access },
8066 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
8067 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
8068 .type = ARM_CP_NOP, .access = PL0_W,
8069 .fgt = FGT_DCCIVAC,
8070 .accessfn = aa64_cacheop_poc_access },
8071 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
8072 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
8073 .type = ARM_CP_NOP, .access = PL0_W,
8074 .fgt = FGT_DCCIVAC,
8075 .accessfn = aa64_cacheop_poc_access },
8076 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
8077 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
8078 .access = PL0_W, .type = ARM_CP_DC_GVA,
8079 #ifndef CONFIG_USER_ONLY
8080 /* Avoid overhead of an access check that always passes in user-mode */
8081 .accessfn = aa64_zva_access,
8082 .fgt = FGT_DCZVA,
8083 #endif
8084 },
8085 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
8086 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
8087 .access = PL0_W, .type = ARM_CP_DC_GZVA,
8088 #ifndef CONFIG_USER_ONLY
8089 /* Avoid overhead of an access check that always passes in user-mode */
8090 .accessfn = aa64_zva_access,
8091 .fgt = FGT_DCZVA,
8092 #endif
8093 },
8094 };
8095
8096 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
8097 bool isread)
8098 {
8099 uint64_t hcr = arm_hcr_el2_eff(env);
8100 int el = arm_current_el(env);
8101
8102 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
8103 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
8104 if (hcr & HCR_TGE) {
8105 return CP_ACCESS_TRAP_EL2;
8106 }
8107 return CP_ACCESS_TRAP;
8108 }
8109 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
8110 return CP_ACCESS_TRAP_EL2;
8111 }
8112 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
8113 return CP_ACCESS_TRAP_EL2;
8114 }
8115 if (el < 3
8116 && arm_feature(env, ARM_FEATURE_EL3)
8117 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
8118 return CP_ACCESS_TRAP_EL3;
8119 }
8120 return CP_ACCESS_OK;
8121 }
8122
8123 static CPAccessResult access_scxtnum_el1(CPUARMState *env,
8124 const ARMCPRegInfo *ri,
8125 bool isread)
8126 {
8127 CPAccessResult nv1 = access_nv1(env, ri, isread);
8128
8129 if (nv1 != CP_ACCESS_OK) {
8130 return nv1;
8131 }
8132 return access_scxtnum(env, ri, isread);
8133 }
8134
8135 static const ARMCPRegInfo scxtnum_reginfo[] = {
8136 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
8137 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
8138 .access = PL0_RW, .accessfn = access_scxtnum,
8139 .fgt = FGT_SCXTNUM_EL0,
8140 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
8141 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
8142 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
8143 .access = PL1_RW, .accessfn = access_scxtnum_el1,
8144 .fgt = FGT_SCXTNUM_EL1,
8145 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
8146 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
8147 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
8148 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
8149 .access = PL2_RW, .accessfn = access_scxtnum,
8150 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
8151 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
8152 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
8153 .access = PL3_RW,
8154 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
8155 };
8156
8157 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
8158 bool isread)
8159 {
8160 if (arm_current_el(env) == 2 &&
8161 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
8162 return CP_ACCESS_TRAP_EL3;
8163 }
8164 return CP_ACCESS_OK;
8165 }
8166
8167 static const ARMCPRegInfo fgt_reginfo[] = {
8168 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8169 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
8170 .nv2_redirect_offset = 0x1b8,
8171 .access = PL2_RW, .accessfn = access_fgt,
8172 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
8173 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8174 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
8175 .nv2_redirect_offset = 0x1c0,
8176 .access = PL2_RW, .accessfn = access_fgt,
8177 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
8178 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8179 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
8180 .nv2_redirect_offset = 0x1d0,
8181 .access = PL2_RW, .accessfn = access_fgt,
8182 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
8183 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8184 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
8185 .nv2_redirect_offset = 0x1d8,
8186 .access = PL2_RW, .accessfn = access_fgt,
8187 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
8188 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
8189 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
8190 .nv2_redirect_offset = 0x1c8,
8191 .access = PL2_RW, .accessfn = access_fgt,
8192 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
8193 };
8194
8195 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
8196 uint64_t value)
8197 {
8198 /*
8199 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
8200 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
8201 * about the RESS bits at the top -- we choose the "generate an EL2
8202 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
8203 * the ptw.c code detect the resulting invalid address).
8204 */
8205 env->cp15.vncr_el2 = value & ~0xfffULL;
8206 }
8207
8208 static const ARMCPRegInfo nv2_reginfo[] = {
8209 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
8210 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
8211 .access = PL2_RW,
8212 .writefn = vncr_write,
8213 .nv2_redirect_offset = 0xb0,
8214 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
8215 };
8216
8217 #endif /* TARGET_AARCH64 */
8218
8219 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
8220 bool isread)
8221 {
8222 int el = arm_current_el(env);
8223
8224 if (el == 0) {
8225 uint64_t sctlr = arm_sctlr(env, el);
8226 if (!(sctlr & SCTLR_EnRCTX)) {
8227 return CP_ACCESS_TRAP;
8228 }
8229 } else if (el == 1) {
8230 uint64_t hcr = arm_hcr_el2_eff(env);
8231 if (hcr & HCR_NV) {
8232 return CP_ACCESS_TRAP_EL2;
8233 }
8234 }
8235 return CP_ACCESS_OK;
8236 }
8237
8238 static const ARMCPRegInfo predinv_reginfo[] = {
8239 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
8240 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
8241 .fgt = FGT_CFPRCTX,
8242 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8243 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
8244 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
8245 .fgt = FGT_DVPRCTX,
8246 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8247 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
8248 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
8249 .fgt = FGT_CPPRCTX,
8250 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8251 /*
8252 * Note the AArch32 opcodes have a different OPC1.
8253 */
8254 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
8255 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
8256 .fgt = FGT_CFPRCTX,
8257 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8258 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
8259 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
8260 .fgt = FGT_DVPRCTX,
8261 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8262 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
8263 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
8264 .fgt = FGT_CPPRCTX,
8265 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8266 };
8267
8268 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8269 {
8270 /* Read the high 32 bits of the current CCSIDR */
8271 return extract64(ccsidr_read(env, ri), 32, 32);
8272 }
8273
8274 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8275 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8276 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8277 .access = PL1_R,
8278 .accessfn = access_tid4,
8279 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8280 };
8281
8282 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8283 bool isread)
8284 {
8285 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8286 return CP_ACCESS_TRAP_EL2;
8287 }
8288
8289 return CP_ACCESS_OK;
8290 }
8291
8292 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8293 bool isread)
8294 {
8295 if (arm_feature(env, ARM_FEATURE_V8)) {
8296 return access_aa64_tid3(env, ri, isread);
8297 }
8298
8299 return CP_ACCESS_OK;
8300 }
8301
8302 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8303 bool isread)
8304 {
8305 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8306 return CP_ACCESS_TRAP_EL2;
8307 }
8308
8309 return CP_ACCESS_OK;
8310 }
8311
8312 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8313 const ARMCPRegInfo *ri, bool isread)
8314 {
8315 /*
8316 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8317 * in v7A, not in v8A.
8318 */
8319 if (!arm_feature(env, ARM_FEATURE_V8) &&
8320 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8321 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8322 return CP_ACCESS_TRAP_EL2;
8323 }
8324 return CP_ACCESS_OK;
8325 }
8326
8327 static const ARMCPRegInfo jazelle_regs[] = {
8328 { .name = "JIDR",
8329 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8330 .access = PL1_R, .accessfn = access_jazelle,
8331 .type = ARM_CP_CONST, .resetvalue = 0 },
8332 { .name = "JOSCR",
8333 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8334 .accessfn = access_joscr_jmcr,
8335 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8336 { .name = "JMCR",
8337 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8338 .accessfn = access_joscr_jmcr,
8339 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8340 };
8341
8342 static const ARMCPRegInfo contextidr_el2 = {
8343 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8344 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8345 .access = PL2_RW,
8346 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8347 };
8348
8349 static const ARMCPRegInfo vhe_reginfo[] = {
8350 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8351 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8352 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8353 .raw_writefn = raw_write,
8354 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8355 #ifndef CONFIG_USER_ONLY
8356 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8357 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8358 .fieldoffset =
8359 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8360 .type = ARM_CP_IO, .access = PL2_RW,
8361 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8362 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8363 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8364 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8365 .resetfn = gt_hv_timer_reset,
8366 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8367 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8368 .type = ARM_CP_IO,
8369 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8370 .access = PL2_RW,
8371 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8372 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8373 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8374 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8375 .type = ARM_CP_IO | ARM_CP_ALIAS,
8376 .access = PL2_RW, .accessfn = e2h_access,
8377 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
8378 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8379 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8380 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8381 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8382 .type = ARM_CP_IO | ARM_CP_ALIAS,
8383 .access = PL2_RW, .accessfn = e2h_access,
8384 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
8385 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8386 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8387 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8388 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8389 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8390 .access = PL2_RW, .accessfn = e2h_access,
8391 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8392 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8393 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8394 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8395 .access = PL2_RW, .accessfn = e2h_access,
8396 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8397 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8398 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8399 .type = ARM_CP_IO | ARM_CP_ALIAS,
8400 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8401 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
8402 .access = PL2_RW, .accessfn = e2h_access,
8403 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8404 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8405 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8406 .type = ARM_CP_IO | ARM_CP_ALIAS,
8407 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
8408 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8409 .access = PL2_RW, .accessfn = e2h_access,
8410 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8411 #endif
8412 };
8413
8414 #ifndef CONFIG_USER_ONLY
8415 static const ARMCPRegInfo ats1e1_reginfo[] = {
8416 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8417 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8418 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8419 .fgt = FGT_ATS1E1RP,
8420 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8421 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8422 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8423 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8424 .fgt = FGT_ATS1E1WP,
8425 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8426 };
8427
8428 static const ARMCPRegInfo ats1cp_reginfo[] = {
8429 { .name = "ATS1CPRP",
8430 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8431 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8432 .writefn = ats_write },
8433 { .name = "ATS1CPWP",
8434 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8435 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8436 .writefn = ats_write },
8437 };
8438 #endif
8439
8440 /*
8441 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8442 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8443 * is non-zero, which is never for ARMv7, optionally in ARMv8
8444 * and mandatorily for ARMv8.2 and up.
8445 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8446 * implementation is RAZ/WI we can ignore this detail, as we
8447 * do for ACTLR.
8448 */
8449 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8450 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8451 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8452 .access = PL1_RW, .accessfn = access_tacr,
8453 .type = ARM_CP_CONST, .resetvalue = 0 },
8454 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8455 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8456 .access = PL2_RW, .type = ARM_CP_CONST,
8457 .resetvalue = 0 },
8458 };
8459
8460 void register_cp_regs_for_features(ARMCPU *cpu)
8461 {
8462 /* Register all the coprocessor registers based on feature bits */
8463 CPUARMState *env = &cpu->env;
8464 if (arm_feature(env, ARM_FEATURE_M)) {
8465 /* M profile has no coprocessor registers */
8466 return;
8467 }
8468
8469 define_arm_cp_regs(cpu, cp_reginfo);
8470 if (!arm_feature(env, ARM_FEATURE_V8)) {
8471 /*
8472 * Must go early as it is full of wildcards that may be
8473 * overridden by later definitions.
8474 */
8475 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8476 }
8477
8478 if (arm_feature(env, ARM_FEATURE_V6)) {
8479 /* The ID registers all have impdef reset values */
8480 ARMCPRegInfo v6_idregs[] = {
8481 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8482 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8483 .access = PL1_R, .type = ARM_CP_CONST,
8484 .accessfn = access_aa32_tid3,
8485 .resetvalue = cpu->isar.id_pfr0 },
8486 /*
8487 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8488 * the value of the GIC field until after we define these regs.
8489 */
8490 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8491 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8492 .access = PL1_R, .type = ARM_CP_NO_RAW,
8493 .accessfn = access_aa32_tid3,
8494 #ifdef CONFIG_USER_ONLY
8495 .type = ARM_CP_CONST,
8496 .resetvalue = cpu->isar.id_pfr1,
8497 #else
8498 .type = ARM_CP_NO_RAW,
8499 .accessfn = access_aa32_tid3,
8500 .readfn = id_pfr1_read,
8501 .writefn = arm_cp_write_ignore
8502 #endif
8503 },
8504 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8505 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8506 .access = PL1_R, .type = ARM_CP_CONST,
8507 .accessfn = access_aa32_tid3,
8508 .resetvalue = cpu->isar.id_dfr0 },
8509 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8510 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8511 .access = PL1_R, .type = ARM_CP_CONST,
8512 .accessfn = access_aa32_tid3,
8513 .resetvalue = cpu->id_afr0 },
8514 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8515 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8516 .access = PL1_R, .type = ARM_CP_CONST,
8517 .accessfn = access_aa32_tid3,
8518 .resetvalue = cpu->isar.id_mmfr0 },
8519 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8520 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8521 .access = PL1_R, .type = ARM_CP_CONST,
8522 .accessfn = access_aa32_tid3,
8523 .resetvalue = cpu->isar.id_mmfr1 },
8524 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8525 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8526 .access = PL1_R, .type = ARM_CP_CONST,
8527 .accessfn = access_aa32_tid3,
8528 .resetvalue = cpu->isar.id_mmfr2 },
8529 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8530 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8531 .access = PL1_R, .type = ARM_CP_CONST,
8532 .accessfn = access_aa32_tid3,
8533 .resetvalue = cpu->isar.id_mmfr3 },
8534 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8535 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8536 .access = PL1_R, .type = ARM_CP_CONST,
8537 .accessfn = access_aa32_tid3,
8538 .resetvalue = cpu->isar.id_isar0 },
8539 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8540 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8541 .access = PL1_R, .type = ARM_CP_CONST,
8542 .accessfn = access_aa32_tid3,
8543 .resetvalue = cpu->isar.id_isar1 },
8544 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8545 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8546 .access = PL1_R, .type = ARM_CP_CONST,
8547 .accessfn = access_aa32_tid3,
8548 .resetvalue = cpu->isar.id_isar2 },
8549 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8550 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8551 .access = PL1_R, .type = ARM_CP_CONST,
8552 .accessfn = access_aa32_tid3,
8553 .resetvalue = cpu->isar.id_isar3 },
8554 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8556 .access = PL1_R, .type = ARM_CP_CONST,
8557 .accessfn = access_aa32_tid3,
8558 .resetvalue = cpu->isar.id_isar4 },
8559 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8561 .access = PL1_R, .type = ARM_CP_CONST,
8562 .accessfn = access_aa32_tid3,
8563 .resetvalue = cpu->isar.id_isar5 },
8564 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8565 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8566 .access = PL1_R, .type = ARM_CP_CONST,
8567 .accessfn = access_aa32_tid3,
8568 .resetvalue = cpu->isar.id_mmfr4 },
8569 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8570 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8571 .access = PL1_R, .type = ARM_CP_CONST,
8572 .accessfn = access_aa32_tid3,
8573 .resetvalue = cpu->isar.id_isar6 },
8574 };
8575 define_arm_cp_regs(cpu, v6_idregs);
8576 define_arm_cp_regs(cpu, v6_cp_reginfo);
8577 } else {
8578 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8579 }
8580 if (arm_feature(env, ARM_FEATURE_V6K)) {
8581 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8582 }
8583 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8584 !arm_feature(env, ARM_FEATURE_PMSA)) {
8585 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8586 }
8587 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8588 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8589 }
8590 if (arm_feature(env, ARM_FEATURE_V7)) {
8591 ARMCPRegInfo clidr = {
8592 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8593 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8594 .access = PL1_R, .type = ARM_CP_CONST,
8595 .accessfn = access_tid4,
8596 .fgt = FGT_CLIDR_EL1,
8597 .resetvalue = cpu->clidr
8598 };
8599 define_one_arm_cp_reg(cpu, &clidr);
8600 define_arm_cp_regs(cpu, v7_cp_reginfo);
8601 define_debug_regs(cpu);
8602 define_pmu_regs(cpu);
8603 } else {
8604 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8605 }
8606 if (arm_feature(env, ARM_FEATURE_V8)) {
8607 /*
8608 * v8 ID registers, which all have impdef reset values.
8609 * Note that within the ID register ranges the unused slots
8610 * must all RAZ, not UNDEF; future architecture versions may
8611 * define new registers here.
8612 * ID registers which are AArch64 views of the AArch32 ID registers
8613 * which already existed in v6 and v7 are handled elsewhere,
8614 * in v6_idregs[].
8615 */
8616 int i;
8617 ARMCPRegInfo v8_idregs[] = {
8618 /*
8619 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8620 * emulation because we don't know the right value for the
8621 * GIC field until after we define these regs.
