]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/kvm.c
target/arm: Move GTimer definitions to new 'gtimer.h' header
[mirror_qemu.git] / target / arm / kvm.c
1 /*
2 * ARM implementation of KVM hooks
3 *
4 * Copyright Christoffer Dall 2009-2010
5 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6 * Copyright Alex Bennée 2014, Linaro
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
9 * See the COPYING file in the top-level directory.
10 *
11 */
12
13 #include "qemu/osdep.h"
14 #include <sys/ioctl.h>
15
16 #include <linux/kvm.h>
17
18 #include "qemu/timer.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qom/object.h"
22 #include "qapi/error.h"
23 #include "sysemu/sysemu.h"
24 #include "sysemu/runstate.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/kvm_int.h"
27 #include "kvm_arm.h"
28 #include "cpu.h"
29 #include "trace.h"
30 #include "internals.h"
31 #include "hw/pci/pci.h"
32 #include "exec/memattrs.h"
33 #include "exec/address-spaces.h"
34 #include "exec/gdbstub.h"
35 #include "hw/boards.h"
36 #include "hw/irq.h"
37 #include "qapi/visitor.h"
38 #include "qemu/log.h"
39 #include "hw/acpi/acpi.h"
40 #include "hw/acpi/ghes.h"
41 #include "target/arm/gtimer.h"
42
43 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
44 KVM_CAP_LAST_INFO
45 };
46
47 static bool cap_has_mp_state;
48 static bool cap_has_inject_serror_esr;
49 static bool cap_has_inject_ext_dabt;
50
51 /**
52 * ARMHostCPUFeatures: information about the host CPU (identified
53 * by asking the host kernel)
54 */
55 typedef struct ARMHostCPUFeatures {
56 ARMISARegisters isar;
57 uint64_t features;
58 uint32_t target;
59 const char *dtb_compatible;
60 } ARMHostCPUFeatures;
61
62 static ARMHostCPUFeatures arm_host_cpu_features;
63
64 /**
65 * kvm_arm_vcpu_init:
66 * @cpu: ARMCPU
67 *
68 * Initialize (or reinitialize) the VCPU by invoking the
69 * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
70 * bitmask specified in the CPUState.
71 *
72 * Returns: 0 if success else < 0 error code
73 */
74 static int kvm_arm_vcpu_init(ARMCPU *cpu)
75 {
76 struct kvm_vcpu_init init;
77
78 init.target = cpu->kvm_target;
79 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
80
81 return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
82 }
83
84 /**
85 * kvm_arm_vcpu_finalize:
86 * @cpu: ARMCPU
87 * @feature: feature to finalize
88 *
89 * Finalizes the configuration of the specified VCPU feature by
90 * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
91 * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
92 * KVM's API documentation.
93 *
94 * Returns: 0 if success else < 0 error code
95 */
96 static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
97 {
98 return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
99 }
100
101 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
102 int *fdarray,
103 struct kvm_vcpu_init *init)
104 {
105 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
106 int max_vm_pa_size;
107
108 kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
109 if (kvmfd < 0) {
110 goto err;
111 }
112 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
113 if (max_vm_pa_size < 0) {
114 max_vm_pa_size = 0;
115 }
116 do {
117 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
118 } while (vmfd == -1 && errno == EINTR);
119 if (vmfd < 0) {
120 goto err;
121 }
122 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
123 if (cpufd < 0) {
124 goto err;
125 }
126
127 if (!init) {
128 /* Caller doesn't want the VCPU to be initialized, so skip it */
129 goto finish;
130 }
131
132 if (init->target == -1) {
133 struct kvm_vcpu_init preferred;
134
135 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
136 if (!ret) {
137 init->target = preferred.target;
138 }
139 }
140 if (ret >= 0) {
141 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
142 if (ret < 0) {
143 goto err;
144 }
145 } else if (cpus_to_try) {
146 /* Old kernel which doesn't know about the
147 * PREFERRED_TARGET ioctl: we know it will only support
148 * creating one kind of guest CPU which is its preferred
149 * CPU type.
150 */
151 struct kvm_vcpu_init try;
152
153 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
154 try.target = *cpus_to_try++;
155 memcpy(try.features, init->features, sizeof(init->features));
156 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
157 if (ret >= 0) {
158 break;
159 }
160 }
161 if (ret < 0) {
162 goto err;
163 }
164 init->target = try.target;
165 } else {
166 /* Treat a NULL cpus_to_try argument the same as an empty
167 * list, which means we will fail the call since this must
168 * be an old kernel which doesn't support PREFERRED_TARGET.
169 */
170 goto err;
171 }
172
173 finish:
174 fdarray[0] = kvmfd;
175 fdarray[1] = vmfd;
176 fdarray[2] = cpufd;
177
178 return true;
179
180 err:
181 if (cpufd >= 0) {
182 close(cpufd);
183 }
184 if (vmfd >= 0) {
185 close(vmfd);
186 }
187 if (kvmfd >= 0) {
188 close(kvmfd);
189 }
190
191 return false;
192 }
193
194 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
195 {
196 int i;
197
198 for (i = 2; i >= 0; i--) {
199 close(fdarray[i]);
200 }
201 }
202
203 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
204 {
205 uint64_t ret;
206 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
207 int err;
208
209 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
210 err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
211 if (err < 0) {
212 return -1;
213 }
214 *pret = ret;
215 return 0;
216 }
217
218 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
219 {
220 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
221
222 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
223 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
224 }
225
226 static bool kvm_arm_pauth_supported(void)
227 {
228 return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
229 kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
230 }
231
232 static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
233 {
234 /* Identify the feature bits corresponding to the host CPU, and
235 * fill out the ARMHostCPUClass fields accordingly. To do this
236 * we have to create a scratch VM, create a single CPU inside it,
237 * and then query that CPU for the relevant ID registers.
238 */
239 int fdarray[3];
240 bool sve_supported;
241 bool pmu_supported = false;
242 uint64_t features = 0;
243 int err;
244
245 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
246 * we know these will only support creating one kind of guest CPU,
247 * which is its preferred CPU type. Fortunately these old kernels
248 * support only a very limited number of CPUs.
249 */
250 static const uint32_t cpus_to_try[] = {
251 KVM_ARM_TARGET_AEM_V8,
252 KVM_ARM_TARGET_FOUNDATION_V8,
253 KVM_ARM_TARGET_CORTEX_A57,
254 QEMU_KVM_ARM_TARGET_NONE
255 };
256 /*
257 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
258 * to use the preferred target
259 */
260 struct kvm_vcpu_init init = { .target = -1, };
261
262 /*
263 * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
264 * which is otherwise RAZ.
265 */
266 sve_supported = kvm_arm_sve_supported();
267 if (sve_supported) {
268 init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
269 }
270
271 /*
272 * Ask for Pointer Authentication if supported, so that we get
273 * the unsanitized field values for AA64ISAR1_EL1.
274 */
275 if (kvm_arm_pauth_supported()) {
276 init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
277 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
278 }
279
280 if (kvm_arm_pmu_supported()) {
281 init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
282 pmu_supported = true;
283 }
284
285 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
286 return false;
287 }
288
289 ahcf->target = init.target;
290 ahcf->dtb_compatible = "arm,arm-v8";
291
292 err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
293 ARM64_SYS_REG(3, 0, 0, 4, 0));
294 if (unlikely(err < 0)) {
295 /*
296 * Before v4.15, the kernel only exposed a limited number of system
297 * registers, not including any of the interesting AArch64 ID regs.
298 * For the most part we could leave these fields as zero with minimal
299 * effect, since this does not affect the values seen by the guest.
300 *
301 * However, it could cause problems down the line for QEMU,
302 * so provide a minimal v8.0 default.
303 *
304 * ??? Could read MIDR and use knowledge from cpu64.c.
305 * ??? Could map a page of memory into our temp guest and
306 * run the tiniest of hand-crafted kernels to extract
307 * the values seen by the guest.
308 * ??? Either of these sounds like too much effort just
309 * to work around running a modern host kernel.
