]> git.proxmox.com Git - mirror_spl.git/blob - module/spl/spl-kmem-cache.c
Add support for recent kmem_cache_create_usercopy
[mirror_spl.git] / module / spl / spl-kmem-cache.c
1 /*
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://zfsonlinux.org/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include <sys/kmem.h>
26 #include <sys/kmem_cache.h>
27 #include <sys/taskq.h>
28 #include <sys/timer.h>
29 #include <sys/vmem.h>
30 #include <linux/slab.h>
31 #include <linux/swap.h>
32 #include <linux/mm_compat.h>
33 #include <linux/wait_compat.h>
34 #include <linux/prefetch.h>
35
36 /*
37 * Within the scope of spl-kmem.c file the kmem_cache_* definitions
38 * are removed to allow access to the real Linux slab allocator.
39 */
40 #undef kmem_cache_destroy
41 #undef kmem_cache_create
42 #undef kmem_cache_alloc
43 #undef kmem_cache_free
44
45
46 /*
47 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
48 * with smp_mb__{before,after}_atomic() because they were redundant. This is
49 * only used inside our SLAB allocator, so we implement an internal wrapper
50 * here to give us smp_mb__{before,after}_atomic() on older kernels.
51 */
52 #ifndef smp_mb__before_atomic
53 #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
54 #endif
55
56 #ifndef smp_mb__after_atomic
57 #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
58 #endif
59
60 /*
61 * Cache expiration was implemented because it was part of the default Solaris
62 * kmem_cache behavior. The idea is that per-cpu objects which haven't been
63 * accessed in several seconds should be returned to the cache. On the other
64 * hand Linux slabs never move objects back to the slabs unless there is
65 * memory pressure on the system. By default the Linux method is enabled
66 * because it has been shown to improve responsiveness on low memory systems.
67 * This policy may be changed by setting KMC_EXPIRE_AGE or KMC_EXPIRE_MEM.
68 */
69 unsigned int spl_kmem_cache_expire = KMC_EXPIRE_MEM;
70 EXPORT_SYMBOL(spl_kmem_cache_expire);
71 module_param(spl_kmem_cache_expire, uint, 0644);
72 MODULE_PARM_DESC(spl_kmem_cache_expire, "By age (0x1) or low memory (0x2)");
73
74 /*
75 * Cache magazines are an optimization designed to minimize the cost of
76 * allocating memory. They do this by keeping a per-cpu cache of recently
77 * freed objects, which can then be reallocated without taking a lock. This
78 * can improve performance on highly contended caches. However, because
79 * objects in magazines will prevent otherwise empty slabs from being
80 * immediately released this may not be ideal for low memory machines.
81 *
82 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
83 * magazine size. When this value is set to 0 the magazine size will be
84 * automatically determined based on the object size. Otherwise magazines
85 * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines
86 * may never be entirely disabled in this implementation.
87 */
88 unsigned int spl_kmem_cache_magazine_size = 0;
89 module_param(spl_kmem_cache_magazine_size, uint, 0444);
90 MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
91 "Default magazine size (2-256), set automatically (0)");
92
93 /*
94 * The default behavior is to report the number of objects remaining in the
95 * cache. This allows the Linux VM to repeatedly reclaim objects from the
96 * cache when memory is low satisfy other memory allocations. Alternately,
97 * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
98 * is reclaimed. This may increase the likelihood of out of memory events.
99 */
100 unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */;
101 module_param(spl_kmem_cache_reclaim, uint, 0644);
102 MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)");
103
104 unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
105 module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
106 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
107
108 unsigned int spl_kmem_cache_obj_per_slab_min = SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN;
109 module_param(spl_kmem_cache_obj_per_slab_min, uint, 0644);
110 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab_min,
111 "Minimal number of objects per slab");
112
113 unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
114 module_param(spl_kmem_cache_max_size, uint, 0644);
115 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
116
117 /*
118 * For small objects the Linux slab allocator should be used to make the most
119 * efficient use of the memory. However, large objects are not supported by
120 * the Linux slab and therefore the SPL implementation is preferred. A cutoff
121 * of 16K was determined to be optimal for architectures using 4K pages.
122 */
123 #if PAGE_SIZE == 4096
124 unsigned int spl_kmem_cache_slab_limit = 16384;
125 #else
126 unsigned int spl_kmem_cache_slab_limit = 0;
127 #endif
128 module_param(spl_kmem_cache_slab_limit, uint, 0644);
129 MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
130 "Objects less than N bytes use the Linux slab");
131
132 /*
133 * This value defaults to a threshold designed to avoid allocations which
134 * have been deemed costly by the kernel.
135 */
136 unsigned int spl_kmem_cache_kmem_limit =
137 ((1 << (PAGE_ALLOC_COSTLY_ORDER - 1)) * PAGE_SIZE) /
138 SPL_KMEM_CACHE_OBJ_PER_SLAB;
139 module_param(spl_kmem_cache_kmem_limit, uint, 0644);
140 MODULE_PARM_DESC(spl_kmem_cache_kmem_limit,
141 "Objects less than N bytes use the kmalloc");
142
143 /*
144 * The number of threads available to allocate new slabs for caches. This
145 * should not need to be tuned but it is available for performance analysis.
146 */
147 unsigned int spl_kmem_cache_kmem_threads = 4;
148 module_param(spl_kmem_cache_kmem_threads, uint, 0444);
149 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
150 "Number of spl_kmem_cache threads");
151
152 /*
153 * Slab allocation interfaces
154 *
155 * While the Linux slab implementation was inspired by the Solaris
156 * implementation I cannot use it to emulate the Solaris APIs. I
157 * require two features which are not provided by the Linux slab.
158 *
159 * 1) Constructors AND destructors. Recent versions of the Linux
160 * kernel have removed support for destructors. This is a deal
161 * breaker for the SPL which contains particularly expensive
162 * initializers for mutex's, condition variables, etc. We also
163 * require a minimal level of cleanup for these data types unlike
164 * many Linux data types which do need to be explicitly destroyed.
165 *
166 * 2) Virtual address space backed slab. Callers of the Solaris slab
167 * expect it to work well for both small are very large allocations.
168 * Because of memory fragmentation the Linux slab which is backed
169 * by kmalloc'ed memory performs very badly when confronted with
170 * large numbers of large allocations. Basing the slab on the
171 * virtual address space removes the need for contiguous pages
172 * and greatly improve performance for large allocations.
173 *
174 * For these reasons, the SPL has its own slab implementation with
175 * the needed features. It is not as highly optimized as either the
176 * Solaris or Linux slabs, but it should get me most of what is
177 * needed until it can be optimized or obsoleted by another approach.
178 *
179 * One serious concern I do have about this method is the relatively
180 * small virtual address space on 32bit arches. This will seriously
181 * constrain the size of the slab caches and their performance.
182 */
183
184 struct list_head spl_kmem_cache_list; /* List of caches */
185 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
186 taskq_t *spl_kmem_cache_taskq; /* Task queue for ageing / reclaim */
187
188 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
189
190 SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
191 SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
192 spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
193
194 static void *
195 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
196 {
197 gfp_t lflags = kmem_flags_convert(flags);
198 void *ptr;
199
200 if (skc->skc_flags & KMC_KMEM) {
201 ASSERT(ISP2(size));
202 ptr = (void *)__get_free_pages(lflags, get_order(size));
203 } else {
204 ptr = __vmalloc(size, lflags | __GFP_HIGHMEM, PAGE_KERNEL);
205 }
206
207 /* Resulting allocated memory will be page aligned */
208 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
209
210 return (ptr);
211 }
212
213 static void
214 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
215 {
216 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
217
218 /*
219 * The Linux direct reclaim path uses this out of band value to
220 * determine if forward progress is being made. Normally this is
221 * incremented by kmem_freepages() which is part of the various
222 * Linux slab implementations. However, since we are using none
223 * of that infrastructure we are responsible for incrementing it.
