]> git.proxmox.com Git - mirror_spl-debian.git/blob - module/spl/spl-kmem.c
Emergency slab objects
[mirror_spl-debian.git] / module / spl / spl-kmem.c
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting Layer (SPL) Kmem Implementation.
25 \*****************************************************************************/
26
27 #include <sys/kmem.h>
28 #include <spl-debug.h>
29
30 #ifdef SS_DEBUG_SUBSYS
31 #undef SS_DEBUG_SUBSYS
32 #endif
33
34 #define SS_DEBUG_SUBSYS SS_KMEM
35
36 /*
37 * The minimum amount of memory measured in pages to be free at all
38 * times on the system. This is similar to Linux's zone->pages_min
39 * multiplied by the number of zones and is sized based on that.
40 */
41 pgcnt_t minfree = 0;
42 EXPORT_SYMBOL(minfree);
43
44 /*
45 * The desired amount of memory measured in pages to be free at all
46 * times on the system. This is similar to Linux's zone->pages_low
47 * multiplied by the number of zones and is sized based on that.
48 * Assuming all zones are being used roughly equally, when we drop
49 * below this threshold asynchronous page reclamation is triggered.
50 */
51 pgcnt_t desfree = 0;
52 EXPORT_SYMBOL(desfree);
53
54 /*
55 * When above this amount of memory measures in pages the system is
56 * determined to have enough free memory. This is similar to Linux's
57 * zone->pages_high multiplied by the number of zones and is sized based
58 * on that. Assuming all zones are being used roughly equally, when
59 * asynchronous page reclamation reaches this threshold it stops.
60 */
61 pgcnt_t lotsfree = 0;
62 EXPORT_SYMBOL(lotsfree);
63
64 /* Unused always 0 in this implementation */
65 pgcnt_t needfree = 0;
66 EXPORT_SYMBOL(needfree);
67
68 pgcnt_t swapfs_minfree = 0;
69 EXPORT_SYMBOL(swapfs_minfree);
70
71 pgcnt_t swapfs_reserve = 0;
72 EXPORT_SYMBOL(swapfs_reserve);
73
74 vmem_t *heap_arena = NULL;
75 EXPORT_SYMBOL(heap_arena);
76
77 vmem_t *zio_alloc_arena = NULL;
78 EXPORT_SYMBOL(zio_alloc_arena);
79
80 vmem_t *zio_arena = NULL;
81 EXPORT_SYMBOL(zio_arena);
82
83 #ifndef HAVE_GET_VMALLOC_INFO
84 get_vmalloc_info_t get_vmalloc_info_fn = SYMBOL_POISON;
85 EXPORT_SYMBOL(get_vmalloc_info_fn);
86 #endif /* HAVE_GET_VMALLOC_INFO */
87
88 #ifdef HAVE_PGDAT_HELPERS
89 # ifndef HAVE_FIRST_ONLINE_PGDAT
90 first_online_pgdat_t first_online_pgdat_fn = SYMBOL_POISON;
91 EXPORT_SYMBOL(first_online_pgdat_fn);
92 # endif /* HAVE_FIRST_ONLINE_PGDAT */
93
94 # ifndef HAVE_NEXT_ONLINE_PGDAT
95 next_online_pgdat_t next_online_pgdat_fn = SYMBOL_POISON;
96 EXPORT_SYMBOL(next_online_pgdat_fn);
97 # endif /* HAVE_NEXT_ONLINE_PGDAT */
98
99 # ifndef HAVE_NEXT_ZONE
100 next_zone_t next_zone_fn = SYMBOL_POISON;
101 EXPORT_SYMBOL(next_zone_fn);
102 # endif /* HAVE_NEXT_ZONE */
103
104 #else /* HAVE_PGDAT_HELPERS */
105
106 # ifndef HAVE_PGDAT_LIST
107 struct pglist_data *pgdat_list_addr = SYMBOL_POISON;
108 EXPORT_SYMBOL(pgdat_list_addr);
109 # endif /* HAVE_PGDAT_LIST */
110
111 #endif /* HAVE_PGDAT_HELPERS */
112
113 #ifdef NEED_GET_ZONE_COUNTS
114 # ifndef HAVE_GET_ZONE_COUNTS
115 get_zone_counts_t get_zone_counts_fn = SYMBOL_POISON;
116 EXPORT_SYMBOL(get_zone_counts_fn);
117 # endif /* HAVE_GET_ZONE_COUNTS */
118
119 unsigned long
120 spl_global_page_state(spl_zone_stat_item_t item)
121 {
122 unsigned long active;
123 unsigned long inactive;
124 unsigned long free;
125
126 get_zone_counts(&active, &inactive, &free);
127 switch (item) {
128 case SPL_NR_FREE_PAGES: return free;
129 case SPL_NR_INACTIVE: return inactive;
130 case SPL_NR_ACTIVE: return active;
131 default: ASSERT(0); /* Unsupported */
132 }
133
134 return 0;
135 }
136 #else
137 # ifdef HAVE_GLOBAL_PAGE_STATE
138 unsigned long
139 spl_global_page_state(spl_zone_stat_item_t item)
140 {
141 unsigned long pages = 0;
142
143 switch (item) {
144 case SPL_NR_FREE_PAGES:
145 # ifdef HAVE_ZONE_STAT_ITEM_NR_FREE_PAGES
146 pages += global_page_state(NR_FREE_PAGES);
147 # endif
148 break;
149 case SPL_NR_INACTIVE:
150 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE
151 pages += global_page_state(NR_INACTIVE);
152 # endif
153 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_ANON
154 pages += global_page_state(NR_INACTIVE_ANON);
155 # endif
156 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_FILE
157 pages += global_page_state(NR_INACTIVE_FILE);
158 # endif
159 break;
160 case SPL_NR_ACTIVE:
161 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE
162 pages += global_page_state(NR_ACTIVE);
163 # endif
164 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_ANON
165 pages += global_page_state(NR_ACTIVE_ANON);
166 # endif
167 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_FILE
168 pages += global_page_state(NR_ACTIVE_FILE);
169 # endif
170 break;
171 default:
172 ASSERT(0); /* Unsupported */
173 }
174
175 return pages;
176 }
177 # else
178 # error "Both global_page_state() and get_zone_counts() unavailable"
179 # endif /* HAVE_GLOBAL_PAGE_STATE */
180 #endif /* NEED_GET_ZONE_COUNTS */
181 EXPORT_SYMBOL(spl_global_page_state);
182
183 #if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK)
184 invalidate_inodes_t invalidate_inodes_fn = SYMBOL_POISON;
185 EXPORT_SYMBOL(invalidate_inodes_fn);
186 #endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */
187
188 #ifndef HAVE_SHRINK_DCACHE_MEMORY
189 shrink_dcache_memory_t shrink_dcache_memory_fn = SYMBOL_POISON;
190 EXPORT_SYMBOL(shrink_dcache_memory_fn);
191 #endif /* HAVE_SHRINK_DCACHE_MEMORY */
192
193 #ifndef HAVE_SHRINK_ICACHE_MEMORY
194 shrink_icache_memory_t shrink_icache_memory_fn = SYMBOL_POISON;
195 EXPORT_SYMBOL(shrink_icache_memory_fn);
196 #endif /* HAVE_SHRINK_ICACHE_MEMORY */
197
198 pgcnt_t
199 spl_kmem_availrmem(void)
200 {
201 /* The amount of easily available memory */
202 return (spl_global_page_state(SPL_NR_FREE_PAGES) +
203 spl_global_page_state(SPL_NR_INACTIVE));
204 }
205 EXPORT_SYMBOL(spl_kmem_availrmem);
206
207 size_t
208 vmem_size(vmem_t *vmp, int typemask)
209 {
210 struct vmalloc_info vmi;
211 size_t size = 0;
212
213 ASSERT(vmp == NULL);
214 ASSERT(typemask & (VMEM_ALLOC | VMEM_FREE));
215
216 get_vmalloc_info(&vmi);
217 if (typemask & VMEM_ALLOC)
218 size += (size_t)vmi.used;
219
220 if (typemask & VMEM_FREE)
221 size += (size_t)(VMALLOC_TOTAL - vmi.used);
222
223 return size;
224 }
225 EXPORT_SYMBOL(vmem_size);
226
227 int
228 kmem_debugging(void)
229 {
230 return 0;
231 }
232 EXPORT_SYMBOL(kmem_debugging);
233
234 #ifndef HAVE_KVASPRINTF
235 /* Simplified asprintf. */
236 char *kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
237 {
238 unsigned int len;
239 char *p;
240 va_list aq;
241
242 va_copy(aq, ap);
243 len = vsnprintf(NULL, 0, fmt, aq);
244 va_end(aq);
245
246 p = kmalloc(len+1, gfp);
247 if (!p)
248 return NULL;
249
250 vsnprintf(p, len+1, fmt, ap);
251
252 return p;
253 }
254 EXPORT_SYMBOL(kvasprintf);
255 #endif /* HAVE_KVASPRINTF */
256
257 char *
258 kmem_vasprintf(const char *fmt, va_list ap)
259 {
260 va_list aq;
261 char *ptr;
262
263 do {
264 va_copy(aq, ap);
265 ptr = kvasprintf(GFP_KERNEL, fmt, aq);
266 va_end(aq);
267 } while (ptr == NULL);
268
269 return ptr;
270 }
271 EXPORT_SYMBOL(kmem_vasprintf);
272
273 char *
274 kmem_asprintf(const char *fmt, ...)
275 {
276 va_list ap;
277 char *ptr;
278
279 do {
280 va_start(ap, fmt);
281 ptr = kvasprintf(GFP_KERNEL, fmt, ap);
282 va_end(ap);
283 } while (ptr == NULL);
284
285 return ptr;
286 }
287 EXPORT_SYMBOL(kmem_asprintf);
288
289 static char *
290 __strdup(const char *str, int flags)
291 {
292 char *ptr;
293 int n;
294
295 n = strlen(str);
296 ptr = kmalloc_nofail(n + 1, flags);
297 if (ptr)
298 memcpy(ptr, str, n + 1);
299
300 return ptr;
301 }
302
303 char *
304 strdup(const char *str)
305 {
306 return __strdup(str, KM_SLEEP);
307 }
308 EXPORT_SYMBOL(strdup);
309
310 void
311 strfree(char *str)
312 {
313 kfree(str);
314 }
315 EXPORT_SYMBOL(strfree);
316
317 /*
318 * Memory allocation interfaces and debugging for basic kmem_*
319 * and vmem_* style memory allocation. When DEBUG_KMEM is enabled
320 * the SPL will keep track of the total memory allocated, and
321 * report any memory leaked when the module is unloaded.
