]> git.proxmox.com Git - mirror_spl.git/blob - module/spl/spl-kmem-cache.c
Fix more cstyle warnings
[mirror_spl.git] / module / spl / spl-kmem-cache.c
1 /*
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://zfsonlinux.org/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include <sys/kmem.h>
26 #include <sys/kmem_cache.h>
27 #include <sys/taskq.h>
28 #include <sys/timer.h>
29 #include <sys/vmem.h>
30 #include <linux/slab.h>
31 #include <linux/swap.h>
32 #include <linux/mm_compat.h>
33 #include <linux/wait_compat.h>
34 #include <linux/prefetch.h>
35
36 /*
37 * Within the scope of spl-kmem.c file the kmem_cache_* definitions
38 * are removed to allow access to the real Linux slab allocator.
39 */
40 #undef kmem_cache_destroy
41 #undef kmem_cache_create
42 #undef kmem_cache_alloc
43 #undef kmem_cache_free
44
45
46 /*
47 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
48 * with smp_mb__{before,after}_atomic() because they were redundant. This is
49 * only used inside our SLAB allocator, so we implement an internal wrapper
50 * here to give us smp_mb__{before,after}_atomic() on older kernels.
51 */
52 #ifndef smp_mb__before_atomic
53 #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
54 #endif
55
56 #ifndef smp_mb__after_atomic
57 #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
58 #endif
59
60 /*
61 * Cache expiration was implemented because it was part of the default Solaris
62 * kmem_cache behavior. The idea is that per-cpu objects which haven't been
63 * accessed in several seconds should be returned to the cache. On the other
64 * hand Linux slabs never move objects back to the slabs unless there is
65 * memory pressure on the system. By default the Linux method is enabled
66 * because it has been shown to improve responsiveness on low memory systems.
67 * This policy may be changed by setting KMC_EXPIRE_AGE or KMC_EXPIRE_MEM.
68 */
69 /* BEGIN CSTYLED */
70 unsigned int spl_kmem_cache_expire = KMC_EXPIRE_MEM;
71 EXPORT_SYMBOL(spl_kmem_cache_expire);
72 module_param(spl_kmem_cache_expire, uint, 0644);
73 MODULE_PARM_DESC(spl_kmem_cache_expire, "By age (0x1) or low memory (0x2)");
74
75 /*
76 * Cache magazines are an optimization designed to minimize the cost of
77 * allocating memory. They do this by keeping a per-cpu cache of recently
78 * freed objects, which can then be reallocated without taking a lock. This
79 * can improve performance on highly contended caches. However, because
80 * objects in magazines will prevent otherwise empty slabs from being
81 * immediately released this may not be ideal for low memory machines.
82 *
83 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
84 * magazine size. When this value is set to 0 the magazine size will be
85 * automatically determined based on the object size. Otherwise magazines
86 * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines
87 * may never be entirely disabled in this implementation.
88 */
89 unsigned int spl_kmem_cache_magazine_size = 0;
90 module_param(spl_kmem_cache_magazine_size, uint, 0444);
91 MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
92 "Default magazine size (2-256), set automatically (0)");
93
94 /*
95 * The default behavior is to report the number of objects remaining in the
96 * cache. This allows the Linux VM to repeatedly reclaim objects from the
97 * cache when memory is low satisfy other memory allocations. Alternately,
98 * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
99 * is reclaimed. This may increase the likelihood of out of memory events.
100 */
101 unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */;
102 module_param(spl_kmem_cache_reclaim, uint, 0644);
103 MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)");
104
105 unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
106 module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
107 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
108
109 unsigned int spl_kmem_cache_obj_per_slab_min = SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN;
110 module_param(spl_kmem_cache_obj_per_slab_min, uint, 0644);
111 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab_min,
112 "Minimal number of objects per slab");
113
114 unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
115 module_param(spl_kmem_cache_max_size, uint, 0644);
116 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
117
118 /*
119 * For small objects the Linux slab allocator should be used to make the most
120 * efficient use of the memory. However, large objects are not supported by
121 * the Linux slab and therefore the SPL implementation is preferred. A cutoff
122 * of 16K was determined to be optimal for architectures using 4K pages.