224 */
225 if (current->reclaim_state)
226 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
227
228 if (skc->skc_flags & KMC_KMEM) {
229 ASSERT(ISP2(size));
230 free_pages((unsigned long)ptr, get_order(size));
231 } else {
232 vfree(ptr);
233 }
234 }
235
236 /*
237 * Required space for each aligned sks.
238 */
239 static inline uint32_t
240 spl_sks_size(spl_kmem_cache_t *skc)
241 {
242 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
243 skc->skc_obj_align, uint32_t));
244 }
245
246 /*
247 * Required space for each aligned object.
248 */
249 static inline uint32_t
250 spl_obj_size(spl_kmem_cache_t *skc)
251 {
252 uint32_t align = skc->skc_obj_align;
253
254 return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
255 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
256 }
257
258 /*
259 * Lookup the spl_kmem_object_t for an object given that object.
260 */
261 static inline spl_kmem_obj_t *
262 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
263 {
264 return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
265 skc->skc_obj_align, uint32_t));
266 }
267
268 /*
269 * Required space for each offslab object taking in to account alignment
270 * restrictions and the power-of-two requirement of kv_alloc().
271 */
272 static inline uint32_t
273 spl_offslab_size(spl_kmem_cache_t *skc)
274 {
275 return (1UL << (fls64(spl_obj_size(skc)) + 1));
276 }
277
278 /*
279 * It's important that we pack the spl_kmem_obj_t structure and the
280 * actual objects in to one large address space to minimize the number
281 * of calls to the allocator. It is far better to do a few large
282 * allocations and then subdivide it ourselves. Now which allocator
283 * we use requires balancing a few trade offs.
284 *
285 * For small objects we use kmem_alloc() because as long as you are
286 * only requesting a small number of pages (ideally just one) its cheap.
287 * However, when you start requesting multiple pages with kmem_alloc()
288 * it gets increasingly expensive since it requires contiguous pages.
289 * For this reason we shift to vmem_alloc() for slabs of large objects
290 * which removes the need for contiguous pages. We do not use
291 * vmem_alloc() in all cases because there is significant locking
292 * overhead in __get_vm_area_node(). This function takes a single
293 * global lock when acquiring an available virtual address range which
294 * serializes all vmem_alloc()'s for all slab caches. Using slightly
295 * different allocation functions for small and large objects should
296 * give us the best of both worlds.
297 *
298 * KMC_ONSLAB KMC_OFFSLAB
299 *
300 * +------------------------+ +-----------------+
301 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
302 * | skc_obj_size <-+ | | +-----------------+ | |
303 * | spl_kmem_obj_t | | | |
304 * | skc_obj_size <---+ | +-----------------+ | |
305 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
306 * | ... v | | spl_kmem_obj_t | |
307 * +------------------------+ +-----------------+ v
308 */
309 static spl_kmem_slab_t *
310 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
311 {
312 spl_kmem_slab_t *sks;
313 spl_kmem_obj_t *sko, *n;
314 void *base, *obj;
315 uint32_t obj_size, offslab_size = 0;
316 int i, rc = 0;
317
318 base = kv_alloc(skc, skc->skc_slab_size, flags);
319 if (base == NULL)
320 return (NULL);
321
322 sks = (spl_kmem_slab_t *)base;
323 sks->sks_magic = SKS_MAGIC;
324 sks->sks_objs = skc->skc_slab_objs;
325 sks->sks_age = jiffies;
326 sks->sks_cache = skc;
327 INIT_LIST_HEAD(&sks->sks_list);
328 INIT_LIST_HEAD(&sks->sks_free_list);
329 sks->sks_ref = 0;
330 obj_size = spl_obj_size(skc);
331
332 if (skc->skc_flags & KMC_OFFSLAB)
333 offslab_size = spl_offslab_size(skc);
334
335 for (i = 0; i < sks->sks_objs; i++) {
336 if (skc->skc_flags & KMC_OFFSLAB) {
337 obj = kv_alloc(skc, offslab_size, flags);
338 if (!obj) {
339 rc = -ENOMEM;
340 goto out;
341 }
342 } else {
343 obj = base + spl_sks_size(skc) + (i * obj_size);
344 }
345
346 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
347 sko = spl_sko_from_obj(skc, obj);
348 sko->sko_addr = obj;
349 sko->sko_magic = SKO_MAGIC;
350 sko->sko_slab = sks;
351 INIT_LIST_HEAD(&sko->sko_list);
352 list_add_tail(&sko->sko_list, &sks->sks_free_list);
353 }
354
355 out:
356 if (rc) {
357 if (skc->skc_flags & KMC_OFFSLAB)
358 list_for_each_entry_safe(sko,
359 n, &sks->sks_free_list, sko_list)
360 kv_free(skc, sko->sko_addr, offslab_size);
361
362 kv_free(skc, base, skc->skc_slab_size);
363 sks = NULL;
364 }
365
366 return (sks);
367 }
368
369 /*
370 * Remove a slab from complete or partial list, it must be called with
371 * the 'skc->skc_lock' held but the actual free must be performed
372 * outside the lock to prevent deadlocking on vmem addresses.
373 */
374 static void
375 spl_slab_free(spl_kmem_slab_t *sks,
376 struct list_head *sks_list, struct list_head *sko_list)
377 {
378 spl_kmem_cache_t *skc;
379
380 ASSERT(sks->sks_magic == SKS_MAGIC);
381 ASSERT(sks->sks_ref == 0);
382
383 skc = sks->sks_cache;
384 ASSERT(skc->skc_magic == SKC_MAGIC);
385 ASSERT(spin_is_locked(&skc->skc_lock));
386
387 /*
388 * Update slab/objects counters in the cache, then remove the
389 * slab from the skc->skc_partial_list. Finally add the slab
390 * and all its objects in to the private work lists where the
391 * destructors will be called and the memory freed to the system.
392 */
393 skc->skc_obj_total -= sks->sks_objs;
394 skc->skc_slab_total--;
395 list_del(&sks->sks_list);
396 list_add(&sks->sks_list, sks_list);
397 list_splice_init(&sks->sks_free_list, sko_list);
398 }
399
400 /*
401 * Reclaim empty slabs at the end of the partial list.
402 */
403 static void
404 spl_slab_reclaim(spl_kmem_cache_t *skc)
405 {
406 spl_kmem_slab_t *sks, *m;
407 spl_kmem_obj_t *sko, *n;
408 LIST_HEAD(sks_list);
409 LIST_HEAD(sko_list);
410 uint32_t size = 0;
411
412 /*
413 * Empty slabs and objects must be moved to a private list so they
414 * can be safely freed outside the spin lock. All empty slabs are
415 * at the end of skc->skc_partial_list, therefore once a non-empty
416 * slab is found we can stop scanning.
417 */
418 spin_lock(&skc->skc_lock);
419 list_for_each_entry_safe_reverse(sks, m,
420 &skc->skc_partial_list, sks_list) {
421
422 if (sks->sks_ref > 0)
423 break;
424
425 spl_slab_free(sks, &sks_list, &sko_list);
426 }
427 spin_unlock(&skc->skc_lock);
428
429 /*
430 * The following two loops ensure all the object destructors are
431 * run, any offslab objects are freed, and the slabs themselves
432 * are freed. This is all done outside the skc->skc_lock since
433 * this allows the destructor to sleep, and allows us to perform
434 * a conditional reschedule when a freeing a large number of
435 * objects and slabs back to the system.