322 */
323 #ifdef DEBUG_KMEM
324
325 /* Shim layer memory accounting */
326 # ifdef HAVE_ATOMIC64_T
327 atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
328 unsigned long long kmem_alloc_max = 0;
329 atomic64_t vmem_alloc_used = ATOMIC64_INIT(0);
330 unsigned long long vmem_alloc_max = 0;
331 # else /* HAVE_ATOMIC64_T */
332 atomic_t kmem_alloc_used = ATOMIC_INIT(0);
333 unsigned long long kmem_alloc_max = 0;
334 atomic_t vmem_alloc_used = ATOMIC_INIT(0);
335 unsigned long long vmem_alloc_max = 0;
336 # endif /* HAVE_ATOMIC64_T */
337
338 EXPORT_SYMBOL(kmem_alloc_used);
339 EXPORT_SYMBOL(kmem_alloc_max);
340 EXPORT_SYMBOL(vmem_alloc_used);
341 EXPORT_SYMBOL(vmem_alloc_max);
342
343 /* When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
344 * but also the location of every alloc and free. When the SPL module is
345 * unloaded a list of all leaked addresses and where they were allocated
346 * will be dumped to the console. Enabling this feature has a significant
347 * impact on performance but it makes finding memory leaks straight forward.
348 *
349 * Not surprisingly with debugging enabled the xmem_locks are very highly
350 * contended particularly on xfree(). If we want to run with this detailed
351 * debugging enabled for anything other than debugging we need to minimize
352 * the contention by moving to a lock per xmem_table entry model.
353 */
354 # ifdef DEBUG_KMEM_TRACKING
355
356 # define KMEM_HASH_BITS 10
357 # define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
358
359 # define VMEM_HASH_BITS 10
360 # define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS)
361
362 typedef struct kmem_debug {
363 struct hlist_node kd_hlist; /* Hash node linkage */
364 struct list_head kd_list; /* List of all allocations */
365 void *kd_addr; /* Allocation pointer */
366 size_t kd_size; /* Allocation size */
367 const char *kd_func; /* Allocation function */
368 int kd_line; /* Allocation line */
369 } kmem_debug_t;
370
371 spinlock_t kmem_lock;
372 struct hlist_head kmem_table[KMEM_TABLE_SIZE];
373 struct list_head kmem_list;
374
375 spinlock_t vmem_lock;
376 struct hlist_head vmem_table[VMEM_TABLE_SIZE];
377 struct list_head vmem_list;
378
379 EXPORT_SYMBOL(kmem_lock);
380 EXPORT_SYMBOL(kmem_table);
381 EXPORT_SYMBOL(kmem_list);
382
383 EXPORT_SYMBOL(vmem_lock);
384 EXPORT_SYMBOL(vmem_table);
385 EXPORT_SYMBOL(vmem_list);
386
387 static kmem_debug_t *
388 kmem_del_init(spinlock_t *lock, struct hlist_head *table, int bits, const void *addr)
389 {
390 struct hlist_head *head;
391 struct hlist_node *node;
392 struct kmem_debug *p;
393 unsigned long flags;
394 SENTRY;
395
396 spin_lock_irqsave(lock, flags);
397
398 head = &table[hash_ptr(addr, bits)];
399 hlist_for_each_entry_rcu(p, node, head, kd_hlist) {
400 if (p->kd_addr == addr) {
401 hlist_del_init(&p->kd_hlist);
402 list_del_init(&p->kd_list);
403 spin_unlock_irqrestore(lock, flags);
404 return p;
405 }
406 }
407
408 spin_unlock_irqrestore(lock, flags);
409
410 SRETURN(NULL);
411 }
412
413 void *
414 kmem_alloc_track(size_t size, int flags, const char *func, int line,
415 int node_alloc, int node)
416 {
417 void *ptr = NULL;
418 kmem_debug_t *dptr;
419 unsigned long irq_flags;
420 SENTRY;
421
422 /* Function may be called with KM_NOSLEEP so failure is possible */
423 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
424 flags & ~__GFP_ZERO);
425
426 if (unlikely(dptr == NULL)) {
427 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
428 "kmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
429 sizeof(kmem_debug_t), flags, func, line,
430 kmem_alloc_used_read(), kmem_alloc_max);
431 } else {
432 /*
433 * Marked unlikely because we should never be doing this,
434 * we tolerate to up 2 pages but a single page is best.
435 */
436 if (unlikely((size > PAGE_SIZE*2) && !(flags & KM_NODEBUG))) {
437 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "large "
438 "kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
439 (unsigned long long) size, flags, func, line,
440 kmem_alloc_used_read(), kmem_alloc_max);
441 spl_debug_dumpstack(NULL);
442 }
443
444 /*
445 * We use __strdup() below because the string pointed to by
446 * __FUNCTION__ might not be available by the time we want
447 * to print it since the module might have been unloaded.
448 * This can only fail in the KM_NOSLEEP case.
449 */
450 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
451 if (unlikely(dptr->kd_func == NULL)) {
452 kfree(dptr);
453 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
454 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
455 func, line, kmem_alloc_used_read(), kmem_alloc_max);
456 goto out;
457 }
458
459 /* Use the correct allocator */
460 if (node_alloc) {
461 ASSERT(!(flags & __GFP_ZERO));
462 ptr = kmalloc_node_nofail(size, flags, node);
463 } else if (flags & __GFP_ZERO) {
464 ptr = kzalloc_nofail(size, flags & ~__GFP_ZERO);
465 } else {
466 ptr = kmalloc_nofail(size, flags);
467 }
468
469 if (unlikely(ptr == NULL)) {
470 kfree(dptr->kd_func);
471 kfree(dptr);
472 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "kmem_alloc"
473 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
474 (unsigned long long) size, flags, func, line,
475 kmem_alloc_used_read(), kmem_alloc_max);
476 goto out;
477 }
478
479 kmem_alloc_used_add(size);
480 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
481 kmem_alloc_max = kmem_alloc_used_read();
482
483 INIT_HLIST_NODE(&dptr->kd_hlist);
484 INIT_LIST_HEAD(&dptr->kd_list);
485
486 dptr->kd_addr = ptr;
487 dptr->kd_size = size;
488 dptr->kd_line = line;
489
490 spin_lock_irqsave(&kmem_lock, irq_flags);
491 hlist_add_head_rcu(&dptr->kd_hlist,
492 &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
493 list_add_tail(&dptr->kd_list, &kmem_list);
494 spin_unlock_irqrestore(&kmem_lock, irq_flags);
495
496 SDEBUG_LIMIT(SD_INFO,
497 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
498 (unsigned long long) size, flags, func, line, ptr,
499 kmem_alloc_used_read(), kmem_alloc_max);
500 }
501 out:
502 SRETURN(ptr);
503 }
504 EXPORT_SYMBOL(kmem_alloc_track);
505
506 void
507 kmem_free_track(const void *ptr, size_t size)
508 {
509 kmem_debug_t *dptr;
510 SENTRY;
511
512 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
513 (unsigned long long) size);
514
515 dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
516
517 /* Must exist in hash due to kmem_alloc() */
518 ASSERT(dptr);
519
520 /* Size must match */
521 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
522 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
523 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
524
525 kmem_alloc_used_sub(size);
526 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
527 (unsigned long long) size, kmem_alloc_used_read(),
528 kmem_alloc_max);
529
530 kfree(dptr->kd_func);
531
532 memset(dptr, 0x5a, sizeof(kmem_debug_t));
533 kfree(dptr);
534
535 memset(ptr, 0x5a, size);
536 kfree(ptr);
537
538 SEXIT;
539 }
540 EXPORT_SYMBOL(kmem_free_track);
541
542 void *
543 vmem_alloc_track(size_t size, int flags, const char *func, int line)
544 {
545 void *ptr = NULL;
546 kmem_debug_t *dptr;
547 unsigned long irq_flags;
548 SENTRY;
549
550 ASSERT(flags & KM_SLEEP);
551
552 /* Function may be called with KM_NOSLEEP so failure is possible */
553 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
554 flags & ~__GFP_ZERO);
555 if (unlikely(dptr == NULL)) {
556 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
557 "vmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
558 sizeof(kmem_debug_t), flags, func, line,
559 vmem_alloc_used_read(), vmem_alloc_max);
560 } else {
561 /*
562 * We use __strdup() below because the string pointed to by
563 * __FUNCTION__ might not be available by the time we want
564 * to print it, since the module might have been unloaded.
565 * This can never fail because we have already asserted
566 * that flags is KM_SLEEP.
567 */
568 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
569 if (unlikely(dptr->kd_func == NULL)) {
570 kfree(dptr);
571 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
572 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
573 func, line, vmem_alloc_used_read(), vmem_alloc_max);
574 goto out;
575 }
576
577 /* Use the correct allocator */
578 if (flags & __GFP_ZERO) {
579 ptr = vzalloc_nofail(size, flags & ~__GFP_ZERO);
580 } else {
581 ptr = vmalloc_nofail(size, flags);
582 }
583
584 if (unlikely(ptr == NULL)) {
585 kfree(dptr->kd_func);
586 kfree(dptr);
587 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "vmem_alloc"
588 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
589 (unsigned long long) size, flags, func, line,
590 vmem_alloc_used_read(), vmem_alloc_max);
591 goto out;
592 }
593
594 vmem_alloc_used_add(size);
595 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
596 vmem_alloc_max = vmem_alloc_used_read();
597
598 INIT_HLIST_NODE(&dptr->kd_hlist);
599 INIT_LIST_HEAD(&dptr->kd_list);
600
601 dptr->kd_addr = ptr;
602 dptr->kd_size = size;
603 dptr->kd_line = line;
604
605 spin_lock_irqsave(&vmem_lock, irq_flags);
606 hlist_add_head_rcu(&dptr->kd_hlist,
607 &vmem_table[hash_ptr(ptr, VMEM_HASH_BITS)]);
608 list_add_tail(&dptr->kd_list, &vmem_list);
609 spin_unlock_irqrestore(&vmem_lock, irq_flags);
610
611 SDEBUG_LIMIT(SD_INFO,
612 "vmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
613 (unsigned long long) size, flags, func, line,
614 ptr, vmem_alloc_used_read(), vmem_alloc_max);
615 }
616 out:
617 SRETURN(ptr);
618 }
619 EXPORT_SYMBOL(vmem_alloc_track);
620
621 void
622 vmem_free_track(const void *ptr, size_t size)
623 {
624 kmem_debug_t *dptr;
625 SENTRY;
626
627 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
628 (unsigned long long) size);
629
630 dptr = kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);
631
632 /* Must exist in hash due to vmem_alloc() */
633 ASSERT(dptr);
634
635 /* Size must match */
636 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
637 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
638 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
639
640 vmem_alloc_used_sub(size);
641 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
642 (unsigned long long) size, vmem_alloc_used_read(),
643 vmem_alloc_max);
644
645 kfree(dptr->kd_func);
646
647 memset(dptr, 0x5a, sizeof(kmem_debug_t));
648 kfree(dptr);
649
650 memset(ptr, 0x5a, size);
651 vfree(ptr);
652
653 SEXIT;
654 }
655 EXPORT_SYMBOL(vmem_free_track);
656
657 # else /* DEBUG_KMEM_TRACKING */
658
659 void *
660 kmem_alloc_debug(size_t size, int flags, const char *func, int line,
661 int node_alloc, int node)
662 {
663 void *ptr;
664 SENTRY;
665
666 /*
667 * Marked unlikely because we should never be doing this,
668 * we tolerate to up 2 pages but a single page is best.