310 */
311 ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
312 err = 0;
313 } else {
314 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
315 ARM64_SYS_REG(3, 0, 0, 4, 1));
316 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
317 ARM64_SYS_REG(3, 0, 0, 4, 5));
318 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
319 ARM64_SYS_REG(3, 0, 0, 5, 0));
320 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
321 ARM64_SYS_REG(3, 0, 0, 5, 1));
322 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
323 ARM64_SYS_REG(3, 0, 0, 6, 0));
324 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
325 ARM64_SYS_REG(3, 0, 0, 6, 1));
326 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
327 ARM64_SYS_REG(3, 0, 0, 6, 2));
328 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
329 ARM64_SYS_REG(3, 0, 0, 7, 0));
330 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
331 ARM64_SYS_REG(3, 0, 0, 7, 1));
332 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
333 ARM64_SYS_REG(3, 0, 0, 7, 2));
334
335 /*
336 * Note that if AArch32 support is not present in the host,
337 * the AArch32 sysregs are present to be read, but will
338 * return UNKNOWN values. This is neither better nor worse
339 * than skipping the reads and leaving 0, as we must avoid
340 * considering the values in every case.
341 */
342 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
343 ARM64_SYS_REG(3, 0, 0, 1, 0));
344 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
345 ARM64_SYS_REG(3, 0, 0, 1, 1));
346 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
347 ARM64_SYS_REG(3, 0, 0, 1, 2));
348 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
349 ARM64_SYS_REG(3, 0, 0, 1, 4));
350 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
351 ARM64_SYS_REG(3, 0, 0, 1, 5));
352 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
353 ARM64_SYS_REG(3, 0, 0, 1, 6));
354 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
355 ARM64_SYS_REG(3, 0, 0, 1, 7));
356 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
357 ARM64_SYS_REG(3, 0, 0, 2, 0));
358 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
359 ARM64_SYS_REG(3, 0, 0, 2, 1));
360 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
361 ARM64_SYS_REG(3, 0, 0, 2, 2));
362 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
363 ARM64_SYS_REG(3, 0, 0, 2, 3));
364 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
365 ARM64_SYS_REG(3, 0, 0, 2, 4));
366 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
367 ARM64_SYS_REG(3, 0, 0, 2, 5));
368 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
369 ARM64_SYS_REG(3, 0, 0, 2, 6));
370 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
371 ARM64_SYS_REG(3, 0, 0, 2, 7));
372
373 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
374 ARM64_SYS_REG(3, 0, 0, 3, 0));
375 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
376 ARM64_SYS_REG(3, 0, 0, 3, 1));
377 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
378 ARM64_SYS_REG(3, 0, 0, 3, 2));
379 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
380 ARM64_SYS_REG(3, 0, 0, 3, 4));
381 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
382 ARM64_SYS_REG(3, 0, 0, 3, 5));
383 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
384 ARM64_SYS_REG(3, 0, 0, 3, 6));
385
386 /*
387 * DBGDIDR is a bit complicated because the kernel doesn't
388 * provide an accessor for it in 64-bit mode, which is what this
389 * scratch VM is in, and there's no architected "64-bit sysreg
390 * which reads the same as the 32-bit register" the way there is
391 * for other ID registers. Instead we synthesize a value from the
392 * AArch64 ID_AA64DFR0, the same way the kernel code in
393 * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
394 * We only do this if the CPU supports AArch32 at EL1.
395 */
396 if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
397 int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
398 int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
399 int ctx_cmps =
400 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
401 int version = 6; /* ARMv8 debug architecture */
402 bool has_el3 =
403 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
404 uint32_t dbgdidr = 0;
405
406 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
407 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
408 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
409 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
410 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
411 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
412 dbgdidr |= (1 << 15); /* RES1 bit */
413 ahcf->isar.dbgdidr = dbgdidr;
414 }
415
416 if (pmu_supported) {
417 /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
418 err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
419 ARM64_SYS_REG(3, 3, 9, 12, 0));
420 }
421
422 if (sve_supported) {
423 /*
424 * There is a range of kernels between kernel commit 73433762fcae
425 * and f81cb2c3ad41 which have a bug where the kernel doesn't
426 * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
427 * enabled SVE support, which resulted in an error rather than RAZ.
428 * So only read the register if we set KVM_ARM_VCPU_SVE above.
429 */
430 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
431 ARM64_SYS_REG(3, 0, 0, 4, 4));
432 }
433 }
434
435 kvm_arm_destroy_scratch_host_vcpu(fdarray);
436
437 if (err < 0) {
438 return false;
439 }
440
441 /*
442 * We can assume any KVM supporting CPU is at least a v8
443 * with VFPv4+Neon; this in turn implies most of the other
444 * feature bits.
445 */
446 features |= 1ULL << ARM_FEATURE_V8;
447 features |= 1ULL << ARM_FEATURE_NEON;
448 features |= 1ULL << ARM_FEATURE_AARCH64;
449 features |= 1ULL << ARM_FEATURE_PMU;
450 features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
451
452 ahcf->features = features;
453
454 return true;
455 }
456
457 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
458 {
459 CPUARMState *env = &cpu->env;
460
461 if (!arm_host_cpu_features.dtb_compatible) {
462 if (!kvm_enabled() ||
463 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
464 /* We can't report this error yet, so flag that we need to
465 * in arm_cpu_realizefn().
466 */
467 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
468 cpu->host_cpu_probe_failed = true;
469 return;
470 }
471 }
472
473 cpu->kvm_target = arm_host_cpu_features.target;
474 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
475 cpu->isar = arm_host_cpu_features.isar;
476 env->features = arm_host_cpu_features.features;
477 }
478
479 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
480 {
481 return !ARM_CPU(obj)->kvm_adjvtime;
482 }
483
484 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
485 {
486 ARM_CPU(obj)->kvm_adjvtime = !value;
487 }
488
489 static bool kvm_steal_time_get(Object *obj, Error **errp)
490 {
491 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
492 }
493
494 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
495 {
496 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
497 }
498
499 /* KVM VCPU properties should be prefixed with "kvm-". */
500 void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
501 {
502 CPUARMState *env = &cpu->env;
503 Object *obj = OBJECT(cpu);
504
505 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
506 cpu->kvm_adjvtime = true;
507 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
508 kvm_no_adjvtime_set);
509 object_property_set_description(obj, "kvm-no-adjvtime",
510 "Set on to disable the adjustment of "
511 "the virtual counter. VM stopped time "
512 "will be counted.");
513 }
514
515 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
516 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
517 kvm_steal_time_set);
518 object_property_set_description(obj, "kvm-steal-time",
519 "Set off to disable KVM steal time.");
520 }
521
522 bool kvm_arm_pmu_supported(void)
523 {
524 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
525 }
526
527 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
528 {
529 KVMState *s = KVM_STATE(ms->accelerator);
530 int ret;
531
532 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
533 *fixed_ipa = ret <= 0;
534
535 return ret > 0 ? ret : 40;
536 }
537
538 int kvm_arch_get_default_type(MachineState *ms)
539 {
540 bool fixed_ipa;
541 int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
542 return fixed_ipa ? 0 : size;
543 }
544
545 int kvm_arch_init(MachineState *ms, KVMState *s)
546 {
547 int ret = 0;
548 /* For ARM interrupt delivery is always asynchronous,
549 * whether we are using an in-kernel VGIC or not.
550 */
551 kvm_async_interrupts_allowed = true;
552
553 /*
554 * PSCI wakes up secondary cores, so we always need to
555 * have vCPUs waiting in kernel space
556 */
557 kvm_halt_in_kernel_allowed = true;
558
559 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
560
561 /* Check whether user space can specify guest syndrome value */
562 cap_has_inject_serror_esr =
563 kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
564
565 if (ms->smp.cpus > 256 &&
566 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
567 error_report("Using more than 256 vcpus requires a host kernel "
568 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
569 ret = -EINVAL;
570 }
571
572 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
573 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
574 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
575 } else {
576 /* Set status for supporting the external dabt injection */
577 cap_has_inject_ext_dabt = kvm_check_extension(s,
578 KVM_CAP_ARM_INJECT_EXT_DABT);
579 }
580 }
581
582 if (s->kvm_eager_split_size) {
583 uint32_t sizes;
584
585 sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
586 if (!sizes) {
587 s->kvm_eager_split_size = 0;
588 warn_report("Eager Page Split support not available");
589 } else if (!(s->kvm_eager_split_size & sizes)) {
590 error_report("Eager Page Split requested chunk size not valid");
591 ret = -EINVAL;
592 } else {
593 ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
594 s->kvm_eager_split_size);
595 if (ret < 0) {
596 error_report("Enabling of Eager Page Split failed: %s",
597 strerror(-ret));
598 }
599 }
600 }
601
602 max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
603 hw_watchpoints = g_array_sized_new(true, true,
604 sizeof(HWWatchpoint), max_hw_wps);
605
606 max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
607 hw_breakpoints = g_array_sized_new(true, true,
608 sizeof(HWBreakpoint), max_hw_bps);
609
610 return ret;
611 }
612
613 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
614 {
615 return cpu->cpu_index;
616 }
617
618 /* We track all the KVM devices which need their memory addresses
619 * passing to the kernel in a list of these structures.
