]> git.proxmox.com Git - mirror_qemu.git/blob - tests/rtc-test.c
pseries: Enforce homogeneous threads-per-core
[mirror_qemu.git] / tests / rtc-test.c
1 /*
2 * QTest testcase for the MC146818 real-time clock
3 *
4 * Copyright IBM, Corp. 2012
5 *
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 *
12 */
13
14 #include "qemu/osdep.h"
15
16 #include "libqtest.h"
17 #include "hw/timer/mc146818rtc_regs.h"
18
19 static uint8_t base = 0x70;
20
21 static int bcd2dec(int value)
22 {
23 return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
24 }
25
26 static uint8_t cmos_read(uint8_t reg)
27 {
28 outb(base + 0, reg);
29 return inb(base + 1);
30 }
31
32 static void cmos_write(uint8_t reg, uint8_t val)
33 {
34 outb(base + 0, reg);
35 outb(base + 1, val);
36 }
37
38 static int tm_cmp(struct tm *lhs, struct tm *rhs)
39 {
40 time_t a, b;
41 struct tm d1, d2;
42
43 memcpy(&d1, lhs, sizeof(d1));
44 memcpy(&d2, rhs, sizeof(d2));
45
46 a = mktime(&d1);
47 b = mktime(&d2);
48
49 if (a < b) {
50 return -1;
51 } else if (a > b) {
52 return 1;
53 }
54
55 return 0;
56 }
57
58 #if 0
59 static void print_tm(struct tm *tm)
60 {
61 printf("%04d-%02d-%02d %02d:%02d:%02d\n",
62 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
63 tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
64 }
65 #endif
66
67 static void cmos_get_date_time(struct tm *date)
68 {
69 int base_year = 2000, hour_offset;
70 int sec, min, hour, mday, mon, year;
71 time_t ts;
72 struct tm dummy;
73
74 sec = cmos_read(RTC_SECONDS);
75 min = cmos_read(RTC_MINUTES);
76 hour = cmos_read(RTC_HOURS);
77 mday = cmos_read(RTC_DAY_OF_MONTH);
78 mon = cmos_read(RTC_MONTH);
79 year = cmos_read(RTC_YEAR);
80
81 if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
82 sec = bcd2dec(sec);
83 min = bcd2dec(min);
84 hour = bcd2dec(hour);
85 mday = bcd2dec(mday);
86 mon = bcd2dec(mon);
87 year = bcd2dec(year);
88 hour_offset = 80;
89 } else {
90 hour_offset = 0x80;
91 }
92
93 if ((cmos_read(0x0B) & REG_B_24H) == 0) {
94 if (hour >= hour_offset) {
95 hour -= hour_offset;
96 hour += 12;
97 }
98 }
99
100 ts = time(NULL);
101 localtime_r(&ts, &dummy);
102
103 date->tm_isdst = dummy.tm_isdst;
104 date->tm_sec = sec;
105 date->tm_min = min;
106 date->tm_hour = hour;
107 date->tm_mday = mday;
108 date->tm_mon = mon - 1;
109 date->tm_year = base_year + year - 1900;
110 #ifndef __sun__
111 date->tm_gmtoff = 0;
112 #endif
113
114 ts = mktime(date);
115 }
116
117 static void check_time(int wiggle)
118 {
119 struct tm start, date[4], end;
120 struct tm *datep;
121 time_t ts;
122
123 /*
124 * This check assumes a few things. First, we cannot guarantee that we get
125 * a consistent reading from the wall clock because we may hit an edge of
126 * the clock while reading. To work around this, we read four clock readings
127 * such that at least two of them should match. We need to assume that one
128 * reading is corrupt so we need four readings to ensure that we have at
129 * least two consecutive identical readings
130 *
131 * It's also possible that we'll cross an edge reading the host clock so
132 * simply check to make sure that the clock reading is within the period of
133 * when we expect it to be.