8622 */
8623 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8624 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8625 .access = PL1_R,
8626 #ifdef CONFIG_USER_ONLY
8627 .type = ARM_CP_CONST,
8628 .resetvalue = cpu->isar.id_aa64pfr0
8629 #else
8630 .type = ARM_CP_NO_RAW,
8631 .accessfn = access_aa64_tid3,
8632 .readfn = id_aa64pfr0_read,
8633 .writefn = arm_cp_write_ignore
8634 #endif
8635 },
8636 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8637 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8638 .access = PL1_R, .type = ARM_CP_CONST,
8639 .accessfn = access_aa64_tid3,
8640 .resetvalue = cpu->isar.id_aa64pfr1},
8641 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8642 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8643 .access = PL1_R, .type = ARM_CP_CONST,
8644 .accessfn = access_aa64_tid3,
8645 .resetvalue = 0 },
8646 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8648 .access = PL1_R, .type = ARM_CP_CONST,
8649 .accessfn = access_aa64_tid3,
8650 .resetvalue = 0 },
8651 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8653 .access = PL1_R, .type = ARM_CP_CONST,
8654 .accessfn = access_aa64_tid3,
8655 .resetvalue = cpu->isar.id_aa64zfr0 },
8656 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8657 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8658 .access = PL1_R, .type = ARM_CP_CONST,
8659 .accessfn = access_aa64_tid3,
8660 .resetvalue = cpu->isar.id_aa64smfr0 },
8661 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8662 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8663 .access = PL1_R, .type = ARM_CP_CONST,
8664 .accessfn = access_aa64_tid3,
8665 .resetvalue = 0 },
8666 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8667 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8668 .access = PL1_R, .type = ARM_CP_CONST,
8669 .accessfn = access_aa64_tid3,
8670 .resetvalue = 0 },
8671 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8672 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8673 .access = PL1_R, .type = ARM_CP_CONST,
8674 .accessfn = access_aa64_tid3,
8675 .resetvalue = cpu->isar.id_aa64dfr0 },
8676 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8677 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8678 .access = PL1_R, .type = ARM_CP_CONST,
8679 .accessfn = access_aa64_tid3,
8680 .resetvalue = cpu->isar.id_aa64dfr1 },
8681 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8682 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8683 .access = PL1_R, .type = ARM_CP_CONST,
8684 .accessfn = access_aa64_tid3,
8685 .resetvalue = 0 },
8686 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8688 .access = PL1_R, .type = ARM_CP_CONST,
8689 .accessfn = access_aa64_tid3,
8690 .resetvalue = 0 },
8691 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8692 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8693 .access = PL1_R, .type = ARM_CP_CONST,
8694 .accessfn = access_aa64_tid3,
8695 .resetvalue = cpu->id_aa64afr0 },
8696 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8697 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8698 .access = PL1_R, .type = ARM_CP_CONST,
8699 .accessfn = access_aa64_tid3,
8700 .resetvalue = cpu->id_aa64afr1 },
8701 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8702 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8703 .access = PL1_R, .type = ARM_CP_CONST,
8704 .accessfn = access_aa64_tid3,
8705 .resetvalue = 0 },
8706 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8708 .access = PL1_R, .type = ARM_CP_CONST,
8709 .accessfn = access_aa64_tid3,
8710 .resetvalue = 0 },
8711 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8712 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8713 .access = PL1_R, .type = ARM_CP_CONST,
8714 .accessfn = access_aa64_tid3,
8715 .resetvalue = cpu->isar.id_aa64isar0 },
8716 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8717 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8718 .access = PL1_R, .type = ARM_CP_CONST,
8719 .accessfn = access_aa64_tid3,
8720 .resetvalue = cpu->isar.id_aa64isar1 },
8721 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8723 .access = PL1_R, .type = ARM_CP_CONST,
8724 .accessfn = access_aa64_tid3,
8725 .resetvalue = cpu->isar.id_aa64isar2 },
8726 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8727 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8728 .access = PL1_R, .type = ARM_CP_CONST,
8729 .accessfn = access_aa64_tid3,
8730 .resetvalue = 0 },
8731 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8732 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8733 .access = PL1_R, .type = ARM_CP_CONST,
8734 .accessfn = access_aa64_tid3,
8735 .resetvalue = 0 },
8736 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8737 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8738 .access = PL1_R, .type = ARM_CP_CONST,
8739 .accessfn = access_aa64_tid3,
8740 .resetvalue = 0 },
8741 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8743 .access = PL1_R, .type = ARM_CP_CONST,
8744 .accessfn = access_aa64_tid3,
8745 .resetvalue = 0 },
8746 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8748 .access = PL1_R, .type = ARM_CP_CONST,
8749 .accessfn = access_aa64_tid3,
8750 .resetvalue = 0 },
8751 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8753 .access = PL1_R, .type = ARM_CP_CONST,
8754 .accessfn = access_aa64_tid3,
8755 .resetvalue = cpu->isar.id_aa64mmfr0 },
8756 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8757 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8758 .access = PL1_R, .type = ARM_CP_CONST,
8759 .accessfn = access_aa64_tid3,
8760 .resetvalue = cpu->isar.id_aa64mmfr1 },
8761 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8763 .access = PL1_R, .type = ARM_CP_CONST,
8764 .accessfn = access_aa64_tid3,
8765 .resetvalue = cpu->isar.id_aa64mmfr2 },
8766 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8768 .access = PL1_R, .type = ARM_CP_CONST,
8769 .accessfn = access_aa64_tid3,
8770 .resetvalue = 0 },
8771 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8773 .access = PL1_R, .type = ARM_CP_CONST,
8774 .accessfn = access_aa64_tid3,
8775 .resetvalue = 0 },
8776 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8778 .access = PL1_R, .type = ARM_CP_CONST,
8779 .accessfn = access_aa64_tid3,
8780 .resetvalue = 0 },
8781 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8783 .access = PL1_R, .type = ARM_CP_CONST,
8784 .accessfn = access_aa64_tid3,
8785 .resetvalue = 0 },
8786 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8788 .access = PL1_R, .type = ARM_CP_CONST,
8789 .accessfn = access_aa64_tid3,
8790 .resetvalue = 0 },
8791 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8793 .access = PL1_R, .type = ARM_CP_CONST,
8794 .accessfn = access_aa64_tid3,
8795 .resetvalue = cpu->isar.mvfr0 },
8796 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8798 .access = PL1_R, .type = ARM_CP_CONST,
8799 .accessfn = access_aa64_tid3,
8800 .resetvalue = cpu->isar.mvfr1 },
8801 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8803 .access = PL1_R, .type = ARM_CP_CONST,
8804 .accessfn = access_aa64_tid3,
8805 .resetvalue = cpu->isar.mvfr2 },
8806 /*
8807 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8808 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8809 * as RAZ, since it is in the "reserved for future ID
8810 * registers, RAZ" part of the AArch32 encoding space.
8811 */
8812 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8813 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8814 .access = PL1_R, .type = ARM_CP_CONST,
8815 .accessfn = access_aa64_tid3,
8816 .resetvalue = 0 },
8817 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8818 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8819 .access = PL1_R, .type = ARM_CP_CONST,
8820 .accessfn = access_aa64_tid3,
8821 .resetvalue = 0 },
8822 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8823 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8824 .access = PL1_R, .type = ARM_CP_CONST,
8825 .accessfn = access_aa64_tid3,
8826 .resetvalue = 0 },
8827 /*
8828 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8829 * they're also RAZ for AArch64, and in v8 are gradually
8830 * being filled with AArch64-view-of-AArch32-ID-register
8831 * for new ID registers.
8832 */
8833 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8834 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8835 .access = PL1_R, .type = ARM_CP_CONST,
8836 .accessfn = access_aa64_tid3,
8837 .resetvalue = 0 },
8838 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8839 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8840 .access = PL1_R, .type = ARM_CP_CONST,
8841 .accessfn = access_aa64_tid3,
8842 .resetvalue = cpu->isar.id_pfr2 },
8843 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8845 .access = PL1_R, .type = ARM_CP_CONST,
8846 .accessfn = access_aa64_tid3,
8847 .resetvalue = cpu->isar.id_dfr1 },
8848 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8849 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8850 .access = PL1_R, .type = ARM_CP_CONST,
8851 .accessfn = access_aa64_tid3,
8852 .resetvalue = cpu->isar.id_mmfr5 },
8853 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8854 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8855 .access = PL1_R, .type = ARM_CP_CONST,
8856 .accessfn = access_aa64_tid3,
8857 .resetvalue = 0 },
8858 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8859 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8860 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8861 .fgt = FGT_PMCEIDN_EL0,
8862 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8863 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8864 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8865 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8866 .fgt = FGT_PMCEIDN_EL0,
8867 .resetvalue = cpu->pmceid0 },
8868 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8869 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8870 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8871 .fgt = FGT_PMCEIDN_EL0,
8872 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8873 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8874 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8875 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8876 .fgt = FGT_PMCEIDN_EL0,
8877 .resetvalue = cpu->pmceid1 },
8878 };
8879 #ifdef CONFIG_USER_ONLY
8880 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8881 { .name = "ID_AA64PFR0_EL1",
8882 .exported_bits = R_ID_AA64PFR0_FP_MASK |
8883 R_ID_AA64PFR0_ADVSIMD_MASK |
8884 R_ID_AA64PFR0_SVE_MASK |
8885 R_ID_AA64PFR0_DIT_MASK,
8886 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8887 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8888 { .name = "ID_AA64PFR1_EL1",
8889 .exported_bits = R_ID_AA64PFR1_BT_MASK |
8890 R_ID_AA64PFR1_SSBS_MASK |
8891 R_ID_AA64PFR1_MTE_MASK |
8892 R_ID_AA64PFR1_SME_MASK },
8893 { .name = "ID_AA64PFR*_EL1_RESERVED",
8894 .is_glob = true },
8895 { .name = "ID_AA64ZFR0_EL1",
8896 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8897 R_ID_AA64ZFR0_AES_MASK |
8898 R_ID_AA64ZFR0_BITPERM_MASK |
8899 R_ID_AA64ZFR0_BFLOAT16_MASK |
8900 R_ID_AA64ZFR0_SHA3_MASK |
8901 R_ID_AA64ZFR0_SM4_MASK |
8902 R_ID_AA64ZFR0_I8MM_MASK |
8903 R_ID_AA64ZFR0_F32MM_MASK |
8904 R_ID_AA64ZFR0_F64MM_MASK },
8905 { .name = "ID_AA64SMFR0_EL1",
8906 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8907 R_ID_AA64SMFR0_BI32I32_MASK |
8908 R_ID_AA64SMFR0_B16F32_MASK |
8909 R_ID_AA64SMFR0_F16F32_MASK |
8910 R_ID_AA64SMFR0_I8I32_MASK |
8911 R_ID_AA64SMFR0_F16F16_MASK |
8912 R_ID_AA64SMFR0_B16B16_MASK |
8913 R_ID_AA64SMFR0_I16I32_MASK |
8914 R_ID_AA64SMFR0_F64F64_MASK |
8915 R_ID_AA64SMFR0_I16I64_MASK |
8916 R_ID_AA64SMFR0_SMEVER_MASK |
8917 R_ID_AA64SMFR0_FA64_MASK },
8918 { .name = "ID_AA64MMFR0_EL1",
8919 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8920 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8921 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8922 { .name = "ID_AA64MMFR1_EL1",
8923 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8924 { .name = "ID_AA64MMFR2_EL1",
8925 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8926 { .name = "ID_AA64MMFR*_EL1_RESERVED",
8927 .is_glob = true },
8928 { .name = "ID_AA64DFR0_EL1",
8929 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8930 { .name = "ID_AA64DFR1_EL1" },
8931 { .name = "ID_AA64DFR*_EL1_RESERVED",
8932 .is_glob = true },
8933 { .name = "ID_AA64AFR*",
8934 .is_glob = true },
8935 { .name = "ID_AA64ISAR0_EL1",
8936 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8937 R_ID_AA64ISAR0_SHA1_MASK |
8938 R_ID_AA64ISAR0_SHA2_MASK |
8939 R_ID_AA64ISAR0_CRC32_MASK |
8940 R_ID_AA64ISAR0_ATOMIC_MASK |
8941 R_ID_AA64ISAR0_RDM_MASK |
8942 R_ID_AA64ISAR0_SHA3_MASK |
8943 R_ID_AA64ISAR0_SM3_MASK |
8944 R_ID_AA64ISAR0_SM4_MASK |
8945 R_ID_AA64ISAR0_DP_MASK |
8946 R_ID_AA64ISAR0_FHM_MASK |
8947 R_ID_AA64ISAR0_TS_MASK |
8948 R_ID_AA64ISAR0_RNDR_MASK },
8949 { .name = "ID_AA64ISAR1_EL1",
8950 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8951 R_ID_AA64ISAR1_APA_MASK |
8952 R_ID_AA64ISAR1_API_MASK |
8953 R_ID_AA64ISAR1_JSCVT_MASK |
8954 R_ID_AA64ISAR1_FCMA_MASK |
8955 R_ID_AA64ISAR1_LRCPC_MASK |
8956 R_ID_AA64ISAR1_GPA_MASK |
8957 R_ID_AA64ISAR1_GPI_MASK |
8958 R_ID_AA64ISAR1_FRINTTS_MASK |
8959 R_ID_AA64ISAR1_SB_MASK |
8960 R_ID_AA64ISAR1_BF16_MASK |
8961 R_ID_AA64ISAR1_DGH_MASK |
8962 R_ID_AA64ISAR1_I8MM_MASK },
8963 { .name = "ID_AA64ISAR2_EL1",
8964 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8965 R_ID_AA64ISAR2_RPRES_MASK |
8966 R_ID_AA64ISAR2_GPA3_MASK |
8967 R_ID_AA64ISAR2_APA3_MASK |
8968 R_ID_AA64ISAR2_MOPS_MASK |
8969 R_ID_AA64ISAR2_BC_MASK |
8970 R_ID_AA64ISAR2_RPRFM_MASK |
8971 R_ID_AA64ISAR2_CSSC_MASK },
8972 { .name = "ID_AA64ISAR*_EL1_RESERVED",
8973 .is_glob = true },
8974 };
8975 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8976 #endif
8977 /*
8978 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
8979 * TODO: For RMR, a write with bit 1 set should do something with
8980 * cpu_reset(). In the meantime, "the bit is strictly a request",
8981 * so we are in spec just ignoring writes.
8982 */
8983 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8984 !arm_feature(env, ARM_FEATURE_EL2)) {
8985 ARMCPRegInfo el1_reset_regs[] = {
8986 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8987 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8988 .access = PL1_R,
8989 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8990 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
8991 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8992 .access = PL1_RW, .type = ARM_CP_CONST,
8993 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
8994 };
8995 define_arm_cp_regs(cpu, el1_reset_regs);
8996 }
8997 define_arm_cp_regs(cpu, v8_idregs);
8998 define_arm_cp_regs(cpu, v8_cp_reginfo);
8999 if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
9000 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
9001 }
9002
9003 for (i = 4; i < 16; i++) {
9004 /*
9005 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
9006 * For pre-v8 cores there are RAZ patterns for these in
9007 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
9008 * v8 extends the "must RAZ" part of the ID register space
9009 * to also cover c0, 0, c{8-15}, {0-7}.
9010 * These are STATE_AA32 because in the AArch64 sysreg space
9011 * c4-c7 is where the AArch64 ID registers live (and we've
9012 * already defined those in v8_idregs[]), and c8-c15 are not
9013 * "must RAZ" for AArch64.
9014 */
9015 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
9016 ARMCPRegInfo v8_aa32_raz_idregs = {
9017 .name = name,
9018 .state = ARM_CP_STATE_AA32,
9019 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
9020 .access = PL1_R, .type = ARM_CP_CONST,
9021 .accessfn = access_aa64_tid3,
9022 .resetvalue = 0 };
9023 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
9024 }
9025 }
9026
9027 /*
9028 * Register the base EL2 cpregs.
9029 * Pre v8, these registers are implemented only as part of the
9030 * Virtualization Extensions (EL2 present). Beginning with v8,
9031 * if EL2 is missing but EL3 is enabled, mostly these become
9032 * RES0 from EL3, with some specific exceptions.
9033 */
9034 if (arm_feature(env, ARM_FEATURE_EL2)
9035 || (arm_feature(env, ARM_FEATURE_EL3)
9036 && arm_feature(env, ARM_FEATURE_V8))) {
9037 uint64_t vmpidr_def = mpidr_read_val(env);
9038 ARMCPRegInfo vpidr_regs[] = {
9039 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
9040 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9041 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9042 .resetvalue = cpu->midr,
9043 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9044 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
9045 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
9046 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9047 .access = PL2_RW, .resetvalue = cpu->midr,
9048 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9049 .nv2_redirect_offset = 0x88,
9050 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
9051 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
9052 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9053 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9054 .resetvalue = vmpidr_def,
9055 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9056 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
9057 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
9058 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9059 .access = PL2_RW, .resetvalue = vmpidr_def,
9060 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9061 .nv2_redirect_offset = 0x50,
9062 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
9063 };
9064 /*
9065 * The only field of MDCR_EL2 that has a defined architectural reset
9066 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
9067 */
9068 ARMCPRegInfo mdcr_el2 = {
9069 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
9070 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
9071 .writefn = mdcr_el2_write,
9072 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
9073 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
9074 };
9075 define_one_arm_cp_reg(cpu, &mdcr_el2);
9076 define_arm_cp_regs(cpu, vpidr_regs);
9077 define_arm_cp_regs(cpu, el2_cp_reginfo);
9078 if (arm_feature(env, ARM_FEATURE_V8)) {
9079 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
9080 }
9081 if (cpu_isar_feature(aa64_sel2, cpu)) {
9082 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
9083 }
9084 /*
9085 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
9086 * See commentary near RMR_EL1.