123 */
124 #if PAGE_SIZE == 4096
125 unsigned int spl_kmem_cache_slab_limit = 16384;
126 #else
127 unsigned int spl_kmem_cache_slab_limit = 0;
128 #endif
129 module_param(spl_kmem_cache_slab_limit, uint, 0644);
130 MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
131 "Objects less than N bytes use the Linux slab");
132
133 /*
134 * This value defaults to a threshold designed to avoid allocations which
135 * have been deemed costly by the kernel.
136 */
137 unsigned int spl_kmem_cache_kmem_limit =
138 ((1 << (PAGE_ALLOC_COSTLY_ORDER - 1)) * PAGE_SIZE) /
139 SPL_KMEM_CACHE_OBJ_PER_SLAB;
140 module_param(spl_kmem_cache_kmem_limit, uint, 0644);
141 MODULE_PARM_DESC(spl_kmem_cache_kmem_limit,
142 "Objects less than N bytes use the kmalloc");
143
144 /*
145 * The number of threads available to allocate new slabs for caches. This
146 * should not need to be tuned but it is available for performance analysis.
147 */
148 unsigned int spl_kmem_cache_kmem_threads = 4;
149 module_param(spl_kmem_cache_kmem_threads, uint, 0444);
150 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
151 "Number of spl_kmem_cache threads");
152 /* END CSTYLED */
153
154 /*
155 * Slab allocation interfaces
156 *
157 * While the Linux slab implementation was inspired by the Solaris
158 * implementation I cannot use it to emulate the Solaris APIs. I
159 * require two features which are not provided by the Linux slab.
160 *
161 * 1) Constructors AND destructors. Recent versions of the Linux
162 * kernel have removed support for destructors. This is a deal
163 * breaker for the SPL which contains particularly expensive
164 * initializers for mutex's, condition variables, etc. We also
165 * require a minimal level of cleanup for these data types unlike
166 * many Linux data types which do need to be explicitly destroyed.
167 *
168 * 2) Virtual address space backed slab. Callers of the Solaris slab
169 * expect it to work well for both small are very large allocations.
170 * Because of memory fragmentation the Linux slab which is backed
171 * by kmalloc'ed memory performs very badly when confronted with
172 * large numbers of large allocations. Basing the slab on the
173 * virtual address space removes the need for contiguous pages
174 * and greatly improve performance for large allocations.
175 *
176 * For these reasons, the SPL has its own slab implementation with
177 * the needed features. It is not as highly optimized as either the
178 * Solaris or Linux slabs, but it should get me most of what is
179 * needed until it can be optimized or obsoleted by another approach.
180 *
181 * One serious concern I do have about this method is the relatively
182 * small virtual address space on 32bit arches. This will seriously
183 * constrain the size of the slab caches and their performance.
184 */
185
186 struct list_head spl_kmem_cache_list; /* List of caches */
187 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
188 taskq_t *spl_kmem_cache_taskq; /* Task queue for ageing / reclaim */
189
190 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
191
192 SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
193 SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
194 spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
195
196 static void *
197 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
198 {
199 gfp_t lflags = kmem_flags_convert(flags);
200 void *ptr;
201
202 if (skc->skc_flags & KMC_KMEM) {
203 ASSERT(ISP2(size));
204 ptr = (void *)__get_free_pages(lflags, get_order(size));
205 } else {
206 ptr = __vmalloc(size, lflags | __GFP_HIGHMEM, PAGE_KERNEL);
207 }
208
209 /* Resulting allocated memory will be page aligned */
210 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
211
212 return (ptr);
213 }
214
215 static void
216 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
217 {
218 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
219
220 /*
221 * The Linux direct reclaim path uses this out of band value to
222 * determine if forward progress is being made. Normally this is
223 * incremented by kmem_freepages() which is part of the various
224 * Linux slab implementations. However, since we are using none
225 * of that infrastructure we are responsible for incrementing it.
226 */
227 if (current->reclaim_state)
228 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
229
230 if (skc->skc_flags & KMC_KMEM) {
231 ASSERT(ISP2(size));
232 free_pages((unsigned long)ptr, get_order(size));
233 } else {
234 vfree(ptr);
235 }
236 }
237
238 /*
239 * Required space for each aligned sks.
240 */
241 static inline uint32_t
242 spl_sks_size(spl_kmem_cache_t *skc)
243 {
244 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
245 skc->skc_obj_align, uint32_t));
246 }
247
248 /*
249 * Required space for each aligned object.