134 */
135
136 ts = time(NULL);
137 gmtime_r(&ts, &start);
138
139 cmos_get_date_time(&date[0]);
140 cmos_get_date_time(&date[1]);
141 cmos_get_date_time(&date[2]);
142 cmos_get_date_time(&date[3]);
143
144 ts = time(NULL);
145 gmtime_r(&ts, &end);
146
147 if (tm_cmp(&date[0], &date[1]) == 0) {
148 datep = &date[0];
149 } else if (tm_cmp(&date[1], &date[2]) == 0) {
150 datep = &date[1];
151 } else if (tm_cmp(&date[2], &date[3]) == 0) {
152 datep = &date[2];
153 } else {
154 g_assert_not_reached();
155 }
156
157 if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
158 long t, s;
159
160 start.tm_isdst = datep->tm_isdst;
161
162 t = (long)mktime(datep);
163 s = (long)mktime(&start);
164 if (t < s) {
165 g_test_message("RTC is %ld second(s) behind wall-clock\n", (s - t));
166 } else {
167 g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t - s));
168 }
169
170 g_assert_cmpint(ABS(t - s), <=, wiggle);
171 }
172 }
173
174 static int wiggle = 2;
175
176 static void set_year_20xx(void)
177 {
178 /* Set BCD mode */
179 cmos_write(RTC_REG_B, REG_B_24H);
180 cmos_write(RTC_REG_A, 0x76);
181 cmos_write(RTC_YEAR, 0x11);
182 cmos_write(RTC_CENTURY, 0x20);
183 cmos_write(RTC_MONTH, 0x02);
184 cmos_write(RTC_DAY_OF_MONTH, 0x02);
185 cmos_write(RTC_HOURS, 0x02);
186 cmos_write(RTC_MINUTES, 0x04);
187 cmos_write(RTC_SECONDS, 0x58);
188 cmos_write(RTC_REG_A, 0x26);
189
190 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
191 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
192 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
193 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
194 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
195 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
196 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
197
198 if (sizeof(time_t) == 4) {
199 return;
200 }
201
202 /* Set a date in 2080 to ensure there is no year-2038 overflow. */
203 cmos_write(RTC_REG_A, 0x76);
204 cmos_write(RTC_YEAR, 0x80);
205 cmos_write(RTC_REG_A, 0x26);
206
207 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
208 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
209 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
210 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
211 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
212 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
213 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
214
215 cmos_write(RTC_REG_A, 0x76);
216 cmos_write(RTC_YEAR, 0x11);
217 cmos_write(RTC_REG_A, 0x26);
218
219 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
220 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
221 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
222 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
223 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
224 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
225 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
226 }
227
228 static void set_year_1980(void)
229 {
230 /* Set BCD mode */
231 cmos_write(RTC_REG_B, REG_B_24H);
232 cmos_write(RTC_REG_A, 0x76);
233 cmos_write(RTC_YEAR, 0x80);
234 cmos_write(RTC_CENTURY, 0x19);
235 cmos_write(RTC_MONTH, 0x02);
236 cmos_write(RTC_DAY_OF_MONTH, 0x02);
237 cmos_write(RTC_HOURS, 0x02);
238 cmos_write(RTC_MINUTES, 0x04);
239 cmos_write(RTC_SECONDS, 0x58);
240 cmos_write(RTC_REG_A, 0x26);
241
242 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
243 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
244 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
245 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
246 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
247 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
248 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19);
249 }
250
251 static void bcd_check_time(void)
252 {
253 /* Set BCD mode */
254 cmos_write(RTC_REG_B, REG_B_24H);
255 check_time(wiggle);
256 }
257
258 static void dec_check_time(void)
259 {
260 /* Set DEC mode */
261 cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
262 check_time(wiggle);
263 }
264
265 static void alarm_time(void)
266 {
267 struct tm now;
268 time_t ts;
269 int i;
270
271 ts = time(NULL);
272 gmtime_r(&ts, &now);
273
274 /* set DEC mode */
275 cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
276
277 g_assert(!get_irq(RTC_ISA_IRQ));
278 cmos_read(RTC_REG_C);
279
280 now.tm_sec = (now.tm_sec + 2) % 60;
281 cmos_write(RTC_SECONDS_ALARM, now.tm_sec);
282 cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
283 cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
284 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);