620 * When board init is complete we run through the list and
621 * tell the kernel the base addresses of the memory regions.
622 * We use a MemoryListener to track mapping and unmapping of
623 * the regions during board creation, so the board models don't
624 * need to do anything special for the KVM case.
625 *
626 * Sometimes the address must be OR'ed with some other fields
627 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
628 * @kda_addr_ormask aims at storing the value of those fields.
629 */
630 typedef struct KVMDevice {
631 struct kvm_arm_device_addr kda;
632 struct kvm_device_attr kdattr;
633 uint64_t kda_addr_ormask;
634 MemoryRegion *mr;
635 QSLIST_ENTRY(KVMDevice) entries;
636 int dev_fd;
637 } KVMDevice;
638
639 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
640
641 static void kvm_arm_devlistener_add(MemoryListener *listener,
642 MemoryRegionSection *section)
643 {
644 KVMDevice *kd;
645
646 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
647 if (section->mr == kd->mr) {
648 kd->kda.addr = section->offset_within_address_space;
649 }
650 }
651 }
652
653 static void kvm_arm_devlistener_del(MemoryListener *listener,
654 MemoryRegionSection *section)
655 {
656 KVMDevice *kd;
657
658 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
659 if (section->mr == kd->mr) {
660 kd->kda.addr = -1;
661 }
662 }
663 }
664
665 static MemoryListener devlistener = {
666 .name = "kvm-arm",
667 .region_add = kvm_arm_devlistener_add,
668 .region_del = kvm_arm_devlistener_del,
669 .priority = MEMORY_LISTENER_PRIORITY_MIN,
670 };
671
672 static void kvm_arm_set_device_addr(KVMDevice *kd)
673 {
674 struct kvm_device_attr *attr = &kd->kdattr;
675 int ret;
676
677 /* If the device control API is available and we have a device fd on the
678 * KVMDevice struct, let's use the newer API
679 */
680 if (kd->dev_fd >= 0) {
681 uint64_t addr = kd->kda.addr;
682
683 addr |= kd->kda_addr_ormask;
684 attr->addr = (uintptr_t)&addr;
685 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
686 } else {
687 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
688 }
689
690 if (ret < 0) {
691 fprintf(stderr, "Failed to set device address: %s\n",
692 strerror(-ret));
693 abort();
694 }
695 }
696
697 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
698 {
699 KVMDevice *kd, *tkd;
700
701 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
702 if (kd->kda.addr != -1) {
703 kvm_arm_set_device_addr(kd);
704 }
705 memory_region_unref(kd->mr);
706 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
707 g_free(kd);
708 }
709 memory_listener_unregister(&devlistener);
710 }
711
712 static Notifier notify = {
713 .notify = kvm_arm_machine_init_done,
714 };
715
716 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
717 uint64_t attr, int dev_fd, uint64_t addr_ormask)
718 {
719 KVMDevice *kd;
720
721 if (!kvm_irqchip_in_kernel()) {
722 return;
723 }
724
725 if (QSLIST_EMPTY(&kvm_devices_head)) {
726 memory_listener_register(&devlistener, &address_space_memory);
727 qemu_add_machine_init_done_notifier(&notify);
728 }
729 kd = g_new0(KVMDevice, 1);
730 kd->mr = mr;
731 kd->kda.id = devid;
732 kd->kda.addr = -1;
733 kd->kdattr.flags = 0;
734 kd->kdattr.group = group;
735 kd->kdattr.attr = attr;
736 kd->dev_fd = dev_fd;
737 kd->kda_addr_ormask = addr_ormask;
738 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
739 memory_region_ref(kd->mr);
740 }
741
742 static int compare_u64(const void *a, const void *b)
743 {
744 if (*(uint64_t *)a > *(uint64_t *)b) {
745 return 1;
746 }
747 if (*(uint64_t *)a < *(uint64_t *)b) {
748 return -1;
749 }
750 return 0;
751 }
752
753 /*
754 * cpreg_values are sorted in ascending order by KVM register ID
755 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
756 * the storage for a KVM register by ID with a binary search.
757 */
758 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
759 {
760 uint64_t *res;
761
762 res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
763 sizeof(uint64_t), compare_u64);
764 assert(res);
765
766 return &cpu->cpreg_values[res - cpu->cpreg_indexes];
767 }
768
769 /**
770 * kvm_arm_reg_syncs_via_cpreg_list:
771 * @regidx: KVM register index
772 *
773 * Return true if this KVM register should be synchronized via the
774 * cpreg list of arbitrary system registers, false if it is synchronized
775 * by hand using code in kvm_arch_get/put_registers().
776 */
777 static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
778 {
779 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
780 case KVM_REG_ARM_CORE:
781 case KVM_REG_ARM64_SVE:
782 return false;
783 default:
784 return true;
785 }
786 }
787
788 /**
789 * kvm_arm_init_cpreg_list:
790 * @cpu: ARMCPU
791 *
792 * Initialize the ARMCPU cpreg list according to the kernel's
793 * definition of what CPU registers it knows about (and throw away
794 * the previous TCG-created cpreg list).
795 *
796 * Returns: 0 if success, else < 0 error code
797 */
798 static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
799 {
800 struct kvm_reg_list rl;
801 struct kvm_reg_list *rlp;
802 int i, ret, arraylen;
803 CPUState *cs = CPU(cpu);
804
805 rl.n = 0;
806 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
807 if (ret != -E2BIG) {
808 return ret;
809 }
810 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
811 rlp->n = rl.n;
812 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
813 if (ret) {
814 goto out;
815 }
816 /* Sort the list we get back from the kernel, since cpreg_tuples
817 * must be in strictly ascending order.
818 */
819 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
820
821 for (i = 0, arraylen = 0; i < rlp->n; i++) {
822 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
823 continue;
824 }
825 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
826 case KVM_REG_SIZE_U32:
827 case KVM_REG_SIZE_U64:
828 break;
829 default:
830 fprintf(stderr, "Can't handle size of register in kernel list\n");
831 ret = -EINVAL;
832 goto out;
833 }
834
835 arraylen++;
836 }
837
838 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
839 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
840 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
841 arraylen);
842 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
843 arraylen);
844 cpu->cpreg_array_len = arraylen;
845 cpu->cpreg_vmstate_array_len = arraylen;
846
847 for (i = 0, arraylen = 0; i < rlp->n; i++) {
848 uint64_t regidx = rlp->reg[i];
849 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
850 continue;
851 }
852 cpu->cpreg_indexes[arraylen] = regidx;
853 arraylen++;
854 }
855 assert(cpu->cpreg_array_len == arraylen);
856
857 if (!write_kvmstate_to_list(cpu)) {
858 /* Shouldn't happen unless kernel is inconsistent about
859 * what registers exist.