9087 */
9088 if (!arm_feature(env, ARM_FEATURE_EL3)) {
9089 static const ARMCPRegInfo el2_reset_regs[] = {
9090 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
9091 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
9092 .access = PL2_R,
9093 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9094 { .name = "RVBAR", .type = ARM_CP_ALIAS,
9095 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9096 .access = PL2_R,
9097 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9098 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
9099 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
9100 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9101 };
9102 define_arm_cp_regs(cpu, el2_reset_regs);
9103 }
9104 }
9105
9106 /* Register the base EL3 cpregs. */
9107 if (arm_feature(env, ARM_FEATURE_EL3)) {
9108 define_arm_cp_regs(cpu, el3_cp_reginfo);
9109 ARMCPRegInfo el3_regs[] = {
9110 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
9111 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
9112 .access = PL3_R,
9113 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
9114 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
9115 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
9116 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9117 { .name = "RMR", .state = ARM_CP_STATE_AA32,
9118 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9119 .access = PL3_RW, .type = ARM_CP_CONST,
9120 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
9121 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
9122 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
9123 .access = PL3_RW,
9124 .raw_writefn = raw_write, .writefn = sctlr_write,
9125 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
9126 .resetvalue = cpu->reset_sctlr },
9127 };
9128
9129 define_arm_cp_regs(cpu, el3_regs);
9130 }
9131 /*
9132 * The behaviour of NSACR is sufficiently various that we don't
9133 * try to describe it in a single reginfo:
9134 * if EL3 is 64 bit, then trap to EL3 from S EL1,
9135 * reads as constant 0xc00 from NS EL1 and NS EL2
9136 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
9137 * if v7 without EL3, register doesn't exist
9138 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
9139 */
9140 if (arm_feature(env, ARM_FEATURE_EL3)) {
9141 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9142 static const ARMCPRegInfo nsacr = {
9143 .name = "NSACR", .type = ARM_CP_CONST,
9144 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9145 .access = PL1_RW, .accessfn = nsacr_access,
9146 .resetvalue = 0xc00
9147 };
9148 define_one_arm_cp_reg(cpu, &nsacr);
9149 } else {
9150 static const ARMCPRegInfo nsacr = {
9151 .name = "NSACR",
9152 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9153 .access = PL3_RW | PL1_R,
9154 .resetvalue = 0,
9155 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
9156 };
9157 define_one_arm_cp_reg(cpu, &nsacr);
9158 }
9159 } else {
9160 if (arm_feature(env, ARM_FEATURE_V8)) {
9161 static const ARMCPRegInfo nsacr = {
9162 .name = "NSACR", .type = ARM_CP_CONST,
9163 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9164 .access = PL1_R,
9165 .resetvalue = 0xc00
9166 };
9167 define_one_arm_cp_reg(cpu, &nsacr);
9168 }
9169 }
9170
9171 if (arm_feature(env, ARM_FEATURE_PMSA)) {
9172 if (arm_feature(env, ARM_FEATURE_V6)) {
9173 /* PMSAv6 not implemented */
9174 assert(arm_feature(env, ARM_FEATURE_V7));
9175 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9176 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
9177 } else {
9178 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
9179 }
9180 } else {
9181 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9182 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
9183 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
9184 if (cpu_isar_feature(aa32_hpd, cpu)) {
9185 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
9186 }
9187 }
9188 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
9189 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
9190 }
9191 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
9192 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
9193 }
9194 if (arm_feature(env, ARM_FEATURE_VAPA)) {
9195 ARMCPRegInfo vapa_cp_reginfo[] = {
9196 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
9197 .access = PL1_RW, .resetvalue = 0,
9198 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
9199 offsetoflow32(CPUARMState, cp15.par_ns) },
9200 .writefn = par_write},
9201 #ifndef CONFIG_USER_ONLY
9202 /* This underdecoding is safe because the reginfo is NO_RAW. */
9203 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
9204 .access = PL1_W, .accessfn = ats_access,
9205 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
9206 #endif
9207 };
9208
9209 /*
9210 * When LPAE exists this 32-bit PAR register is an alias of the
9211 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
9212 */
9213 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9214 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
9215 }
9216 define_arm_cp_regs(cpu, vapa_cp_reginfo);
9217 }
9218 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
9219 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
9220 }
9221 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
9222 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
9223 }
9224 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
9225 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
9226 }
9227 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
9228 define_arm_cp_regs(cpu, omap_cp_reginfo);
9229 }
9230 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
9231 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
9232 }
9233 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9234 define_arm_cp_regs(cpu, xscale_cp_reginfo);
9235 }
9236 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
9237 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
9238 }
9239 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9240 define_arm_cp_regs(cpu, lpae_cp_reginfo);
9241 }
9242 if (cpu_isar_feature(aa32_jazelle, cpu)) {
9243 define_arm_cp_regs(cpu, jazelle_regs);
9244 }
9245 /*
9246 * Slightly awkwardly, the OMAP and StrongARM cores need all of
9247 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
9248 * be read-only (ie write causes UNDEF exception).
9249 */
9250 {
9251 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9252 /*
9253 * Pre-v8 MIDR space.
9254 * Note that the MIDR isn't a simple constant register because
9255 * of the TI925 behaviour where writes to another register can
9256 * cause the MIDR value to change.
9257 *
9258 * Unimplemented registers in the c15 0 0 0 space default to
9259 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
9260 * and friends override accordingly.
9261 */
9262 { .name = "MIDR",
9263 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
9264 .access = PL1_R, .resetvalue = cpu->midr,
9265 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
9266 .readfn = midr_read,
9267 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9268 .type = ARM_CP_OVERRIDE },
9269 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
9270 { .name = "DUMMY",
9271 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
9272 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9273 { .name = "DUMMY",
9274 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
9275 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9276 { .name = "DUMMY",
9277 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9278 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9279 { .name = "DUMMY",
9280 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9281 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9282 { .name = "DUMMY",
9283 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9284 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9285 };
9286 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9287 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9288 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9289 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9290 .fgt = FGT_MIDR_EL1,
9291 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9292 .readfn = midr_read },
9293 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9294 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9295 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9296 .access = PL1_R, .resetvalue = cpu->midr },
9297 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9298 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9299 .access = PL1_R,
9300 .accessfn = access_aa64_tid1,
9301 .fgt = FGT_REVIDR_EL1,
9302 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9303 };
9304 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9305 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9306 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9307 .access = PL1_R, .resetvalue = cpu->midr
9308 };
9309 ARMCPRegInfo id_cp_reginfo[] = {
9310 /* These are common to v8 and pre-v8 */
9311 { .name = "CTR",
9312 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9313 .access = PL1_R, .accessfn = ctr_el0_access,
9314 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9315 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9316 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9317 .access = PL0_R, .accessfn = ctr_el0_access,
9318 .fgt = FGT_CTR_EL0,
9319 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9320 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9321 { .name = "TCMTR",
9322 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9323 .access = PL1_R,
9324 .accessfn = access_aa32_tid1,
9325 .type = ARM_CP_CONST, .resetvalue = 0 },
9326 };
9327 /* TLBTR is specific to VMSA */
9328 ARMCPRegInfo id_tlbtr_reginfo = {
9329 .name = "TLBTR",
9330 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9331 .access = PL1_R,
9332 .accessfn = access_aa32_tid1,
9333 .type = ARM_CP_CONST, .resetvalue = 0,
9334 };
9335 /* MPUIR is specific to PMSA V6+ */
9336 ARMCPRegInfo id_mpuir_reginfo = {
9337 .name = "MPUIR",
9338 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9339 .access = PL1_R, .type = ARM_CP_CONST,
9340 .resetvalue = cpu->pmsav7_dregion << 8
9341 };
9342 /* HMPUIR is specific to PMSA V8 */
9343 ARMCPRegInfo id_hmpuir_reginfo = {
9344 .name = "HMPUIR",
9345 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9346 .access = PL2_R, .type = ARM_CP_CONST,
9347 .resetvalue = cpu->pmsav8r_hdregion
9348 };
9349 static const ARMCPRegInfo crn0_wi_reginfo = {
9350 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9351 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9352 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9353 };
9354 #ifdef CONFIG_USER_ONLY
9355 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9356 { .name = "MIDR_EL1",
9357 .exported_bits = R_MIDR_EL1_REVISION_MASK |
9358 R_MIDR_EL1_PARTNUM_MASK |
9359 R_MIDR_EL1_ARCHITECTURE_MASK |
9360 R_MIDR_EL1_VARIANT_MASK |
9361 R_MIDR_EL1_IMPLEMENTER_MASK },
9362 { .name = "REVIDR_EL1" },
9363 };
9364 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9365 #endif
9366 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9367 arm_feature(env, ARM_FEATURE_STRONGARM)) {
9368 size_t i;
9369 /*
9370 * Register the blanket "writes ignored" value first to cover the
9371 * whole space. Then update the specific ID registers to allow write
9372 * access, so that they ignore writes rather than causing them to
9373 * UNDEF.
9374 */
9375 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9376 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9377 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9378 }
9379 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9380 id_cp_reginfo[i].access = PL1_RW;
9381 }
9382 id_mpuir_reginfo.access = PL1_RW;
9383 id_tlbtr_reginfo.access = PL1_RW;
9384 }
9385 if (arm_feature(env, ARM_FEATURE_V8)) {
9386 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9387 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9388 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9389 }
9390 } else {
9391 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9392 }
9393 define_arm_cp_regs(cpu, id_cp_reginfo);
9394 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9395 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9396 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9397 arm_feature(env, ARM_FEATURE_V8)) {
9398 uint32_t i = 0;
9399 char *tmp_string;
9400
9401 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9402 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9403 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9404
9405 /* Register alias is only valid for first 32 indexes */
9406 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9407 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9408 uint8_t opc1 = extract32(i, 4, 1);
9409 uint8_t opc2 = extract32(i, 0, 1) << 2;
9410
9411 tmp_string = g_strdup_printf("PRBAR%u", i);
9412 ARMCPRegInfo tmp_prbarn_reginfo = {
9413 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9414 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9415 .access = PL1_RW, .resetvalue = 0,
9416 .accessfn = access_tvm_trvm,
9417 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9418 };
9419 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9420 g_free(tmp_string);
9421
9422 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9423 tmp_string = g_strdup_printf("PRLAR%u", i);
9424 ARMCPRegInfo tmp_prlarn_reginfo = {
9425 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9426 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9427 .access = PL1_RW, .resetvalue = 0,
9428 .accessfn = access_tvm_trvm,
9429 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9430 };
9431 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9432 g_free(tmp_string);
9433 }
9434
9435 /* Register alias is only valid for first 32 indexes */
9436 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9437 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9438 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9439 uint8_t opc2 = extract32(i, 0, 1) << 2;
9440
9441 tmp_string = g_strdup_printf("HPRBAR%u", i);
9442 ARMCPRegInfo tmp_hprbarn_reginfo = {
9443 .name = tmp_string,
9444 .type = ARM_CP_NO_RAW,
9445 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9446 .access = PL2_RW, .resetvalue = 0,
9447 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9448 };
9449 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9450 g_free(tmp_string);
9451
9452 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9453 tmp_string = g_strdup_printf("HPRLAR%u", i);
9454 ARMCPRegInfo tmp_hprlarn_reginfo = {
9455 .name = tmp_string,
9456 .type = ARM_CP_NO_RAW,
9457 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9458 .access = PL2_RW, .resetvalue = 0,
9459 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9460 };
9461 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9462 g_free(tmp_string);
9463 }
9464 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9465 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9466 }
9467 }
9468
9469 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9470 ARMCPRegInfo mpidr_cp_reginfo[] = {
9471 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9472 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9473 .fgt = FGT_MPIDR_EL1,
9474 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9475 };
9476 #ifdef CONFIG_USER_ONLY
9477 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9478 { .name = "MPIDR_EL1",
9479 .fixed_bits = 0x0000000080000000 },
9480 };
9481 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9482 #endif
9483 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9484 }
9485
9486 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9487 ARMCPRegInfo auxcr_reginfo[] = {
9488 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9489 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9490 .access = PL1_RW, .accessfn = access_tacr,
9491 .nv2_redirect_offset = 0x118,
9492 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9493 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9494 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9495 .access = PL2_RW, .type = ARM_CP_CONST,
9496 .resetvalue = 0 },
9497 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9498 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9499 .access = PL3_RW, .type = ARM_CP_CONST,
9500 .resetvalue = 0 },
9501 };
9502 define_arm_cp_regs(cpu, auxcr_reginfo);
9503 if (cpu_isar_feature(aa32_ac2, cpu)) {
9504 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9505 }
9506 }
9507
9508 if (arm_feature(env, ARM_FEATURE_CBAR)) {
9509 /*
9510 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9511 * There are two flavours:
9512 * (1) older 32-bit only cores have a simple 32-bit CBAR
9513 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9514 * 32-bit register visible to AArch32 at a different encoding
9515 * to the "flavour 1" register and with the bits rearranged to
9516 * be able to squash a 64-bit address into the 32-bit view.
9517 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9518 * in future if we support AArch32-only configs of some of the
9519 * AArch64 cores we might need to add a specific feature flag
9520 * to indicate cores with "flavour 2" CBAR.
9521 */
9522 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9523 /* 32 bit view is [31:18] 0...0 [43:32]. */
9524 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9525 | extract64(cpu->reset_cbar, 32, 12);
9526 ARMCPRegInfo cbar_reginfo[] = {
9527 { .name = "CBAR",
9528 .type = ARM_CP_CONST,
9529 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9530 .access = PL1_R, .resetvalue = cbar32 },
9531 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9532 .type = ARM_CP_CONST,
9533 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9534 .access = PL1_R, .resetvalue = cpu->reset_cbar },
9535 };
9536 /* We don't implement a r/w 64 bit CBAR currently */
9537 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9538 define_arm_cp_regs(cpu, cbar_reginfo);
9539 } else {
9540 ARMCPRegInfo cbar = {
9541 .name = "CBAR",
9542 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9543 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9544 .fieldoffset = offsetof(CPUARMState,
9545 cp15.c15_config_base_address)
9546 };
9547 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9548 cbar.access = PL1_R;
9549 cbar.fieldoffset = 0;
9550 cbar.type = ARM_CP_CONST;
9551 }
9552 define_one_arm_cp_reg(cpu, &cbar);
9553 }
9554 }
9555
9556 if (arm_feature(env, ARM_FEATURE_VBAR)) {
9557 static const ARMCPRegInfo vbar_cp_reginfo[] = {
9558 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9559 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9560 .access = PL1_RW, .writefn = vbar_write,
9561 .accessfn = access_nv1,
9562 .fgt = FGT_VBAR_EL1,
9563 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
9564 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9565 offsetof(CPUARMState, cp15.vbar_ns) },
9566 .resetvalue = 0 },
9567 };
9568 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9569 }
9570
9571 /* Generic registers whose values depend on the implementation */
9572 {
9573 ARMCPRegInfo sctlr = {
9574 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9575 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9576 .access = PL1_RW, .accessfn = access_tvm_trvm,
9577 .fgt = FGT_SCTLR_EL1,
9578 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
9579 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9580 offsetof(CPUARMState, cp15.sctlr_ns) },
9581 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9582 .raw_writefn = raw_write,
9583 };
9584 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9585 /*
9586 * Normally we would always end the TB on an SCTLR write, but Linux
9587 * arch/arm/mach-pxa/sleep.S expects two instructions following
9588 * an MMU enable to execute from cache. Imitate this behaviour.
9589 */
9590 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9591 }
9592 define_one_arm_cp_reg(cpu, &sctlr);
9593
9594 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9595 arm_feature(env, ARM_FEATURE_V8)) {
9596 ARMCPRegInfo vsctlr = {
9597 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9598 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9599 .access = PL2_RW, .resetvalue = 0x0,
9600 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9601 };
9602 define_one_arm_cp_reg(cpu, &vsctlr);
9603 }
9604 }
9605
9606 if (cpu_isar_feature(aa64_lor, cpu)) {
9607 define_arm_cp_regs(cpu, lor_reginfo);
9608 }
9609 if (cpu_isar_feature(aa64_pan, cpu)) {
9610 define_one_arm_cp_reg(cpu, &pan_reginfo);
9611 }
9612 #ifndef CONFIG_USER_ONLY
9613 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9614 define_arm_cp_regs(cpu, ats1e1_reginfo);
9615 }
9616 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9617 define_arm_cp_regs(cpu, ats1cp_reginfo);
9618 }
9619 #endif
9620 if (cpu_isar_feature(aa64_uao, cpu)) {
9621 define_one_arm_cp_reg(cpu, &uao_reginfo);
9622 }
9623
9624 if (cpu_isar_feature(aa64_dit, cpu)) {
9625 define_one_arm_cp_reg(cpu, &dit_reginfo);
9626 }
9627 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9628 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9629 }
9630 if (cpu_isar_feature(any_ras, cpu)) {
9631 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9632 }
9633
9634 if (cpu_isar_feature(aa64_vh, cpu) ||
9635 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9636 define_one_arm_cp_reg(cpu, &contextidr_el2);
9637 }
9638 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9639 define_arm_cp_regs(cpu, vhe_reginfo);
9640 }
9641
9642 if (cpu_isar_feature(aa64_sve, cpu)) {
9643 define_arm_cp_regs(cpu, zcr_reginfo);
9644 }
9645
9646 if (cpu_isar_feature(aa64_hcx, cpu)) {
9647 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9648 }
9649
9650 #ifdef TARGET_AARCH64
9651 if (cpu_isar_feature(aa64_sme, cpu)) {
9652 define_arm_cp_regs(cpu, sme_reginfo);
9653 }
9654 if (cpu_isar_feature(aa64_pauth, cpu)) {
9655 define_arm_cp_regs(cpu, pauth_reginfo);
9656 }
9657 if (cpu_isar_feature(aa64_rndr, cpu)) {
9658 define_arm_cp_regs(cpu, rndr_reginfo);
9659 }
9660 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9661 define_arm_cp_regs(cpu, tlbirange_reginfo);
9662 }
9663 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9664 define_arm_cp_regs(cpu, tlbios_reginfo);
9665 }
9666 /* Data Cache clean instructions up to PoP */
9667 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9668 define_one_arm_cp_reg(cpu, dcpop_reg);
9669
9670 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9671 define_one_arm_cp_reg(cpu, dcpodp_reg);
9672 }
9673 }
9674
9675 /*
9676 * If full MTE is enabled, add all of the system registers.