436 */
437 if (skc->skc_flags & KMC_OFFSLAB)
438 size = spl_offslab_size(skc);
439
440 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
441 ASSERT(sko->sko_magic == SKO_MAGIC);
442
443 if (skc->skc_flags & KMC_OFFSLAB)
444 kv_free(skc, sko->sko_addr, size);
445 }
446
447 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
448 ASSERT(sks->sks_magic == SKS_MAGIC);
449 kv_free(skc, sks, skc->skc_slab_size);
450 }
451 }
452
453 static spl_kmem_emergency_t *
454 spl_emergency_search(struct rb_root *root, void *obj)
455 {
456 struct rb_node *node = root->rb_node;
457 spl_kmem_emergency_t *ske;
458 unsigned long address = (unsigned long)obj;
459
460 while (node) {
461 ske = container_of(node, spl_kmem_emergency_t, ske_node);
462
463 if (address < ske->ske_obj)
464 node = node->rb_left;
465 else if (address > ske->ske_obj)
466 node = node->rb_right;
467 else
468 return (ske);
469 }
470
471 return (NULL);
472 }
473
474 static int
475 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
476 {
477 struct rb_node **new = &(root->rb_node), *parent = NULL;
478 spl_kmem_emergency_t *ske_tmp;
479 unsigned long address = ske->ske_obj;
480
481 while (*new) {
482 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
483
484 parent = *new;
485 if (address < ske_tmp->ske_obj)
486 new = &((*new)->rb_left);
487 else if (address > ske_tmp->ske_obj)
488 new = &((*new)->rb_right);
489 else
490 return (0);
491 }
492
493 rb_link_node(&ske->ske_node, parent, new);
494 rb_insert_color(&ske->ske_node, root);
495
496 return (1);
497 }
498
499 /*
500 * Allocate a single emergency object and track it in a red black tree.
501 */
502 static int
503 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
504 {
505 gfp_t lflags = kmem_flags_convert(flags);
506 spl_kmem_emergency_t *ske;
507 int order = get_order(skc->skc_obj_size);
508 int empty;
509
510 /* Last chance use a partial slab if one now exists */
511 spin_lock(&skc->skc_lock);
512 empty = list_empty(&skc->skc_partial_list);
513 spin_unlock(&skc->skc_lock);
514 if (!empty)
515 return (-EEXIST);
516
517 ske = kmalloc(sizeof (*ske), lflags);
518 if (ske == NULL)
519 return (-ENOMEM);
520
521 ske->ske_obj = __get_free_pages(lflags, order);
522 if (ske->ske_obj == 0) {
523 kfree(ske);
524 return (-ENOMEM);
525 }
526
527 spin_lock(&skc->skc_lock);
528 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
529 if (likely(empty)) {
530 skc->skc_obj_total++;
531 skc->skc_obj_emergency++;
532 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
533 skc->skc_obj_emergency_max = skc->skc_obj_emergency;
534 }
535 spin_unlock(&skc->skc_lock);
536
537 if (unlikely(!empty)) {
538 free_pages(ske->ske_obj, order);
539 kfree(ske);
540 return (-EINVAL);
541 }
542
543 *obj = (void *)ske->ske_obj;
544
545 return (0);
546 }
547
548 /*
549 * Locate the passed object in the red black tree and free it.
550 */
551 static int
552 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
553 {
554 spl_kmem_emergency_t *ske;
555 int order = get_order(skc->skc_obj_size);
556
557 spin_lock(&skc->skc_lock);
558 ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
559 if (ske) {
560 rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
561 skc->skc_obj_emergency--;
562 skc->skc_obj_total--;
563 }
564 spin_unlock(&skc->skc_lock);
565
566 if (ske == NULL)
567 return (-ENOENT);
568
569 free_pages(ske->ske_obj, order);
570 kfree(ske);
571
572 return (0);
573 }
574
575 /*
576 * Release objects from the per-cpu magazine back to their slab. The flush
577 * argument contains the max number of entries to remove from the magazine.
578 */
579 static void
580 __spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
581 {
582 int i, count = MIN(flush, skm->skm_avail);
583
584 ASSERT(skc->skc_magic == SKC_MAGIC);
585 ASSERT(skm->skm_magic == SKM_MAGIC);
586 ASSERT(spin_is_locked(&skc->skc_lock));
587
588 for (i = 0; i < count; i++)
589 spl_cache_shrink(skc, skm->skm_objs[i]);
590
591 skm->skm_avail -= count;
592 memmove(skm->skm_objs, &(skm->skm_objs[count]),
593 sizeof (void *) * skm->skm_avail);
594 }
595
596 static void
597 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
598 {
599 spin_lock(&skc->skc_lock);
600 __spl_cache_flush(skc, skm, flush);
601 spin_unlock(&skc->skc_lock);
602 }
603
604 static void
605 spl_magazine_age(void *data)
606 {
607 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
608 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
609
610 ASSERT(skm->skm_magic == SKM_MAGIC);
611 ASSERT(skm->skm_cpu == smp_processor_id());
612 ASSERT(irqs_disabled());
613
614 /* There are no available objects or they are too young to age out */
615 if ((skm->skm_avail == 0) ||
616 time_before(jiffies, skm->skm_age + skc->skc_delay * HZ))
617 return;
618
619 /*
620 * Because we're executing in interrupt context we may have
621 * interrupted the holder of this lock. To avoid a potential
622 * deadlock return if the lock is contended.
623 */
624 if (!spin_trylock(&skc->skc_lock))
625 return;
626
627 __spl_cache_flush(skc, skm, skm->skm_refill);
628 spin_unlock(&skc->skc_lock);
629 }
630
631 /*
632 * Called regularly to keep a downward pressure on the cache.
633 *
634 * Objects older than skc->skc_delay seconds in the per-cpu magazines will
635 * be returned to the caches. This is done to prevent idle magazines from
636 * holding memory which could be better used elsewhere. The delay is
637 * present to prevent thrashing the magazine.
638 *
639 * The newly released objects may result in empty partial slabs. Those
640 * slabs should be released to the system. Otherwise moving the objects
641 * out of the magazines is just wasted work.
642 */
643 static void
644 spl_cache_age(void *data)
645 {
646 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
647 taskqid_t id = 0;
648
649 ASSERT(skc->skc_magic == SKC_MAGIC);
650
651 /* Dynamically disabled at run time */
652 if (!(spl_kmem_cache_expire & KMC_EXPIRE_AGE))
653 return;
654
655 atomic_inc(&skc->skc_ref);
656
657 if (!(skc->skc_flags & KMC_NOMAGAZINE))
658 on_each_cpu(spl_magazine_age, skc, 1);
659
660 spl_slab_reclaim(skc);
661
662 while (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && !id) {
663 id = taskq_dispatch_delay(
664 spl_kmem_cache_taskq, spl_cache_age, skc, TQ_SLEEP,
665 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
666
667 /* Destroy issued after dispatch immediately cancel it */
668 if (test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && id)
669 taskq_cancel_id(spl_kmem_cache_taskq, id);
670 }
671
672 spin_lock(&skc->skc_lock);
673 skc->skc_taskqid = id;
674 spin_unlock(&skc->skc_lock);
675
676 atomic_dec(&skc->skc_ref);
677 }
678
679 /*
680 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
681 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However,
682 * for very small objects we may end up with more than this so as not
683 * to waste space in the minimal allocation of a single page. Also for
684 * very large objects we may use as few as spl_kmem_cache_obj_per_slab_min,
685 * lower than this and we will fail.