860 */
861 fprintf(stderr, "Initial read of kernel register state failed\n");
862 ret = -EINVAL;
863 goto out;
864 }
865
866 out:
867 g_free(rlp);
868 return ret;
869 }
870
871 /**
872 * kvm_arm_cpreg_level:
873 * @regidx: KVM register index
874 *
875 * Return the level of this coprocessor/system register. Return value is
876 * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
877 */
878 static int kvm_arm_cpreg_level(uint64_t regidx)
879 {
880 /*
881 * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
882 * If a register should be written less often, you must add it here
883 * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
884 */
885 switch (regidx) {
886 case KVM_REG_ARM_TIMER_CNT:
887 case KVM_REG_ARM_PTIMER_CNT:
888 return KVM_PUT_FULL_STATE;
889 }
890 return KVM_PUT_RUNTIME_STATE;
891 }
892
893 bool write_kvmstate_to_list(ARMCPU *cpu)
894 {
895 CPUState *cs = CPU(cpu);
896 int i;
897 bool ok = true;
898
899 for (i = 0; i < cpu->cpreg_array_len; i++) {
900 uint64_t regidx = cpu->cpreg_indexes[i];
901 uint32_t v32;
902 int ret;
903
904 switch (regidx & KVM_REG_SIZE_MASK) {
905 case KVM_REG_SIZE_U32:
906 ret = kvm_get_one_reg(cs, regidx, &v32);
907 if (!ret) {
908 cpu->cpreg_values[i] = v32;
909 }
910 break;
911 case KVM_REG_SIZE_U64:
912 ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
913 break;
914 default:
915 g_assert_not_reached();
916 }
917 if (ret) {
918 ok = false;
919 }
920 }
921 return ok;
922 }
923
924 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
925 {
926 CPUState *cs = CPU(cpu);
927 int i;
928 bool ok = true;
929
930 for (i = 0; i < cpu->cpreg_array_len; i++) {
931 uint64_t regidx = cpu->cpreg_indexes[i];
932 uint32_t v32;
933 int ret;
934
935 if (kvm_arm_cpreg_level(regidx) > level) {
936 continue;
937 }
938
939 switch (regidx & KVM_REG_SIZE_MASK) {
940 case KVM_REG_SIZE_U32:
941 v32 = cpu->cpreg_values[i];
942 ret = kvm_set_one_reg(cs, regidx, &v32);
943 break;
944 case KVM_REG_SIZE_U64:
945 ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
946 break;
947 default:
948 g_assert_not_reached();
949 }
950 if (ret) {
951 /* We might fail for "unknown register" and also for
952 * "you tried to set a register which is constant with
953 * a different value from what it actually contains".
954 */
955 ok = false;
956 }
957 }
958 return ok;
959 }
960
961 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
962 {
963 /* KVM virtual time adjustment */
964 if (cpu->kvm_vtime_dirty) {
965 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
966 }
967 }
968
969 void kvm_arm_cpu_post_load(ARMCPU *cpu)
970 {
971 /* KVM virtual time adjustment */
972 if (cpu->kvm_adjvtime) {
973 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
974 cpu->kvm_vtime_dirty = true;
975 }
976 }
977
978 void kvm_arm_reset_vcpu(ARMCPU *cpu)
979 {
980 int ret;
981
982 /* Re-init VCPU so that all registers are set to
983 * their respective reset values.
984 */
985 ret = kvm_arm_vcpu_init(cpu);
986 if (ret < 0) {
987 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
988 abort();
989 }
990 if (!write_kvmstate_to_list(cpu)) {
991 fprintf(stderr, "write_kvmstate_to_list failed\n");
992 abort();
993 }
994 /*
995 * Sync the reset values also into the CPUState. This is necessary
996 * because the next thing we do will be a kvm_arch_put_registers()
997 * which will update the list values from the CPUState before copying
998 * the list values back to KVM. It's OK to ignore failure returns here
999 * for the same reason we do so in kvm_arch_get_registers().
1000 */
1001 write_list_to_cpustate(cpu);
1002 }
1003
1004 /*
1005 * Update KVM's MP_STATE based on what QEMU thinks it is
1006 */
1007 static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
1008 {
1009 if (cap_has_mp_state) {
1010 struct kvm_mp_state mp_state = {
1011 .mp_state = (cpu->power_state == PSCI_OFF) ?
1012 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
1013 };
1014 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1015 }
1016 return 0;
1017 }
1018
1019 /*
1020 * Sync the KVM MP_STATE into QEMU
1021 */
1022 static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
1023 {
1024 if (cap_has_mp_state) {
1025 struct kvm_mp_state mp_state;
1026 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1027 if (ret) {
1028 return ret;
1029 }
1030 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
1031 PSCI_OFF : PSCI_ON;
1032 }
1033 return 0;
1034 }
1035
1036 /**
1037 * kvm_arm_get_virtual_time:
1038 * @cpu: ARMCPU
1039 *
1040 * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
1041 */
1042 static void kvm_arm_get_virtual_time(ARMCPU *cpu)
1043 {
1044 int ret;
1045
1046 if (cpu->kvm_vtime_dirty) {
1047 return;
1048 }
1049
1050 ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1051 if (ret) {
1052 error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
1053 abort();
1054 }
1055
1056 cpu->kvm_vtime_dirty = true;
1057 }
1058
1059 /**
1060 * kvm_arm_put_virtual_time:
1061 * @cpu: ARMCPU
1062 *
1063 * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
1064 */
1065 static void kvm_arm_put_virtual_time(ARMCPU *cpu)
1066 {
1067 int ret;
1068
1069 if (!cpu->kvm_vtime_dirty) {
1070 return;
1071 }
1072
1073 ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1074 if (ret) {
1075 error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
1076 abort();
1077 }
1078
1079 cpu->kvm_vtime_dirty = false;
1080 }
1081
1082 /**
1083 * kvm_put_vcpu_events:
1084 * @cpu: ARMCPU
1085 *
1086 * Put VCPU related state to kvm.
1087 *
1088 * Returns: 0 if success else < 0 error code
1089 */
1090 static int kvm_put_vcpu_events(ARMCPU *cpu)
1091 {
1092 CPUARMState *env = &cpu->env;
1093 struct kvm_vcpu_events events;
1094 int ret;
1095
1096 if (!kvm_has_vcpu_events()) {
1097 return 0;
1098 }
1099
1100 memset(&events, 0, sizeof(events));
1101 events.exception.serror_pending = env->serror.pending;
1102
1103 /* Inject SError to guest with specified syndrome if host kernel
1104 * supports it, otherwise inject SError without syndrome.
1105 */
1106 if (cap_has_inject_serror_esr) {
1107 events.exception.serror_has_esr = env->serror.has_esr;
1108 events.exception.serror_esr = env->serror.esr;
1109 }
1110
1111 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1112 if (ret) {
1113 error_report("failed to put vcpu events");
1114 }
1115
1116 return ret;
1117 }
1118
1119 /**
1120 * kvm_get_vcpu_events:
1121 * @cpu: ARMCPU
1122 *
1123 * Get VCPU related state from kvm.
1124 *
1125 * Returns: 0 if success else < 0 error code
1126 */
1127 static int kvm_get_vcpu_events(ARMCPU *cpu)
1128 {
1129 CPUARMState *env = &cpu->env;
1130 struct kvm_vcpu_events events;
1131 int ret;
1132
1133 if (!kvm_has_vcpu_events()) {
1134 return 0;
1135 }
1136
1137 memset(&events, 0, sizeof(events));
1138 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1139 if (ret) {
1140 error_report("failed to get vcpu events");
1141 return ret;
1142 }
1143
1144 env->serror.pending = events.exception.serror_pending;
1145 env->serror.has_esr = events.exception.serror_has_esr;
1146 env->serror.esr = events.exception.serror_esr;
1147
1148 return 0;
1149 }
1150
1151 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1152 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1153
1154 /*
1155 * ESR_EL1
1156 * ISS encoding
1157 * AARCH64: DFSC, bits [5:0]
1158 * AARCH32:
1159 * TTBCR.EAE == 0
1160 * FS[4] - DFSR[10]
1161 * FS[3:0] - DFSR[3:0]
1162 * TTBCR.EAE == 1
1163 * FS, bits [5:0]
1164 */
1165 #define ESR_DFSC(aarch64, lpae, v) \
1166 ((aarch64 || (lpae)) ? ((v) & 0x3F) \
1167 : (((v) >> 6) | ((v) & 0x1F)))
1168
1169 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1170 ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1171
1172 /**
1173 * kvm_arm_verify_ext_dabt_pending:
1174 * @cpu: ARMCPU
1175 *
1176 * Verify the fault status code wrt the Ext DABT injection
1177 *
1178 * Returns: true if the fault status code is as expected, false otherwise
1179 */
1180 static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
1181 {
1182 CPUState *cs = CPU(cpu);
1183 uint64_t dfsr_val;
1184
1185 if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1186 CPUARMState *env = &cpu->env;
1187 int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1188 int lpae = 0;
1189
1190 if (!aarch64_mode) {
1191 uint64_t ttbcr;
1192
1193 if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1194 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1195 && (ttbcr & TTBCR_EAE);
1196 }
1197 }
1198 /*
1199 * The verification here is based on the DFSC bits
1200 * of the ESR_EL1 reg only
1201 */
1202 return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1203 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1204 }
1205 return false;
1206 }
1207
1208 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1209 {
1210 ARMCPU *cpu = ARM_CPU(cs);
1211 CPUARMState *env = &cpu->env;
1212
1213 if (unlikely(env->ext_dabt_raised)) {
1214 /*
1215 * Verifying that the ext DABT has been properly injected,
1216 * otherwise risking indefinitely re-running the faulting instruction
1217 * Covering a very narrow case for kernels 5.5..5.5.4
1218 * when injected abort was misconfigured to be
1219 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
1220 */
1221 if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
1222 unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
1223
1224 error_report("Data abort exception with no valid ISS generated by "
1225 "guest memory access. KVM unable to emulate faulting "
1226 "instruction. Failed to inject an external data abort "
1227 "into the guest.");
1228 abort();
1229 }
1230 /* Clear the status */
1231 env->ext_dabt_raised = 0;
1232 }
1233 }
1234
1235 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1236 {
1237 ARMCPU *cpu;
1238 uint32_t switched_level;
1239
1240 if (kvm_irqchip_in_kernel()) {
1241 /*
1242 * We only need to sync timer states with user-space interrupt
1243 * controllers, so return early and save cycles if we don't.