9677 * If only "instructions available at EL0" are enabled,
9678 * then define only a RAZ/WI version of PSTATE.TCO.
9679 */
9680 if (cpu_isar_feature(aa64_mte, cpu)) {
9681 ARMCPRegInfo gmid_reginfo = {
9682 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9683 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9684 .access = PL1_R, .accessfn = access_aa64_tid5,
9685 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9686 };
9687 define_one_arm_cp_reg(cpu, &gmid_reginfo);
9688 define_arm_cp_regs(cpu, mte_reginfo);
9689 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9690 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9691 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9692 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9693 }
9694
9695 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9696 define_arm_cp_regs(cpu, scxtnum_reginfo);
9697 }
9698
9699 if (cpu_isar_feature(aa64_fgt, cpu)) {
9700 define_arm_cp_regs(cpu, fgt_reginfo);
9701 }
9702
9703 if (cpu_isar_feature(aa64_rme, cpu)) {
9704 define_arm_cp_regs(cpu, rme_reginfo);
9705 if (cpu_isar_feature(aa64_mte, cpu)) {
9706 define_arm_cp_regs(cpu, rme_mte_reginfo);
9707 }
9708 }
9709
9710 if (cpu_isar_feature(aa64_nv2, cpu)) {
9711 define_arm_cp_regs(cpu, nv2_reginfo);
9712 }
9713 #endif
9714
9715 if (cpu_isar_feature(any_predinv, cpu)) {
9716 define_arm_cp_regs(cpu, predinv_reginfo);
9717 }
9718
9719 if (cpu_isar_feature(any_ccidx, cpu)) {
9720 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9721 }
9722
9723 #ifndef CONFIG_USER_ONLY
9724 /*
9725 * Register redirections and aliases must be done last,
9726 * after the registers from the other extensions have been defined.
9727 */
9728 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9729 define_arm_vh_e2h_redirects_aliases(cpu);
9730 }
9731 #endif
9732 }
9733
9734 /*
9735 * Private utility function for define_one_arm_cp_reg_with_opaque():
9736 * add a single reginfo struct to the hash table.
9737 */
9738 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9739 void *opaque, CPState state,
9740 CPSecureState secstate,
9741 int crm, int opc1, int opc2,
9742 const char *name)
9743 {
9744 CPUARMState *env = &cpu->env;
9745 uint32_t key;
9746 ARMCPRegInfo *r2;
9747 bool is64 = r->type & ARM_CP_64BIT;
9748 bool ns = secstate & ARM_CP_SECSTATE_NS;
9749 int cp = r->cp;
9750 size_t name_len;
9751 bool make_const;
9752
9753 switch (state) {
9754 case ARM_CP_STATE_AA32:
9755 /* We assume it is a cp15 register if the .cp field is left unset. */
9756 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9757 cp = 15;
9758 }
9759 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9760 break;
9761 case ARM_CP_STATE_AA64:
9762 /*
9763 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9764 * cp == 0 as equivalent to the value for "standard guest-visible
9765 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9766 * in their AArch64 view (the .cp value may be non-zero for the
9767 * benefit of the AArch32 view).
9768 */
9769 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9770 cp = CP_REG_ARM64_SYSREG_CP;
9771 }
9772 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9773 break;
9774 default:
9775 g_assert_not_reached();
9776 }
9777
9778 /* Overriding of an existing definition must be explicitly requested. */
9779 if (!(r->type & ARM_CP_OVERRIDE)) {
9780 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9781 if (oldreg) {
9782 assert(oldreg->type & ARM_CP_OVERRIDE);
9783 }
9784 }
9785
9786 /*
9787 * Eliminate registers that are not present because the EL is missing.
9788 * Doing this here makes it easier to put all registers for a given
9789 * feature into the same ARMCPRegInfo array and define them all at once.
9790 */
9791 make_const = false;
9792 if (arm_feature(env, ARM_FEATURE_EL3)) {
9793 /*
9794 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9795 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9796 */
9797 int min_el = ctz32(r->access) / 2;
9798 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9799 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9800 return;
9801 }
9802 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9803 }
9804 } else {
9805 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9806 ? PL2_RW : PL1_RW);
9807 if ((r->access & max_el) == 0) {
9808 return;
9809 }
9810 }
9811
9812 /* Combine cpreg and name into one allocation. */
9813 name_len = strlen(name) + 1;
9814 r2 = g_malloc(sizeof(*r2) + name_len);
9815 *r2 = *r;
9816 r2->name = memcpy(r2 + 1, name, name_len);
9817
9818 /*
9819 * Update fields to match the instantiation, overwiting wildcards
9820 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9821 */
9822 r2->cp = cp;
9823 r2->crm = crm;
9824 r2->opc1 = opc1;
9825 r2->opc2 = opc2;
9826 r2->state = state;
9827 r2->secure = secstate;
9828 if (opaque) {
9829 r2->opaque = opaque;
9830 }
9831
9832 if (make_const) {
9833 /* This should not have been a very special register to begin. */
9834 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9835 assert(old_special == 0 || old_special == ARM_CP_NOP);
9836 /*
9837 * Set the special function to CONST, retaining the other flags.
9838 * This is important for e.g. ARM_CP_SVE so that we still
9839 * take the SVE trap if CPTR_EL3.EZ == 0.
9840 */
9841 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9842 /*
9843 * Usually, these registers become RES0, but there are a few
9844 * special cases like VPIDR_EL2 which have a constant non-zero
9845 * value with writes ignored.
9846 */
9847 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9848 r2->resetvalue = 0;
9849 }
9850 /*
9851 * ARM_CP_CONST has precedence, so removing the callbacks and
9852 * offsets are not strictly necessary, but it is potentially
9853 * less confusing to debug later.
9854 */
9855 r2->readfn = NULL;
9856 r2->writefn = NULL;
9857 r2->raw_readfn = NULL;
9858 r2->raw_writefn = NULL;
9859 r2->resetfn = NULL;
9860 r2->fieldoffset = 0;
9861 r2->bank_fieldoffsets[0] = 0;
9862 r2->bank_fieldoffsets[1] = 0;
9863 } else {
9864 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9865
9866 if (isbanked) {
9867 /*
9868 * Register is banked (using both entries in array).
9869 * Overwriting fieldoffset as the array is only used to define
9870 * banked registers but later only fieldoffset is used.
9871 */
9872 r2->fieldoffset = r->bank_fieldoffsets[ns];
9873 }
9874 if (state == ARM_CP_STATE_AA32) {
9875 if (isbanked) {
9876 /*
9877 * If the register is banked then we don't need to migrate or
9878 * reset the 32-bit instance in certain cases:
9879 *
9880 * 1) If the register has both 32-bit and 64-bit instances
9881 * then we can count on the 64-bit instance taking care
9882 * of the non-secure bank.
9883 * 2) If ARMv8 is enabled then we can count on a 64-bit
9884 * version taking care of the secure bank. This requires
9885 * that separate 32 and 64-bit definitions are provided.
9886 */
9887 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9888 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9889 r2->type |= ARM_CP_ALIAS;
9890 }
9891 } else if ((secstate != r->secure) && !ns) {
9892 /*
9893 * The register is not banked so we only want to allow
9894 * migration of the non-secure instance.
9895 */
9896 r2->type |= ARM_CP_ALIAS;
9897 }
9898
9899 if (HOST_BIG_ENDIAN &&
9900 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9901 r2->fieldoffset += sizeof(uint32_t);
9902 }
9903 }
9904 }
9905
9906 /*
9907 * By convention, for wildcarded registers only the first
9908 * entry is used for migration; the others are marked as
9909 * ALIAS so we don't try to transfer the register
9910 * multiple times. Special registers (ie NOP/WFI) are
9911 * never migratable and not even raw-accessible.
9912 */
9913 if (r2->type & ARM_CP_SPECIAL_MASK) {
9914 r2->type |= ARM_CP_NO_RAW;
9915 }
9916 if (((r->crm == CP_ANY) && crm != 0) ||
9917 ((r->opc1 == CP_ANY) && opc1 != 0) ||
9918 ((r->opc2 == CP_ANY) && opc2 != 0)) {
9919 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9920 }
9921
9922 /*
9923 * Check that raw accesses are either forbidden or handled. Note that
9924 * we can't assert this earlier because the setup of fieldoffset for
9925 * banked registers has to be done first.
9926 */
9927 if (!(r2->type & ARM_CP_NO_RAW)) {
9928 assert(!raw_accessors_invalid(r2));
9929 }
9930
9931 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9932 }
9933
9934
9935 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9936 const ARMCPRegInfo *r, void *opaque)
9937 {
9938 /*
9939 * Define implementations of coprocessor registers.
9940 * We store these in a hashtable because typically
9941 * there are less than 150 registers in a space which
9942 * is 16*16*16*8*8 = 262144 in size.
9943 * Wildcarding is supported for the crm, opc1 and opc2 fields.
9944 * If a register is defined twice then the second definition is
9945 * used, so this can be used to define some generic registers and
9946 * then override them with implementation specific variations.
9947 * At least one of the original and the second definition should
9948 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9949 * against accidental use.
9950 *
9951 * The state field defines whether the register is to be
9952 * visible in the AArch32 or AArch64 execution state. If the
9953 * state is set to ARM_CP_STATE_BOTH then we synthesise a
9954 * reginfo structure for the AArch32 view, which sees the lower
9955 * 32 bits of the 64 bit register.
9956 *
9957 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9958 * be wildcarded. AArch64 registers are always considered to be 64
9959 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9960 * the register, if any.
9961 */
9962 int crm, opc1, opc2;
9963 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9964 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9965 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9966 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9967 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9968 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9969 CPState state;
9970
9971 /* 64 bit registers have only CRm and Opc1 fields */
9972 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9973 /* op0 only exists in the AArch64 encodings */
9974 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9975 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9976 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9977 /*
9978 * This API is only for Arm's system coprocessors (14 and 15) or
9979 * (M-profile or v7A-and-earlier only) for implementation defined
9980 * coprocessors in the range 0..7. Our decode assumes this, since
9981 * 8..13 can be used for other insns including VFP and Neon. See
9982 * valid_cp() in translate.c. Assert here that we haven't tried
9983 * to use an invalid coprocessor number.
9984 */
9985 switch (r->state) {
9986 case ARM_CP_STATE_BOTH:
9987 /* 0 has a special meaning, but otherwise the same rules as AA32. */
9988 if (r->cp == 0) {
9989 break;
9990 }
9991 /* fall through */
9992 case ARM_CP_STATE_AA32:
9993 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9994 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9995 assert(r->cp >= 14 && r->cp <= 15);
9996 } else {
9997 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9998 }
9999 break;
10000 case ARM_CP_STATE_AA64:
10001 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
10002 break;
10003 default:
10004 g_assert_not_reached();
10005 }
10006 /*
10007 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
10008 * encodes a minimum access level for the register. We roll this
10009 * runtime check into our general permission check code, so check
10010 * here that the reginfo's specified permissions are strict enough
10011 * to encompass the generic architectural permission check.
10012 */
10013 if (r->state != ARM_CP_STATE_AA32) {
10014 CPAccessRights mask;
10015 switch (r->opc1) {
10016 case 0:
10017 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
10018 mask = PL0U_R | PL1_RW;
10019 break;
10020 case 1: case 2:
10021 /* min_EL EL1 */
10022 mask = PL1_RW;
10023 break;
10024 case 3:
10025 /* min_EL EL0 */
10026 mask = PL0_RW;
10027 break;
10028 case 4:
10029 case 5:
10030 /* min_EL EL2 */
10031 mask = PL2_RW;
10032 break;
10033 case 6:
10034 /* min_EL EL3 */
10035 mask = PL3_RW;
10036 break;
10037 case 7:
10038 /* min_EL EL1, secure mode only (we don't check the latter) */
10039 mask = PL1_RW;
10040 break;
10041 default:
10042 /* broken reginfo with out-of-range opc1 */
10043 g_assert_not_reached();
10044 }
10045 /* assert our permissions are not too lax (stricter is fine) */
10046 assert((r->access & ~mask) == 0);
10047 }
10048
10049 /*
10050 * Check that the register definition has enough info to handle
10051 * reads and writes if they are permitted.
10052 */
10053 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
10054 if (r->access & PL3_R) {
10055 assert((r->fieldoffset ||
10056 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10057 r->readfn);
10058 }
10059 if (r->access & PL3_W) {
10060 assert((r->fieldoffset ||
10061 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10062 r->writefn);
10063 }
10064 }
10065
10066 for (crm = crmmin; crm <= crmmax; crm++) {
10067 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
10068 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
10069 for (state = ARM_CP_STATE_AA32;
10070 state <= ARM_CP_STATE_AA64; state++) {
10071 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
10072 continue;
10073 }
10074 if (state == ARM_CP_STATE_AA32) {
10075 /*
10076 * Under AArch32 CP registers can be common
10077 * (same for secure and non-secure world) or banked.
10078 */
10079 char *name;
10080
10081 switch (r->secure) {
10082 case ARM_CP_SECSTATE_S:
10083 case ARM_CP_SECSTATE_NS:
10084 add_cpreg_to_hashtable(cpu, r, opaque, state,
10085 r->secure, crm, opc1, opc2,
10086 r->name);
10087 break;
10088 case ARM_CP_SECSTATE_BOTH:
10089 name = g_strdup_printf("%s_S", r->name);
10090 add_cpreg_to_hashtable(cpu, r, opaque, state,
10091 ARM_CP_SECSTATE_S,
10092 crm, opc1, opc2, name);
10093 g_free(name);
10094 add_cpreg_to_hashtable(cpu, r, opaque, state,
10095 ARM_CP_SECSTATE_NS,
10096 crm, opc1, opc2, r->name);
10097 break;
10098 default:
10099 g_assert_not_reached();
10100 }
10101 } else {
10102 /*
10103 * AArch64 registers get mapped to non-secure instance
10104 * of AArch32
10105 */
10106 add_cpreg_to_hashtable(cpu, r, opaque, state,
10107 ARM_CP_SECSTATE_NS,
10108 crm, opc1, opc2, r->name);
10109 }
10110 }
10111 }
10112 }
10113 }
10114 }
10115
10116 /* Define a whole list of registers */
10117 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
10118 void *opaque, size_t len)
10119 {
10120 size_t i;
10121 for (i = 0; i < len; ++i) {
10122 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
10123 }
10124 }
10125
10126 /*
10127 * Modify ARMCPRegInfo for access from userspace.
10128 *
10129 * This is a data driven modification directed by
10130 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
10131 * user-space cannot alter any values and dynamic values pertaining to
10132 * execution state are hidden from user space view anyway.
10133 */
10134 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
10135 const ARMCPRegUserSpaceInfo *mods,
10136 size_t mods_len)
10137 {
10138 for (size_t mi = 0; mi < mods_len; ++mi) {
10139 const ARMCPRegUserSpaceInfo *m = mods + mi;
10140 GPatternSpec *pat = NULL;
10141
10142 if (m->is_glob) {
10143 pat = g_pattern_spec_new(m->name);
10144 }
10145 for (size_t ri = 0; ri < regs_len; ++ri) {
10146 ARMCPRegInfo *r = regs + ri;
10147
10148 if (pat && g_pattern_match_string(pat, r->name)) {
10149 r->type = ARM_CP_CONST;
10150 r->access = PL0U_R;
10151 r->resetvalue = 0;
10152 /* continue */
10153 } else if (strcmp(r->name, m->name) == 0) {
10154 r->type = ARM_CP_CONST;
10155 r->access = PL0U_R;
10156 r->resetvalue &= m->exported_bits;
10157 r->resetvalue |= m->fixed_bits;
10158 break;
10159 }
10160 }
10161 if (pat) {
10162 g_pattern_spec_free(pat);
10163 }
10164 }
10165 }
10166
10167 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
10168 {
10169 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
10170 }
10171
10172 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
10173 uint64_t value)
10174 {
10175 /* Helper coprocessor write function for write-ignore registers */
10176 }
10177
10178 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
10179 {
10180 /* Helper coprocessor write function for read-as-zero registers */
10181 return 0;
10182 }
10183
10184 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
10185 {
10186 /* Helper coprocessor reset function for do-nothing-on-reset registers */
10187 }
10188
10189 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
10190 {
10191 /*
10192 * Return true if it is not valid for us to switch to
10193 * this CPU mode (ie all the UNPREDICTABLE cases in
10194 * the ARM ARM CPSRWriteByInstr pseudocode).
10195 */
10196
10197 /* Changes to or from Hyp via MSR and CPS are illegal. */
10198 if (write_type == CPSRWriteByInstr &&
10199 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
10200 mode == ARM_CPU_MODE_HYP)) {
10201 return 1;
10202 }
10203
10204 switch (mode) {
10205 case ARM_CPU_MODE_USR:
10206 return 0;
10207 case ARM_CPU_MODE_SYS:
10208 case ARM_CPU_MODE_SVC:
10209 case ARM_CPU_MODE_ABT:
10210 case ARM_CPU_MODE_UND:
10211 case ARM_CPU_MODE_IRQ:
10212 case ARM_CPU_MODE_FIQ:
10213 /*
10214 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
10215 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
10216 */
10217 /*
10218 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10219 * and CPS are treated as illegal mode changes.