686 */
687 static int
688 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
689 {
690 uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
691
692 if (skc->skc_flags & KMC_OFFSLAB) {
693 tgt_objs = spl_kmem_cache_obj_per_slab;
694 tgt_size = P2ROUNDUP(sizeof (spl_kmem_slab_t), PAGE_SIZE);
695
696 if ((skc->skc_flags & KMC_KMEM) &&
697 (spl_obj_size(skc) > (SPL_MAX_ORDER_NR_PAGES * PAGE_SIZE)))
698 return (-ENOSPC);
699 } else {
700 sks_size = spl_sks_size(skc);
701 obj_size = spl_obj_size(skc);
702 max_size = (spl_kmem_cache_max_size * 1024 * 1024);
703 tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
704
705 /*
706 * KMC_KMEM slabs are allocated by __get_free_pages() which
707 * rounds up to the nearest order. Knowing this the size
708 * should be rounded up to the next power of two with a hard
709 * maximum defined by the maximum allowed allocation order.
710 */
711 if (skc->skc_flags & KMC_KMEM) {
712 max_size = SPL_MAX_ORDER_NR_PAGES * PAGE_SIZE;
713 tgt_size = MIN(max_size,
714 PAGE_SIZE * (1 << MAX(get_order(tgt_size) - 1, 1)));
715 }
716
717 if (tgt_size <= max_size) {
718 tgt_objs = (tgt_size - sks_size) / obj_size;
719 } else {
720 tgt_objs = (max_size - sks_size) / obj_size;
721 tgt_size = (tgt_objs * obj_size) + sks_size;
722 }
723 }
724
725 if (tgt_objs == 0)
726 return (-ENOSPC);
727
728 *objs = tgt_objs;
729 *size = tgt_size;
730
731 return (0);
732 }
733
734 /*
735 * Make a guess at reasonable per-cpu magazine size based on the size of
736 * each object and the cost of caching N of them in each magazine. Long
737 * term this should really adapt based on an observed usage heuristic.
738 */
739 static int
740 spl_magazine_size(spl_kmem_cache_t *skc)
741 {
742 uint32_t obj_size = spl_obj_size(skc);
743 int size;
744
745 if (spl_kmem_cache_magazine_size > 0)
746 return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
747
748 /* Per-magazine sizes below assume a 4Kib page size */
749 if (obj_size > (PAGE_SIZE * 256))
750 size = 4; /* Minimum 4Mib per-magazine */
751 else if (obj_size > (PAGE_SIZE * 32))
752 size = 16; /* Minimum 2Mib per-magazine */
753 else if (obj_size > (PAGE_SIZE))
754 size = 64; /* Minimum 256Kib per-magazine */
755 else if (obj_size > (PAGE_SIZE / 4))
756 size = 128; /* Minimum 128Kib per-magazine */
757 else
758 size = 256;
759
760 return (size);
761 }
762
763 /*
764 * Allocate a per-cpu magazine to associate with a specific core.
765 */
766 static spl_kmem_magazine_t *
767 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
768 {
769 spl_kmem_magazine_t *skm;
770 int size = sizeof (spl_kmem_magazine_t) +
771 sizeof (void *) * skc->skc_mag_size;
772
773 skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
774 if (skm) {
775 skm->skm_magic = SKM_MAGIC;
776 skm->skm_avail = 0;
777 skm->skm_size = skc->skc_mag_size;
778 skm->skm_refill = skc->skc_mag_refill;
779 skm->skm_cache = skc;
780 skm->skm_age = jiffies;
781 skm->skm_cpu = cpu;
782 }
783
784 return (skm);
785 }
786
787 /*
788 * Free a per-cpu magazine associated with a specific core.
789 */
790 static void
791 spl_magazine_free(spl_kmem_magazine_t *skm)
792 {
793 ASSERT(skm->skm_magic == SKM_MAGIC);
794 ASSERT(skm->skm_avail == 0);
795 kfree(skm);
796 }
797
798 /*
799 * Create all pre-cpu magazines of reasonable sizes.
800 */
801 static int
802 spl_magazine_create(spl_kmem_cache_t *skc)
803 {
804 int i;
805
806 if (skc->skc_flags & KMC_NOMAGAZINE)
807 return (0);
808
809 skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
810 num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
811 skc->skc_mag_size = spl_magazine_size(skc);
812 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
813
814 for_each_possible_cpu(i) {
815 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
816 if (!skc->skc_mag[i]) {
817 for (i--; i >= 0; i--)
818 spl_magazine_free(skc->skc_mag[i]);
819
820 kfree(skc->skc_mag);
821 return (-ENOMEM);
822 }
823 }
824
825 return (0);
826 }
827
828 /*
829 * Destroy all pre-cpu magazines.
830 */
831 static void
832 spl_magazine_destroy(spl_kmem_cache_t *skc)
833 {
834 spl_kmem_magazine_t *skm;
835 int i;
836
837 if (skc->skc_flags & KMC_NOMAGAZINE)
838 return;
839
840 for_each_possible_cpu(i) {
841 skm = skc->skc_mag[i];
842 spl_cache_flush(skc, skm, skm->skm_avail);
843 spl_magazine_free(skm);
844 }
845
846 kfree(skc->skc_mag);
847 }
848
849 /*
850 * Create a object cache based on the following arguments:
851 * name cache name
852 * size cache object size
853 * align cache object alignment
854 * ctor cache object constructor
855 * dtor cache object destructor
856 * reclaim cache object reclaim
857 * priv cache private data for ctor/dtor/reclaim
858 * vmp unused must be NULL
859 * flags
860 * KMC_NOTOUCH Disable cache object aging (unsupported)
861 * KMC_NODEBUG Disable debugging (unsupported)
862 * KMC_NOHASH Disable hashing (unsupported)
863 * KMC_QCACHE Disable qcache (unsupported)
864 * KMC_NOMAGAZINE Enabled for kmem/vmem, Disabled for Linux slab
865 * KMC_KMEM Force kmem backed cache
866 * KMC_VMEM Force vmem backed cache
867 * KMC_SLAB Force Linux slab backed cache
868 * KMC_OFFSLAB Locate objects off the slab
869 */
870 spl_kmem_cache_t *
871 spl_kmem_cache_create(char *name, size_t size, size_t align,
872 spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, spl_kmem_reclaim_t reclaim,
873 void *priv, void *vmp, int flags)
874 {
875 gfp_t lflags = kmem_flags_convert(KM_SLEEP);
876 spl_kmem_cache_t *skc;
877 int rc;
878
879 /*
880 * Unsupported flags
881 */
882 ASSERT0(flags & KMC_NOMAGAZINE);
883 ASSERT0(flags & KMC_NOHASH);
884 ASSERT0(flags & KMC_QCACHE);
885 ASSERT(vmp == NULL);
886
887 might_sleep();
888
889 skc = kzalloc(sizeof (*skc), lflags);
890 if (skc == NULL)
891 return (NULL);
892
893 skc->skc_magic = SKC_MAGIC;
894 skc->skc_name_size = strlen(name) + 1;
895 skc->skc_name = (char *)kmalloc(skc->skc_name_size, lflags);
896 if (skc->skc_name == NULL) {
897 kfree(skc);
898 return (NULL);
899 }
900 strncpy(skc->skc_name, name, skc->skc_name_size);
901
902 skc->skc_ctor = ctor;
903 skc->skc_dtor = dtor;
904 skc->skc_reclaim = reclaim;
905 skc->skc_private = priv;
906 skc->skc_vmp = vmp;
907 skc->skc_linux_cache = NULL;
908 skc->skc_flags = flags;
909 skc->skc_obj_size = size;
910 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
911 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
912 skc->skc_reap = SPL_KMEM_CACHE_REAP;
913 atomic_set(&skc->skc_ref, 0);
914
915 INIT_LIST_HEAD(&skc->skc_list);
916 INIT_LIST_HEAD(&skc->skc_complete_list);
917 INIT_LIST_HEAD(&skc->skc_partial_list);
918 skc->skc_emergency_tree = RB_ROOT;
919 spin_lock_init(&skc->skc_lock);
920 init_waitqueue_head(&skc->skc_waitq);
921 skc->skc_slab_fail = 0;
922 skc->skc_slab_create = 0;
923 skc->skc_slab_destroy = 0;
924 skc->skc_slab_total = 0;
925 skc->skc_slab_alloc = 0;
926 skc->skc_slab_max = 0;
927 skc->skc_obj_total = 0;
928 skc->skc_obj_alloc = 0;
929 skc->skc_obj_max = 0;
930 skc->skc_obj_deadlock = 0;
931 skc->skc_obj_emergency = 0;
932 skc->skc_obj_emergency_max = 0;
933
934 /*
935 * Verify the requested alignment restriction is sane.