285
286 for (i = 0; i < 2 + wiggle; i++) {
287 if (get_irq(RTC_ISA_IRQ)) {
288 break;
289 }
290
291 clock_step(1000000000);
292 }
293
294 g_assert(get_irq(RTC_ISA_IRQ));
295 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
296 g_assert(cmos_read(RTC_REG_C) == 0);
297 }
298
299 static void set_time(int mode, int h, int m, int s)
300 {
301 /* set BCD 12 hour mode */
302 cmos_write(RTC_REG_B, mode);
303
304 cmos_write(RTC_REG_A, 0x76);
305 cmos_write(RTC_HOURS, h);
306 cmos_write(RTC_MINUTES, m);
307 cmos_write(RTC_SECONDS, s);
308 cmos_write(RTC_REG_A, 0x26);
309 }
310
311 #define assert_time(h, m, s) \
312 do { \
313 g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
314 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
315 g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
316 } while(0)
317
318 static void basic_12h_bcd(void)
319 {
320 /* set BCD 12 hour mode */
321 set_time(0, 0x81, 0x59, 0x00);
322 clock_step(1000000000LL);
323 assert_time(0x81, 0x59, 0x01);
324 clock_step(59000000000LL);
325 assert_time(0x82, 0x00, 0x00);
326
327 /* test BCD wraparound */
328 set_time(0, 0x09, 0x59, 0x59);
329 clock_step(60000000000LL);
330 assert_time(0x10, 0x00, 0x59);
331
332 /* 12 AM -> 1 AM */
333 set_time(0, 0x12, 0x59, 0x59);
334 clock_step(1000000000LL);
335 assert_time(0x01, 0x00, 0x00);
336
337 /* 12 PM -> 1 PM */
338 set_time(0, 0x92, 0x59, 0x59);
339 clock_step(1000000000LL);
340 assert_time(0x81, 0x00, 0x00);
341
342 /* 11 AM -> 12 PM */
343 set_time(0, 0x11, 0x59, 0x59);
344 clock_step(1000000000LL);
345 assert_time(0x92, 0x00, 0x00);
346 /* TODO: test day wraparound */
347
348 /* 11 PM -> 12 AM */
349 set_time(0, 0x91, 0x59, 0x59);
350 clock_step(1000000000LL);
351 assert_time(0x12, 0x00, 0x00);
352 /* TODO: test day wraparound */
353 }
354
355 static void basic_12h_dec(void)
356 {
357 /* set decimal 12 hour mode */
358 set_time(REG_B_DM, 0x81, 59, 0);
359 clock_step(1000000000LL);
360 assert_time(0x81, 59, 1);
361 clock_step(59000000000LL);
362 assert_time(0x82, 0, 0);
363
364 /* 12 PM -> 1 PM */
365 set_time(REG_B_DM, 0x8c, 59, 59);
366 clock_step(1000000000LL);
367 assert_time(0x81, 0, 0);
368
369 /* 12 AM -> 1 AM */
370 set_time(REG_B_DM, 0x0c, 59, 59);
371 clock_step(1000000000LL);
372 assert_time(0x01, 0, 0);
373
374 /* 11 AM -> 12 PM */
375 set_time(REG_B_DM, 0x0b, 59, 59);
376 clock_step(1000000000LL);
377 assert_time(0x8c, 0, 0);
378
379 /* 11 PM -> 12 AM */
380 set_time(REG_B_DM, 0x8b, 59, 59);
381 clock_step(1000000000LL);
382 assert_time(0x0c, 0, 0);
383 /* TODO: test day wraparound */
384 }
385
386 static void basic_24h_bcd(void)
387 {
388 /* set BCD 24 hour mode */
389 set_time(REG_B_24H, 0x09, 0x59, 0x00);
390 clock_step(1000000000LL);
391 assert_time(0x09, 0x59, 0x01);
392 clock_step(59000000000LL);
393 assert_time(0x10, 0x00, 0x00);
394
395 /* test BCD wraparound */
396 set_time(REG_B_24H, 0x09, 0x59, 0x00);
397 clock_step(60000000000LL);
398 assert_time(0x10, 0x00, 0x00);
399
400 /* TODO: test day wraparound */
401 set_time(REG_B_24H, 0x23, 0x59, 0x00);
402 clock_step(60000000000LL);
403 assert_time(0x00, 0x00, 0x00);
404 }
405
406 static void basic_24h_dec(void)
407 {
408 /* set decimal 24 hour mode */
409 set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
410 clock_step(1000000000LL);
411 assert_time(9, 59, 1);
412 clock_step(59000000000LL);
413 assert_time(10, 0, 0);
414
415 /* test BCD wraparound */
416 set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
417 clock_step(60000000000LL);
418 assert_time(10, 0, 0);
419
420 /* TODO: test day wraparound */
421 set_time(REG_B_24H | REG_B_DM, 23, 59, 0);
422 clock_step(60000000000LL);
423 assert_time(0, 0, 0);
424 }
425
426 static void am_pm_alarm(void)
427 {
428 cmos_write(RTC_MINUTES_ALARM, 0xC0);
429 cmos_write(RTC_SECONDS_ALARM, 0xC0);
430
431 /* set BCD 12 hour mode */
432 cmos_write(RTC_REG_B, 0);
433
434 /* Set time and alarm hour. */
435 cmos_write(RTC_REG_A, 0x76);
436 cmos_write(RTC_HOURS_ALARM, 0x82);
437 cmos_write(RTC_HOURS, 0x81);
438 cmos_write(RTC_MINUTES, 0x59);
439 cmos_write(RTC_SECONDS, 0x00);
440 cmos_read(RTC_REG_C);
441 cmos_write(RTC_REG_A, 0x26);
442
443 /* Check that alarm triggers when AM/PM is set. */
444 clock_step(60000000000LL);
445 g_assert(cmos_read(RTC_HOURS) == 0x82);
446 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
447
448 /*
449 * Each of the following two tests takes over 60 seconds due to the time
450 * needed to report the PIT interrupts. Unfortunately, our PIT device
451 * model keeps counting even when GATE=0, so we cannot simply disable
452 * it in main().