1244 */
1245 return MEMTXATTRS_UNSPECIFIED;
1246 }
1247
1248 cpu = ARM_CPU(cs);
1249
1250 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
1251 if (run->s.regs.device_irq_level != cpu->device_irq_level) {
1252 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
1253
1254 bql_lock();
1255
1256 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
1257 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
1258 !!(run->s.regs.device_irq_level &
1259 KVM_ARM_DEV_EL1_VTIMER));
1260 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
1261 }
1262
1263 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
1264 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
1265 !!(run->s.regs.device_irq_level &
1266 KVM_ARM_DEV_EL1_PTIMER));
1267 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
1268 }
1269
1270 if (switched_level & KVM_ARM_DEV_PMU) {
1271 qemu_set_irq(cpu->pmu_interrupt,
1272 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
1273 switched_level &= ~KVM_ARM_DEV_PMU;
1274 }
1275
1276 if (switched_level) {
1277 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
1278 __func__, switched_level);
1279 }
1280
1281 /* We also mark unknown levels as processed to not waste cycles */
1282 cpu->device_irq_level = run->s.regs.device_irq_level;
1283 bql_unlock();
1284 }
1285
1286 return MEMTXATTRS_UNSPECIFIED;
1287 }
1288
1289 static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
1290 {
1291 ARMCPU *cpu = opaque;
1292
1293 if (running) {
1294 if (cpu->kvm_adjvtime) {
1295 kvm_arm_put_virtual_time(cpu);
1296 }
1297 } else {
1298 if (cpu->kvm_adjvtime) {
1299 kvm_arm_get_virtual_time(cpu);
1300 }
1301 }
1302 }
1303
1304 /**
1305 * kvm_arm_handle_dabt_nisv:
1306 * @cpu: ARMCPU
1307 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
1308 * ISV bit set to '0b0' -> no valid instruction syndrome
1309 * @fault_ipa: faulting address for the synchronous data abort
1310 *
1311 * Returns: 0 if the exception has been handled, < 0 otherwise
1312 */
1313 static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
1314 uint64_t fault_ipa)
1315 {
1316 CPUARMState *env = &cpu->env;
1317 /*
1318 * Request KVM to inject the external data abort into the guest
1319 */
1320 if (cap_has_inject_ext_dabt) {
1321 struct kvm_vcpu_events events = { };
1322 /*
1323 * The external data abort event will be handled immediately by KVM
1324 * using the address fault that triggered the exit on given VCPU.
1325 * Requesting injection of the external data abort does not rely
1326 * on any other VCPU state. Therefore, in this particular case, the VCPU
1327 * synchronization can be exceptionally skipped.
1328 */
1329 events.exception.ext_dabt_pending = 1;
1330 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
1331 if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
1332 env->ext_dabt_raised = 1;
1333 return 0;
1334 }
1335 } else {
1336 error_report("Data abort exception triggered by guest memory access "
1337 "at physical address: 0x" TARGET_FMT_lx,
1338 (target_ulong)fault_ipa);
1339 error_printf("KVM unable to emulate faulting instruction.\n");
1340 }
1341 return -1;
1342 }
1343
1344 /**
1345 * kvm_arm_handle_debug:
1346 * @cpu: ARMCPU
1347 * @debug_exit: debug part of the KVM exit structure
1348 *
1349 * Returns: TRUE if the debug exception was handled.
1350 *
1351 * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1352 *
1353 * To minimise translating between kernel and user-space the kernel
1354 * ABI just provides user-space with the full exception syndrome
1355 * register value to be decoded in QEMU.
1356 */
1357 static bool kvm_arm_handle_debug(ARMCPU *cpu,
1358 struct kvm_debug_exit_arch *debug_exit)
1359 {
1360 int hsr_ec = syn_get_ec(debug_exit->hsr);
1361 CPUState *cs = CPU(cpu);
1362 CPUARMState *env = &cpu->env;
1363
1364 /* Ensure PC is synchronised */
1365 kvm_cpu_synchronize_state(cs);
1366
1367 switch (hsr_ec) {
1368 case EC_SOFTWARESTEP:
1369 if (cs->singlestep_enabled) {
1370 return true;
1371 } else {
1372 /*
1373 * The kernel should have suppressed the guest's ability to
1374 * single step at this point so something has gone wrong.
1375 */
1376 error_report("%s: guest single-step while debugging unsupported"
1377 " (%"PRIx64", %"PRIx32")",
1378 __func__, env->pc, debug_exit->hsr);
1379 return false;
1380 }
1381 break;
1382 case EC_AA64_BKPT:
1383 if (kvm_find_sw_breakpoint(cs, env->pc)) {
1384 return true;
1385 }
1386 break;
1387 case EC_BREAKPOINT:
1388 if (find_hw_breakpoint(cs, env->pc)) {
1389 return true;
1390 }
1391 break;
1392 case EC_WATCHPOINT:
1393 {
1394 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1395 if (wp) {
1396 cs->watchpoint_hit = wp;
1397 return true;
1398 }
1399 break;
1400 }
1401 default:
1402 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1403 __func__, debug_exit->hsr, env->pc);
1404 }
1405
1406 /* If we are not handling the debug exception it must belong to
1407 * the guest. Let's re-use the existing TCG interrupt code to set
1408 * everything up properly.
1409 */
1410 cs->exception_index = EXCP_BKPT;
1411 env->exception.syndrome = debug_exit->hsr;
1412 env->exception.vaddress = debug_exit->far;
1413 env->exception.target_el = 1;
1414 bql_lock();
1415 arm_cpu_do_interrupt(cs);
1416 bql_unlock();
1417
1418 return false;
1419 }
1420
1421 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1422 {
1423 ARMCPU *cpu = ARM_CPU(cs);
1424 int ret = 0;
1425
1426 switch (run->exit_reason) {
1427 case KVM_EXIT_DEBUG:
1428 if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
1429 ret = EXCP_DEBUG;
1430 } /* otherwise return to guest */
1431 break;
1432 case KVM_EXIT_ARM_NISV:
1433 /* External DABT with no valid iss to decode */
1434 ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
1435 run->arm_nisv.fault_ipa);
1436 break;
1437 default:
1438 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1439 __func__, run->exit_reason);
1440 break;
1441 }
1442 return ret;
1443 }
1444
1445 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1446 {
1447 return true;
1448 }
1449
1450 int kvm_arch_process_async_events(CPUState *cs)
1451 {
1452 return 0;
1453 }
1454
1455 /**
1456 * kvm_arm_hw_debug_active:
1457 * @cpu: ARMCPU
1458 *
1459 * Return: TRUE if any hardware breakpoints in use.
1460 */
1461 static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
1462 {
1463 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
1464 }
1465
1466 /**
1467 * kvm_arm_copy_hw_debug_data:
1468 * @ptr: kvm_guest_debug_arch structure
1469 *
1470 * Copy the architecture specific debug registers into the
1471 * kvm_guest_debug ioctl structure.