10220 */
10221 if (write_type == CPSRWriteByInstr &&
10222 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
10223 (arm_hcr_el2_eff(env) & HCR_TGE)) {
10224 return 1;
10225 }
10226 return 0;
10227 case ARM_CPU_MODE_HYP:
10228 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
10229 case ARM_CPU_MODE_MON:
10230 return arm_current_el(env) < 3;
10231 default:
10232 return 1;
10233 }
10234 }
10235
10236 uint32_t cpsr_read(CPUARMState *env)
10237 {
10238 int ZF;
10239 ZF = (env->ZF == 0);
10240 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10241 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10242 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10243 | ((env->condexec_bits & 0xfc) << 8)
10244 | (env->GE << 16) | (env->daif & CPSR_AIF);
10245 }
10246
10247 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10248 CPSRWriteType write_type)
10249 {
10250 uint32_t changed_daif;
10251 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10252 (mask & (CPSR_M | CPSR_E | CPSR_IL));
10253
10254 if (mask & CPSR_NZCV) {
10255 env->ZF = (~val) & CPSR_Z;
10256 env->NF = val;
10257 env->CF = (val >> 29) & 1;
10258 env->VF = (val << 3) & 0x80000000;
10259 }
10260 if (mask & CPSR_Q) {
10261 env->QF = ((val & CPSR_Q) != 0);
10262 }
10263 if (mask & CPSR_T) {
10264 env->thumb = ((val & CPSR_T) != 0);
10265 }
10266 if (mask & CPSR_IT_0_1) {
10267 env->condexec_bits &= ~3;
10268 env->condexec_bits |= (val >> 25) & 3;
10269 }
10270 if (mask & CPSR_IT_2_7) {
10271 env->condexec_bits &= 3;
10272 env->condexec_bits |= (val >> 8) & 0xfc;
10273 }
10274 if (mask & CPSR_GE) {
10275 env->GE = (val >> 16) & 0xf;
10276 }
10277
10278 /*
10279 * In a V7 implementation that includes the security extensions but does
10280 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10281 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10282 * bits respectively.
10283 *
10284 * In a V8 implementation, it is permitted for privileged software to
10285 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10286 */
10287 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10288 arm_feature(env, ARM_FEATURE_EL3) &&
10289 !arm_feature(env, ARM_FEATURE_EL2) &&
10290 !arm_is_secure(env)) {
10291
10292 changed_daif = (env->daif ^ val) & mask;
10293
10294 if (changed_daif & CPSR_A) {
10295 /*
10296 * Check to see if we are allowed to change the masking of async
10297 * abort exceptions from a non-secure state.
10298 */
10299 if (!(env->cp15.scr_el3 & SCR_AW)) {
10300 qemu_log_mask(LOG_GUEST_ERROR,
10301 "Ignoring attempt to switch CPSR_A flag from "
10302 "non-secure world with SCR.AW bit clear\n");
10303 mask &= ~CPSR_A;
10304 }
10305 }
10306
10307 if (changed_daif & CPSR_F) {
10308 /*
10309 * Check to see if we are allowed to change the masking of FIQ
10310 * exceptions from a non-secure state.
10311 */
10312 if (!(env->cp15.scr_el3 & SCR_FW)) {
10313 qemu_log_mask(LOG_GUEST_ERROR,
10314 "Ignoring attempt to switch CPSR_F flag from "
10315 "non-secure world with SCR.FW bit clear\n");
10316 mask &= ~CPSR_F;
10317 }
10318
10319 /*
10320 * Check whether non-maskable FIQ (NMFI) support is enabled.
10321 * If this bit is set software is not allowed to mask
10322 * FIQs, but is allowed to set CPSR_F to 0.
10323 */
10324 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10325 (val & CPSR_F)) {
10326 qemu_log_mask(LOG_GUEST_ERROR,
10327 "Ignoring attempt to enable CPSR_F flag "
10328 "(non-maskable FIQ [NMFI] support enabled)\n");
10329 mask &= ~CPSR_F;
10330 }
10331 }
10332 }
10333
10334 env->daif &= ~(CPSR_AIF & mask);
10335 env->daif |= val & CPSR_AIF & mask;
10336
10337 if (write_type != CPSRWriteRaw &&
10338 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10339 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10340 /*
10341 * Note that we can only get here in USR mode if this is a
10342 * gdb stub write; for this case we follow the architectural
10343 * behaviour for guest writes in USR mode of ignoring an attempt
10344 * to switch mode. (Those are caught by translate.c for writes
10345 * triggered by guest instructions.)
10346 */
10347 mask &= ~CPSR_M;
10348 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10349 /*
10350 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10351 * v7, and has defined behaviour in v8:
10352 * + leave CPSR.M untouched
10353 * + allow changes to the other CPSR fields
10354 * + set PSTATE.IL
10355 * For user changes via the GDB stub, we don't set PSTATE.IL,
10356 * as this would be unnecessarily harsh for a user error.
10357 */
10358 mask &= ~CPSR_M;
10359 if (write_type != CPSRWriteByGDBStub &&
10360 arm_feature(env, ARM_FEATURE_V8)) {
10361 mask |= CPSR_IL;
10362 val |= CPSR_IL;
10363 }
10364 qemu_log_mask(LOG_GUEST_ERROR,
10365 "Illegal AArch32 mode switch attempt from %s to %s\n",
10366 aarch32_mode_name(env->uncached_cpsr),
10367 aarch32_mode_name(val));
10368 } else {
10369 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10370 write_type == CPSRWriteExceptionReturn ?
10371 "Exception return from AArch32" :
10372 "AArch32 mode switch from",
10373 aarch32_mode_name(env->uncached_cpsr),
10374 aarch32_mode_name(val), env->regs[15]);
10375 switch_mode(env, val & CPSR_M);
10376 }
10377 }
10378 mask &= ~CACHED_CPSR_BITS;
10379 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10380 if (tcg_enabled() && rebuild_hflags) {
10381 arm_rebuild_hflags(env);
10382 }
10383 }
10384
10385 #ifdef CONFIG_USER_ONLY
10386
10387 static void switch_mode(CPUARMState *env, int mode)
10388 {
10389 ARMCPU *cpu = env_archcpu(env);
10390
10391 if (mode != ARM_CPU_MODE_USR) {
10392 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10393 }
10394 }
10395
10396 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10397 uint32_t cur_el, bool secure)
10398 {
10399 return 1;
10400 }
10401
10402 void aarch64_sync_64_to_32(CPUARMState *env)
10403 {
10404 g_assert_not_reached();
10405 }
10406
10407 #else
10408
10409 static void switch_mode(CPUARMState *env, int mode)
10410 {
10411 int old_mode;
10412 int i;
10413
10414 old_mode = env->uncached_cpsr & CPSR_M;
10415 if (mode == old_mode) {
10416 return;
10417 }
10418
10419 if (old_mode == ARM_CPU_MODE_FIQ) {
10420 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10421 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10422 } else if (mode == ARM_CPU_MODE_FIQ) {
10423 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10424 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10425 }
10426
10427 i = bank_number(old_mode);
10428 env->banked_r13[i] = env->regs[13];
10429 env->banked_spsr[i] = env->spsr;
10430
10431 i = bank_number(mode);
10432 env->regs[13] = env->banked_r13[i];
10433 env->spsr = env->banked_spsr[i];
10434
10435 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10436 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10437 }
10438
10439 /*
10440 * Physical Interrupt Target EL Lookup Table
10441 *
10442 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10443 *
10444 * The below multi-dimensional table is used for looking up the target
10445 * exception level given numerous condition criteria. Specifically, the
10446 * target EL is based on SCR and HCR routing controls as well as the
10447 * currently executing EL and secure state.
10448 *
10449 * Dimensions:
10450 * target_el_table[2][2][2][2][2][4]
10451 * | | | | | +--- Current EL
10452 * | | | | +------ Non-secure(0)/Secure(1)
10453 * | | | +--------- HCR mask override
10454 * | | +------------ SCR exec state control
10455 * | +--------------- SCR mask override
10456 * +------------------ 32-bit(0)/64-bit(1) EL3
10457 *
10458 * The table values are as such:
10459 * 0-3 = EL0-EL3
10460 * -1 = Cannot occur
10461 *
10462 * The ARM ARM target EL table includes entries indicating that an "exception
10463 * is not taken". The two cases where this is applicable are:
10464 * 1) An exception is taken from EL3 but the SCR does not have the exception
10465 * routed to EL3.
10466 * 2) An exception is taken from EL2 but the HCR does not have the exception
10467 * routed to EL2.
10468 * In these two cases, the below table contain a target of EL1. This value is
10469 * returned as it is expected that the consumer of the table data will check
10470 * for "target EL >= current EL" to ensure the exception is not taken.
10471 *
10472 * SCR HCR
10473 * 64 EA AMO From
10474 * BIT IRQ IMO Non-secure Secure
10475 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10476 */
10477 static const int8_t target_el_table[2][2][2][2][2][4] = {
10478 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10479 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10480 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10481 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10482 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10483 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10484 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10485 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10486 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
10487 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10488 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10489 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10490 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10491 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10492 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10493 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10494 };
10495
10496 /*
10497 * Determine the target EL for physical exceptions
10498 */
10499 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10500 uint32_t cur_el, bool secure)
10501 {
10502 CPUARMState *env = cpu_env(cs);
10503 bool rw;
10504 bool scr;
10505 bool hcr;
10506 int target_el;
10507 /* Is the highest EL AArch64? */
10508 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10509 uint64_t hcr_el2;
10510
10511 if (arm_feature(env, ARM_FEATURE_EL3)) {
10512 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10513 } else {
10514 /*
10515 * Either EL2 is the highest EL (and so the EL2 register width
10516 * is given by is64); or there is no EL2 or EL3, in which case
10517 * the value of 'rw' does not affect the table lookup anyway.
10518 */
10519 rw = is64;
10520 }
10521
10522 hcr_el2 = arm_hcr_el2_eff(env);
10523 switch (excp_idx) {
10524 case EXCP_IRQ:
10525 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10526 hcr = hcr_el2 & HCR_IMO;
10527 break;
10528 case EXCP_FIQ:
10529 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10530 hcr = hcr_el2 & HCR_FMO;
10531 break;
10532 default:
10533 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10534 hcr = hcr_el2 & HCR_AMO;
10535 break;
10536 };
10537
10538 /*
10539 * For these purposes, TGE and AMO/IMO/FMO both force the
10540 * interrupt to EL2. Fold TGE into the bit extracted above.
10541 */
10542 hcr |= (hcr_el2 & HCR_TGE) != 0;
10543
10544 /* Perform a table-lookup for the target EL given the current state */
10545 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10546
10547 assert(target_el > 0);
10548
10549 return target_el;
10550 }
10551
10552 void arm_log_exception(CPUState *cs)
10553 {
10554 int idx = cs->exception_index;
10555
10556 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10557 const char *exc = NULL;
10558 static const char * const excnames[] = {
10559 [EXCP_UDEF] = "Undefined Instruction",
10560 [EXCP_SWI] = "SVC",
10561 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10562 [EXCP_DATA_ABORT] = "Data Abort",
10563 [EXCP_IRQ] = "IRQ",
10564 [EXCP_FIQ] = "FIQ",
10565 [EXCP_BKPT] = "Breakpoint",
10566 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10567 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10568 [EXCP_HVC] = "Hypervisor Call",
10569 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10570 [EXCP_SMC] = "Secure Monitor Call",
10571 [EXCP_VIRQ] = "Virtual IRQ",
10572 [EXCP_VFIQ] = "Virtual FIQ",
10573 [EXCP_SEMIHOST] = "Semihosting call",
10574 [EXCP_NOCP] = "v7M NOCP UsageFault",
10575 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10576 [EXCP_STKOF] = "v8M STKOF UsageFault",
10577 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10578 [EXCP_LSERR] = "v8M LSERR UsageFault",
10579 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10580 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10581 [EXCP_VSERR] = "Virtual SERR",
10582 [EXCP_GPC] = "Granule Protection Check",
10583 };
10584
10585 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10586 exc = excnames[idx];
10587 }
10588 if (!exc) {
10589 exc = "unknown";
10590 }
10591 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10592 idx, exc, cs->cpu_index);
10593 }
10594 }
10595
10596 /*
10597 * Function used to synchronize QEMU's AArch64 register set with AArch32
10598 * register set. This is necessary when switching between AArch32 and AArch64
10599 * execution state.
10600 */
10601 void aarch64_sync_32_to_64(CPUARMState *env)
10602 {
10603 int i;
10604 uint32_t mode = env->uncached_cpsr & CPSR_M;
10605
10606 /* We can blanket copy R[0:7] to X[0:7] */
10607 for (i = 0; i < 8; i++) {
10608 env->xregs[i] = env->regs[i];
10609 }
10610
10611 /*
10612 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10613 * Otherwise, they come from the banked user regs.
10614 */
10615 if (mode == ARM_CPU_MODE_FIQ) {
10616 for (i = 8; i < 13; i++) {
10617 env->xregs[i] = env->usr_regs[i - 8];
10618 }
10619 } else {
10620 for (i = 8; i < 13; i++) {
10621 env->xregs[i] = env->regs[i];
10622 }
10623 }
10624
10625 /*
10626 * Registers x13-x23 are the various mode SP and FP registers. Registers
10627 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10628 * from the mode banked register.
10629 */
10630 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10631 env->xregs[13] = env->regs[13];
10632 env->xregs[14] = env->regs[14];
10633 } else {
10634 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10635 /* HYP is an exception in that it is copied from r14 */
10636 if (mode == ARM_CPU_MODE_HYP) {
10637 env->xregs[14] = env->regs[14];
10638 } else {
10639 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10640 }
10641 }
10642
10643 if (mode == ARM_CPU_MODE_HYP) {
10644 env->xregs[15] = env->regs[13];
10645 } else {
10646 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10647 }
10648
10649 if (mode == ARM_CPU_MODE_IRQ) {
10650 env->xregs[16] = env->regs[14];
10651 env->xregs[17] = env->regs[13];
10652 } else {
10653 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10654 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10655 }
10656
10657 if (mode == ARM_CPU_MODE_SVC) {
10658 env->xregs[18] = env->regs[14];
10659 env->xregs[19] = env->regs[13];
10660 } else {
10661 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10662 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10663 }
10664
10665 if (mode == ARM_CPU_MODE_ABT) {
10666 env->xregs[20] = env->regs[14];
10667 env->xregs[21] = env->regs[13];
10668 } else {
10669 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10670 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10671 }
10672
10673 if (mode == ARM_CPU_MODE_UND) {
10674 env->xregs[22] = env->regs[14];
10675 env->xregs[23] = env->regs[13];
10676 } else {
10677 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10678 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10679 }
10680
10681 /*
10682 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10683 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10684 * FIQ bank for r8-r14.
10685 */
10686 if (mode == ARM_CPU_MODE_FIQ) {
10687 for (i = 24; i < 31; i++) {
10688 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10689 }
10690 } else {
10691 for (i = 24; i < 29; i++) {
10692 env->xregs[i] = env->fiq_regs[i - 24];
10693 }
10694 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10695 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10696 }
10697
10698 env->pc = env->regs[15];
10699 }
10700
10701 /*
10702 * Function used to synchronize QEMU's AArch32 register set with AArch64
10703 * register set. This is necessary when switching between AArch32 and AArch64
10704 * execution state.
10705 */
10706 void aarch64_sync_64_to_32(CPUARMState *env)
10707 {
10708 int i;
10709 uint32_t mode = env->uncached_cpsr & CPSR_M;
10710
10711 /* We can blanket copy X[0:7] to R[0:7] */
10712 for (i = 0; i < 8; i++) {
10713 env->regs[i] = env->xregs[i];
10714 }
10715
10716 /*
10717 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10718 * Otherwise, we copy x8-x12 into the banked user regs.
10719 */
10720 if (mode == ARM_CPU_MODE_FIQ) {
10721 for (i = 8; i < 13; i++) {
10722 env->usr_regs[i - 8] = env->xregs[i];
10723 }
10724 } else {
10725 for (i = 8; i < 13; i++) {
10726 env->regs[i] = env->xregs[i];
10727 }
10728 }
10729
10730 /*
10731 * Registers r13 & r14 depend on the current mode.
10732 * If we are in a given mode, we copy the corresponding x registers to r13
10733 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10734 * for the mode.
10735 */
10736 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10737 env->regs[13] = env->xregs[13];
10738 env->regs[14] = env->xregs[14];
10739 } else {
10740 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10741
10742 /*
10743 * HYP is an exception in that it does not have its own banked r14 but
10744 * shares the USR r14
10745 */
10746 if (mode == ARM_CPU_MODE_HYP) {
10747 env->regs[14] = env->xregs[14];
10748 } else {
10749 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10750 }
10751 }
10752
10753 if (mode == ARM_CPU_MODE_HYP) {
10754 env->regs[13] = env->xregs[15];
10755 } else {
10756 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10757 }
10758
10759 if (mode == ARM_CPU_MODE_IRQ) {
10760 env->regs[14] = env->xregs[16];
10761 env->regs[13] = env->xregs[17];
10762 } else {
10763 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10764 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10765 }
10766
10767 if (mode == ARM_CPU_MODE_SVC) {
10768 env->regs[14] = env->xregs[18];
10769 env->regs[13] = env->xregs[19];
10770 } else {
10771 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10772 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10773 }
10774
10775 if (mode == ARM_CPU_MODE_ABT) {
10776 env->regs[14] = env->xregs[20];
10777 env->regs[13] = env->xregs[21];
10778 } else {
10779 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10780 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10781 }
10782
10783 if (mode == ARM_CPU_MODE_UND) {
10784 env->regs[14] = env->xregs[22];
10785 env->regs[13] = env->xregs[23];
10786 } else {
10787 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10788 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10789 }
10790
10791 /*
10792 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10793 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10794 * FIQ bank for r8-r14.