936 */
937 if (align) {
938 VERIFY(ISP2(align));
939 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
940 VERIFY3U(align, <=, PAGE_SIZE);
941 skc->skc_obj_align = align;
942 }
943
944 /*
945 * When no specific type of slab is requested (kmem, vmem, or
946 * linuxslab) then select a cache type based on the object size
947 * and default tunables.
948 */
949 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB))) {
950
951 /*
952 * Objects smaller than spl_kmem_cache_slab_limit can
953 * use the Linux slab for better space-efficiency. By
954 * default this functionality is disabled until its
955 * performance characteristics are fully understood.
956 */
957 if (spl_kmem_cache_slab_limit &&
958 size <= (size_t)spl_kmem_cache_slab_limit)
959 skc->skc_flags |= KMC_SLAB;
960
961 /*
962 * Small objects, less than spl_kmem_cache_kmem_limit per
963 * object should use kmem because their slabs are small.
964 */
965 else if (spl_obj_size(skc) <= spl_kmem_cache_kmem_limit)
966 skc->skc_flags |= KMC_KMEM;
967
968 /*
969 * All other objects are considered large and are placed
970 * on vmem backed slabs.
971 */
972 else
973 skc->skc_flags |= KMC_VMEM;
974 }
975
976 /*
977 * Given the type of slab allocate the required resources.
978 */
979 if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
980 rc = spl_slab_size(skc,
981 &skc->skc_slab_objs, &skc->skc_slab_size);
982 if (rc)
983 goto out;
984
985 rc = spl_magazine_create(skc);
986 if (rc)
987 goto out;
988 } else {
989 unsigned long slabflags = 0;
990
991 if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE)) {
992 rc = EINVAL;
993 goto out;
994 }
995
996 #if defined(SLAB_USERCOPY)
997 /*
998 * Required for PAX-enabled kernels if the slab is to be
999 * used for coping between user and kernel space.
1000 */
1001 slabflags |= SLAB_USERCOPY;
1002 #endif
1003
1004 #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY)
1005 /*
1006 * Newer grsec patchset uses kmem_cache_create_usercopy()
1007 * instead of SLAB_USERCOPY flag
1008 */
1009 skc->skc_linux_cache = kmem_cache_create_usercopy(
1010 skc->skc_name, size, align, slabflags, 0, size, NULL);
1011 #else
1012 skc->skc_linux_cache = kmem_cache_create(
1013 skc->skc_name, size, align, slabflags, NULL);
1014 #endif
1015 if (skc->skc_linux_cache == NULL) {
1016 rc = ENOMEM;
1017 goto out;
1018 }
1019
1020 #if defined(HAVE_KMEM_CACHE_ALLOCFLAGS)
1021 skc->skc_linux_cache->allocflags |= __GFP_COMP;
1022 #elif defined(HAVE_KMEM_CACHE_GFPFLAGS)
1023 skc->skc_linux_cache->gfpflags |= __GFP_COMP;
1024 #endif
1025 skc->skc_flags |= KMC_NOMAGAZINE;
1026 }
1027
1028 if (spl_kmem_cache_expire & KMC_EXPIRE_AGE)
1029 skc->skc_taskqid = taskq_dispatch_delay(spl_kmem_cache_taskq,
1030 spl_cache_age, skc, TQ_SLEEP,
1031 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
1032
1033 down_write(&spl_kmem_cache_sem);
1034 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
1035 up_write(&spl_kmem_cache_sem);
1036
1037 return (skc);
1038 out:
1039 kfree(skc->skc_name);
1040 kfree(skc);
1041 return (NULL);
1042 }
1043 EXPORT_SYMBOL(spl_kmem_cache_create);
1044
1045 /*
1046 * Register a move callback for cache defragmentation.
1047 * XXX: Unimplemented but harmless to stub out for now.
1048 */
1049 void
1050 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
1051 kmem_cbrc_t (move)(void *, void *, size_t, void *))
1052 {
1053 ASSERT(move != NULL);
1054 }
1055 EXPORT_SYMBOL(spl_kmem_cache_set_move);
1056
1057 /*
1058 * Destroy a cache and all objects associated with the cache.
1059 */
1060 void
1061 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
1062 {
1063 DECLARE_WAIT_QUEUE_HEAD(wq);
1064 taskqid_t id;
1065
1066 ASSERT(skc->skc_magic == SKC_MAGIC);
1067 ASSERT(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB));
1068
1069 down_write(&spl_kmem_cache_sem);
1070 list_del_init(&skc->skc_list);
1071 up_write(&spl_kmem_cache_sem);
1072
1073 /* Cancel any and wait for any pending delayed tasks */
1074 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1075
1076 spin_lock(&skc->skc_lock);
1077 id = skc->skc_taskqid;
1078 spin_unlock(&skc->skc_lock);
1079
1080 taskq_cancel_id(spl_kmem_cache_taskq, id);
1081
1082 /*
1083 * Wait until all current callers complete, this is mainly
1084 * to catch the case where a low memory situation triggers a
1085 * cache reaping action which races with this destroy.
1086 */
1087 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1088
1089 if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
1090 spl_magazine_destroy(skc);
1091 spl_slab_reclaim(skc);
1092 } else {
1093 ASSERT(skc->skc_flags & KMC_SLAB);
1094 kmem_cache_destroy(skc->skc_linux_cache);
1095 }
1096
1097 spin_lock(&skc->skc_lock);
1098
1099 /*
1100 * Validate there are no objects in use and free all the
1101 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
1102 */
1103 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1104 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1105 ASSERT3U(skc->skc_slab_total, ==, 0);
1106 ASSERT3U(skc->skc_obj_total, ==, 0);
1107 ASSERT3U(skc->skc_obj_emergency, ==, 0);
1108 ASSERT(list_empty(&skc->skc_complete_list));
1109
1110 spin_unlock(&skc->skc_lock);
1111
1112 kfree(skc->skc_name);
1113 kfree(skc);
1114 }
1115 EXPORT_SYMBOL(spl_kmem_cache_destroy);
1116
1117 /*
1118 * Allocate an object from a slab attached to the cache. This is used to
1119 * repopulate the per-cpu magazine caches in batches when they run low.