1472 */
1473 static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
1474 {
1475 int i;
1476 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
1477
1478 for (i = 0; i < max_hw_wps; i++) {
1479 HWWatchpoint *wp = get_hw_wp(i);
1480 ptr->dbg_wcr[i] = wp->wcr;
1481 ptr->dbg_wvr[i] = wp->wvr;
1482 }
1483 for (i = 0; i < max_hw_bps; i++) {
1484 HWBreakpoint *bp = get_hw_bp(i);
1485 ptr->dbg_bcr[i] = bp->bcr;
1486 ptr->dbg_bvr[i] = bp->bvr;
1487 }
1488 }
1489
1490 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1491 {
1492 if (kvm_sw_breakpoints_active(cs)) {
1493 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1494 }
1495 if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
1496 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
1497 kvm_arm_copy_hw_debug_data(&dbg->arch);
1498 }
1499 }
1500
1501 void kvm_arch_init_irq_routing(KVMState *s)
1502 {
1503 }
1504
1505 int kvm_arch_irqchip_create(KVMState *s)
1506 {
1507 if (kvm_kernel_irqchip_split()) {
1508 error_report("-machine kernel_irqchip=split is not supported on ARM.");
1509 exit(1);
1510 }
1511
1512 /* If we can create the VGIC using the newer device control API, we
1513 * let the device do this when it initializes itself, otherwise we
1514 * fall back to the old API */
1515 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1516 }
1517
1518 int kvm_arm_vgic_probe(void)
1519 {
1520 int val = 0;
1521
1522 if (kvm_create_device(kvm_state,
1523 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
1524 val |= KVM_ARM_VGIC_V3;
1525 }
1526 if (kvm_create_device(kvm_state,
1527 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
1528 val |= KVM_ARM_VGIC_V2;
1529 }
1530 return val;
1531 }
1532
1533 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
1534 {
1535 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
1536 int cpu_idx1 = cpu % 256;
1537 int cpu_idx2 = cpu / 256;
1538
1539 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
1540 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1541
1542 return kvm_set_irq(kvm_state, kvm_irq, !!level);
1543 }
1544
1545 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1546 uint64_t address, uint32_t data, PCIDevice *dev)
1547 {
1548 AddressSpace *as = pci_device_iommu_address_space(dev);
1549 hwaddr xlat, len, doorbell_gpa;
1550 MemoryRegionSection mrs;
1551 MemoryRegion *mr;
1552
1553 if (as == &address_space_memory) {
1554 return 0;
1555 }
1556
1557 /* MSI doorbell address is translated by an IOMMU */
1558
1559 RCU_READ_LOCK_GUARD();
1560
1561 mr = address_space_translate(as, address, &xlat, &len, true,
1562 MEMTXATTRS_UNSPECIFIED);
1563
1564 if (!mr) {
1565 return 1;
1566 }
1567
1568 mrs = memory_region_find(mr, xlat, 1);
1569
1570 if (!mrs.mr) {
1571 return 1;
1572 }
1573
1574 doorbell_gpa = mrs.offset_within_address_space;
1575 memory_region_unref(mrs.mr);
1576
1577 route->u.msi.address_lo = doorbell_gpa;
1578 route->u.msi.address_hi = doorbell_gpa >> 32;
1579
1580 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1581
1582 return 0;
1583 }
1584
1585 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1586 int vector, PCIDevice *dev)
1587 {
1588 return 0;
1589 }
1590
1591 int kvm_arch_release_virq_post(int virq)
1592 {
1593 return 0;
1594 }
1595
1596 int kvm_arch_msi_data_to_gsi(uint32_t data)
1597 {
1598 return (data - 32) & 0xffff;
1599 }
1600
1601 bool kvm_arch_cpu_check_are_resettable(void)
1602 {
1603 return true;
1604 }
1605
1606 static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
1607 const char *name, void *opaque,
1608 Error **errp)
1609 {
1610 KVMState *s = KVM_STATE(obj);
1611 uint64_t value = s->kvm_eager_split_size;
1612
1613 visit_type_size(v, name, &value, errp);
1614 }
1615
1616 static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
1617 const char *name, void *opaque,
1618 Error **errp)
1619 {
1620 KVMState *s = KVM_STATE(obj);
1621 uint64_t value;
1622
1623 if (s->fd != -1) {
1624 error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
1625 return;
1626 }
1627
1628 if (!visit_type_size(v, name, &value, errp)) {
1629 return;
1630 }
1631
1632 if (value && !is_power_of_2(value)) {
1633 error_setg(errp, "early-split-size must be a power of two");
1634 return;
1635 }
1636
1637 s->kvm_eager_split_size = value;
1638 }
1639
1640 void kvm_arch_accel_class_init(ObjectClass *oc)
1641 {
1642 object_class_property_add(oc, "eager-split-size", "size",
1643 kvm_arch_get_eager_split_size,
1644 kvm_arch_set_eager_split_size, NULL, NULL);
1645
1646 object_class_property_set_description(oc, "eager-split-size",
1647 "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
1648 }
1649
1650 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1651 {
1652 switch (type) {
1653 case GDB_BREAKPOINT_HW:
1654 return insert_hw_breakpoint(addr);
1655 break;
1656 case GDB_WATCHPOINT_READ:
1657 case GDB_WATCHPOINT_WRITE:
1658 case GDB_WATCHPOINT_ACCESS:
1659 return insert_hw_watchpoint(addr, len, type);
1660 default:
1661 return -ENOSYS;
1662 }
1663 }
1664
1665 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1666 {
1667 switch (type) {
1668 case GDB_BREAKPOINT_HW:
1669 return delete_hw_breakpoint(addr);
1670 case GDB_WATCHPOINT_READ:
1671 case GDB_WATCHPOINT_WRITE:
1672 case GDB_WATCHPOINT_ACCESS:
1673 return delete_hw_watchpoint(addr, len, type);
1674 default:
1675 return -ENOSYS;
1676 }
1677 }
1678
1679 void kvm_arch_remove_all_hw_breakpoints(void)
1680 {
1681 if (cur_hw_wps > 0) {
1682 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
1683 }
1684 if (cur_hw_bps > 0) {
1685 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
1686 }
1687 }
1688
1689 static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
1690 const char *name)
1691 {
1692 int err;
1693
1694 err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
1695 if (err != 0) {
1696 error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
1697 return false;
1698 }
1699
1700 err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
1701 if (err != 0) {
1702 error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
1703 return false;
1704 }
1705
1706 return true;
1707 }
1708
1709 void kvm_arm_pmu_init(ARMCPU *cpu)
1710 {
1711 struct kvm_device_attr attr = {
1712 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1713 .attr = KVM_ARM_VCPU_PMU_V3_INIT,
1714 };
1715
1716 if (!cpu->has_pmu) {
1717 return;
1718 }
1719 if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1720 error_report("failed to init PMU");
1721 abort();
1722 }
1723 }
1724
1725 void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
1726 {
1727 struct kvm_device_attr attr = {
1728 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1729 .addr = (intptr_t)&irq,
1730 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
1731 };
1732
1733 if (!cpu->has_pmu) {
1734 return;
1735 }
1736 if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1737 error_report("failed to set irq for PMU");
1738 abort();
1739 }
1740 }
1741
1742 void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
1743 {
1744 struct kvm_device_attr attr = {
1745 .group = KVM_ARM_VCPU_PVTIME_CTRL,
1746 .attr = KVM_ARM_VCPU_PVTIME_IPA,
1747 .addr = (uint64_t)&ipa,
1748 };
1749
1750 if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
1751 return;
1752 }
1753 if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
1754 error_report("failed to init PVTIME IPA");
1755 abort();
1756 }
1757 }
1758
1759 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
1760 {
1761 bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
1762
1763 if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
1764 if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1765 cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
1766 } else {
1767 cpu->kvm_steal_time = ON_OFF_AUTO_ON;
1768 }
1769 } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
1770 if (!has_steal_time) {
1771 error_setg(errp, "'kvm-steal-time' cannot be enabled "
1772 "on this host");
1773 return;
1774 } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1775 /*
1776 * DEN0057A chapter 2 says "This specification only covers
1777 * systems in which the Execution state of the hypervisor
1778 * as well as EL1 of virtual machines is AArch64.". And,
1779 * to ensure that, the smc/hvc calls are only specified as
1780 * smc64/hvc64.