669 */
670 if (unlikely((size > PAGE_SIZE * 2) && !(flags & KM_NODEBUG))) {
671 SDEBUG(SD_CONSOLE | SD_WARNING,
672 "large kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
673 (unsigned long long) size, flags, func, line,
674 kmem_alloc_used_read(), kmem_alloc_max);
675 dump_stack();
676 }
677
678 /* Use the correct allocator */
679 if (node_alloc) {
680 ASSERT(!(flags & __GFP_ZERO));
681 ptr = kmalloc_node_nofail(size, flags, node);
682 } else if (flags & __GFP_ZERO) {
683 ptr = kzalloc_nofail(size, flags & (~__GFP_ZERO));
684 } else {
685 ptr = kmalloc_nofail(size, flags);
686 }
687
688 if (unlikely(ptr == NULL)) {
689 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
690 "kmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
691 (unsigned long long) size, flags, func, line,
692 kmem_alloc_used_read(), kmem_alloc_max);
693 } else {
694 kmem_alloc_used_add(size);
695 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
696 kmem_alloc_max = kmem_alloc_used_read();
697
698 SDEBUG_LIMIT(SD_INFO,
699 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
700 (unsigned long long) size, flags, func, line, ptr,
701 kmem_alloc_used_read(), kmem_alloc_max);
702 }
703
704 SRETURN(ptr);
705 }
706 EXPORT_SYMBOL(kmem_alloc_debug);
707
708 void
709 kmem_free_debug(const void *ptr, size_t size)
710 {
711 SENTRY;
712
713 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
714 (unsigned long long) size);
715
716 kmem_alloc_used_sub(size);
717 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
718 (unsigned long long) size, kmem_alloc_used_read(),
719 kmem_alloc_max);
720 kfree(ptr);
721
722 SEXIT;
723 }
724 EXPORT_SYMBOL(kmem_free_debug);
725
726 void *
727 vmem_alloc_debug(size_t size, int flags, const char *func, int line)
728 {
729 void *ptr;
730 SENTRY;
731
732 ASSERT(flags & KM_SLEEP);
733
734 /* Use the correct allocator */
735 if (flags & __GFP_ZERO) {
736 ptr = vzalloc_nofail(size, flags & (~__GFP_ZERO));
737 } else {
738 ptr = vmalloc_nofail(size, flags);
739 }
740
741 if (unlikely(ptr == NULL)) {
742 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
743 "vmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
744 (unsigned long long) size, flags, func, line,
745 vmem_alloc_used_read(), vmem_alloc_max);
746 } else {
747 vmem_alloc_used_add(size);
748 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
749 vmem_alloc_max = vmem_alloc_used_read();
750
751 SDEBUG_LIMIT(SD_INFO, "vmem_alloc(%llu, 0x%x) = %p "
752 "(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
753 vmem_alloc_used_read(), vmem_alloc_max);
754 }
755
756 SRETURN(ptr);
757 }
758 EXPORT_SYMBOL(vmem_alloc_debug);
759
760 void
761 vmem_free_debug(const void *ptr, size_t size)
762 {
763 SENTRY;
764
765 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
766 (unsigned long long) size);
767
768 vmem_alloc_used_sub(size);
769 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
770 (unsigned long long) size, vmem_alloc_used_read(),
771 vmem_alloc_max);
772 vfree(ptr);
773
774 SEXIT;
775 }
776 EXPORT_SYMBOL(vmem_free_debug);
777
778 # endif /* DEBUG_KMEM_TRACKING */
779 #endif /* DEBUG_KMEM */
780
781 /*
782 * Slab allocation interfaces
783 *
784 * While the Linux slab implementation was inspired by the Solaris
785 * implementation I cannot use it to emulate the Solaris APIs. I
786 * require two features which are not provided by the Linux slab.
787 *
788 * 1) Constructors AND destructors. Recent versions of the Linux
789 * kernel have removed support for destructors. This is a deal
790 * breaker for the SPL which contains particularly expensive
791 * initializers for mutex's, condition variables, etc. We also
792 * require a minimal level of cleanup for these data types unlike
793 * many Linux data type which do need to be explicitly destroyed.
794 *
795 * 2) Virtual address space backed slab. Callers of the Solaris slab
796 * expect it to work well for both small are very large allocations.
797 * Because of memory fragmentation the Linux slab which is backed
798 * by kmalloc'ed memory performs very badly when confronted with
799 * large numbers of large allocations. Basing the slab on the
800 * virtual address space removes the need for contiguous pages
801 * and greatly improve performance for large allocations.
802 *
803 * For these reasons, the SPL has its own slab implementation with
804 * the needed features. It is not as highly optimized as either the
805 * Solaris or Linux slabs, but it should get me most of what is
806 * needed until it can be optimized or obsoleted by another approach.
807 *
808 * One serious concern I do have about this method is the relatively
809 * small virtual address space on 32bit arches. This will seriously
810 * constrain the size of the slab caches and their performance.
811 *
812 * XXX: Improve the partial slab list by carefully maintaining a
813 * strict ordering of fullest to emptiest slabs based on
814 * the slab reference count. This guarantees the when freeing
815 * slabs back to the system we need only linearly traverse the
816 * last N slabs in the list to discover all the freeable slabs.
817 *
818 * XXX: NUMA awareness for optionally allocating memory close to a
819 * particular core. This can be advantageous if you know the slab
820 * object will be short lived and primarily accessed from one core.
821 *
822 * XXX: Slab coloring may also yield performance improvements and would
823 * be desirable to implement.
824 */
825
826 struct list_head spl_kmem_cache_list; /* List of caches */
827 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
828
829 static int spl_cache_flush(spl_kmem_cache_t *skc,
830 spl_kmem_magazine_t *skm, int flush);
831
832 SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
833 SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
834 spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
835
836 static void *
837 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
838 {
839 void *ptr;
840
841 ASSERT(ISP2(size));
842
843 if (skc->skc_flags & KMC_KMEM) {
844 ptr = (void *)__get_free_pages(flags, get_order(size));
845 } else {
846 #ifdef HAVE_PMD_ALLOC_WITH_MASK
847 ptr = __vmalloc(size, flags|__GFP_HIGHMEM, PAGE_KERNEL);
848 #else
849 /*
850 * As part of vmalloc() an __pte_alloc_kernel() allocation
851 * may occur. This internal allocation does not honor the
852 * gfp flags passed to vmalloc(). This means even when
853 * vmalloc(GFP_NOFS) is called it is possible synchronous
854 * reclaim will occur. This reclaim can trigger file IO
855 * which can result in a deadlock. This issue can be avoided
856 * by explicitly setting PF_MEMALLOC on the process to
857 * subvert synchronous reclaim. The following bug has
858 * been filed at kernel.org to track the issue.
859 *
860 * https://bugzilla.kernel.org/show_bug.cgi?id=30702
861 *
862 * NOTE: Only set PF_MEMALLOC if it's not already set, and
863 * then only clear it when we were the one who set it.
864 */
865 if (!(flags & __GFP_FS) && !(current->flags & PF_MEMALLOC)) {
866 current->flags |= PF_MEMALLOC;
867 ptr = __vmalloc(size, flags|__GFP_HIGHMEM, PAGE_KERNEL);
868 current->flags &= ~PF_MEMALLOC;
869 } else {
870 ptr = __vmalloc(size, flags|__GFP_HIGHMEM, PAGE_KERNEL);
871 }
872 #endif
873 }
874
875 /* Resulting allocated memory will be page aligned */
876 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
877
878 return ptr;
879 }
880
881 static void
882 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
883 {
884 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
885 ASSERT(ISP2(size));
886
887 /*
888 * The Linux direct reclaim path uses this out of band value to
889 * determine if forward progress is being made. Normally this is
890 * incremented by kmem_freepages() which is part of the various
891 * Linux slab implementations. However, since we are using none
892 * of that infrastructure we are responsible for incrementing it.
893 */
894 if (current->reclaim_state)
895 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
896
897 if (skc->skc_flags & KMC_KMEM)
898 free_pages((unsigned long)ptr, get_order(size));
899 else
900 vfree(ptr);
901 }
902
903 /*
904 * Required space for each aligned sks.
905 */
906 static inline uint32_t
907 spl_sks_size(spl_kmem_cache_t *skc)
908 {
909 return P2ROUNDUP_TYPED(sizeof(spl_kmem_slab_t),
910 skc->skc_obj_align, uint32_t);
911 }
912
913 /*
914 * Required space for each aligned object.
915 */
916 static inline uint32_t
917 spl_obj_size(spl_kmem_cache_t *skc)
918 {
919 uint32_t align = skc->skc_obj_align;
920
921 return P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
922 P2ROUNDUP_TYPED(sizeof(spl_kmem_obj_t), align, uint32_t);
923 }
924
925 /*
926 * Lookup the spl_kmem_object_t for an object given that object.
927 */
928 static inline spl_kmem_obj_t *
929 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
930 {
931 return obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
932 skc->skc_obj_align, uint32_t);
933 }
934
935 /*
936 * Required space for each offslab object taking in to account alignment
937 * restrictions and the power-of-two requirement of kv_alloc().
938 */
939 static inline uint32_t
940 spl_offslab_size(spl_kmem_cache_t *skc)
941 {
942 return 1UL << (highbit(spl_obj_size(skc)) + 1);
943 }
944
945 /*
946 * It's important that we pack the spl_kmem_obj_t structure and the
947 * actual objects in to one large address space to minimize the number
948 * of calls to the allocator. It is far better to do a few large
949 * allocations and then subdivide it ourselves. Now which allocator
950 * we use requires balancing a few trade offs.
951 *
952 * For small objects we use kmem_alloc() because as long as you are
953 * only requesting a small number of pages (ideally just one) its cheap.
954 * However, when you start requesting multiple pages with kmem_alloc()
955 * it gets increasingly expensive since it requires contiguous pages.