10795 */
10796 if (mode == ARM_CPU_MODE_FIQ) {
10797 for (i = 24; i < 31; i++) {
10798 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10799 }
10800 } else {
10801 for (i = 24; i < 29; i++) {
10802 env->fiq_regs[i - 24] = env->xregs[i];
10803 }
10804 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10805 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10806 }
10807
10808 env->regs[15] = env->pc;
10809 }
10810
10811 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10812 uint32_t mask, uint32_t offset,
10813 uint32_t newpc)
10814 {
10815 int new_el;
10816
10817 /* Change the CPU state so as to actually take the exception. */
10818 switch_mode(env, new_mode);
10819
10820 /*
10821 * For exceptions taken to AArch32 we must clear the SS bit in both
10822 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10823 */
10824 env->pstate &= ~PSTATE_SS;
10825 env->spsr = cpsr_read(env);
10826 /* Clear IT bits. */
10827 env->condexec_bits = 0;
10828 /* Switch to the new mode, and to the correct instruction set. */
10829 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10830
10831 /* This must be after mode switching. */
10832 new_el = arm_current_el(env);
10833
10834 /* Set new mode endianness */
10835 env->uncached_cpsr &= ~CPSR_E;
10836 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10837 env->uncached_cpsr |= CPSR_E;
10838 }
10839 /* J and IL must always be cleared for exception entry */
10840 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10841 env->daif |= mask;
10842
10843 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10844 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10845 env->uncached_cpsr |= CPSR_SSBS;
10846 } else {
10847 env->uncached_cpsr &= ~CPSR_SSBS;
10848 }
10849 }
10850
10851 if (new_mode == ARM_CPU_MODE_HYP) {
10852 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10853 env->elr_el[2] = env->regs[15];
10854 } else {
10855 /* CPSR.PAN is normally preserved preserved unless... */
10856 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10857 switch (new_el) {
10858 case 3:
10859 if (!arm_is_secure_below_el3(env)) {
10860 /* ... the target is EL3, from non-secure state. */
10861 env->uncached_cpsr &= ~CPSR_PAN;
10862 break;
10863 }
10864 /* ... the target is EL3, from secure state ... */
10865 /* fall through */
10866 case 1:
10867 /* ... the target is EL1 and SCTLR.SPAN is 0. */
10868 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10869 env->uncached_cpsr |= CPSR_PAN;
10870 }
10871 break;
10872 }
10873 }
10874 /*
10875 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10876 * and we should just guard the thumb mode on V4
10877 */
10878 if (arm_feature(env, ARM_FEATURE_V4T)) {
10879 env->thumb =
10880 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10881 }
10882 env->regs[14] = env->regs[15] + offset;
10883 }
10884 env->regs[15] = newpc;
10885
10886 if (tcg_enabled()) {
10887 arm_rebuild_hflags(env);
10888 }
10889 }
10890
10891 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10892 {
10893 /*
10894 * Handle exception entry to Hyp mode; this is sufficiently
10895 * different to entry to other AArch32 modes that we handle it
10896 * separately here.
10897 *
10898 * The vector table entry used is always the 0x14 Hyp mode entry point,
10899 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10900 * The offset applied to the preferred return address is always zero
10901 * (see DDI0487C.a section G1.12.3).
10902 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10903 */
10904 uint32_t addr, mask;
10905 ARMCPU *cpu = ARM_CPU(cs);
10906 CPUARMState *env = &cpu->env;
10907
10908 switch (cs->exception_index) {
10909 case EXCP_UDEF:
10910 addr = 0x04;
10911 break;
10912 case EXCP_SWI:
10913 addr = 0x08;
10914 break;
10915 case EXCP_BKPT:
10916 /* Fall through to prefetch abort. */
10917 case EXCP_PREFETCH_ABORT:
10918 env->cp15.ifar_s = env->exception.vaddress;
10919 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10920 (uint32_t)env->exception.vaddress);
10921 addr = 0x0c;
10922 break;
10923 case EXCP_DATA_ABORT:
10924 env->cp15.dfar_s = env->exception.vaddress;
10925 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10926 (uint32_t)env->exception.vaddress);
10927 addr = 0x10;
10928 break;
10929 case EXCP_IRQ:
10930 addr = 0x18;
10931 break;
10932 case EXCP_FIQ:
10933 addr = 0x1c;
10934 break;
10935 case EXCP_HVC:
10936 addr = 0x08;
10937 break;
10938 case EXCP_HYP_TRAP:
10939 addr = 0x14;
10940 break;
10941 default:
10942 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10943 }
10944
10945 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10946 if (!arm_feature(env, ARM_FEATURE_V8)) {
10947 /*
10948 * QEMU syndrome values are v8-style. v7 has the IL bit
10949 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10950 * If this is a v7 CPU, squash the IL bit in those cases.
10951 */
10952 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10953 (cs->exception_index == EXCP_DATA_ABORT &&
10954 !(env->exception.syndrome & ARM_EL_ISV)) ||
10955 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10956 env->exception.syndrome &= ~ARM_EL_IL;
10957 }
10958 }
10959 env->cp15.esr_el[2] = env->exception.syndrome;
10960 }
10961
10962 if (arm_current_el(env) != 2 && addr < 0x14) {
10963 addr = 0x14;
10964 }
10965
10966 mask = 0;
10967 if (!(env->cp15.scr_el3 & SCR_EA)) {
10968 mask |= CPSR_A;
10969 }
10970 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10971 mask |= CPSR_I;
10972 }
10973 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10974 mask |= CPSR_F;
10975 }
10976
10977 addr += env->cp15.hvbar;
10978
10979 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10980 }
10981
10982 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10983 {
10984 ARMCPU *cpu = ARM_CPU(cs);
10985 CPUARMState *env = &cpu->env;
10986 uint32_t addr;
10987 uint32_t mask;
10988 int new_mode;
10989 uint32_t offset;
10990 uint32_t moe;
10991
10992 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10993 switch (syn_get_ec(env->exception.syndrome)) {
10994 case EC_BREAKPOINT:
10995 case EC_BREAKPOINT_SAME_EL:
10996 moe = 1;
10997 break;
10998 case EC_WATCHPOINT:
10999 case EC_WATCHPOINT_SAME_EL:
11000 moe = 10;
11001 break;
11002 case EC_AA32_BKPT:
11003 moe = 3;
11004 break;
11005 case EC_VECTORCATCH:
11006 moe = 5;
11007 break;
11008 default:
11009 moe = 0;
11010 break;
11011 }
11012
11013 if (moe) {
11014 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
11015 }
11016
11017 if (env->exception.target_el == 2) {
11018 arm_cpu_do_interrupt_aarch32_hyp(cs);
11019 return;
11020 }
11021
11022 switch (cs->exception_index) {
11023 case EXCP_UDEF:
11024 new_mode = ARM_CPU_MODE_UND;
11025 addr = 0x04;
11026 mask = CPSR_I;
11027 if (env->thumb) {
11028 offset = 2;
11029 } else {
11030 offset = 4;
11031 }
11032 break;
11033 case EXCP_SWI:
11034 new_mode = ARM_CPU_MODE_SVC;
11035 addr = 0x08;
11036 mask = CPSR_I;
11037 /* The PC already points to the next instruction. */
11038 offset = 0;
11039 break;
11040 case EXCP_BKPT:
11041 /* Fall through to prefetch abort. */
11042 case EXCP_PREFETCH_ABORT:
11043 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
11044 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
11045 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
11046 env->exception.fsr, (uint32_t)env->exception.vaddress);
11047 new_mode = ARM_CPU_MODE_ABT;
11048 addr = 0x0c;
11049 mask = CPSR_A | CPSR_I;
11050 offset = 4;
11051 break;
11052 case EXCP_DATA_ABORT:
11053 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11054 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
11055 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
11056 env->exception.fsr,
11057 (uint32_t)env->exception.vaddress);
11058 new_mode = ARM_CPU_MODE_ABT;
11059 addr = 0x10;
11060 mask = CPSR_A | CPSR_I;
11061 offset = 8;
11062 break;
11063 case EXCP_IRQ:
11064 new_mode = ARM_CPU_MODE_IRQ;
11065 addr = 0x18;
11066 /* Disable IRQ and imprecise data aborts. */
11067 mask = CPSR_A | CPSR_I;
11068 offset = 4;
11069 if (env->cp15.scr_el3 & SCR_IRQ) {
11070 /* IRQ routed to monitor mode */
11071 new_mode = ARM_CPU_MODE_MON;
11072 mask |= CPSR_F;
11073 }
11074 break;
11075 case EXCP_FIQ:
11076 new_mode = ARM_CPU_MODE_FIQ;
11077 addr = 0x1c;
11078 /* Disable FIQ, IRQ and imprecise data aborts. */
11079 mask = CPSR_A | CPSR_I | CPSR_F;
11080 if (env->cp15.scr_el3 & SCR_FIQ) {
11081 /* FIQ routed to monitor mode */
11082 new_mode = ARM_CPU_MODE_MON;
11083 }
11084 offset = 4;
11085 break;
11086 case EXCP_VIRQ:
11087 new_mode = ARM_CPU_MODE_IRQ;
11088 addr = 0x18;
11089 /* Disable IRQ and imprecise data aborts. */
11090 mask = CPSR_A | CPSR_I;
11091 offset = 4;
11092 break;
11093 case EXCP_VFIQ:
11094 new_mode = ARM_CPU_MODE_FIQ;
11095 addr = 0x1c;
11096 /* Disable FIQ, IRQ and imprecise data aborts. */
11097 mask = CPSR_A | CPSR_I | CPSR_F;
11098 offset = 4;
11099 break;
11100 case EXCP_VSERR:
11101 {
11102 /*
11103 * Note that this is reported as a data abort, but the DFAR
11104 * has an UNKNOWN value. Construct the SError syndrome from
11105 * AET and ExT fields.
11106 */
11107 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
11108
11109 if (extended_addresses_enabled(env)) {
11110 env->exception.fsr = arm_fi_to_lfsc(&fi);
11111 } else {
11112 env->exception.fsr = arm_fi_to_sfsc(&fi);
11113 }
11114 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
11115 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11116 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
11117 env->exception.fsr);
11118
11119 new_mode = ARM_CPU_MODE_ABT;
11120 addr = 0x10;
11121 mask = CPSR_A | CPSR_I;
11122 offset = 8;
11123 }
11124 break;
11125 case EXCP_SMC:
11126 new_mode = ARM_CPU_MODE_MON;
11127 addr = 0x08;
11128 mask = CPSR_A | CPSR_I | CPSR_F;
11129 offset = 0;
11130 break;
11131 default:
11132 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11133 return; /* Never happens. Keep compiler happy. */
11134 }
11135
11136 if (new_mode == ARM_CPU_MODE_MON) {
11137 addr += env->cp15.mvbar;
11138 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
11139 /* High vectors. When enabled, base address cannot be remapped. */
11140 addr += 0xffff0000;
11141 } else {
11142 /*
11143 * ARM v7 architectures provide a vector base address register to remap
11144 * the interrupt vector table.
11145 * This register is only followed in non-monitor mode, and is banked.
11146 * Note: only bits 31:5 are valid.
11147 */
11148 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
11149 }
11150
11151 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
11152 env->cp15.scr_el3 &= ~SCR_NS;
11153 }
11154
11155 take_aarch32_exception(env, new_mode, mask, offset, addr);
11156 }
11157
11158 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
11159 {
11160 /*
11161 * Return the register number of the AArch64 view of the AArch32
11162 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
11163 * be that of the AArch32 mode the exception came from.
11164 */
11165 int mode = env->uncached_cpsr & CPSR_M;
11166
11167 switch (aarch32_reg) {
11168 case 0 ... 7:
11169 return aarch32_reg;
11170 case 8 ... 12:
11171 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
11172 case 13:
11173 switch (mode) {
11174 case ARM_CPU_MODE_USR:
11175 case ARM_CPU_MODE_SYS:
11176 return 13;
11177 case ARM_CPU_MODE_HYP:
11178 return 15;
11179 case ARM_CPU_MODE_IRQ:
11180 return 17;
11181 case ARM_CPU_MODE_SVC:
11182 return 19;
11183 case ARM_CPU_MODE_ABT:
11184 return 21;
11185 case ARM_CPU_MODE_UND:
11186 return 23;
11187 case ARM_CPU_MODE_FIQ:
11188 return 29;
11189 default:
11190 g_assert_not_reached();
11191 }
11192 case 14:
11193 switch (mode) {
11194 case ARM_CPU_MODE_USR:
11195 case ARM_CPU_MODE_SYS:
11196 case ARM_CPU_MODE_HYP:
11197 return 14;
11198 case ARM_CPU_MODE_IRQ:
11199 return 16;
11200 case ARM_CPU_MODE_SVC:
11201 return 18;
11202 case ARM_CPU_MODE_ABT:
11203 return 20;
11204 case ARM_CPU_MODE_UND:
11205 return 22;
11206 case ARM_CPU_MODE_FIQ:
11207 return 30;
11208 default:
11209 g_assert_not_reached();
11210 }
11211 case 15:
11212 return 31;
11213 default:
11214 g_assert_not_reached();
11215 }
11216 }
11217
11218 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11219 {
11220 uint32_t ret = cpsr_read(env);
11221
11222 /* Move DIT to the correct location for SPSR_ELx */
11223 if (ret & CPSR_DIT) {
11224 ret &= ~CPSR_DIT;
11225 ret |= PSTATE_DIT;
11226 }
11227 /* Merge PSTATE.SS into SPSR_ELx */
11228 ret |= env->pstate & PSTATE_SS;
11229
11230 return ret;
11231 }
11232
11233 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11234 {
11235 /* Return true if this syndrome value is a synchronous external abort */
11236 switch (syn_get_ec(syndrome)) {
11237 case EC_INSNABORT:
11238 case EC_INSNABORT_SAME_EL:
11239 case EC_DATAABORT:
11240 case EC_DATAABORT_SAME_EL:
11241 /* Look at fault status code for all the synchronous ext abort cases */
11242 switch (syndrome & 0x3f) {
11243 case 0x10:
11244 case 0x13:
11245 case 0x14:
11246 case 0x15:
11247 case 0x16:
11248 case 0x17:
11249 return true;
11250 default:
11251 return false;
11252 }
11253 default:
11254 return false;
11255 }
11256 }
11257
11258 /* Handle exception entry to a target EL which is using AArch64 */
11259 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11260 {
11261 ARMCPU *cpu = ARM_CPU(cs);
11262 CPUARMState *env = &cpu->env;
11263 unsigned int new_el = env->exception.target_el;
11264 target_ulong addr = env->cp15.vbar_el[new_el];
11265 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11266 unsigned int old_mode;
11267 unsigned int cur_el = arm_current_el(env);
11268 int rt;
11269
11270 if (tcg_enabled()) {
11271 /*
11272 * Note that new_el can never be 0. If cur_el is 0, then
11273 * el0_a64 is is_a64(), else el0_a64 is ignored.
11274 */
11275 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11276 }
11277
11278 if (cur_el < new_el) {
11279 /*
11280 * Entry vector offset depends on whether the implemented EL
11281 * immediately lower than the target level is using AArch32 or AArch64
11282 */
11283 bool is_aa64;
11284 uint64_t hcr;
11285
11286 switch (new_el) {
11287 case 3:
11288 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11289 break;
11290 case 2:
11291 hcr = arm_hcr_el2_eff(env);
11292 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11293 is_aa64 = (hcr & HCR_RW) != 0;
11294 break;
11295 }
11296 /* fall through */
11297 case 1:
11298 is_aa64 = is_a64(env);
11299 break;
11300 default:
11301 g_assert_not_reached();
11302 }
11303
11304 if (is_aa64) {
11305 addr += 0x400;
11306 } else {
11307 addr += 0x600;
11308 }
11309 } else if (pstate_read(env) & PSTATE_SP) {
11310 addr += 0x200;
11311 }
11312
11313 switch (cs->exception_index) {
11314 case EXCP_GPC:
11315 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11316 env->cp15.mfar_el3);
11317 /* fall through */
11318 case EXCP_PREFETCH_ABORT:
11319 case EXCP_DATA_ABORT:
11320 /*
11321 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11322 * to be taken to the SError vector entrypoint.
11323 */
11324 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11325 syndrome_is_sync_extabt(env->exception.syndrome)) {
11326 addr += 0x180;
11327 }
11328 env->cp15.far_el[new_el] = env->exception.vaddress;
11329 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11330 env->cp15.far_el[new_el]);
11331 /* fall through */
11332 case EXCP_BKPT:
11333 case EXCP_UDEF:
11334 case EXCP_SWI:
11335 case EXCP_HVC:
11336 case EXCP_HYP_TRAP:
11337 case EXCP_SMC:
11338 switch (syn_get_ec(env->exception.syndrome)) {
11339 case EC_ADVSIMDFPACCESSTRAP:
11340 /*
11341 * QEMU internal FP/SIMD syndromes from AArch32 include the
11342 * TA and coproc fields which are only exposed if the exception
11343 * is taken to AArch32 Hyp mode. Mask them out to get a valid
11344 * AArch64 format syndrome.