1781 */
1782 error_setg(errp, "'kvm-steal-time' cannot be enabled "
1783 "for AArch32 guests");
1784 return;
1785 }
1786 }
1787 }
1788
1789 bool kvm_arm_aarch32_supported(void)
1790 {
1791 return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
1792 }
1793
1794 bool kvm_arm_sve_supported(void)
1795 {
1796 return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
1797 }
1798
1799 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
1800
1801 uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
1802 {
1803 /* Only call this function if kvm_arm_sve_supported() returns true. */
1804 static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
1805 static bool probed;
1806 uint32_t vq = 0;
1807 int i;
1808
1809 /*
1810 * KVM ensures all host CPUs support the same set of vector lengths.
1811 * So we only need to create the scratch VCPUs once and then cache
1812 * the results.
1813 */
1814 if (!probed) {
1815 struct kvm_vcpu_init init = {
1816 .target = -1,
1817 .features[0] = (1 << KVM_ARM_VCPU_SVE),
1818 };
1819 struct kvm_one_reg reg = {
1820 .id = KVM_REG_ARM64_SVE_VLS,
1821 .addr = (uint64_t)&vls[0],
1822 };
1823 int fdarray[3], ret;
1824
1825 probed = true;
1826
1827 if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
1828 error_report("failed to create scratch VCPU with SVE enabled");
1829 abort();
1830 }
1831 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
1832 kvm_arm_destroy_scratch_host_vcpu(fdarray);
1833 if (ret) {
1834 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
1835 strerror(errno));
1836 abort();
1837 }
1838
1839 for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
1840 if (vls[i]) {
1841 vq = 64 - clz64(vls[i]) + i * 64;
1842 break;
1843 }
1844 }
1845 if (vq > ARM_MAX_VQ) {
1846 warn_report("KVM supports vector lengths larger than "
1847 "QEMU can enable");
1848 vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1849 }
1850 }
1851
1852 return vls[0];
1853 }
1854
1855 static int kvm_arm_sve_set_vls(ARMCPU *cpu)
1856 {
1857 uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
1858
1859 assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
1860
1861 return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
1862 }
1863
1864 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
1865
1866 int kvm_arch_init_vcpu(CPUState *cs)
1867 {
1868 int ret;
1869 uint64_t mpidr;
1870 ARMCPU *cpu = ARM_CPU(cs);
1871 CPUARMState *env = &cpu->env;
1872 uint64_t psciver;
1873
1874 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
1875 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
1876 error_report("KVM is not supported for this guest CPU type");
1877 return -EINVAL;
1878 }
1879
1880 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
1881
1882 /* Determine init features for this CPU */
1883 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
1884 if (cs->start_powered_off) {
1885 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
1886 }
1887 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
1888 cpu->psci_version = QEMU_PSCI_VERSION_0_2;
1889 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
1890 }
1891 if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1892 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
1893 }
1894 if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
1895 cpu->has_pmu = false;
1896 }
1897 if (cpu->has_pmu) {
1898 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
1899 } else {
1900 env->features &= ~(1ULL << ARM_FEATURE_PMU);
1901 }
1902 if (cpu_isar_feature(aa64_sve, cpu)) {
1903 assert(kvm_arm_sve_supported());
1904 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
1905 }
1906 if (cpu_isar_feature(aa64_pauth, cpu)) {
1907 cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1908 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
1909 }
1910
1911 /* Do KVM_ARM_VCPU_INIT ioctl */
1912 ret = kvm_arm_vcpu_init(cpu);
1913 if (ret) {
1914 return ret;
1915 }
1916
1917 if (cpu_isar_feature(aa64_sve, cpu)) {
1918 ret = kvm_arm_sve_set_vls(cpu);
1919 if (ret) {
1920 return ret;
1921 }
1922 ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
1923 if (ret) {
1924 return ret;
1925 }
1926 }
1927
1928 /*
1929 * KVM reports the exact PSCI version it is implementing via a
1930 * special sysreg. If it is present, use its contents to determine
1931 * what to report to the guest in the dtb (it is the PSCI version,
1932 * in the same 15-bits major 16-bits minor format that PSCI_VERSION
1933 * returns).
1934 */
1935 if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
1936 cpu->psci_version = psciver;
1937 }
1938
1939 /*
1940 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
1941 * Currently KVM has its own idea about MPIDR assignment, so we
1942 * override our defaults with what we get from KVM.
1943 */
1944 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
1945 if (ret) {
1946 return ret;
1947 }
1948 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
1949
1950 return kvm_arm_init_cpreg_list(cpu);
1951 }
1952
1953 int kvm_arch_destroy_vcpu(CPUState *cs)
1954 {
1955 return 0;
1956 }
1957
1958 /* Callers must hold the iothread mutex lock */
1959 static void kvm_inject_arm_sea(CPUState *c)
1960 {
1961 ARMCPU *cpu = ARM_CPU(c);
1962 CPUARMState *env = &cpu->env;
1963 uint32_t esr;
1964 bool same_el;
1965
1966 c->exception_index = EXCP_DATA_ABORT;
1967 env->exception.target_el = 1;
1968
1969 /*
1970 * Set the DFSC to synchronous external abort and set FnV to not valid,
1971 * this will tell guest the FAR_ELx is UNKNOWN for this abort.
1972 */
1973 same_el = arm_current_el(env) == env->exception.target_el;
1974 esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
1975
1976 env->exception.syndrome = esr;
1977
1978 arm_cpu_do_interrupt(c);
1979 }
1980
1981 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1982 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1983
1984 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1985 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1986
1987 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1988 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1989
1990 static int kvm_arch_put_fpsimd(CPUState *cs)
1991 {
1992 CPUARMState *env = &ARM_CPU(cs)->env;
1993 int i, ret;
1994
1995 for (i = 0; i < 32; i++) {
1996 uint64_t *q = aa64_vfp_qreg(env, i);
1997 #if HOST_BIG_ENDIAN
1998 uint64_t fp_val[2] = { q[1], q[0] };
1999 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
2000 fp_val);
2001 #else
2002 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2003 #endif
2004 if (ret) {
2005 return ret;
2006 }
2007 }
2008
2009 return 0;
2010 }
2011
2012 /*
2013 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2014 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2015 * code the slice index to zero for now as it's unlikely we'll need more than
2016 * one slice for quite some time.
2017 */
2018 static int kvm_arch_put_sve(CPUState *cs)
2019 {
2020 ARMCPU *cpu = ARM_CPU(cs);
2021 CPUARMState *env = &cpu->env;
2022 uint64_t tmp[ARM_MAX_VQ * 2];
2023 uint64_t *r;
2024 int n, ret;
2025
2026 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2027 r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
2028 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2029 if (ret) {
2030 return ret;
2031 }
2032 }
2033
2034 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2035 r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
2036 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2037 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2038 if (ret) {
2039 return ret;
2040 }
2041 }
2042
2043 r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
2044 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2045 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2046 if (ret) {
2047 return ret;
2048 }
2049
2050 return 0;
2051 }
2052
2053 int kvm_arch_put_registers(CPUState *cs, int level)
2054 {
2055 uint64_t val;
2056 uint32_t fpr;
2057 int i, ret;
2058 unsigned int el;
2059
2060 ARMCPU *cpu = ARM_CPU(cs);
2061 CPUARMState *env = &cpu->env;
2062
2063 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
2064 * AArch64 registers before pushing them out to 64-bit KVM.
2065 */
2066 if (!is_a64(env)) {
2067 aarch64_sync_32_to_64(env);
2068 }
2069
2070 for (i = 0; i < 31; i++) {
2071 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2072 &env->xregs[i]);
2073 if (ret) {
2074 return ret;
2075 }
2076 }
2077
2078 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2079 * QEMU side we keep the current SP in xregs[31] as well.
2080 */
2081 aarch64_save_sp(env, 1);
2082
2083 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2084 if (ret) {
2085 return ret;
2086 }
2087
2088 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2089 if (ret) {
2090 return ret;
2091 }
2092
2093 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
2094 if (is_a64(env)) {
2095 val = pstate_read(env);
2096 } else {
2097 val = cpsr_read(env);
2098 }
2099 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2100 if (ret) {
2101 return ret;
2102 }
2103
2104 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2105 if (ret) {
2106 return ret;
2107 }
2108
2109 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2110 if (ret) {
2111 return ret;
2112 }
2113
2114 /* Saved Program State Registers
2115 *
2116 * Before we restore from the banked_spsr[] array we need to
2117 * ensure that any modifications to env->spsr are correctly
2118 * reflected in the banks.