956 * For this reason we shift to vmem_alloc() for slabs of large objects
957 * which removes the need for contiguous pages. We do not use
958 * vmem_alloc() in all cases because there is significant locking
959 * overhead in __get_vm_area_node(). This function takes a single
960 * global lock when acquiring an available virtual address range which
961 * serializes all vmem_alloc()'s for all slab caches. Using slightly
962 * different allocation functions for small and large objects should
963 * give us the best of both worlds.
964 *
965 * KMC_ONSLAB KMC_OFFSLAB
966 *
967 * +------------------------+ +-----------------+
968 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
969 * | skc_obj_size <-+ | | +-----------------+ | |
970 * | spl_kmem_obj_t | | | |
971 * | skc_obj_size <---+ | +-----------------+ | |
972 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
973 * | ... v | | spl_kmem_obj_t | |
974 * +------------------------+ +-----------------+ v
975 */
976 static spl_kmem_slab_t *
977 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
978 {
979 spl_kmem_slab_t *sks;
980 spl_kmem_obj_t *sko, *n;
981 void *base, *obj;
982 uint32_t obj_size, offslab_size = 0;
983 int i, rc = 0;
984
985 base = kv_alloc(skc, skc->skc_slab_size, flags);
986 if (base == NULL)
987 SRETURN(NULL);
988
989 sks = (spl_kmem_slab_t *)base;
990 sks->sks_magic = SKS_MAGIC;
991 sks->sks_objs = skc->skc_slab_objs;
992 sks->sks_age = jiffies;
993 sks->sks_cache = skc;
994 INIT_LIST_HEAD(&sks->sks_list);
995 INIT_LIST_HEAD(&sks->sks_free_list);
996 sks->sks_ref = 0;
997 obj_size = spl_obj_size(skc);
998
999 if (skc->skc_flags & KMC_OFFSLAB)
1000 offslab_size = spl_offslab_size(skc);
1001
1002 for (i = 0; i < sks->sks_objs; i++) {
1003 if (skc->skc_flags & KMC_OFFSLAB) {
1004 obj = kv_alloc(skc, offslab_size, flags);
1005 if (!obj)
1006 SGOTO(out, rc = -ENOMEM);
1007 } else {
1008 obj = base + spl_sks_size(skc) + (i * obj_size);
1009 }
1010
1011 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1012 sko = spl_sko_from_obj(skc, obj);
1013 sko->sko_addr = obj;
1014 sko->sko_magic = SKO_MAGIC;
1015 sko->sko_slab = sks;
1016 INIT_LIST_HEAD(&sko->sko_list);
1017 list_add_tail(&sko->sko_list, &sks->sks_free_list);
1018 }
1019
1020 list_for_each_entry(sko, &sks->sks_free_list, sko_list)
1021 if (skc->skc_ctor)
1022 skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
1023 out:
1024 if (rc) {
1025 if (skc->skc_flags & KMC_OFFSLAB)
1026 list_for_each_entry_safe(sko, n, &sks->sks_free_list,
1027 sko_list)
1028 kv_free(skc, sko->sko_addr, offslab_size);
1029
1030 kv_free(skc, base, skc->skc_slab_size);
1031 sks = NULL;
1032 }
1033
1034 SRETURN(sks);
1035 }
1036
1037 /*
1038 * Remove a slab from complete or partial list, it must be called with
1039 * the 'skc->skc_lock' held but the actual free must be performed
1040 * outside the lock to prevent deadlocking on vmem addresses.
1041 */
1042 static void
1043 spl_slab_free(spl_kmem_slab_t *sks,
1044 struct list_head *sks_list, struct list_head *sko_list)
1045 {
1046 spl_kmem_cache_t *skc;
1047 SENTRY;
1048
1049 ASSERT(sks->sks_magic == SKS_MAGIC);
1050 ASSERT(sks->sks_ref == 0);
1051
1052 skc = sks->sks_cache;
1053 ASSERT(skc->skc_magic == SKC_MAGIC);
1054 ASSERT(spin_is_locked(&skc->skc_lock));
1055
1056 /*
1057 * Update slab/objects counters in the cache, then remove the
1058 * slab from the skc->skc_partial_list. Finally add the slab
1059 * and all its objects in to the private work lists where the
1060 * destructors will be called and the memory freed to the system.
1061 */
1062 skc->skc_obj_total -= sks->sks_objs;
1063 skc->skc_slab_total--;
1064 list_del(&sks->sks_list);
1065 list_add(&sks->sks_list, sks_list);
1066 list_splice_init(&sks->sks_free_list, sko_list);
1067
1068 SEXIT;
1069 }
1070
1071 /*
1072 * Traverses all the partial slabs attached to a cache and free those
1073 * which which are currently empty, and have not been touched for
1074 * skc_delay seconds to avoid thrashing. The count argument is
1075 * passed to optionally cap the number of slabs reclaimed, a count
1076 * of zero means try and reclaim everything. When flag is set we
1077 * always free an available slab regardless of age.
1078 */
1079 static void
1080 spl_slab_reclaim(spl_kmem_cache_t *skc, int count, int flag)
1081 {
1082 spl_kmem_slab_t *sks, *m;
1083 spl_kmem_obj_t *sko, *n;
1084 LIST_HEAD(sks_list);
1085 LIST_HEAD(sko_list);
1086 uint32_t size = 0;
1087 int i = 0;
1088 SENTRY;
1089
1090 /*
1091 * Move empty slabs and objects which have not been touched in
1092 * skc_delay seconds on to private lists to be freed outside
1093 * the spin lock. This delay time is important to avoid thrashing
1094 * however when flag is set the delay will not be used.
1095 */
1096 spin_lock(&skc->skc_lock);
1097 list_for_each_entry_safe_reverse(sks,m,&skc->skc_partial_list,sks_list){
1098 /*
1099 * All empty slabs are at the end of skc->skc_partial_list,
1100 * therefore once a non-empty slab is found we can stop
1101 * scanning. Additionally, stop when reaching the target
1102 * reclaim 'count' if a non-zero threshold is given.
1103 */
1104 if ((sks->sks_ref > 0) || (count && i >= count))
1105 break;
1106
1107 if (time_after(jiffies,sks->sks_age+skc->skc_delay*HZ)||flag) {
1108 spl_slab_free(sks, &sks_list, &sko_list);
1109 i++;
1110 }
1111 }
1112 spin_unlock(&skc->skc_lock);
1113
1114 /*
1115 * The following two loops ensure all the object destructors are
1116 * run, any offslab objects are freed, and the slabs themselves
1117 * are freed. This is all done outside the skc->skc_lock since
1118 * this allows the destructor to sleep, and allows us to perform
1119 * a conditional reschedule when a freeing a large number of
1120 * objects and slabs back to the system.
1121 */
1122 if (skc->skc_flags & KMC_OFFSLAB)
1123 size = spl_offslab_size(skc);
1124
1125 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
1126 ASSERT(sko->sko_magic == SKO_MAGIC);
1127
1128 if (skc->skc_dtor)
1129 skc->skc_dtor(sko->sko_addr, skc->skc_private);
1130
1131 if (skc->skc_flags & KMC_OFFSLAB)
1132 kv_free(skc, sko->sko_addr, size);
1133
1134 cond_resched();
1135 }
1136
1137 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
1138 ASSERT(sks->sks_magic == SKS_MAGIC);
1139 kv_free(skc, sks, skc->skc_slab_size);
1140 cond_resched();
1141 }
1142
1143 SEXIT;
1144 }
1145
1146 /*
1147 * Allocate a single emergency object for use by the caller.
1148 */
1149 static int
1150 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
1151 {
1152 spl_kmem_emergency_t *ske;
1153 int empty;
1154 SENTRY;
1155
1156 /* Last chance use a partial slab if one now exists */
1157 spin_lock(&skc->skc_lock);
1158 empty = list_empty(&skc->skc_partial_list);
1159 spin_unlock(&skc->skc_lock);
1160 if (!empty)
1161 SRETURN(-EEXIST);
1162
1163 ske = kmalloc(sizeof(*ske), flags);
1164 if (ske == NULL)
1165 SRETURN(-ENOMEM);
1166
1167 ske->ske_obj = kmalloc(skc->skc_obj_size, flags);
1168 if (ske->ske_obj == NULL) {
1169 kfree(ske);
1170 SRETURN(-ENOMEM);
1171 }
1172
1173 if (skc->skc_ctor)
1174 skc->skc_ctor(ske->ske_obj, skc->skc_private, flags);
1175
1176 spin_lock(&skc->skc_lock);
1177 skc->skc_obj_total++;
1178 skc->skc_obj_emergency++;
1179 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
1180 skc->skc_obj_emergency_max = skc->skc_obj_emergency;
1181
1182 list_add(&ske->ske_list, &skc->skc_emergency_list);
1183 spin_unlock(&skc->skc_lock);
1184
1185 *obj = ske->ske_obj;
1186
1187 SRETURN(0);
1188 }
1189
1190 /*
1191 * Free the passed object if it is an emergency object or a normal slab
1192 * object. Currently this is done by walking what should be a short list of
1193 * emergency objects. If this proves to be too inefficient we can replace
1194 * the simple list with a hash.
1195 */
1196 static int
1197 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
1198 {
1199 spl_kmem_emergency_t *m, *n, *ske = NULL;
1200 SENTRY;
1201
1202 spin_lock(&skc->skc_lock);
1203 list_for_each_entry_safe(m, n, &skc->skc_emergency_list, ske_list) {
1204 if (m->ske_obj == obj) {
1205 list_del(&m->ske_list);
1206 skc->skc_obj_emergency--;
1207 skc->skc_obj_total--;
1208 ske = m;
1209 break;
1210 }
1211 }
1212 spin_unlock(&skc->skc_lock);
1213
1214 if (ske == NULL)
1215 SRETURN(-ENOENT);
1216
1217 if (skc->skc_dtor)
1218 skc->skc_dtor(ske->ske_obj, skc->skc_private);
1219
1220 kfree(ske->ske_obj);
1221 kfree(ske);
1222
1223 SRETURN(0);
1224 }
1225
1226 /*
1227 * Called regularly on all caches to age objects out of the magazines
1228 * which have not been access in skc->skc_delay seconds. This prevents
1229 * idle magazines from holding memory which might be better used by
1230 * other caches or parts of the system. The delay is present to
1231 * prevent thrashing the magazine.