250 */
251 static inline uint32_t
252 spl_obj_size(spl_kmem_cache_t *skc)
253 {
254 uint32_t align = skc->skc_obj_align;
255
256 return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
257 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
258 }
259
260 /*
261 * Lookup the spl_kmem_object_t for an object given that object.
262 */
263 static inline spl_kmem_obj_t *
264 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
265 {
266 return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
267 skc->skc_obj_align, uint32_t));
268 }
269
270 /*
271 * Required space for each offslab object taking in to account alignment
272 * restrictions and the power-of-two requirement of kv_alloc().
273 */
274 static inline uint32_t
275 spl_offslab_size(spl_kmem_cache_t *skc)
276 {
277 return (1UL << (fls64(spl_obj_size(skc)) + 1));
278 }
279
280 /*
281 * It's important that we pack the spl_kmem_obj_t structure and the
282 * actual objects in to one large address space to minimize the number
283 * of calls to the allocator. It is far better to do a few large
284 * allocations and then subdivide it ourselves. Now which allocator
285 * we use requires balancing a few trade offs.
286 *
287 * For small objects we use kmem_alloc() because as long as you are
288 * only requesting a small number of pages (ideally just one) its cheap.
289 * However, when you start requesting multiple pages with kmem_alloc()
290 * it gets increasingly expensive since it requires contiguous pages.
291 * For this reason we shift to vmem_alloc() for slabs of large objects
292 * which removes the need for contiguous pages. We do not use
293 * vmem_alloc() in all cases because there is significant locking
294 * overhead in __get_vm_area_node(). This function takes a single
295 * global lock when acquiring an available virtual address range which
296 * serializes all vmem_alloc()'s for all slab caches. Using slightly
297 * different allocation functions for small and large objects should
298 * give us the best of both worlds.
299 *
300 * KMC_ONSLAB KMC_OFFSLAB
301 *
302 * +------------------------+ +-----------------+
303 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
304 * | skc_obj_size <-+ | | +-----------------+ | |
305 * | spl_kmem_obj_t | | | |
306 * | skc_obj_size <---+ | +-----------------+ | |
307 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
308 * | ... v | | spl_kmem_obj_t | |
309 * +------------------------+ +-----------------+ v
310 */
311 static spl_kmem_slab_t *
312 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
313 {
314 spl_kmem_slab_t *sks;
315 spl_kmem_obj_t *sko, *n;
316 void *base, *obj;
317 uint32_t obj_size, offslab_size = 0;
318 int i, rc = 0;
319
320 base = kv_alloc(skc, skc->skc_slab_size, flags);
321 if (base == NULL)
322 return (NULL);
323
324 sks = (spl_kmem_slab_t *)base;
325 sks->sks_magic = SKS_MAGIC;
326 sks->sks_objs = skc->skc_slab_objs;
327 sks->sks_age = jiffies;
328 sks->sks_cache = skc;
329 INIT_LIST_HEAD(&sks->sks_list);
330 INIT_LIST_HEAD(&sks->sks_free_list);
331 sks->sks_ref = 0;
332 obj_size = spl_obj_size(skc);
333
334 if (skc->skc_flags & KMC_OFFSLAB)
335 offslab_size = spl_offslab_size(skc);
336
337 for (i = 0; i < sks->sks_objs; i++) {
338 if (skc->skc_flags & KMC_OFFSLAB) {
339 obj = kv_alloc(skc, offslab_size, flags);
340 if (!obj) {
341 rc = -ENOMEM;
342 goto out;
343 }
344 } else {
345 obj = base + spl_sks_size(skc) + (i * obj_size);
346 }
347
348 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
349 sko = spl_sko_from_obj(skc, obj);
350 sko->sko_addr = obj;
351 sko->sko_magic = SKO_MAGIC;
352 sko->sko_slab = sks;
353 INIT_LIST_HEAD(&sko->sko_list);
354 list_add_tail(&sko->sko_list, &sks->sks_free_list);
355 }
356
357 out:
358 if (rc) {
359 if (skc->skc_flags & KMC_OFFSLAB)
360 list_for_each_entry_safe(sko,
361 n, &sks->sks_free_list, sko_list) {
362 kv_free(skc, sko->sko_addr, offslab_size);
363 }
364
365 kv_free(skc, base, skc->skc_slab_size);
366 sks = NULL;
367 }
368
369 return (sks);
370 }
371
372 /*
373 * Remove a slab from complete or partial list, it must be called with
374 * the 'skc->skc_lock' held but the actual free must be performed
375 * outside the lock to prevent deadlocking on vmem addresses.