453 */
454 if (g_test_quick()) {
455 return;
456 }
457
458 /* set DEC 12 hour mode */
459 cmos_write(RTC_REG_B, REG_B_DM);
460
461 /* Set time and alarm hour. */
462 cmos_write(RTC_REG_A, 0x76);
463 cmos_write(RTC_HOURS_ALARM, 0x82);
464 cmos_write(RTC_HOURS, 3);
465 cmos_write(RTC_MINUTES, 0);
466 cmos_write(RTC_SECONDS, 0);
467 cmos_read(RTC_REG_C);
468 cmos_write(RTC_REG_A, 0x26);
469
470 /* Check that alarm triggers. */
471 clock_step(3600 * 11 * 1000000000LL);
472 g_assert(cmos_read(RTC_HOURS) == 0x82);
473 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
474
475 /* Same as above, with inverted HOURS and HOURS_ALARM. */
476 cmos_write(RTC_REG_A, 0x76);
477 cmos_write(RTC_HOURS_ALARM, 2);
478 cmos_write(RTC_HOURS, 3);
479 cmos_write(RTC_MINUTES, 0);
480 cmos_write(RTC_SECONDS, 0);
481 cmos_read(RTC_REG_C);
482 cmos_write(RTC_REG_A, 0x26);
483
484 /* Check that alarm does not trigger if hours differ only by AM/PM. */
485 clock_step(3600 * 11 * 1000000000LL);
486 g_assert(cmos_read(RTC_HOURS) == 0x82);
487 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0);
488 }
489
490 /* success if no crash or abort */
491 static void fuzz_registers(void)
492 {
493 unsigned int i;
494
495 for (i = 0; i < 1000; i++) {
496 uint8_t reg, val;
497
498 reg = (uint8_t)g_test_rand_int_range(0, 16);
499 val = (uint8_t)g_test_rand_int_range(0, 256);
500
501 cmos_write(reg, val);
502 cmos_read(reg);
503 }
504 }
505
506 static void register_b_set_flag(void)
507 {
508 /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
509 cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET);
510
511 cmos_write(RTC_REG_A, 0x76);
512 cmos_write(RTC_YEAR, 0x11);
513 cmos_write(RTC_CENTURY, 0x20);
514 cmos_write(RTC_MONTH, 0x02);
515 cmos_write(RTC_DAY_OF_MONTH, 0x02);
516 cmos_write(RTC_HOURS, 0x02);
517 cmos_write(RTC_MINUTES, 0x04);
518 cmos_write(RTC_SECONDS, 0x58);
519 cmos_write(RTC_REG_A, 0x26);
520
521 /* Since SET flag is still enabled, these are equality checks. */
522 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
523 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
524 g_assert_cmpint(cmos_read(RTC_SECONDS), ==, 0x58);
525 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
526 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
527 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
528 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
529
530 /* Disable SET flag in Register B */
531 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET);
532
533 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
534 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
535
536 /* Since SET flag is disabled, this is an inequality check.
537 * We (reasonably) assume that no (sexagesimal) overflow occurs. */
538 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
539 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
540 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
541 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
542 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
543 }
544
545 int main(int argc, char **argv)
546 {
547 QTestState *s = NULL;
548 int ret;
549
550 g_test_init(&argc, &argv, NULL);
551
552 s = qtest_start("-rtc clock=vm");
553 qtest_irq_intercept_in(s, "ioapic");
554
555 qtest_add_func("/rtc/check-time/bcd", bcd_check_time);
556 qtest_add_func("/rtc/check-time/dec", dec_check_time);
557 qtest_add_func("/rtc/alarm/interrupt", alarm_time);
558 qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm);
559 qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec);
560 qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd);
561 qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec);
562 qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd);
563 qtest_add_func("/rtc/set-year/20xx", set_year_20xx);
564 qtest_add_func("/rtc/set-year/1980", set_year_1980);
565 qtest_add_func("/rtc/misc/register_b_set_flag", register_b_set_flag);
566 qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers);
567 ret = g_test_run();
568
569 if (s) {
570 qtest_quit(s);
571 }
572
573 return ret;
574 }