1120 */
1121 static void *
1122 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
1123 {
1124 spl_kmem_obj_t *sko;
1125
1126 ASSERT(skc->skc_magic == SKC_MAGIC);
1127 ASSERT(sks->sks_magic == SKS_MAGIC);
1128 ASSERT(spin_is_locked(&skc->skc_lock));
1129
1130 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
1131 ASSERT(sko->sko_magic == SKO_MAGIC);
1132 ASSERT(sko->sko_addr != NULL);
1133
1134 /* Remove from sks_free_list */
1135 list_del_init(&sko->sko_list);
1136
1137 sks->sks_age = jiffies;
1138 sks->sks_ref++;
1139 skc->skc_obj_alloc++;
1140
1141 /* Track max obj usage statistics */
1142 if (skc->skc_obj_alloc > skc->skc_obj_max)
1143 skc->skc_obj_max = skc->skc_obj_alloc;
1144
1145 /* Track max slab usage statistics */
1146 if (sks->sks_ref == 1) {
1147 skc->skc_slab_alloc++;
1148
1149 if (skc->skc_slab_alloc > skc->skc_slab_max)
1150 skc->skc_slab_max = skc->skc_slab_alloc;
1151 }
1152
1153 return (sko->sko_addr);
1154 }
1155
1156 /*
1157 * Generic slab allocation function to run by the global work queues.
1158 * It is responsible for allocating a new slab, linking it in to the list
1159 * of partial slabs, and then waking any waiters.
1160 */
1161 static int
1162 __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
1163 {
1164 spl_kmem_slab_t *sks;
1165
1166 fstrans_cookie_t cookie = spl_fstrans_mark();
1167 sks = spl_slab_alloc(skc, flags);
1168 spl_fstrans_unmark(cookie);
1169
1170 spin_lock(&skc->skc_lock);
1171 if (sks) {
1172 skc->skc_slab_total++;
1173 skc->skc_obj_total += sks->sks_objs;
1174 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1175
1176 smp_mb__before_atomic();
1177 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1178 smp_mb__after_atomic();
1179 wake_up_all(&skc->skc_waitq);
1180 }
1181 spin_unlock(&skc->skc_lock);
1182
1183 return (sks == NULL ? -ENOMEM : 0);
1184 }
1185
1186 static void
1187 spl_cache_grow_work(void *data)
1188 {
1189 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
1190 spl_kmem_cache_t *skc = ska->ska_cache;
1191
1192 (void)__spl_cache_grow(skc, ska->ska_flags);
1193
1194 atomic_dec(&skc->skc_ref);
1195 smp_mb__before_atomic();
1196 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
1197 smp_mb__after_atomic();
1198
1199 kfree(ska);
1200 }
1201
1202 /*
1203 * Returns non-zero when a new slab should be available.
1204 */
1205 static int
1206 spl_cache_grow_wait(spl_kmem_cache_t *skc)
1207 {
1208 return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
1209 }
1210
1211 /*
1212 * No available objects on any slabs, create a new slab. Note that this
1213 * functionality is disabled for KMC_SLAB caches which are backed by the
1214 * Linux slab.
1215 */
1216 static int
1217 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1218 {
1219 int remaining, rc = 0;
1220
1221 ASSERT0(flags & ~KM_PUBLIC_MASK);
1222 ASSERT(skc->skc_magic == SKC_MAGIC);
1223 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
1224 might_sleep();
1225 *obj = NULL;
1226
1227 /*
1228 * Before allocating a new slab wait for any reaping to complete and
1229 * then return so the local magazine can be rechecked for new objects.
1230 */
1231 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1232 rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1233 TASK_UNINTERRUPTIBLE);
1234 return (rc ? rc : -EAGAIN);
1235 }
1236
1237 /*
1238 * To reduce the overhead of context switch and improve NUMA locality,
1239 * it tries to allocate a new slab in the current process context with
1240 * KM_NOSLEEP flag. If it fails, it will launch a new taskq to do the
1241 * allocation.
1242 *
1243 * However, this can't be applied to KVM_VMEM due to a bug that
1244 * __vmalloc() doesn't honor gfp flags in page table allocation.
1245 */
1246 if (!(skc->skc_flags & KMC_VMEM)) {
1247 rc = __spl_cache_grow(skc, flags | KM_NOSLEEP);
1248 if (rc == 0)
1249 return (0);
1250 }
1251
1252 /*
1253 * This is handled by dispatching a work request to the global work
1254 * queue. This allows us to asynchronously allocate a new slab while
1255 * retaining the ability to safely fall back to a smaller synchronous
1256 * allocations to ensure forward progress is always maintained.
1257 */
1258 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1259 spl_kmem_alloc_t *ska;
1260
1261 ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1262 if (ska == NULL) {
1263 clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1264 smp_mb__after_atomic();
1265 wake_up_all(&skc->skc_waitq);
1266 return (-ENOMEM);
1267 }
1268
1269 atomic_inc(&skc->skc_ref);
1270 ska->ska_cache = skc;
1271 ska->ska_flags = flags;
1272 taskq_init_ent(&ska->ska_tqe);
1273 taskq_dispatch_ent(spl_kmem_cache_taskq,
1274 spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1275 }
1276
1277 /*
1278 * The goal here is to only detect the rare case where a virtual slab
1279 * allocation has deadlocked. We must be careful to minimize the use
1280 * of emergency objects which are more expensive to track. Therefore,
1281 * we set a very long timeout for the asynchronous allocation and if
1282 * the timeout is reached the cache is flagged as deadlocked. From
1283 * this point only new emergency objects will be allocated until the
1284 * asynchronous allocation completes and clears the deadlocked flag.
1285 */
1286 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1287 rc = spl_emergency_alloc(skc, flags, obj);
1288 } else {
1289 remaining = wait_event_timeout(skc->skc_waitq,
1290 spl_cache_grow_wait(skc), HZ / 10);
1291
1292 if (!remaining) {
1293 spin_lock(&skc->skc_lock);
1294 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1295 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1296 skc->skc_obj_deadlock++;
1297 }
1298 spin_unlock(&skc->skc_lock);
1299 }
1300
1301 rc = -ENOMEM;
1302 }
1303
1304 return (rc);
1305 }
1306
1307 /*
1308 * Refill a per-cpu magazine with objects from the slabs for this cache.
1309 * Ideally the magazine can be repopulated using existing objects which have
1310 * been released, however if we are unable to locate enough free objects new
1311 * slabs of objects will be created. On success NULL is returned, otherwise
1312 * the address of a single emergency object is returned for use by the caller.
1313 */
1314 static void *
1315 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1316 {
1317 spl_kmem_slab_t *sks;
1318 int count = 0, rc, refill;
1319 void *obj = NULL;
1320
1321 ASSERT(skc->skc_magic == SKC_MAGIC);
1322 ASSERT(skm->skm_magic == SKM_MAGIC);
1323
1324 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1325 spin_lock(&skc->skc_lock);
1326
1327 while (refill > 0) {
1328 /* No slabs available we may need to grow the cache */
1329 if (list_empty(&skc->skc_partial_list)) {
1330 spin_unlock(&skc->skc_lock);
1331
1332 local_irq_enable();
1333 rc = spl_cache_grow(skc, flags, &obj);
1334 local_irq_disable();
1335
1336 /* Emergency object for immediate use by caller */
1337 if (rc == 0 && obj != NULL)
1338 return (obj);
1339
1340 if (rc)
1341 goto out;
1342
1343 /* Rescheduled to different CPU skm is not local */
1344 if (skm != skc->skc_mag[smp_processor_id()])
1345 goto out;
1346
1347 /*
1348 * Potentially rescheduled to the same CPU but
1349 * allocations may have occurred from this CPU while
1350 * we were sleeping so recalculate max refill.