2119 */
2120 el = arm_current_el(env);
2121 if (el > 0 && !is_a64(env)) {
2122 i = bank_number(env->uncached_cpsr & CPSR_M);
2123 env->banked_spsr[i] = env->spsr;
2124 }
2125
2126 /* KVM 0-4 map to QEMU banks 1-5 */
2127 for (i = 0; i < KVM_NR_SPSR; i++) {
2128 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2129 &env->banked_spsr[i + 1]);
2130 if (ret) {
2131 return ret;
2132 }
2133 }
2134
2135 if (cpu_isar_feature(aa64_sve, cpu)) {
2136 ret = kvm_arch_put_sve(cs);
2137 } else {
2138 ret = kvm_arch_put_fpsimd(cs);
2139 }
2140 if (ret) {
2141 return ret;
2142 }
2143
2144 fpr = vfp_get_fpsr(env);
2145 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2146 if (ret) {
2147 return ret;
2148 }
2149
2150 fpr = vfp_get_fpcr(env);
2151 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2152 if (ret) {
2153 return ret;
2154 }
2155
2156 write_cpustate_to_list(cpu, true);
2157
2158 if (!write_list_to_kvmstate(cpu, level)) {
2159 return -EINVAL;
2160 }
2161
2162 /*
2163 * Setting VCPU events should be triggered after syncing the registers
2164 * to avoid overwriting potential changes made by KVM upon calling
2165 * KVM_SET_VCPU_EVENTS ioctl
2166 */
2167 ret = kvm_put_vcpu_events(cpu);
2168 if (ret) {
2169 return ret;
2170 }
2171
2172 return kvm_arm_sync_mpstate_to_kvm(cpu);
2173 }
2174
2175 static int kvm_arch_get_fpsimd(CPUState *cs)
2176 {
2177 CPUARMState *env = &ARM_CPU(cs)->env;
2178 int i, ret;
2179
2180 for (i = 0; i < 32; i++) {
2181 uint64_t *q = aa64_vfp_qreg(env, i);
2182 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2183 if (ret) {
2184 return ret;
2185 } else {
2186 #if HOST_BIG_ENDIAN
2187 uint64_t t;
2188 t = q[0], q[0] = q[1], q[1] = t;
2189 #endif
2190 }
2191 }
2192
2193 return 0;
2194 }
2195
2196 /*
2197 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2198 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2199 * code the slice index to zero for now as it's unlikely we'll need more than
2200 * one slice for quite some time.
2201 */
2202 static int kvm_arch_get_sve(CPUState *cs)
2203 {
2204 ARMCPU *cpu = ARM_CPU(cs);
2205 CPUARMState *env = &cpu->env;
2206 uint64_t *r;
2207 int n, ret;
2208
2209 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2210 r = &env->vfp.zregs[n].d[0];
2211 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2212 if (ret) {
2213 return ret;
2214 }
2215 sve_bswap64(r, r, cpu->sve_max_vq * 2);
2216 }
2217
2218 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2219 r = &env->vfp.pregs[n].p[0];
2220 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2221 if (ret) {
2222 return ret;
2223 }
2224 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2225 }
2226
2227 r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
2228 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2229 if (ret) {
2230 return ret;
2231 }
2232 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2233
2234 return 0;
2235 }
2236
2237 int kvm_arch_get_registers(CPUState *cs)
2238 {
2239 uint64_t val;
2240 unsigned int el;
2241 uint32_t fpr;
2242 int i, ret;
2243
2244 ARMCPU *cpu = ARM_CPU(cs);
2245 CPUARMState *env = &cpu->env;
2246
2247 for (i = 0; i < 31; i++) {
2248 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2249 &env->xregs[i]);
2250 if (ret) {
2251 return ret;
2252 }
2253 }
2254
2255 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2256 if (ret) {
2257 return ret;
2258 }
2259
2260 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2261 if (ret) {
2262 return ret;
2263 }
2264
2265 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2266 if (ret) {
2267 return ret;
2268 }
2269
2270 env->aarch64 = ((val & PSTATE_nRW) == 0);
2271 if (is_a64(env)) {
2272 pstate_write(env, val);
2273 } else {
2274 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
2275 }
2276
2277 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2278 * QEMU side we keep the current SP in xregs[31] as well.
2279 */
2280 aarch64_restore_sp(env, 1);
2281
2282 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2283 if (ret) {
2284 return ret;
2285 }
2286
2287 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
2288 * incoming AArch64 regs received from 64-bit KVM.
2289 * We must perform this after all of the registers have been acquired from
2290 * the kernel.
2291 */
2292 if (!is_a64(env)) {
2293 aarch64_sync_64_to_32(env);
2294 }
2295
2296 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2297 if (ret) {
2298 return ret;
2299 }
2300
2301 /* Fetch the SPSR registers
2302 *
2303 * KVM SPSRs 0-4 map to QEMU banks 1-5
2304 */
2305 for (i = 0; i < KVM_NR_SPSR; i++) {
2306 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2307 &env->banked_spsr[i + 1]);
2308 if (ret) {
2309 return ret;
2310 }
2311 }
2312
2313 el = arm_current_el(env);
2314 if (el > 0 && !is_a64(env)) {
2315 i = bank_number(env->uncached_cpsr & CPSR_M);
2316 env->spsr = env->banked_spsr[i];
2317 }
2318
2319 if (cpu_isar_feature(aa64_sve, cpu)) {
2320 ret = kvm_arch_get_sve(cs);
2321 } else {
2322 ret = kvm_arch_get_fpsimd(cs);
2323 }
2324 if (ret) {
2325 return ret;
2326 }
2327
2328 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2329 if (ret) {
2330 return ret;
2331 }
2332 vfp_set_fpsr(env, fpr);
2333
2334 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2335 if (ret) {
2336 return ret;
2337 }
2338 vfp_set_fpcr(env, fpr);
2339
2340 ret = kvm_get_vcpu_events(cpu);
2341 if (ret) {
2342 return ret;
2343 }
2344
2345 if (!write_kvmstate_to_list(cpu)) {
2346 return -EINVAL;
2347 }
2348 /* Note that it's OK to have registers which aren't in CPUState,
2349 * so we can ignore a failure return here.
2350 */
2351 write_list_to_cpustate(cpu);
2352
2353 ret = kvm_arm_sync_mpstate_to_qemu(cpu);
2354
2355 /* TODO: other registers */
2356 return ret;
2357 }
2358
2359 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
2360 {
2361 ram_addr_t ram_addr;
2362 hwaddr paddr;
2363
2364 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
2365
2366 if (acpi_ghes_present() && addr) {
2367 ram_addr = qemu_ram_addr_from_host(addr);
2368 if (ram_addr != RAM_ADDR_INVALID &&
2369 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
2370 kvm_hwpoison_page_add(ram_addr);
2371 /*
2372 * If this is a BUS_MCEERR_AR, we know we have been called
2373 * synchronously from the vCPU thread, so we can easily
2374 * synchronize the state and inject an error.
2375 *
2376 * TODO: we currently don't tell the guest at all about
2377 * BUS_MCEERR_AO. In that case we might either be being
2378 * called synchronously from the vCPU thread, or a bit
2379 * later from the main thread, so doing the injection of
2380 * the error would be more complicated.
2381 */
2382 if (code == BUS_MCEERR_AR) {
2383 kvm_cpu_synchronize_state(c);
2384 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
2385 kvm_inject_arm_sea(c);
2386 } else {
2387 error_report("failed to record the error");
2388 abort();
2389 }
2390 }
2391 return;
2392 }
2393 if (code == BUS_MCEERR_AO) {
2394 error_report("Hardware memory error at addr %p for memory used by "
2395 "QEMU itself instead of guest system!", addr);
2396 }
2397 }
2398
2399 if (code == BUS_MCEERR_AR) {
2400 error_report("Hardware memory error!");
2401 exit(1);
2402 }
2403 }
2404
2405 /* C6.6.29 BRK instruction */
2406 static const uint32_t brk_insn = 0xd4200000;
2407
2408 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2409 {
2410 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2411 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2412 return -EINVAL;
2413 }
2414 return 0;
2415 }
2416
2417 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2418 {
2419 static uint32_t brk;
2420
2421 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
2422 brk != brk_insn ||
2423 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2424 return -EINVAL;
2425 }
2426 return 0;
2427 }