11345 */
11346 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11347 break;
11348 case EC_CP14RTTRAP:
11349 case EC_CP15RTTRAP:
11350 case EC_CP14DTTRAP:
11351 /*
11352 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11353 * the raw register field from the insn; when taking this to
11354 * AArch64 we must convert it to the AArch64 view of the register
11355 * number. Notice that we read a 4-bit AArch32 register number and
11356 * write back a 5-bit AArch64 one.
11357 */
11358 rt = extract32(env->exception.syndrome, 5, 4);
11359 rt = aarch64_regnum(env, rt);
11360 env->exception.syndrome = deposit32(env->exception.syndrome,
11361 5, 5, rt);
11362 break;
11363 case EC_CP15RRTTRAP:
11364 case EC_CP14RRTTRAP:
11365 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11366 rt = extract32(env->exception.syndrome, 5, 4);
11367 rt = aarch64_regnum(env, rt);
11368 env->exception.syndrome = deposit32(env->exception.syndrome,
11369 5, 5, rt);
11370 rt = extract32(env->exception.syndrome, 10, 4);
11371 rt = aarch64_regnum(env, rt);
11372 env->exception.syndrome = deposit32(env->exception.syndrome,
11373 10, 5, rt);
11374 break;
11375 }
11376 env->cp15.esr_el[new_el] = env->exception.syndrome;
11377 break;
11378 case EXCP_IRQ:
11379 case EXCP_VIRQ:
11380 addr += 0x80;
11381 break;
11382 case EXCP_FIQ:
11383 case EXCP_VFIQ:
11384 addr += 0x100;
11385 break;
11386 case EXCP_VSERR:
11387 addr += 0x180;
11388 /* Construct the SError syndrome from IDS and ISS fields. */
11389 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11390 env->cp15.esr_el[new_el] = env->exception.syndrome;
11391 break;
11392 default:
11393 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11394 }
11395
11396 if (is_a64(env)) {
11397 old_mode = pstate_read(env);
11398 aarch64_save_sp(env, arm_current_el(env));
11399 env->elr_el[new_el] = env->pc;
11400
11401 if (cur_el == 1 && new_el == 1) {
11402 uint64_t hcr = arm_hcr_el2_eff(env);
11403 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
11404 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
11405 /*
11406 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
11407 * by setting M[3:2] to 0b10.
11408 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
11409 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
11410 */
11411 old_mode = deposit32(old_mode, 2, 2, 2);
11412 }
11413 }
11414 } else {
11415 old_mode = cpsr_read_for_spsr_elx(env);
11416 env->elr_el[new_el] = env->regs[15];
11417
11418 aarch64_sync_32_to_64(env);
11419
11420 env->condexec_bits = 0;
11421 }
11422 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11423
11424 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
11425 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11426 env->elr_el[new_el]);
11427
11428 if (cpu_isar_feature(aa64_pan, cpu)) {
11429 /* The value of PSTATE.PAN is normally preserved, except when ... */
11430 new_mode |= old_mode & PSTATE_PAN;
11431 switch (new_el) {
11432 case 2:
11433 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11434 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11435 != (HCR_E2H | HCR_TGE)) {
11436 break;
11437 }
11438 /* fall through */
11439 case 1:
11440 /* ... the target is EL1 ... */
11441 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11442 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11443 new_mode |= PSTATE_PAN;
11444 }
11445 break;
11446 }
11447 }
11448 if (cpu_isar_feature(aa64_mte, cpu)) {
11449 new_mode |= PSTATE_TCO;
11450 }
11451
11452 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11453 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11454 new_mode |= PSTATE_SSBS;
11455 } else {
11456 new_mode &= ~PSTATE_SSBS;
11457 }
11458 }
11459
11460 pstate_write(env, PSTATE_DAIF | new_mode);
11461 env->aarch64 = true;
11462 aarch64_restore_sp(env, new_el);
11463
11464 if (tcg_enabled()) {
11465 helper_rebuild_hflags_a64(env, new_el);
11466 }
11467
11468 env->pc = addr;
11469
11470 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11471 new_el, env->pc, pstate_read(env));
11472 }
11473
11474 /*
11475 * Do semihosting call and set the appropriate return value. All the
11476 * permission and validity checks have been done at translate time.
11477 *
11478 * We only see semihosting exceptions in TCG only as they are not
11479 * trapped to the hypervisor in KVM.
11480 */
11481 #ifdef CONFIG_TCG
11482 static void tcg_handle_semihosting(CPUState *cs)
11483 {
11484 ARMCPU *cpu = ARM_CPU(cs);
11485 CPUARMState *env = &cpu->env;
11486
11487 if (is_a64(env)) {
11488 qemu_log_mask(CPU_LOG_INT,
11489 "...handling as semihosting call 0x%" PRIx64 "\n",
11490 env->xregs[0]);
11491 do_common_semihosting(cs);
11492 env->pc += 4;
11493 } else {
11494 qemu_log_mask(CPU_LOG_INT,
11495 "...handling as semihosting call 0x%x\n",
11496 env->regs[0]);
11497 do_common_semihosting(cs);
11498 env->regs[15] += env->thumb ? 2 : 4;
11499 }
11500 }
11501 #endif
11502
11503 /*
11504 * Handle a CPU exception for A and R profile CPUs.
11505 * Do any appropriate logging, handle PSCI calls, and then hand off
11506 * to the AArch64-entry or AArch32-entry function depending on the
11507 * target exception level's register width.
11508 *
11509 * Note: this is used for both TCG (as the do_interrupt tcg op),
11510 * and KVM to re-inject guest debug exceptions, and to
11511 * inject a Synchronous-External-Abort.
11512 */
11513 void arm_cpu_do_interrupt(CPUState *cs)
11514 {
11515 ARMCPU *cpu = ARM_CPU(cs);
11516 CPUARMState *env = &cpu->env;
11517 unsigned int new_el = env->exception.target_el;
11518
11519 assert(!arm_feature(env, ARM_FEATURE_M));
11520
11521 arm_log_exception(cs);
11522 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11523 new_el);
11524 if (qemu_loglevel_mask(CPU_LOG_INT)
11525 && !excp_is_internal(cs->exception_index)) {
11526 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11527 syn_get_ec(env->exception.syndrome),
11528 env->exception.syndrome);
11529 }
11530
11531 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11532 arm_handle_psci_call(cpu);
11533 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11534 return;
11535 }
11536
11537 /*
11538 * Semihosting semantics depend on the register width of the code
11539 * that caused the exception, not the target exception level, so
11540 * must be handled here.
11541 */
11542 #ifdef CONFIG_TCG
11543 if (cs->exception_index == EXCP_SEMIHOST) {
11544 tcg_handle_semihosting(cs);
11545 return;
11546 }
11547 #endif
11548
11549 /*
11550 * Hooks may change global state so BQL should be held, also the
11551 * BQL needs to be held for any modification of
11552 * cs->interrupt_request.
11553 */
11554 g_assert(bql_locked());
11555
11556 arm_call_pre_el_change_hook(cpu);
11557
11558 assert(!excp_is_internal(cs->exception_index));
11559 if (arm_el_is_aa64(env, new_el)) {
11560 arm_cpu_do_interrupt_aarch64(cs);
11561 } else {
11562 arm_cpu_do_interrupt_aarch32(cs);
11563 }
11564
11565 arm_call_el_change_hook(cpu);
11566
11567 if (!kvm_enabled()) {
11568 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11569 }
11570 }
11571 #endif /* !CONFIG_USER_ONLY */
11572
11573 uint64_t arm_sctlr(CPUARMState *env, int el)
11574 {
11575 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11576 if (el == 0) {
11577 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11578 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11579 }
11580 return env->cp15.sctlr_el[el];
11581 }
11582
11583 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11584 {
11585 if (regime_has_2_ranges(mmu_idx)) {
11586 return extract64(tcr, 37, 2);
11587 } else if (regime_is_stage2(mmu_idx)) {
11588 return 0; /* VTCR_EL2 */
11589 } else {
11590 /* Replicate the single TBI bit so we always have 2 bits. */
11591 return extract32(tcr, 20, 1) * 3;
11592 }
11593 }
11594
11595 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11596 {
11597 if (regime_has_2_ranges(mmu_idx)) {
11598 return extract64(tcr, 51, 2);
11599 } else if (regime_is_stage2(mmu_idx)) {
11600 return 0; /* VTCR_EL2 */
11601 } else {
11602 /* Replicate the single TBID bit so we always have 2 bits. */
11603 return extract32(tcr, 29, 1) * 3;
11604 }
11605 }
11606
11607 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11608 {
11609 if (regime_has_2_ranges(mmu_idx)) {
11610 return extract64(tcr, 57, 2);
11611 } else {
11612 /* Replicate the single TCMA bit so we always have 2 bits. */
11613 return extract32(tcr, 30, 1) * 3;
11614 }
11615 }
11616
11617 static ARMGranuleSize tg0_to_gran_size(int tg)
11618 {
11619 switch (tg) {
11620 case 0:
11621 return Gran4K;
11622 case 1:
11623 return Gran64K;
11624 case 2:
11625 return Gran16K;
11626 default:
11627 return GranInvalid;
11628 }
11629 }
11630
11631 static ARMGranuleSize tg1_to_gran_size(int tg)
11632 {
11633 switch (tg) {
11634 case 1:
11635 return Gran16K;
11636 case 2:
11637 return Gran4K;
11638 case 3:
11639 return Gran64K;
11640 default:
11641 return GranInvalid;
11642 }
11643 }
11644
11645 static inline bool have4k(ARMCPU *cpu, bool stage2)
11646 {
11647 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11648 : cpu_isar_feature(aa64_tgran4, cpu);
11649 }
11650
11651 static inline bool have16k(ARMCPU *cpu, bool stage2)
11652 {
11653 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11654 : cpu_isar_feature(aa64_tgran16, cpu);
11655 }
11656
11657 static inline bool have64k(ARMCPU *cpu, bool stage2)
11658 {
11659 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11660 : cpu_isar_feature(aa64_tgran64, cpu);
11661 }
11662
11663 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11664 bool stage2)
11665 {
11666 switch (gran) {
11667 case Gran4K:
11668 if (have4k(cpu, stage2)) {
11669 return gran;
11670 }
11671 break;
11672 case Gran16K:
11673 if (have16k(cpu, stage2)) {
11674 return gran;
11675 }
11676 break;
11677 case Gran64K:
11678 if (have64k(cpu, stage2)) {
11679 return gran;
11680 }
11681 break;
11682 case GranInvalid:
11683 break;
11684 }
11685 /*
11686 * If the guest selects a granule size that isn't implemented,
11687 * the architecture requires that we behave as if it selected one
11688 * that is (with an IMPDEF choice of which one to pick). We choose
11689 * to implement the smallest supported granule size.
11690 */
11691 if (have4k(cpu, stage2)) {
11692 return Gran4K;
11693 }
11694 if (have16k(cpu, stage2)) {
11695 return Gran16K;
11696 }
11697 assert(have64k(cpu, stage2));
11698 return Gran64K;
11699 }
11700
11701 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11702 ARMMMUIdx mmu_idx, bool data,
11703 bool el1_is_aa32)
11704 {
11705 uint64_t tcr = regime_tcr(env, mmu_idx);
11706 bool epd, hpd, tsz_oob, ds, ha, hd;
11707 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11708 ARMGranuleSize gran;
11709 ARMCPU *cpu = env_archcpu(env);
11710 bool stage2 = regime_is_stage2(mmu_idx);
11711
11712 if (!regime_has_2_ranges(mmu_idx)) {
11713 select = 0;
11714 tsz = extract32(tcr, 0, 6);
11715 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11716 if (stage2) {
11717 /* VTCR_EL2 */
11718 hpd = false;
11719 } else {
11720 hpd = extract32(tcr, 24, 1);
11721 }
11722 epd = false;
11723 sh = extract32(tcr, 12, 2);
11724 ps = extract32(tcr, 16, 3);
11725 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11726 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11727 ds = extract64(tcr, 32, 1);
11728 } else {
11729 bool e0pd;
11730
11731 /*
11732 * Bit 55 is always between the two regions, and is canonical for
11733 * determining if address tagging is enabled.
11734 */
11735 select = extract64(va, 55, 1);
11736 if (!select) {
11737 tsz = extract32(tcr, 0, 6);
11738 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11739 epd = extract32(tcr, 7, 1);
11740 sh = extract32(tcr, 12, 2);
11741 hpd = extract64(tcr, 41, 1);
11742 e0pd = extract64(tcr, 55, 1);
11743 } else {
11744 tsz = extract32(tcr, 16, 6);
11745 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11746 epd = extract32(tcr, 23, 1);
11747 sh = extract32(tcr, 28, 2);
11748 hpd = extract64(tcr, 42, 1);
11749 e0pd = extract64(tcr, 56, 1);
11750 }
11751 ps = extract64(tcr, 32, 3);
11752 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11753 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11754 ds = extract64(tcr, 59, 1);
11755
11756 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11757 regime_is_user(env, mmu_idx)) {
11758 epd = true;
11759 }
11760 }
11761
11762 gran = sanitize_gran_size(cpu, gran, stage2);
11763
11764 if (cpu_isar_feature(aa64_st, cpu)) {
11765 max_tsz = 48 - (gran == Gran64K);
11766 } else {
11767 max_tsz = 39;
11768 }
11769
11770 /*
11771 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11772 * adjust the effective value of DS, as documented.
11773 */
11774 min_tsz = 16;
11775 if (gran == Gran64K) {
11776 if (cpu_isar_feature(aa64_lva, cpu)) {
11777 min_tsz = 12;
11778 }
11779 ds = false;
11780 } else if (ds) {
11781 if (regime_is_stage2(mmu_idx)) {
11782 if (gran == Gran16K) {
11783 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11784 } else {
11785 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11786 }
11787 } else {
11788 if (gran == Gran16K) {
11789 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11790 } else {
11791 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11792 }
11793 }
11794 if (ds) {
11795 min_tsz = 12;
11796 }
11797 }
11798
11799 if (stage2 && el1_is_aa32) {
11800 /*
11801 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11802 * are loosened: a configured IPA of 40 bits is permitted even if
11803 * the implemented PA is less than that (and so a 40 bit IPA would
11804 * fault for an AArch64 EL1). See R_DTLMN.
11805 */
11806 min_tsz = MIN(min_tsz, 24);
11807 }
11808
11809 if (tsz > max_tsz) {
11810 tsz = max_tsz;
11811 tsz_oob = true;
11812 } else if (tsz < min_tsz) {
11813 tsz = min_tsz;
11814 tsz_oob = true;
11815 } else {
11816 tsz_oob = false;
11817 }
11818
11819 /* Present TBI as a composite with TBID. */
11820 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11821 if (!data) {
11822 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11823 }
11824 tbi = (tbi >> select) & 1;
11825
11826 return (ARMVAParameters) {
11827 .tsz = tsz,
11828 .ps = ps,
11829 .sh = sh,
11830 .select = select,
11831 .tbi = tbi,
11832 .epd = epd,
11833 .hpd = hpd,
11834 .tsz_oob = tsz_oob,
11835 .ds = ds,
11836 .ha = ha,
11837 .hd = ha && hd,
11838 .gran = gran,
11839 };
11840 }
11841
11842 /*
11843 * Note that signed overflow is undefined in C. The following routines are
11844 * careful to use unsigned types where modulo arithmetic is required.
11845 * Failure to do so _will_ break on newer gcc.