376 */
377 static void
378 spl_slab_free(spl_kmem_slab_t *sks,
379 struct list_head *sks_list, struct list_head *sko_list)
380 {
381 spl_kmem_cache_t *skc;
382
383 ASSERT(sks->sks_magic == SKS_MAGIC);
384 ASSERT(sks->sks_ref == 0);
385
386 skc = sks->sks_cache;
387 ASSERT(skc->skc_magic == SKC_MAGIC);
388
389 /*
390 * Update slab/objects counters in the cache, then remove the
391 * slab from the skc->skc_partial_list. Finally add the slab
392 * and all its objects in to the private work lists where the
393 * destructors will be called and the memory freed to the system.
394 */
395 skc->skc_obj_total -= sks->sks_objs;
396 skc->skc_slab_total--;
397 list_del(&sks->sks_list);
398 list_add(&sks->sks_list, sks_list);
399 list_splice_init(&sks->sks_free_list, sko_list);
400 }
401
402 /*
403 * Reclaim empty slabs at the end of the partial list.
404 */
405 static void
406 spl_slab_reclaim(spl_kmem_cache_t *skc)
407 {
408 spl_kmem_slab_t *sks, *m;
409 spl_kmem_obj_t *sko, *n;
410 LIST_HEAD(sks_list);
411 LIST_HEAD(sko_list);
412 uint32_t size = 0;
413
414 /*
415 * Empty slabs and objects must be moved to a private list so they
416 * can be safely freed outside the spin lock. All empty slabs are
417 * at the end of skc->skc_partial_list, therefore once a non-empty
418 * slab is found we can stop scanning.
419 */
420 spin_lock(&skc->skc_lock);
421 list_for_each_entry_safe_reverse(sks, m,
422 &skc->skc_partial_list, sks_list) {
423
424 if (sks->sks_ref > 0)
425 break;
426
427 spl_slab_free(sks, &sks_list, &sko_list);
428 }
429 spin_unlock(&skc->skc_lock);
430
431 /*
432 * The following two loops ensure all the object destructors are
433 * run, any offslab objects are freed, and the slabs themselves
434 * are freed. This is all done outside the skc->skc_lock since
435 * this allows the destructor to sleep, and allows us to perform
436 * a conditional reschedule when a freeing a large number of
437 * objects and slabs back to the system.
438 */
439 if (skc->skc_flags & KMC_OFFSLAB)
440 size = spl_offslab_size(skc);
441
442 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
443 ASSERT(sko->sko_magic == SKO_MAGIC);
444
445 if (skc->skc_flags & KMC_OFFSLAB)
446 kv_free(skc, sko->sko_addr, size);
447 }
448
449 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
450 ASSERT(sks->sks_magic == SKS_MAGIC);
451 kv_free(skc, sks, skc->skc_slab_size);
452 }
453 }
454
455 static spl_kmem_emergency_t *
456 spl_emergency_search(struct rb_root *root, void *obj)
457 {
458 struct rb_node *node = root->rb_node;
459 spl_kmem_emergency_t *ske;
460 unsigned long address = (unsigned long)obj;
461
462 while (node) {
463 ske = container_of(node, spl_kmem_emergency_t, ske_node);
464
465 if (address < ske->ske_obj)
466 node = node->rb_left;
467 else if (address > ske->ske_obj)
468 node = node->rb_right;
469 else
470 return (ske);
471 }
472
473 return (NULL);
474 }
475
476 static int
477 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
478 {
479 struct rb_node **new = &(root->rb_node), *parent = NULL;
480 spl_kmem_emergency_t *ske_tmp;
481 unsigned long address = ske->ske_obj;
482
483 while (*new) {
484 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
485
486 parent = *new;
487 if (address < ske_tmp->ske_obj)
488 new = &((*new)->rb_left);
489 else if (address > ske_tmp->ske_obj)
490 new = &((*new)->rb_right);
491 else
492 return (0);
493 }
494
495 rb_link_node(&ske->ske_node, parent, new);
496 rb_insert_color(&ske->ske_node, root);
497
498 return (1);
499 }
500
501 /*
502 * Allocate a single emergency object and track it in a red black tree.