1351 */
1352 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1353
1354 spin_lock(&skc->skc_lock);
1355 continue;
1356 }
1357
1358 /* Grab the next available slab */
1359 sks = list_entry((&skc->skc_partial_list)->next,
1360 spl_kmem_slab_t, sks_list);
1361 ASSERT(sks->sks_magic == SKS_MAGIC);
1362 ASSERT(sks->sks_ref < sks->sks_objs);
1363 ASSERT(!list_empty(&sks->sks_free_list));
1364
1365 /*
1366 * Consume as many objects as needed to refill the requested
1367 * cache. We must also be careful not to overfill it.
1368 */
1369 while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1370 ++count) {
1371 ASSERT(skm->skm_avail < skm->skm_size);
1372 ASSERT(count < skm->skm_size);
1373 skm->skm_objs[skm->skm_avail++] =
1374 spl_cache_obj(skc, sks);
1375 }
1376
1377 /* Move slab to skc_complete_list when full */
1378 if (sks->sks_ref == sks->sks_objs) {
1379 list_del(&sks->sks_list);
1380 list_add(&sks->sks_list, &skc->skc_complete_list);
1381 }
1382 }
1383
1384 spin_unlock(&skc->skc_lock);
1385 out:
1386 return (NULL);
1387 }
1388
1389 /*
1390 * Release an object back to the slab from which it came.
1391 */
1392 static void
1393 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1394 {
1395 spl_kmem_slab_t *sks = NULL;
1396 spl_kmem_obj_t *sko = NULL;
1397
1398 ASSERT(skc->skc_magic == SKC_MAGIC);
1399 ASSERT(spin_is_locked(&skc->skc_lock));
1400
1401 sko = spl_sko_from_obj(skc, obj);
1402 ASSERT(sko->sko_magic == SKO_MAGIC);
1403 sks = sko->sko_slab;
1404 ASSERT(sks->sks_magic == SKS_MAGIC);
1405 ASSERT(sks->sks_cache == skc);
1406 list_add(&sko->sko_list, &sks->sks_free_list);
1407
1408 sks->sks_age = jiffies;
1409 sks->sks_ref--;
1410 skc->skc_obj_alloc--;
1411
1412 /*
1413 * Move slab to skc_partial_list when no longer full. Slabs
1414 * are added to the head to keep the partial list is quasi-full
1415 * sorted order. Fuller at the head, emptier at the tail.
1416 */
1417 if (sks->sks_ref == (sks->sks_objs - 1)) {
1418 list_del(&sks->sks_list);
1419 list_add(&sks->sks_list, &skc->skc_partial_list);
1420 }
1421
1422 /*
1423 * Move empty slabs to the end of the partial list so
1424 * they can be easily found and freed during reclamation.
1425 */
1426 if (sks->sks_ref == 0) {
1427 list_del(&sks->sks_list);
1428 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1429 skc->skc_slab_alloc--;
1430 }
1431 }
1432
1433 /*
1434 * Allocate an object from the per-cpu magazine, or if the magazine
1435 * is empty directly allocate from a slab and repopulate the magazine.
1436 */
1437 void *
1438 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1439 {
1440 spl_kmem_magazine_t *skm;
1441 void *obj = NULL;
1442
1443 ASSERT0(flags & ~KM_PUBLIC_MASK);
1444 ASSERT(skc->skc_magic == SKC_MAGIC);
1445 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1446
1447 /*
1448 * Allocate directly from a Linux slab. All optimizations are left
1449 * to the underlying cache we only need to guarantee that KM_SLEEP
1450 * callers will never fail.
1451 */
1452 if (skc->skc_flags & KMC_SLAB) {
1453 struct kmem_cache *slc = skc->skc_linux_cache;
1454 do {
1455 obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1456 } while ((obj == NULL) && !(flags & KM_NOSLEEP));
1457
1458 goto ret;
1459 }
1460
1461 local_irq_disable();
1462
1463 restart:
1464 /*
1465 * Safe to update per-cpu structure without lock, but
1466 * in the restart case we must be careful to reacquire
1467 * the local magazine since this may have changed
1468 * when we need to grow the cache.
1469 */
1470 skm = skc->skc_mag[smp_processor_id()];
1471 ASSERT(skm->skm_magic == SKM_MAGIC);
1472
1473 if (likely(skm->skm_avail)) {
1474 /* Object available in CPU cache, use it */
1475 obj = skm->skm_objs[--skm->skm_avail];
1476 skm->skm_age = jiffies;
1477 } else {
1478 obj = spl_cache_refill(skc, skm, flags);
1479 if ((obj == NULL) && !(flags & KM_NOSLEEP))
1480 goto restart;
1481
1482 local_irq_enable();
1483 goto ret;
1484 }
1485
1486 local_irq_enable();
1487 ASSERT(obj);
1488 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1489
1490 ret:
1491 /* Pre-emptively migrate object to CPU L1 cache */
1492 if (obj) {
1493 if (obj && skc->skc_ctor)
1494 skc->skc_ctor(obj, skc->skc_private, flags);
1495 else
1496 prefetchw(obj);
1497 }
1498
1499 return (obj);
1500 }
1501 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1502
1503 /*
1504 * Free an object back to the local per-cpu magazine, there is no
1505 * guarantee that this is the same magazine the object was originally
1506 * allocated from. We may need to flush entire from the magazine
1507 * back to the slabs to make space.
1508 */
1509 void
1510 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1511 {
1512 spl_kmem_magazine_t *skm;
1513 unsigned long flags;
1514 int do_reclaim = 0;
1515 int do_emergency = 0;
1516
1517 ASSERT(skc->skc_magic == SKC_MAGIC);
1518 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1519
1520 /*
1521 * Run the destructor
1522 */
1523 if (skc->skc_dtor)
1524 skc->skc_dtor(obj, skc->skc_private);
1525
1526 /*
1527 * Free the object from the Linux underlying Linux slab.
1528 */
1529 if (skc->skc_flags & KMC_SLAB) {
1530 kmem_cache_free(skc->skc_linux_cache, obj);
1531 return;
1532 }
1533
1534 /*
1535 * While a cache has outstanding emergency objects all freed objects
1536 * must be checked. However, since emergency objects will never use
1537 * a virtual address these objects can be safely excluded as an
1538 * optimization.
1539 */
1540 if (!is_vmalloc_addr(obj)) {
1541 spin_lock(&skc->skc_lock);
1542 do_emergency = (skc->skc_obj_emergency > 0);
1543 spin_unlock(&skc->skc_lock);
1544
1545 if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1546 return;
1547 }
1548
1549 local_irq_save(flags);
1550
1551 /*
1552 * Safe to update per-cpu structure without lock, but
1553 * no remote memory allocation tracking is being performed
1554 * it is entirely possible to allocate an object from one
1555 * CPU cache and return it to another.
1556 */
1557 skm = skc->skc_mag[smp_processor_id()];
1558 ASSERT(skm->skm_magic == SKM_MAGIC);
1559
1560 /*
1561 * Per-CPU cache full, flush it to make space for this object,
1562 * this may result in an empty slab which can be reclaimed once
1563 * interrupts are re-enabled.