1232 */
1233 static void
1234 spl_magazine_age(void *data)
1235 {
1236 spl_kmem_magazine_t *skm =
1237 spl_get_work_data(data, spl_kmem_magazine_t, skm_work.work);
1238 spl_kmem_cache_t *skc = skm->skm_cache;
1239
1240 ASSERT(skm->skm_magic == SKM_MAGIC);
1241 ASSERT(skc->skc_magic == SKC_MAGIC);
1242 ASSERT(skc->skc_mag[skm->skm_cpu] == skm);
1243
1244 if (skm->skm_avail > 0 &&
1245 time_after(jiffies, skm->skm_age + skc->skc_delay * HZ))
1246 (void)spl_cache_flush(skc, skm, skm->skm_refill);
1247
1248 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
1249 schedule_delayed_work_on(skm->skm_cpu, &skm->skm_work,
1250 skc->skc_delay / 3 * HZ);
1251 }
1252
1253 /*
1254 * Called regularly to keep a downward pressure on the size of idle
1255 * magazines and to release free slabs from the cache. This function
1256 * never calls the registered reclaim function, that only occurs
1257 * under memory pressure or with a direct call to spl_kmem_reap().
1258 */
1259 static void
1260 spl_cache_age(void *data)
1261 {
1262 spl_kmem_cache_t *skc =
1263 spl_get_work_data(data, spl_kmem_cache_t, skc_work.work);
1264
1265 ASSERT(skc->skc_magic == SKC_MAGIC);
1266 spl_slab_reclaim(skc, skc->skc_reap, 0);
1267
1268 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
1269 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
1270 }
1271
1272 /*
1273 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
1274 * When on-slab we want to target SPL_KMEM_CACHE_OBJ_PER_SLAB. However,
1275 * for very small objects we may end up with more than this so as not
1276 * to waste space in the minimal allocation of a single page. Also for
1277 * very large objects we may use as few as SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN,
1278 * lower than this and we will fail.
1279 */
1280 static int
1281 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
1282 {
1283 uint32_t sks_size, obj_size, max_size;
1284
1285 if (skc->skc_flags & KMC_OFFSLAB) {
1286 *objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;
1287 *size = sizeof(spl_kmem_slab_t);
1288 } else {
1289 sks_size = spl_sks_size(skc);
1290 obj_size = spl_obj_size(skc);
1291
1292 if (skc->skc_flags & KMC_KMEM)
1293 max_size = ((uint32_t)1 << (MAX_ORDER-3)) * PAGE_SIZE;
1294 else
1295 max_size = (32 * 1024 * 1024);
1296
1297 /* Power of two sized slab */
1298 for (*size = PAGE_SIZE; *size <= max_size; *size *= 2) {
1299 *objs = (*size - sks_size) / obj_size;
1300 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB)
1301 SRETURN(0);
1302 }
1303
1304 /*
1305 * Unable to satisfy target objects per slab, fall back to
1306 * allocating a maximally sized slab and assuming it can
1307 * contain the minimum objects count use it. If not fail.
1308 */
1309 *size = max_size;
1310 *objs = (*size - sks_size) / obj_size;
1311 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN)
1312 SRETURN(0);
1313 }
1314
1315 SRETURN(-ENOSPC);
1316 }
1317
1318 /*
1319 * Make a guess at reasonable per-cpu magazine size based on the size of
1320 * each object and the cost of caching N of them in each magazine. Long
1321 * term this should really adapt based on an observed usage heuristic.
1322 */
1323 static int
1324 spl_magazine_size(spl_kmem_cache_t *skc)
1325 {
1326 uint32_t obj_size = spl_obj_size(skc);
1327 int size;
1328 SENTRY;
1329
1330 /* Per-magazine sizes below assume a 4Kib page size */
1331 if (obj_size > (PAGE_SIZE * 256))
1332 size = 4; /* Minimum 4Mib per-magazine */
1333 else if (obj_size > (PAGE_SIZE * 32))
1334 size = 16; /* Minimum 2Mib per-magazine */
1335 else if (obj_size > (PAGE_SIZE))
1336 size = 64; /* Minimum 256Kib per-magazine */
1337 else if (obj_size > (PAGE_SIZE / 4))
1338 size = 128; /* Minimum 128Kib per-magazine */
1339 else
1340 size = 256;
1341
1342 SRETURN(size);
1343 }
1344
1345 /*
1346 * Allocate a per-cpu magazine to associate with a specific core.
1347 */
1348 static spl_kmem_magazine_t *
1349 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
1350 {
1351 spl_kmem_magazine_t *skm;
1352 int size = sizeof(spl_kmem_magazine_t) +
1353 sizeof(void *) * skc->skc_mag_size;
1354 SENTRY;
1355
1356 skm = kmem_alloc_node(size, KM_SLEEP, cpu_to_node(cpu));
1357 if (skm) {
1358 skm->skm_magic = SKM_MAGIC;
1359 skm->skm_avail = 0;
1360 skm->skm_size = skc->skc_mag_size;
1361 skm->skm_refill = skc->skc_mag_refill;
1362 skm->skm_cache = skc;
1363 spl_init_delayed_work(&skm->skm_work, spl_magazine_age, skm);
1364 skm->skm_age = jiffies;
1365 skm->skm_cpu = cpu;
1366 }
1367
1368 SRETURN(skm);
1369 }
1370
1371 /*
1372 * Free a per-cpu magazine associated with a specific core.
1373 */
1374 static void
1375 spl_magazine_free(spl_kmem_magazine_t *skm)
1376 {
1377 int size = sizeof(spl_kmem_magazine_t) +
1378 sizeof(void *) * skm->skm_size;
1379
1380 SENTRY;
1381 ASSERT(skm->skm_magic == SKM_MAGIC);
1382 ASSERT(skm->skm_avail == 0);
1383
1384 kmem_free(skm, size);
1385 SEXIT;
1386 }
1387
1388 /*
1389 * Create all pre-cpu magazines of reasonable sizes.
1390 */
1391 static int
1392 spl_magazine_create(spl_kmem_cache_t *skc)
1393 {
1394 int i;
1395 SENTRY;
1396
1397 skc->skc_mag_size = spl_magazine_size(skc);
1398 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
1399
1400 for_each_online_cpu(i) {
1401 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
1402 if (!skc->skc_mag[i]) {
1403 for (i--; i >= 0; i--)
1404 spl_magazine_free(skc->skc_mag[i]);
1405
1406 SRETURN(-ENOMEM);
1407 }
1408 }
1409
1410 /* Only after everything is allocated schedule magazine work */
1411 for_each_online_cpu(i)
1412 schedule_delayed_work_on(i, &skc->skc_mag[i]->skm_work,
1413 skc->skc_delay / 3 * HZ);
1414
1415 SRETURN(0);
1416 }
1417
1418 /*
1419 * Destroy all pre-cpu magazines.
1420 */
1421 static void
1422 spl_magazine_destroy(spl_kmem_cache_t *skc)
1423 {
1424 spl_kmem_magazine_t *skm;
1425 int i;
1426 SENTRY;
1427
1428 for_each_online_cpu(i) {
1429 skm = skc->skc_mag[i];
1430 (void)spl_cache_flush(skc, skm, skm->skm_avail);
1431 spl_magazine_free(skm);
1432 }
1433
1434 SEXIT;
1435 }
1436
1437 /*
1438 * Create a object cache based on the following arguments:
1439 * name cache name
1440 * size cache object size
1441 * align cache object alignment
1442 * ctor cache object constructor
1443 * dtor cache object destructor
1444 * reclaim cache object reclaim
1445 * priv cache private data for ctor/dtor/reclaim
1446 * vmp unused must be NULL
1447 * flags
1448 * KMC_NOTOUCH Disable cache object aging (unsupported)
1449 * KMC_NODEBUG Disable debugging (unsupported)
1450 * KMC_NOMAGAZINE Disable magazine (unsupported)
1451 * KMC_NOHASH Disable hashing (unsupported)
1452 * KMC_QCACHE Disable qcache (unsupported)
1453 * KMC_KMEM Force kmem backed cache
1454 * KMC_VMEM Force vmem backed cache
1455 * KMC_OFFSLAB Locate objects off the slab
1456 */
1457 spl_kmem_cache_t *
1458 spl_kmem_cache_create(char *name, size_t size, size_t align,
1459 spl_kmem_ctor_t ctor,
1460 spl_kmem_dtor_t dtor,
1461 spl_kmem_reclaim_t reclaim,
1462 void *priv, void *vmp, int flags)
1463 {
1464 spl_kmem_cache_t *skc;
1465 int rc, kmem_flags = KM_SLEEP;
1466 SENTRY;
1467
1468 ASSERTF(!(flags & KMC_NOMAGAZINE), "Bad KMC_NOMAGAZINE (%x)\n", flags);
1469 ASSERTF(!(flags & KMC_NOHASH), "Bad KMC_NOHASH (%x)\n", flags);
1470 ASSERTF(!(flags & KMC_QCACHE), "Bad KMC_QCACHE (%x)\n", flags);
1471 ASSERT(vmp == NULL);
1472
1473 /* We may be called when there is a non-zero preempt_count or
1474 * interrupts are disabled is which case we must not sleep.