503 */
504 static int
505 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
506 {
507 gfp_t lflags = kmem_flags_convert(flags);
508 spl_kmem_emergency_t *ske;
509 int order = get_order(skc->skc_obj_size);
510 int empty;
511
512 /* Last chance use a partial slab if one now exists */
513 spin_lock(&skc->skc_lock);
514 empty = list_empty(&skc->skc_partial_list);
515 spin_unlock(&skc->skc_lock);
516 if (!empty)
517 return (-EEXIST);
518
519 ske = kmalloc(sizeof (*ske), lflags);
520 if (ske == NULL)
521 return (-ENOMEM);
522
523 ske->ske_obj = __get_free_pages(lflags, order);
524 if (ske->ske_obj == 0) {
525 kfree(ske);
526 return (-ENOMEM);
527 }
528
529 spin_lock(&skc->skc_lock);
530 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
531 if (likely(empty)) {
532 skc->skc_obj_total++;
533 skc->skc_obj_emergency++;
534 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
535 skc->skc_obj_emergency_max = skc->skc_obj_emergency;
536 }
537 spin_unlock(&skc->skc_lock);
538
539 if (unlikely(!empty)) {
540 free_pages(ske->ske_obj, order);
541 kfree(ske);
542 return (-EINVAL);
543 }
544
545 *obj = (void *)ske->ske_obj;
546
547 return (0);
548 }
549
550 /*
551 * Locate the passed object in the red black tree and free it.
552 */
553 static int
554 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
555 {
556 spl_kmem_emergency_t *ske;
557 int order = get_order(skc->skc_obj_size);
558
559 spin_lock(&skc->skc_lock);
560 ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
561 if (ske) {
562 rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
563 skc->skc_obj_emergency--;
564 skc->skc_obj_total--;
565 }
566 spin_unlock(&skc->skc_lock);
567
568 if (ske == NULL)
569 return (-ENOENT);
570
571 free_pages(ske->ske_obj, order);
572 kfree(ske);
573
574 return (0);
575 }
576
577 /*
578 * Release objects from the per-cpu magazine back to their slab. The flush
579 * argument contains the max number of entries to remove from the magazine.
580 */
581 static void
582 __spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
583 {
584 int i, count = MIN(flush, skm->skm_avail);
585
586 ASSERT(skc->skc_magic == SKC_MAGIC);
587 ASSERT(skm->skm_magic == SKM_MAGIC);
588
589 for (i = 0; i < count; i++)
590 spl_cache_shrink(skc, skm->skm_objs[i]);
591
592 skm->skm_avail -= count;
593 memmove(skm->skm_objs, &(skm->skm_objs[count]),
594 sizeof (void *) * skm->skm_avail);
595 }
596
597 static void
598 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
599 {
600 spin_lock(&skc->skc_lock);
601 __spl_cache_flush(skc, skm, flush);
602 spin_unlock(&skc->skc_lock);
603 }
604
605 static void
606 spl_magazine_age(void *data)
607 {
608 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
609 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
610
611 ASSERT(skm->skm_magic == SKM_MAGIC);
612 ASSERT(skm->skm_cpu == smp_processor_id());
613 ASSERT(irqs_disabled());
614
615 /* There are no available objects or they are too young to age out */
616 if ((skm->skm_avail == 0) ||
617 time_before(jiffies, skm->skm_age + skc->skc_delay * HZ))
618 return;
619
620 /*
621 * Because we're executing in interrupt context we may have
622 * interrupted the holder of this lock. To avoid a potential
623 * deadlock return if the lock is contended.
624 */
625 if (!spin_trylock(&skc->skc_lock))
626 return;
627
628 __spl_cache_flush(skc, skm, skm->skm_refill);
629 spin_unlock(&skc->skc_lock);
630 }
631
632 /*
633 * Called regularly to keep a downward pressure on the cache.
634 *
635 * Objects older than skc->skc_delay seconds in the per-cpu magazines will
636 * be returned to the caches. This is done to prevent idle magazines from
637 * holding memory which could be better used elsewhere. The delay is
638 * present to prevent thrashing the magazine.
639 *
640 * The newly released objects may result in empty partial slabs. Those
641 * slabs should be released to the system. Otherwise moving the objects
642 * out of the magazines is just wasted work.