1564 */
1565 if (unlikely(skm->skm_avail >= skm->skm_size)) {
1566 spl_cache_flush(skc, skm, skm->skm_refill);
1567 do_reclaim = 1;
1568 }
1569
1570 /* Available space in cache, use it */
1571 skm->skm_objs[skm->skm_avail++] = obj;
1572
1573 local_irq_restore(flags);
1574
1575 if (do_reclaim)
1576 spl_slab_reclaim(skc);
1577 }
1578 EXPORT_SYMBOL(spl_kmem_cache_free);
1579
1580 /*
1581 * The generic shrinker function for all caches. Under Linux a shrinker
1582 * may not be tightly coupled with a slab cache. In fact Linux always
1583 * systematically tries calling all registered shrinker callbacks which
1584 * report that they contain unused objects. Because of this we only
1585 * register one shrinker function in the shim layer for all slab caches.
1586 * We always attempt to shrink all caches when this generic shrinker
1587 * is called.
1588 *
1589 * If sc->nr_to_scan is zero, the caller is requesting a query of the
1590 * number of objects which can potentially be freed. If it is nonzero,
1591 * the request is to free that many objects.
1592 *
1593 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
1594 * in struct shrinker and also require the shrinker to return the number
1595 * of objects freed.
1596 *
1597 * Older kernels require the shrinker to return the number of freeable
1598 * objects following the freeing of nr_to_free.
1599 *
1600 * Linux semantics differ from those under Solaris, which are to
1601 * free all available objects which may (and probably will) be more
1602 * objects than the requested nr_to_scan.
1603 */
1604 static spl_shrinker_t
1605 __spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
1606 struct shrink_control *sc)
1607 {
1608 spl_kmem_cache_t *skc;
1609 int alloc = 0;
1610
1611 /*
1612 * No shrinking in a transaction context. Can cause deadlocks.
1613 */
1614 if (sc->nr_to_scan && spl_fstrans_check())
1615 return (SHRINK_STOP);
1616
1617 down_read(&spl_kmem_cache_sem);
1618 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1619 if (sc->nr_to_scan) {
1620 #ifdef HAVE_SPLIT_SHRINKER_CALLBACK
1621 uint64_t oldalloc = skc->skc_obj_alloc;
1622 spl_kmem_cache_reap_now(skc,
1623 MAX(sc->nr_to_scan>>fls64(skc->skc_slab_objs), 1));
1624 if (oldalloc > skc->skc_obj_alloc)
1625 alloc += oldalloc - skc->skc_obj_alloc;
1626 #else
1627 spl_kmem_cache_reap_now(skc,
1628 MAX(sc->nr_to_scan>>fls64(skc->skc_slab_objs), 1));
1629 alloc += skc->skc_obj_alloc;
1630 #endif /* HAVE_SPLIT_SHRINKER_CALLBACK */
1631 } else {
1632 /* Request to query number of freeable objects */
1633 alloc += skc->skc_obj_alloc;
1634 }
1635 }
1636 up_read(&spl_kmem_cache_sem);
1637
1638 /*
1639 * When KMC_RECLAIM_ONCE is set allow only a single reclaim pass.
1640 * This functionality only exists to work around a rare issue where
1641 * shrink_slabs() is repeatedly invoked by many cores causing the
1642 * system to thrash.
1643 */
1644 if ((spl_kmem_cache_reclaim & KMC_RECLAIM_ONCE) && sc->nr_to_scan)
1645 return (SHRINK_STOP);
1646
1647 return (MAX(alloc, 0));
1648 }
1649
1650 SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
1651
1652 /*
1653 * Call the registered reclaim function for a cache. Depending on how
1654 * many and which objects are released it may simply repopulate the
1655 * local magazine which will then need to age-out. Objects which cannot
1656 * fit in the magazine we will be released back to their slabs which will
1657 * also need to age out before being release. This is all just best
1658 * effort and we do not want to thrash creating and destroying slabs.
1659 */
1660 void
1661 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count)
1662 {
1663 ASSERT(skc->skc_magic == SKC_MAGIC);
1664 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1665
1666 atomic_inc(&skc->skc_ref);
1667
1668 /*
1669 * Execute the registered reclaim callback if it exists.
1670 */
1671 if (skc->skc_flags & KMC_SLAB) {
1672 if (skc->skc_reclaim)
1673 skc->skc_reclaim(skc->skc_private);
1674 goto out;
1675 }
1676
1677 /*
1678 * Prevent concurrent cache reaping when contended.
1679 */
1680 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1681 goto out;
1682
1683 /*
1684 * When a reclaim function is available it may be invoked repeatedly
1685 * until at least a single slab can be freed. This ensures that we
1686 * do free memory back to the system. This helps minimize the chance
1687 * of an OOM event when the bulk of memory is used by the slab.
1688 *
1689 * When free slabs are already available the reclaim callback will be
1690 * skipped. Additionally, if no forward progress is detected despite
1691 * a reclaim function the cache will be skipped to avoid deadlock.
1692 *
1693 * Longer term this would be the correct place to add the code which
1694 * repacks the slabs in order minimize fragmentation.
1695 */
1696 if (skc->skc_reclaim) {
1697 uint64_t objects = UINT64_MAX;
1698 int do_reclaim;
1699
1700 do {
1701 spin_lock(&skc->skc_lock);
1702 do_reclaim =
1703 (skc->skc_slab_total > 0) &&
1704 ((skc->skc_slab_total-skc->skc_slab_alloc) == 0) &&
1705 (skc->skc_obj_alloc < objects);
1706
1707 objects = skc->skc_obj_alloc;
1708 spin_unlock(&skc->skc_lock);
1709
1710 if (do_reclaim)
1711 skc->skc_reclaim(skc->skc_private);
1712
1713 } while (do_reclaim);
1714 }
1715
1716 /* Reclaim from the magazine and free all now empty slabs. */
1717 if (spl_kmem_cache_expire & KMC_EXPIRE_MEM) {
1718 spl_kmem_magazine_t *skm;
1719 unsigned long irq_flags;
1720
1721 local_irq_save(irq_flags);
1722 skm = skc->skc_mag[smp_processor_id()];
1723 spl_cache_flush(skc, skm, skm->skm_avail);
1724 local_irq_restore(irq_flags);
1725 }
1726
1727 spl_slab_reclaim(skc);
1728 clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1729 smp_mb__after_atomic();
1730 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1731 out:
1732 atomic_dec(&skc->skc_ref);
1733 }
1734 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1735
1736 /*
1737 * Reap all free slabs from all registered caches.
1738 */
1739 void
1740 spl_kmem_reap(void)
1741 {
1742 struct shrink_control sc;
1743
1744 sc.nr_to_scan = KMC_REAP_CHUNK;
1745 sc.gfp_mask = GFP_KERNEL;
1746
1747 (void) __spl_kmem_cache_generic_shrinker(NULL, &sc);
1748 }
1749 EXPORT_SYMBOL(spl_kmem_reap);
1750
1751 int
1752 spl_kmem_cache_init(void)
1753 {
1754 init_rwsem(&spl_kmem_cache_sem);
1755 INIT_LIST_HEAD(&spl_kmem_cache_list);
1756 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1757 spl_kmem_cache_kmem_threads, maxclsyspri,
1758 spl_kmem_cache_kmem_threads * 8, INT_MAX,
1759 TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1760 spl_register_shrinker(&spl_kmem_cache_shrinker);
1761
1762 return (0);
1763 }
1764
1765 void
1766 spl_kmem_cache_fini(void)
1767 {
1768 spl_unregister_shrinker(&spl_kmem_cache_shrinker);
1769 taskq_destroy(spl_kmem_cache_taskq);
1770 }