11846 */
11847
11848 /* Signed saturating arithmetic. */
11849
11850 /* Perform 16-bit signed saturating addition. */
11851 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11852 {
11853 uint16_t res;
11854
11855 res = a + b;
11856 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11857 if (a & 0x8000) {
11858 res = 0x8000;
11859 } else {
11860 res = 0x7fff;
11861 }
11862 }
11863 return res;
11864 }
11865
11866 /* Perform 8-bit signed saturating addition. */
11867 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11868 {
11869 uint8_t res;
11870
11871 res = a + b;
11872 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11873 if (a & 0x80) {
11874 res = 0x80;
11875 } else {
11876 res = 0x7f;
11877 }
11878 }
11879 return res;
11880 }
11881
11882 /* Perform 16-bit signed saturating subtraction. */
11883 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11884 {
11885 uint16_t res;
11886
11887 res = a - b;
11888 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11889 if (a & 0x8000) {
11890 res = 0x8000;
11891 } else {
11892 res = 0x7fff;
11893 }
11894 }
11895 return res;
11896 }
11897
11898 /* Perform 8-bit signed saturating subtraction. */
11899 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11900 {
11901 uint8_t res;
11902
11903 res = a - b;
11904 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11905 if (a & 0x80) {
11906 res = 0x80;
11907 } else {
11908 res = 0x7f;
11909 }
11910 }
11911 return res;
11912 }
11913
11914 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11915 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11916 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11917 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11918 #define PFX q
11919
11920 #include "op_addsub.h"
11921
11922 /* Unsigned saturating arithmetic. */
11923 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11924 {
11925 uint16_t res;
11926 res = a + b;
11927 if (res < a) {
11928 res = 0xffff;
11929 }
11930 return res;
11931 }
11932
11933 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11934 {
11935 if (a > b) {
11936 return a - b;
11937 } else {
11938 return 0;
11939 }
11940 }
11941
11942 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11943 {
11944 uint8_t res;
11945 res = a + b;
11946 if (res < a) {
11947 res = 0xff;
11948 }
11949 return res;
11950 }
11951
11952 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11953 {
11954 if (a > b) {
11955 return a - b;
11956 } else {
11957 return 0;
11958 }
11959 }
11960
11961 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11962 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11963 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11964 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11965 #define PFX uq
11966
11967 #include "op_addsub.h"
11968
11969 /* Signed modulo arithmetic. */
11970 #define SARITH16(a, b, n, op) do { \
11971 int32_t sum; \
11972 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11973 RESULT(sum, n, 16); \
11974 if (sum >= 0) \
11975 ge |= 3 << (n * 2); \
11976 } while (0)
11977
11978 #define SARITH8(a, b, n, op) do { \
11979 int32_t sum; \
11980 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11981 RESULT(sum, n, 8); \
11982 if (sum >= 0) \
11983 ge |= 1 << n; \
11984 } while (0)
11985
11986
11987 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11988 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11989 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11990 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11991 #define PFX s
11992 #define ARITH_GE
11993
11994 #include "op_addsub.h"
11995
11996 /* Unsigned modulo arithmetic. */
11997 #define ADD16(a, b, n) do { \
11998 uint32_t sum; \
11999 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12000 RESULT(sum, n, 16); \
12001 if ((sum >> 16) == 1) \
12002 ge |= 3 << (n * 2); \
12003 } while (0)
12004
12005 #define ADD8(a, b, n) do { \
12006 uint32_t sum; \
12007 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12008 RESULT(sum, n, 8); \
12009 if ((sum >> 8) == 1) \
12010 ge |= 1 << n; \
12011 } while (0)
12012
12013 #define SUB16(a, b, n) do { \
12014 uint32_t sum; \
12015 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12016 RESULT(sum, n, 16); \
12017 if ((sum >> 16) == 0) \
12018 ge |= 3 << (n * 2); \
12019 } while (0)
12020
12021 #define SUB8(a, b, n) do { \
12022 uint32_t sum; \
12023 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12024 RESULT(sum, n, 8); \
12025 if ((sum >> 8) == 0) \
12026 ge |= 1 << n; \
12027 } while (0)
12028
12029 #define PFX u
12030 #define ARITH_GE
12031
12032 #include "op_addsub.h"
12033
12034 /* Halved signed arithmetic. */
12035 #define ADD16(a, b, n) \
12036 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12037 #define SUB16(a, b, n) \
12038 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12039 #define ADD8(a, b, n) \
12040 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12041 #define SUB8(a, b, n) \
12042 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12043 #define PFX sh
12044
12045 #include "op_addsub.h"
12046
12047 /* Halved unsigned arithmetic. */
12048 #define ADD16(a, b, n) \
12049 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12050 #define SUB16(a, b, n) \
12051 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12052 #define ADD8(a, b, n) \
12053 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12054 #define SUB8(a, b, n) \
12055 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12056 #define PFX uh
12057
12058 #include "op_addsub.h"
12059
12060 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12061 {
12062 if (a > b) {
12063 return a - b;
12064 } else {
12065 return b - a;
12066 }
12067 }
12068
12069 /* Unsigned sum of absolute byte differences. */
12070 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12071 {
12072 uint32_t sum;
12073 sum = do_usad(a, b);
12074 sum += do_usad(a >> 8, b >> 8);
12075 sum += do_usad(a >> 16, b >> 16);
12076 sum += do_usad(a >> 24, b >> 24);
12077 return sum;
12078 }
12079
12080 /* For ARMv6 SEL instruction. */
12081 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12082 {
12083 uint32_t mask;
12084
12085 mask = 0;
12086 if (flags & 1) {
12087 mask |= 0xff;
12088 }
12089 if (flags & 2) {
12090 mask |= 0xff00;
12091 }
12092 if (flags & 4) {
12093 mask |= 0xff0000;
12094 }
12095 if (flags & 8) {
12096 mask |= 0xff000000;
12097 }
12098 return (a & mask) | (b & ~mask);
12099 }
12100
12101 /*
12102 * CRC helpers.
12103 * The upper bytes of val (above the number specified by 'bytes') must have
12104 * been zeroed out by the caller.
12105 */
12106 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12107 {
12108 uint8_t buf[4];
12109
12110 stl_le_p(buf, val);
12111
12112 /* zlib crc32 converts the accumulator and output to one's complement. */
12113 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12114 }
12115
12116 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12117 {
12118 uint8_t buf[4];
12119
12120 stl_le_p(buf, val);
12121
12122 /* Linux crc32c converts the output to one's complement. */
12123 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12124 }
12125
12126 /*
12127 * Return the exception level to which FP-disabled exceptions should
12128 * be taken, or 0 if FP is enabled.
12129 */
12130 int fp_exception_el(CPUARMState *env, int cur_el)
12131 {
12132 #ifndef CONFIG_USER_ONLY
12133 uint64_t hcr_el2;
12134
12135 /*
12136 * CPACR and the CPTR registers don't exist before v6, so FP is
12137 * always accessible
12138 */
12139 if (!arm_feature(env, ARM_FEATURE_V6)) {
12140 return 0;
12141 }
12142
12143 if (arm_feature(env, ARM_FEATURE_M)) {
12144 /* CPACR can cause a NOCP UsageFault taken to current security state */
12145 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12146 return 1;
12147 }
12148
12149 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12150 if (!extract32(env->v7m.nsacr, 10, 1)) {
12151 /* FP insns cause a NOCP UsageFault taken to Secure */
12152 return 3;
12153 }
12154 }
12155
12156 return 0;
12157 }
12158
12159 hcr_el2 = arm_hcr_el2_eff(env);
12160
12161 /*
12162 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12163 * 0, 2 : trap EL0 and EL1/PL1 accesses
12164 * 1 : trap only EL0 accesses
12165 * 3 : trap no accesses
12166 * This register is ignored if E2H+TGE are both set.
12167 */
12168 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12169 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
12170
12171 switch (fpen) {
12172 case 1:
12173 if (cur_el != 0) {
12174 break;
12175 }
12176 /* fall through */
12177 case 0:
12178 case 2:
12179 /* Trap from Secure PL0 or PL1 to Secure PL1. */
12180 if (!arm_el_is_aa64(env, 3)
12181 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
12182 return 3;
12183 }
12184 if (cur_el <= 1) {
12185 return 1;
12186 }
12187 break;
12188 }
12189 }
12190
12191 /*
12192 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12193 * to control non-secure access to the FPU. It doesn't have any
12194 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12195 */
12196 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12197 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12198 if (!extract32(env->cp15.nsacr, 10, 1)) {
12199 /* FP insns act as UNDEF */
12200 return cur_el == 2 ? 2 : 1;
12201 }
12202 }
12203
12204 /*
12205 * CPTR_EL2 is present in v7VE or v8, and changes format
12206 * with HCR_EL2.E2H (regardless of TGE).
12207 */
12208 if (cur_el <= 2) {
12209 if (hcr_el2 & HCR_E2H) {
12210 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
12211 case 1:
12212 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
12213 break;
12214 }
12215 /* fall through */
12216 case 0:
12217 case 2:
12218 return 2;
12219 }
12220 } else if (arm_is_el2_enabled(env)) {
12221 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12222 return 2;
12223 }
12224 }
12225 }
12226
12227 /* CPTR_EL3 : present in v8 */
12228 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12229 /* Trap all FP ops to EL3 */
12230 return 3;
12231 }
12232 #endif
12233 return 0;
12234 }
12235
12236 /* Return the exception level we're running at if this is our mmu_idx */
12237 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12238 {
12239 if (mmu_idx & ARM_MMU_IDX_M) {
12240 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12241 }
12242
12243 switch (mmu_idx) {
12244 case ARMMMUIdx_E10_0:
12245 case ARMMMUIdx_E20_0:
12246 return 0;
12247 case ARMMMUIdx_E10_1:
12248 case ARMMMUIdx_E10_1_PAN:
12249 return 1;
12250 case ARMMMUIdx_E2:
12251 case ARMMMUIdx_E20_2:
12252 case ARMMMUIdx_E20_2_PAN:
12253 return 2;
12254 case ARMMMUIdx_E3:
12255 return 3;
12256 default:
12257 g_assert_not_reached();
12258 }
12259 }
12260
12261 #ifndef CONFIG_TCG
12262 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12263 {
12264 g_assert_not_reached();
12265 }
12266 #endif
12267
12268 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12269 {
12270 ARMMMUIdx idx;
12271 uint64_t hcr;
12272
12273 if (arm_feature(env, ARM_FEATURE_M)) {
12274 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12275 }
12276
12277 /* See ARM pseudo-function ELIsInHost. */
12278 switch (el) {
12279 case 0:
12280 hcr = arm_hcr_el2_eff(env);
12281 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12282 idx = ARMMMUIdx_E20_0;
12283 } else {
12284 idx = ARMMMUIdx_E10_0;
12285 }
12286 break;
12287 case 1:
12288 if (arm_pan_enabled(env)) {
12289 idx = ARMMMUIdx_E10_1_PAN;
12290 } else {
12291 idx = ARMMMUIdx_E10_1;
12292 }
12293 break;
12294 case 2:
12295 /* Note that TGE does not apply at EL2. */
12296 if (arm_hcr_el2_eff(env) & HCR_E2H) {
12297 if (arm_pan_enabled(env)) {
12298 idx = ARMMMUIdx_E20_2_PAN;
12299 } else {
12300 idx = ARMMMUIdx_E20_2;
12301 }
12302 } else {
12303 idx = ARMMMUIdx_E2;
12304 }
12305 break;
12306 case 3:
12307 return ARMMMUIdx_E3;
12308 default:
12309 g_assert_not_reached();
12310 }
12311
12312 return idx;
12313 }
12314
12315 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12316 {
12317 return arm_mmu_idx_el(env, arm_current_el(env));
12318 }
12319
12320 static bool mve_no_pred(CPUARMState *env)
12321 {
12322 /*
12323 * Return true if there is definitely no predication of MVE
12324 * instructions by VPR or LTPSIZE. (Returning false even if there
12325 * isn't any predication is OK; generated code will just be
12326 * a little worse.)
12327 * If the CPU does not implement MVE then this TB flag is always 0.
12328 *
12329 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12330 * logic in gen_update_fp_context() needs to be updated to match.
12331 *
12332 * We do not include the effect of the ECI bits here -- they are
12333 * tracked in other TB flags. This simplifies the logic for
12334 * "when did we emit code that changes the MVE_NO_PRED TB flag
12335 * and thus need to end the TB?".
12336 */
12337 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12338 return false;
12339 }
12340 if (env->v7m.vpr) {
12341 return false;
12342 }
12343 if (env->v7m.ltpsize < 4) {
12344 return false;
12345 }
12346 return true;
12347 }
12348
12349 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12350 uint64_t *cs_base, uint32_t *pflags)
12351 {
12352 CPUARMTBFlags flags;
12353
12354 assert_hflags_rebuild_correctly(env);
12355 flags = env->hflags;
12356
12357 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12358 *pc = env->pc;
12359 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12360 DP_TBFLAG_A64(flags, BTYPE, env->btype);
12361 }
12362 } else {
12363 *pc = env->regs[15];
12364
12365 if (arm_feature(env, ARM_FEATURE_M)) {
12366 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12367 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12368 != env->v7m.secure) {
12369 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12370 }
12371
12372 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12373 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12374 (env->v7m.secure &&
12375 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12376 /*
12377 * ASPEN is set, but FPCA/SFPA indicate that there is no
12378 * active FP context; we must create a new FP context before
12379 * executing any FP insn.
12380 */
12381 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12382 }
12383
12384 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12385 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12386 DP_TBFLAG_M32(flags, LSPACT, 1);
12387 }
12388
12389 if (mve_no_pred(env)) {
12390 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12391 }
12392 } else {
12393 /*
12394 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12395 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12396 */
12397 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12398 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12399 } else {
12400 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12401 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12402 }
12403 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12404 DP_TBFLAG_A32(flags, VFPEN, 1);
12405 }
12406 }
12407
12408 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12409 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12410 }
12411
12412 /*
12413 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12414 * states defined in the ARM ARM for software singlestep:
12415 * SS_ACTIVE PSTATE.SS State
12416 * 0 x Inactive (the TB flag for SS is always 0)
12417 * 1 0 Active-pending
12418 * 1 1 Active-not-pending
12419 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12420 */
12421 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12422 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12423 }
12424
12425 *pflags = flags.flags;
12426 *cs_base = flags.flags2;
12427 }
12428
12429 #ifdef TARGET_AARCH64
12430 /*
12431 * The manual says that when SVE is enabled and VQ is widened the
12432 * implementation is allowed to zero the previously inaccessible
12433 * portion of the registers. The corollary to that is that when
12434 * SVE is enabled and VQ is narrowed we are also allowed to zero
12435 * the now inaccessible portion of the registers.
12436 *
12437 * The intent of this is that no predicate bit beyond VQ is ever set.
12438 * Which means that some operations on predicate registers themselves
12439 * may operate on full uint64_t or even unrolled across the maximum
12440 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12441 * may well be cheaper than conditionals to restrict the operation
12442 * to the relevant portion of a uint16_t[16].
12443 */
12444 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12445 {
12446 int i, j;
12447 uint64_t pmask;
12448
12449 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12450 assert(vq <= env_archcpu(env)->sve_max_vq);
12451
12452 /* Zap the high bits of the zregs. */
12453 for (i = 0; i < 32; i++) {
12454 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12455 }
12456
12457 /* Zap the high bits of the pregs and ffr. */
12458 pmask = 0;
12459 if (vq & 3) {
12460 pmask = ~(-1ULL << (16 * (vq & 3)));
12461 }
12462 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12463 for (i = 0; i < 17; ++i) {
12464 env->vfp.pregs[i].p[j] &= pmask;
12465 }
12466 pmask = 0;
12467 }
12468 }
12469
12470 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12471 {
12472 int exc_el;
12473
12474 if (sm) {
12475 exc_el = sme_exception_el(env, el);
12476 } else {
12477 exc_el = sve_exception_el(env, el);
12478 }
12479 if (exc_el) {
12480 return 0; /* disabled */
12481 }
12482 return sve_vqm1_for_el_sm(env, el, sm);
12483 }
12484
12485 /*
12486 * Notice a change in SVE vector size when changing EL.
12487 */
12488 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12489 int new_el, bool el0_a64)
12490 {
12491 ARMCPU *cpu = env_archcpu(env);
12492 int old_len, new_len;
12493 bool old_a64, new_a64, sm;
12494
12495 /* Nothing to do if no SVE. */
12496 if (!cpu_isar_feature(aa64_sve, cpu)) {
12497 return;
12498 }
12499
12500 /* Nothing to do if FP is disabled in either EL. */
12501 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12502 return;
12503 }
12504
12505 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12506 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12507
12508 /*
12509 * Both AArch64.TakeException and AArch64.ExceptionReturn
12510 * invoke ResetSVEState when taking an exception from, or
12511 * returning to, AArch32 state when PSTATE.SM is enabled.
12512 */
12513 sm = FIELD_EX64(env->svcr, SVCR, SM);
12514 if (old_a64 != new_a64 && sm) {
12515 arm_reset_sve_state(env);
12516 return;
12517 }
12518
12519 /*
12520 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12521 * at ELx, or not available because the EL is in AArch32 state, then
12522 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12523 * has an effective value of 0".
12524 *
12525 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12526 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12527 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12528 * we already have the correct register contents when encountering the
12529 * vq0->vq0 transition between EL0->EL1.
12530 */
12531 old_len = new_len = 0;
12532 if (old_a64) {
12533 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12534 }
12535 if (new_a64) {
12536 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12537 }
12538
12539 /* When changing vector length, clear inaccessible state. */
12540 if (new_len < old_len) {
12541 aarch64_sve_narrow_vq(env, new_len + 1);
12542 }
12543 }
12544 #endif
12545
12546 #ifndef CONFIG_USER_ONLY
12547 ARMSecuritySpace arm_security_space(CPUARMState *env)
12548 {
12549 if (arm_feature(env, ARM_FEATURE_M)) {
12550 return arm_secure_to_space(env->v7m.secure);
12551 }
12552
12553 /*
12554 * If EL3 is not supported then the secure state is implementation
12555 * defined, in which case QEMU defaults to non-secure.
12556 */
12557 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12558 return ARMSS_NonSecure;
12559 }
12560
12561 /* Check for AArch64 EL3 or AArch32 Mon. */
12562 if (is_a64(env)) {
12563 if (extract32(env->pstate, 2, 2) == 3) {
12564 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12565 return ARMSS_Root;
12566 } else {
12567 return ARMSS_Secure;
12568 }
12569 }
12570 } else {
12571 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12572 return ARMSS_Secure;
12573 }
12574 }
12575
12576 return arm_security_space_below_el3(env);
12577 }
12578
12579 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12580 {
12581 assert(!arm_feature(env, ARM_FEATURE_M));
12582
12583 /*
12584 * If EL3 is not supported then the secure state is implementation
12585 * defined, in which case QEMU defaults to non-secure.
12586 */
12587 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12588 return ARMSS_NonSecure;
12589 }
12590
12591 /*
12592 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12593 * Ignoring NSE when !NS retains consistency without having to
12594 * modify other predicates.
12595 */
12596 if (!(env->cp15.scr_el3 & SCR_NS)) {
12597 return ARMSS_Secure;
12598 } else if (env->cp15.scr_el3 & SCR_NSE) {
12599 return ARMSS_Realm;
12600 } else {
12601 return ARMSS_NonSecure;
12602 }
12603 }
12604 #endif /* !CONFIG_USER_ONLY */