1475 */
1476 if (current_thread_info()->preempt_count || irqs_disabled())
1477 kmem_flags = KM_NOSLEEP;
1478
1479 /* Allocate memory for a new cache an initialize it. Unfortunately,
1480 * this usually ends up being a large allocation of ~32k because
1481 * we need to allocate enough memory for the worst case number of
1482 * cpus in the magazine, skc_mag[NR_CPUS]. Because of this we
1483 * explicitly pass KM_NODEBUG to suppress the kmem warning */
1484 skc = (spl_kmem_cache_t *)kmem_zalloc(sizeof(*skc),
1485 kmem_flags | KM_NODEBUG);
1486 if (skc == NULL)
1487 SRETURN(NULL);
1488
1489 skc->skc_magic = SKC_MAGIC;
1490 skc->skc_name_size = strlen(name) + 1;
1491 skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, kmem_flags);
1492 if (skc->skc_name == NULL) {
1493 kmem_free(skc, sizeof(*skc));
1494 SRETURN(NULL);
1495 }
1496 strncpy(skc->skc_name, name, skc->skc_name_size);
1497
1498 skc->skc_ctor = ctor;
1499 skc->skc_dtor = dtor;
1500 skc->skc_reclaim = reclaim;
1501 skc->skc_private = priv;
1502 skc->skc_vmp = vmp;
1503 skc->skc_flags = flags;
1504 skc->skc_obj_size = size;
1505 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
1506 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
1507 skc->skc_reap = SPL_KMEM_CACHE_REAP;
1508 atomic_set(&skc->skc_ref, 0);
1509
1510 INIT_LIST_HEAD(&skc->skc_list);
1511 INIT_LIST_HEAD(&skc->skc_complete_list);
1512 INIT_LIST_HEAD(&skc->skc_partial_list);
1513 INIT_LIST_HEAD(&skc->skc_emergency_list);
1514 spin_lock_init(&skc->skc_lock);
1515 init_waitqueue_head(&skc->skc_waitq);
1516 skc->skc_slab_fail = 0;
1517 skc->skc_slab_create = 0;
1518 skc->skc_slab_destroy = 0;
1519 skc->skc_slab_total = 0;
1520 skc->skc_slab_alloc = 0;
1521 skc->skc_slab_max = 0;
1522 skc->skc_obj_total = 0;
1523 skc->skc_obj_alloc = 0;
1524 skc->skc_obj_max = 0;
1525 skc->skc_obj_emergency = 0;
1526 skc->skc_obj_emergency_max = 0;
1527
1528 if (align) {
1529 VERIFY(ISP2(align));
1530 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); /* Min alignment */
1531 VERIFY3U(align, <=, PAGE_SIZE); /* Max alignment */
1532 skc->skc_obj_align = align;
1533 }
1534
1535 /* If none passed select a cache type based on object size */
1536 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM))) {
1537 if (spl_obj_size(skc) < (PAGE_SIZE / 8))
1538 skc->skc_flags |= KMC_KMEM;
1539 else
1540 skc->skc_flags |= KMC_VMEM;
1541 }
1542
1543 rc = spl_slab_size(skc, &skc->skc_slab_objs, &skc->skc_slab_size);
1544 if (rc)
1545 SGOTO(out, rc);
1546
1547 rc = spl_magazine_create(skc);
1548 if (rc)
1549 SGOTO(out, rc);
1550
1551 spl_init_delayed_work(&skc->skc_work, spl_cache_age, skc);
1552 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
1553
1554 down_write(&spl_kmem_cache_sem);
1555 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
1556 up_write(&spl_kmem_cache_sem);
1557
1558 SRETURN(skc);
1559 out:
1560 kmem_free(skc->skc_name, skc->skc_name_size);
1561 kmem_free(skc, sizeof(*skc));
1562 SRETURN(NULL);
1563 }
1564 EXPORT_SYMBOL(spl_kmem_cache_create);
1565
1566 /*
1567 * Register a move callback to for cache defragmentation.
1568 * XXX: Unimplemented but harmless to stub out for now.
1569 */
1570 void
1571 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
1572 kmem_cbrc_t (move)(void *, void *, size_t, void *))
1573 {
1574 ASSERT(move != NULL);
1575 }
1576 EXPORT_SYMBOL(spl_kmem_cache_set_move);
1577
1578 /*
1579 * Destroy a cache and all objects associated with the cache.
1580 */
1581 void
1582 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
1583 {
1584 DECLARE_WAIT_QUEUE_HEAD(wq);
1585 int i;
1586 SENTRY;
1587
1588 ASSERT(skc->skc_magic == SKC_MAGIC);
1589
1590 down_write(&spl_kmem_cache_sem);
1591 list_del_init(&skc->skc_list);
1592 up_write(&spl_kmem_cache_sem);
1593
1594 /* Cancel any and wait for any pending delayed work */
1595 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1596 cancel_delayed_work_sync(&skc->skc_work);
1597 for_each_online_cpu(i)
1598 cancel_delayed_work_sync(&skc->skc_mag[i]->skm_work);
1599
1600 flush_scheduled_work();
1601
1602 /* Wait until all current callers complete, this is mainly
1603 * to catch the case where a low memory situation triggers a
1604 * cache reaping action which races with this destroy. */
1605 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1606
1607 spl_magazine_destroy(skc);
1608 spl_slab_reclaim(skc, 0, 1);
1609 spin_lock(&skc->skc_lock);
1610
1611 /* Validate there are no objects in use and free all the
1612 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */
1613 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1614 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1615 ASSERT3U(skc->skc_slab_total, ==, 0);
1616 ASSERT3U(skc->skc_obj_total, ==, 0);
1617 ASSERT3U(skc->skc_obj_emergency, ==, 0);
1618 ASSERT(list_empty(&skc->skc_complete_list));
1619 ASSERT(list_empty(&skc->skc_emergency_list));
1620
1621 kmem_free(skc->skc_name, skc->skc_name_size);
1622 spin_unlock(&skc->skc_lock);
1623
1624 kmem_free(skc, sizeof(*skc));
1625
1626 SEXIT;
1627 }
1628 EXPORT_SYMBOL(spl_kmem_cache_destroy);
1629
1630 /*
1631 * Allocate an object from a slab attached to the cache. This is used to
1632 * repopulate the per-cpu magazine caches in batches when they run low.
1633 */
1634 static void *
1635 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
1636 {
1637 spl_kmem_obj_t *sko;
1638
1639 ASSERT(skc->skc_magic == SKC_MAGIC);
1640 ASSERT(sks->sks_magic == SKS_MAGIC);
1641 ASSERT(spin_is_locked(&skc->skc_lock));
1642
1643 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
1644 ASSERT(sko->sko_magic == SKO_MAGIC);
1645 ASSERT(sko->sko_addr != NULL);
1646
1647 /* Remove from sks_free_list */
1648 list_del_init(&sko->sko_list);
1649
1650 sks->sks_age = jiffies;
1651 sks->sks_ref++;
1652 skc->skc_obj_alloc++;
1653
1654 /* Track max obj usage statistics */
1655 if (skc->skc_obj_alloc > skc->skc_obj_max)
1656 skc->skc_obj_max = skc->skc_obj_alloc;
1657
1658 /* Track max slab usage statistics */
1659 if (sks->sks_ref == 1) {
1660 skc->skc_slab_alloc++;
1661
1662 if (skc->skc_slab_alloc > skc->skc_slab_max)
1663 skc->skc_slab_max = skc->skc_slab_alloc;
1664 }
1665
1666 return sko->sko_addr;
1667 }
1668
1669 /*
1670 * Generic slab allocation function to run by the global work queues.
1671 * It is responsible for allocating a new slab, linking it in to the list
1672 * of partial slabs, and then waking any waiters.
1673 */
1674 static void
1675 spl_cache_grow_work(void *data)
1676 {
1677 spl_kmem_alloc_t *ska =
1678 spl_get_work_data(data, spl_kmem_alloc_t, ska_work.work);
1679 spl_kmem_cache_t *skc = ska->ska_cache;
1680 spl_kmem_slab_t *sks;
1681
1682 sks = spl_slab_alloc(skc, ska->ska_flags | __GFP_NORETRY | KM_NODEBUG);
1683 spin_lock(&skc->skc_lock);
1684 if (sks) {
1685 skc->skc_slab_total++;
1686 skc->skc_obj_total += sks->sks_objs;
1687 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1688 }
1689
1690 atomic_dec(&skc->skc_ref);
1691 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
1692 wake_up_all(&skc->skc_waitq);
1693 spin_unlock(&skc->skc_lock);
1694
1695 kfree(ska);
1696 }
1697
1698 /*
1699 * Returns non-zero when a new slab should be available.
1700 */
1701 static int
1702 spl_cache_grow_wait(spl_kmem_cache_t *skc)
1703 {
1704 return !test_bit(KMC_BIT_GROWING, &skc->skc_flags);
1705 }
1706
1707 /*
1708 * No available objects on any slabs, create a new slab.
1709 */
1710 static int
1711 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1712 {
1713 int remaining, rc = 0;
1714 SENTRY;
1715
1716 ASSERT(skc->skc_magic == SKC_MAGIC);
1717 might_sleep();
1718 *obj = NULL;
1719
1720 /*
1721 * Before allocating a new slab check if the slab is being reaped.
1722 * If it is there is a good chance we can wait until it finishes
1723 * and then use one of the newly freed but not aged-out slabs.
1724 */
1725 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags))
1726 SRETURN(-EAGAIN);
1727
1728 /*
1729 * This is handled by dispatching a work request to the global work
1730 * queue. This allows us to asynchronously allocate a new slab while
1731 * retaining the ability to safely fall back to a smaller synchronous
1732 * allocations to ensure forward progress is always maintained.
1733 */
1734 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1735 spl_kmem_alloc_t *ska;
1736
1737 ska = kmalloc(sizeof(*ska), flags);
1738 if (ska == NULL) {
1739 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
1740 wake_up_all(&skc->skc_waitq);
1741 SRETURN(-ENOMEM);
1742 }
1743
1744 atomic_inc(&skc->skc_ref);
1745 ska->ska_cache = skc;
1746 ska->ska_flags = flags;
1747 spl_init_delayed_work(&ska->ska_work, spl_cache_grow_work, ska);
1748 schedule_delayed_work(&ska->ska_work, 0);
1749 }
1750
1751 /*
1752 * Allow a single timer tick before falling back to synchronously
1753 * allocating the minimum about of memory required by the caller.
1754 */
1755 remaining = wait_event_timeout(skc->skc_waitq,
1756 spl_cache_grow_wait(skc), 1);
1757 if (remaining == 0)
1758 rc = spl_emergency_alloc(skc, flags, obj);
1759
1760 SRETURN(rc);
1761 }
1762
1763 /*
1764 * Refill a per-cpu magazine with objects from the slabs for this cache.
1765 * Ideally the magazine can be repopulated using existing objects which have
1766 * been released, however if we are unable to locate enough free objects new
1767 * slabs of objects will be created. On success NULL is returned, otherwise
1768 * the address of a single emergency object is returned for use by the caller.
1769 */
1770 static void *
1771 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1772 {
1773 spl_kmem_slab_t *sks;
1774 int count = 0, rc, refill;
1775 void *obj = NULL;
1776 SENTRY;
1777
1778 ASSERT(skc->skc_magic == SKC_MAGIC);
1779 ASSERT(skm->skm_magic == SKM_MAGIC);
1780
1781 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1782 spin_lock(&skc->skc_lock);
1783
1784 while (refill > 0) {
1785 /* No slabs available we may need to grow the cache */
1786 if (list_empty(&skc->skc_partial_list)) {
1787 spin_unlock(&skc->skc_lock);
1788
1789 local_irq_enable();
1790 rc = spl_cache_grow(skc, flags, &obj);
1791 local_irq_disable();
1792
1793 /* Emergency object for immediate use by caller */
1794 if (rc == 0 && obj != NULL)
1795 SRETURN(obj);
1796
1797 if (rc)
1798 SGOTO(out, rc);
1799
1800 /* Rescheduled to different CPU skm is not local */
1801 if (skm != skc->skc_mag[smp_processor_id()])
1802 SGOTO(out, rc);
1803
1804 /* Potentially rescheduled to the same CPU but
1805 * allocations may have occurred from this CPU while
1806 * we were sleeping so recalculate max refill. */
1807 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1808
1809 spin_lock(&skc->skc_lock);
1810 continue;
1811 }
1812
1813 /* Grab the next available slab */
1814 sks = list_entry((&skc->skc_partial_list)->next,
1815 spl_kmem_slab_t, sks_list);
1816 ASSERT(sks->sks_magic == SKS_MAGIC);
1817 ASSERT(sks->sks_ref < sks->sks_objs);
1818 ASSERT(!list_empty(&sks->sks_free_list));
1819
1820 /* Consume as many objects as needed to refill the requested
1821 * cache. We must also be careful not to overfill it. */
1822 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++count) {
1823 ASSERT(skm->skm_avail < skm->skm_size);
1824 ASSERT(count < skm->skm_size);
1825 skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks);
1826 }
1827
1828 /* Move slab to skc_complete_list when full */
1829 if (sks->sks_ref == sks->sks_objs) {
1830 list_del(&sks->sks_list);
1831 list_add(&sks->sks_list, &skc->skc_complete_list);
1832 }
1833 }
1834
1835 spin_unlock(&skc->skc_lock);
1836 out:
1837 SRETURN(NULL);
1838 }
1839
1840 /*
1841 * Release an object back to the slab from which it came.