643 */
644 static void
645 spl_cache_age(void *data)
646 {
647 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
648 taskqid_t id = 0;
649
650 ASSERT(skc->skc_magic == SKC_MAGIC);
651
652 /* Dynamically disabled at run time */
653 if (!(spl_kmem_cache_expire & KMC_EXPIRE_AGE))
654 return;
655
656 atomic_inc(&skc->skc_ref);
657
658 if (!(skc->skc_flags & KMC_NOMAGAZINE))
659 on_each_cpu(spl_magazine_age, skc, 1);
660
661 spl_slab_reclaim(skc);
662
663 while (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && !id) {
664 id = taskq_dispatch_delay(
665 spl_kmem_cache_taskq, spl_cache_age, skc, TQ_SLEEP,
666 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
667
668 /* Destroy issued after dispatch immediately cancel it */
669 if (test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && id)
670 taskq_cancel_id(spl_kmem_cache_taskq, id);
671 }
672
673 spin_lock(&skc->skc_lock);
674 skc->skc_taskqid = id;
675 spin_unlock(&skc->skc_lock);
676
677 atomic_dec(&skc->skc_ref);
678 }
679
680 /*
681 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
682 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However,
683 * for very small objects we may end up with more than this so as not
684 * to waste space in the minimal allocation of a single page. Also for
685 * very large objects we may use as few as spl_kmem_cache_obj_per_slab_min,
686 * lower than this and we will fail.
687 */
688 static int
689 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
690 {
691 uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
692
693 if (skc->skc_flags & KMC_OFFSLAB) {
694 tgt_objs = spl_kmem_cache_obj_per_slab;
695 tgt_size = P2ROUNDUP(sizeof (spl_kmem_slab_t), PAGE_SIZE);
696
697 if ((skc->skc_flags & KMC_KMEM) &&
698 (spl_obj_size(skc) > (SPL_MAX_ORDER_NR_PAGES * PAGE_SIZE)))
699 return (-ENOSPC);
700 } else {
701 sks_size = spl_sks_size(skc);
702 obj_size = spl_obj_size(skc);
703 max_size = (spl_kmem_cache_max_size * 1024 * 1024);
704 tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
705
706 /*
707 * KMC_KMEM slabs are allocated by __get_free_pages() which
708 * rounds up to the nearest order. Knowing this the size
709 * should be rounded up to the next power of two with a hard
710 * maximum defined by the maximum allowed allocation order.
711 */
712 if (skc->skc_flags & KMC_KMEM) {
713 max_size = SPL_MAX_ORDER_NR_PAGES * PAGE_SIZE;
714 tgt_size = MIN(max_size,
715 PAGE_SIZE * (1 << MAX(get_order(tgt_size) - 1, 1)));
716 }
717
718 if (tgt_size <= max_size) {
719 tgt_objs = (tgt_size - sks_size) / obj_size;
720 } else {
721 tgt_objs = (max_size - sks_size) / obj_size;
722 tgt_size = (tgt_objs * obj_size) + sks_size;
723 }
724 }
725
726 if (tgt_objs == 0)
727 return (-ENOSPC);
728
729 *objs = tgt_objs;
730 *size = tgt_size;
731
732 return (0);
733 }
734
735 /*
736 * Make a guess at reasonable per-cpu magazine size based on the size of
737 * each object and the cost of caching N of them in each magazine. Long
738 * term this should really adapt based on an observed usage heuristic.
739 */
740 static int
741 spl_magazine_size(spl_kmem_cache_t *skc)
742 {
743 uint32_t obj_size = spl_obj_size(skc);
744 int size;
745
746 if (spl_kmem_cache_magazine_size > 0)
747 return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
748
749 /* Per-magazine sizes below assume a 4Kib page size */
750 if (obj_size > (PAGE_SIZE * 256))
751 size = 4; /* Minimum 4Mib per-magazine */
752 else if (obj_size > (PAGE_SIZE * 32))
753 size = 16; /* Minimum 2Mib per-magazine */
754 else if (obj_size > (PAGE_SIZE))
755 size = 64; /* Minimum 256Kib per-magazine */
756 else if (obj_size > (PAGE_SIZE / 4))
757 size = 128; /* Minimum 128Kib per-magazine */
758 else
759 size = 256;
760
761 return (size);
762 }
763
764 /*
765 * Allocate a per-cpu magazine to associate with a specific core.