1842 */
1843 static void
1844 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1845 {
1846 spl_kmem_slab_t *sks = NULL;
1847 spl_kmem_obj_t *sko = NULL;
1848 SENTRY;
1849
1850 ASSERT(skc->skc_magic == SKC_MAGIC);
1851 ASSERT(spin_is_locked(&skc->skc_lock));
1852
1853 sko = spl_sko_from_obj(skc, obj);
1854 ASSERT(sko->sko_magic == SKO_MAGIC);
1855 sks = sko->sko_slab;
1856 ASSERT(sks->sks_magic == SKS_MAGIC);
1857 ASSERT(sks->sks_cache == skc);
1858 list_add(&sko->sko_list, &sks->sks_free_list);
1859
1860 sks->sks_age = jiffies;
1861 sks->sks_ref--;
1862 skc->skc_obj_alloc--;
1863
1864 /* Move slab to skc_partial_list when no longer full. Slabs
1865 * are added to the head to keep the partial list is quasi-full
1866 * sorted order. Fuller at the head, emptier at the tail. */
1867 if (sks->sks_ref == (sks->sks_objs - 1)) {
1868 list_del(&sks->sks_list);
1869 list_add(&sks->sks_list, &skc->skc_partial_list);
1870 }
1871
1872 /* Move empty slabs to the end of the partial list so
1873 * they can be easily found and freed during reclamation. */
1874 if (sks->sks_ref == 0) {
1875 list_del(&sks->sks_list);
1876 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1877 skc->skc_slab_alloc--;
1878 }
1879
1880 SEXIT;
1881 }
1882
1883 /*
1884 * Release a batch of objects from a per-cpu magazine back to their
1885 * respective slabs. This occurs when we exceed the magazine size,
1886 * are under memory pressure, when the cache is idle, or during
1887 * cache cleanup. The flush argument contains the number of entries
1888 * to remove from the magazine.
1889 */
1890 static int
1891 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
1892 {
1893 int i, count = MIN(flush, skm->skm_avail);
1894 SENTRY;
1895
1896 ASSERT(skc->skc_magic == SKC_MAGIC);
1897 ASSERT(skm->skm_magic == SKM_MAGIC);
1898
1899 /*
1900 * XXX: Currently we simply return objects from the magazine to
1901 * the slabs in fifo order. The ideal thing to do from a memory
1902 * fragmentation standpoint is to cheaply determine the set of
1903 * objects in the magazine which will result in the largest
1904 * number of free slabs if released from the magazine.
1905 */
1906 spin_lock(&skc->skc_lock);
1907 for (i = 0; i < count; i++)
1908 spl_cache_shrink(skc, skm->skm_objs[i]);
1909
1910 skm->skm_avail -= count;
1911 memmove(skm->skm_objs, &(skm->skm_objs[count]),
1912 sizeof(void *) * skm->skm_avail);
1913
1914 spin_unlock(&skc->skc_lock);
1915
1916 SRETURN(count);
1917 }
1918
1919 /*
1920 * Allocate an object from the per-cpu magazine, or if the magazine
1921 * is empty directly allocate from a slab and repopulate the magazine.
1922 */
1923 void *
1924 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1925 {
1926 spl_kmem_magazine_t *skm;
1927 unsigned long irq_flags;
1928 void *obj = NULL;
1929 SENTRY;
1930
1931 ASSERT(skc->skc_magic == SKC_MAGIC);
1932 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1933 ASSERT(flags & KM_SLEEP);
1934 atomic_inc(&skc->skc_ref);
1935 local_irq_save(irq_flags);
1936
1937 restart:
1938 /* Safe to update per-cpu structure without lock, but
1939 * in the restart case we must be careful to reacquire
1940 * the local magazine since this may have changed
1941 * when we need to grow the cache. */
1942 skm = skc->skc_mag[smp_processor_id()];
1943 ASSERTF(skm->skm_magic == SKM_MAGIC, "%x != %x: %s/%p/%p %x/%x/%x\n",
1944 skm->skm_magic, SKM_MAGIC, skc->skc_name, skc, skm,
1945 skm->skm_size, skm->skm_refill, skm->skm_avail);
1946
1947 if (likely(skm->skm_avail)) {
1948 /* Object available in CPU cache, use it */
1949 obj = skm->skm_objs[--skm->skm_avail];
1950 skm->skm_age = jiffies;
1951 } else {
1952 obj = spl_cache_refill(skc, skm, flags);
1953 if (obj == NULL)
1954 SGOTO(restart, obj = NULL);
1955 }
1956
1957 local_irq_restore(irq_flags);
1958 ASSERT(obj);
1959 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1960
1961 /* Pre-emptively migrate object to CPU L1 cache */
1962 prefetchw(obj);
1963 atomic_dec(&skc->skc_ref);
1964
1965 SRETURN(obj);
1966 }
1967 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1968
1969 /*
1970 * Free an object back to the local per-cpu magazine, there is no
1971 * guarantee that this is the same magazine the object was originally
1972 * allocated from. We may need to flush entire from the magazine
1973 * back to the slabs to make space.
1974 */
1975 void
1976 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1977 {
1978 spl_kmem_magazine_t *skm;
1979 unsigned long flags;
1980 SENTRY;
1981
1982 ASSERT(skc->skc_magic == SKC_MAGIC);
1983 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1984 atomic_inc(&skc->skc_ref);
1985
1986 /*
1987 * Emergency objects are never part of the virtual address space
1988 * so if we get a virtual address we can optimize this check out.
1989 */
1990 if (!kmem_virt(obj) && !spl_emergency_free(skc, obj))
1991 SGOTO(out, 0);
1992
1993 local_irq_save(flags);
1994
1995 /* Safe to update per-cpu structure without lock, but
1996 * no remote memory allocation tracking is being performed
1997 * it is entirely possible to allocate an object from one
1998 * CPU cache and return it to another. */
1999 skm = skc->skc_mag[smp_processor_id()];
2000 ASSERT(skm->skm_magic == SKM_MAGIC);
2001
2002 /* Per-CPU cache full, flush it to make space */
2003 if (unlikely(skm->skm_avail >= skm->skm_size))
2004 (void)spl_cache_flush(skc, skm, skm->skm_refill);
2005
2006 /* Available space in cache, use it */
2007 skm->skm_objs[skm->skm_avail++] = obj;
2008
2009 local_irq_restore(flags);
2010 out:
2011 atomic_dec(&skc->skc_ref);
2012
2013 SEXIT;
2014 }
2015 EXPORT_SYMBOL(spl_kmem_cache_free);
2016
2017 /*
2018 * The generic shrinker function for all caches. Under Linux a shrinker
2019 * may not be tightly coupled with a slab cache. In fact Linux always
2020 * systematically tries calling all registered shrinker callbacks which
2021 * report that they contain unused objects. Because of this we only
2022 * register one shrinker function in the shim layer for all slab caches.
2023 * We always attempt to shrink all caches when this generic shrinker
2024 * is called. The shrinker should return the number of free objects
2025 * in the cache when called with nr_to_scan == 0 but not attempt to
2026 * free any objects. When nr_to_scan > 0 it is a request that nr_to_scan
2027 * objects should be freed, which differs from Solaris semantics.
2028 * Solaris semantics are to free all available objects which may (and
2029 * probably will) be more objects than the requested nr_to_scan.
2030 */
2031 static int
2032 __spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
2033 struct shrink_control *sc)
2034 {
2035 spl_kmem_cache_t *skc;
2036 int unused = 0;
2037
2038 down_read(&spl_kmem_cache_sem);
2039 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
2040 if (sc->nr_to_scan)
2041 spl_kmem_cache_reap_now(skc,
2042 MAX(sc->nr_to_scan >> fls64(skc->skc_slab_objs), 1));
2043
2044 /*
2045 * Presume everything alloc'ed in reclaimable, this ensures
2046 * we are called again with nr_to_scan > 0 so can try and
2047 * reclaim. The exact number is not important either so
2048 * we forgo taking this already highly contented lock.
2049 */
2050 unused += skc->skc_obj_alloc;
2051 }
2052 up_read(&spl_kmem_cache_sem);
2053
2054 return (unused * sysctl_vfs_cache_pressure) / 100;
2055 }
2056
2057 SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
2058
2059 /*
2060 * Call the registered reclaim function for a cache. Depending on how
2061 * many and which objects are released it may simply repopulate the
2062 * local magazine which will then need to age-out. Objects which cannot
2063 * fit in the magazine we will be released back to their slabs which will
2064 * also need to age out before being release. This is all just best
2065 * effort and we do not want to thrash creating and destroying slabs.
2066 */
2067 void
2068 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count)
2069 {
2070 SENTRY;
2071
2072 ASSERT(skc->skc_magic == SKC_MAGIC);
2073 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
2074
2075 /* Prevent concurrent cache reaping when contended */
2076 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
2077 SEXIT;
2078 return;
2079 }
2080
2081 atomic_inc(&skc->skc_ref);
2082
2083 /*
2084 * When a reclaim function is available it may be invoked repeatedly
2085 * until at least a single slab can be freed. This ensures that we
2086 * do free memory back to the system. This helps minimize the chance
2087 * of an OOM event when the bulk of memory is used by the slab.
2088 *
2089 * When free slabs are already available the reclaim callback will be
2090 * skipped. Additionally, if no forward progress is detected despite
2091 * a reclaim function the cache will be skipped to avoid deadlock.
2092 *
2093 * Longer term this would be the correct place to add the code which
2094 * repacks the slabs in order minimize fragmentation.
2095 */
2096 if (skc->skc_reclaim) {
2097 uint64_t objects = UINT64_MAX;
2098 int do_reclaim;
2099
2100 do {
2101 spin_lock(&skc->skc_lock);
2102 do_reclaim =
2103 (skc->skc_slab_total > 0) &&
2104 ((skc->skc_slab_total - skc->skc_slab_alloc) == 0) &&
2105 (skc->skc_obj_alloc < objects);
2106
2107 objects = skc->skc_obj_alloc;
2108 spin_unlock(&skc->skc_lock);
2109
2110 if (do_reclaim)
2111 skc->skc_reclaim(skc->skc_private);
2112
2113 } while (do_reclaim);
2114 }
2115
2116 /* Reclaim from the cache, ignoring it's age and delay. */
2117 spl_slab_reclaim(skc, count, 1);
2118 clear_bit(KMC_BIT_REAPING, &skc->skc_flags);
2119 atomic_dec(&skc->skc_ref);
2120
2121 SEXIT;
2122 }
2123 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
2124
2125 /*
2126 * Reap all free slabs from all registered caches.
2127 */
2128 void
2129 spl_kmem_reap(void)
2130 {
2131 struct shrink_control sc;
2132
2133 sc.nr_to_scan = KMC_REAP_CHUNK;
2134 sc.gfp_mask = GFP_KERNEL;
2135
2136 __spl_kmem_cache_generic_shrinker(NULL, &sc);
2137 }
2138 EXPORT_SYMBOL(spl_kmem_reap);
2139
2140 #if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
2141 static char *
2142 spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
2143 {
2144 int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
2145 int i, flag = 1;
2146
2147 ASSERT(str != NULL && len >= 17);
2148 memset(str, 0, len);
2149
2150 /* Check for a fully printable string, and while we are at
2151 * it place the printable characters in the passed buffer. */
2152 for (i = 0; i < size; i++) {
2153 str[i] = ((char *)(kd->kd_addr))[i];
2154 if (isprint(str[i])) {
2155 continue;
2156 } else {
2157 /* Minimum number of printable characters found
2158 * to make it worthwhile to print this as ascii. */
2159 if (i > min)
2160 break;
2161
2162 flag = 0;
2163 break;
2164 }
2165 }
2166
2167 if (!flag) {
2168 sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
2169 *((uint8_t *)kd->kd_addr),
2170 *((uint8_t *)kd->kd_addr + 2),
2171 *((uint8_t *)kd->kd_addr + 4),
2172 *((uint8_t *)kd->kd_addr + 6),
2173 *((uint8_t *)kd->kd_addr + 8),
2174 *((uint8_t *)kd->kd_addr + 10),
2175 *((uint8_t *)kd->kd_addr + 12),
2176 *((uint8_t *)kd->kd_addr + 14));
2177 }
2178
2179 return str;
2180 }
2181
2182 static int
2183 spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
2184 {
2185 int i;
2186 SENTRY;
2187
2188 spin_lock_init(lock);
2189 INIT_LIST_HEAD(list);
2190
2191 for (i = 0; i < size; i++)
2192 INIT_HLIST_HEAD(&kmem_table[i]);
2193
2194 SRETURN(0);
2195 }
2196
2197 static void
2198 spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
2199 {
2200 unsigned long flags;
2201 kmem_debug_t *kd;
2202 char str[17];
2203 SENTRY;
2204
2205 spin_lock_irqsave(lock, flags);
2206 if (!list_empty(list))
2207 printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
2208 "size", "data", "func", "line");
2209
2210 list_for_each_entry(kd, list, kd_list)
2211 printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
2212 (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
2213 kd->kd_func, kd->kd_line);
2214
2215 spin_unlock_irqrestore(lock, flags);
2216 SEXIT;
2217 }
2218 #else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2219 #define spl_kmem_init_tracking(list, lock, size)
2220 #define spl_kmem_fini_tracking(list, lock)
2221 #endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2222
2223 static void
2224 spl_kmem_init_globals(void)
2225 {
2226 struct zone *zone;
2227
2228 /* For now all zones are includes, it may be wise to restrict
2229 * this to normal and highmem zones if we see problems. */
2230 for_each_zone(zone) {
2231
2232 if (!populated_zone(zone))
2233 continue;
2234
2235 minfree += min_wmark_pages(zone);
2236 desfree += low_wmark_pages(zone);
2237 lotsfree += high_wmark_pages(zone);
2238 }
2239
2240 /* Solaris default values */
2241 swapfs_minfree = MAX(2*1024*1024 >> PAGE_SHIFT, physmem >> 3);
2242 swapfs_reserve = MIN(4*1024*1024 >> PAGE_SHIFT, physmem >> 4);
2243 }
2244
2245 /*
2246 * Called at module init when it is safe to use spl_kallsyms_lookup_name()
2247 */
2248 int
2249 spl_kmem_init_kallsyms_lookup(void)
2250 {
2251 #ifndef HAVE_GET_VMALLOC_INFO
2252 get_vmalloc_info_fn = (get_vmalloc_info_t)
2253 spl_kallsyms_lookup_name("get_vmalloc_info");
2254 if (!get_vmalloc_info_fn) {
2255 printk(KERN_ERR "Error: Unknown symbol get_vmalloc_info\n");
2256 return -EFAULT;
2257 }
2258 #endif /* HAVE_GET_VMALLOC_INFO */
2259
2260 #ifdef HAVE_PGDAT_HELPERS
2261 # ifndef HAVE_FIRST_ONLINE_PGDAT
2262 first_online_pgdat_fn = (first_online_pgdat_t)
2263 spl_kallsyms_lookup_name("first_online_pgdat");
2264 if (!first_online_pgdat_fn) {
2265 printk(KERN_ERR "Error: Unknown symbol first_online_pgdat\n");
2266 return -EFAULT;
2267 }
2268 # endif /* HAVE_FIRST_ONLINE_PGDAT */
2269
2270 # ifndef HAVE_NEXT_ONLINE_PGDAT
2271 next_online_pgdat_fn = (next_online_pgdat_t)
2272 spl_kallsyms_lookup_name("next_online_pgdat");
2273 if (!next_online_pgdat_fn) {
2274 printk(KERN_ERR "Error: Unknown symbol next_online_pgdat\n");
2275 return -EFAULT;
2276 }
2277 # endif /* HAVE_NEXT_ONLINE_PGDAT */
2278
2279 # ifndef HAVE_NEXT_ZONE
2280 next_zone_fn = (next_zone_t)
2281 spl_kallsyms_lookup_name("next_zone");
2282 if (!next_zone_fn) {
2283 printk(KERN_ERR "Error: Unknown symbol next_zone\n");
2284 return -EFAULT;
2285 }
2286 # endif /* HAVE_NEXT_ZONE */
2287
2288 #else /* HAVE_PGDAT_HELPERS */
2289
2290 # ifndef HAVE_PGDAT_LIST
2291 pgdat_list_addr = *(struct pglist_data **)
2292 spl_kallsyms_lookup_name("pgdat_list");
2293 if (!pgdat_list_addr) {
2294 printk(KERN_ERR "Error: Unknown symbol pgdat_list\n");
2295 return -EFAULT;
2296 }
2297 # endif /* HAVE_PGDAT_LIST */
2298 #endif /* HAVE_PGDAT_HELPERS */
2299
2300 #if defined(NEED_GET_ZONE_COUNTS) && !defined(HAVE_GET_ZONE_COUNTS)
2301 get_zone_counts_fn = (get_zone_counts_t)
2302 spl_kallsyms_lookup_name("get_zone_counts");
2303 if (!get_zone_counts_fn) {
2304 printk(KERN_ERR "Error: Unknown symbol get_zone_counts\n");
2305 return -EFAULT;
2306 }
2307 #endif /* NEED_GET_ZONE_COUNTS && !HAVE_GET_ZONE_COUNTS */
2308
2309 /*
2310 * It is now safe to initialize the global tunings which rely on
2311 * the use of the for_each_zone() macro. This macro in turns
2312 * depends on the *_pgdat symbols which are now available.
2313 */
2314 spl_kmem_init_globals();
2315
2316 #if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK)
2317 invalidate_inodes_fn = (invalidate_inodes_t)
2318 spl_kallsyms_lookup_name("invalidate_inodes");
2319 if (!invalidate_inodes_fn) {
2320 printk(KERN_ERR "Error: Unknown symbol invalidate_inodes\n");
2321 return -EFAULT;
2322 }
2323 #endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */
2324
2325 #ifndef HAVE_SHRINK_DCACHE_MEMORY
2326 /* When shrink_dcache_memory_fn == NULL support is disabled */
2327 shrink_dcache_memory_fn = (shrink_dcache_memory_t)
2328 spl_kallsyms_lookup_name("shrink_dcache_memory");
2329 #endif /* HAVE_SHRINK_DCACHE_MEMORY */
2330
2331 #ifndef HAVE_SHRINK_ICACHE_MEMORY
2332 /* When shrink_icache_memory_fn == NULL support is disabled */
2333 shrink_icache_memory_fn = (shrink_icache_memory_t)
2334 spl_kallsyms_lookup_name("shrink_icache_memory");
2335 #endif /* HAVE_SHRINK_ICACHE_MEMORY */
2336
2337 return 0;
2338 }
2339
2340 int
2341 spl_kmem_init(void)
2342 {
2343 int rc = 0;
2344 SENTRY;
2345
2346 init_rwsem(&spl_kmem_cache_sem);
2347 INIT_LIST_HEAD(&spl_kmem_cache_list);
2348
2349 spl_register_shrinker(&spl_kmem_cache_shrinker);
2350
2351 #ifdef DEBUG_KMEM
2352 kmem_alloc_used_set(0);
2353 vmem_alloc_used_set(0);
2354
2355 spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
2356 spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE);
2357 #endif
2358 SRETURN(rc);
2359 }
2360
2361 void
2362 spl_kmem_fini(void)
2363 {
2364 #ifdef DEBUG_KMEM
2365 /* Display all unreclaimed memory addresses, including the
2366 * allocation size and the first few bytes of what's located
2367 * at that address to aid in debugging. Performance is not
2368 * a serious concern here since it is module unload time. */
2369 if (kmem_alloc_used_read() != 0)
2370 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
2371 "kmem leaked %ld/%ld bytes\n",
2372 kmem_alloc_used_read(), kmem_alloc_max);
2373
2374
2375 if (vmem_alloc_used_read() != 0)
2376 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
2377 "vmem leaked %ld/%ld bytes\n",
2378 vmem_alloc_used_read(), vmem_alloc_max);
2379
2380 spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
2381 spl_kmem_fini_tracking(&vmem_list, &vmem_lock);
2382 #endif /* DEBUG_KMEM */
2383 SENTRY;
2384
2385 spl_unregister_shrinker(&spl_kmem_cache_shrinker);
2386
2387 SEXIT;
2388 }