766 */
767 static spl_kmem_magazine_t *
768 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
769 {
770 spl_kmem_magazine_t *skm;
771 int size = sizeof (spl_kmem_magazine_t) +
772 sizeof (void *) * skc->skc_mag_size;
773
774 skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
775 if (skm) {
776 skm->skm_magic = SKM_MAGIC;
777 skm->skm_avail = 0;
778 skm->skm_size = skc->skc_mag_size;
779 skm->skm_refill = skc->skc_mag_refill;
780 skm->skm_cache = skc;
781 skm->skm_age = jiffies;
782 skm->skm_cpu = cpu;
783 }
784
785 return (skm);
786 }
787
788 /*
789 * Free a per-cpu magazine associated with a specific core.
790 */
791 static void
792 spl_magazine_free(spl_kmem_magazine_t *skm)
793 {
794 ASSERT(skm->skm_magic == SKM_MAGIC);
795 ASSERT(skm->skm_avail == 0);
796 kfree(skm);
797 }
798
799 /*
800 * Create all pre-cpu magazines of reasonable sizes.
801 */
802 static int
803 spl_magazine_create(spl_kmem_cache_t *skc)
804 {
805 int i;
806
807 if (skc->skc_flags & KMC_NOMAGAZINE)
808 return (0);
809
810 skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
811 num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
812 skc->skc_mag_size = spl_magazine_size(skc);
813 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
814
815 for_each_possible_cpu(i) {
816 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
817 if (!skc->skc_mag[i]) {
818 for (i--; i >= 0; i--)
819 spl_magazine_free(skc->skc_mag[i]);
820
821 kfree(skc->skc_mag);
822 return (-ENOMEM);
823 }
824 }
825
826 return (0);
827 }
828
829 /*
830 * Destroy all pre-cpu magazines.
831 */
832 static void
833 spl_magazine_destroy(spl_kmem_cache_t *skc)
834 {
835 spl_kmem_magazine_t *skm;
836 int i;
837
838 if (skc->skc_flags & KMC_NOMAGAZINE)
839 return;
840
841 for_each_possible_cpu(i) {
842 skm = skc->skc_mag[i];
843 spl_cache_flush(skc, skm, skm->skm_avail);
844 spl_magazine_free(skm);
845 }
846
847 kfree(skc->skc_mag);
848 }
849
850 /*
851 * Create a object cache based on the following arguments:
852 * name cache name
853 * size cache object size
854 * align cache object alignment
855 * ctor cache object constructor
856 * dtor cache object destructor
857 * reclaim cache object reclaim
858 * priv cache private data for ctor/dtor/reclaim
859 * vmp unused must be NULL
860 * flags
861 * KMC_NOTOUCH Disable cache object aging (unsupported)
862 * KMC_NODEBUG Disable debugging (unsupported)
863 * KMC_NOHASH Disable hashing (unsupported)
864 * KMC_QCACHE Disable qcache (unsupported)
865 * KMC_NOMAGAZINE Enabled for kmem/vmem, Disabled for Linux slab
866 * KMC_KMEM Force kmem backed cache
867 * KMC_VMEM Force vmem backed cache
868 * KMC_SLAB Force Linux slab backed cache
869 * KMC_OFFSLAB Locate objects off the slab
870 */
871 spl_kmem_cache_t *
872 spl_kmem_cache_create(char *name, size_t size, size_t align,
873 spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, spl_kmem_reclaim_t reclaim,
874 void *priv, void *vmp, int flags)
875 {
876 gfp_t lflags = kmem_flags_convert(KM_SLEEP);
877 spl_kmem_cache_t *skc;
878 int rc;
879
880 /*
881 * Unsupported flags
882 */
883 ASSERT0(flags & KMC_NOMAGAZINE);
884 ASSERT0(flags & KMC_NOHASH);
885 ASSERT0(flags & KMC_QCACHE);
886 ASSERT(vmp == NULL);
887
888 might_sleep();
889
890 skc = kzalloc(sizeof (*skc), lflags);
891 if (skc == NULL)
892 return (NULL);
893
894 skc->skc_magic = SKC_MAGIC;
895 skc->skc_name_size = strlen(name) + 1;
896 skc->skc_name = (char *)kmalloc(skc->skc_name_size, lflags);
897 if (skc->skc_name == NULL) {
898 kfree(skc);
899 return (NULL);
900 }
901 strncpy(skc->skc_name, name, skc->skc_name_size);
902
903 skc->skc_ctor = ctor;
904 skc->skc_dtor = dtor;
905 skc->skc_reclaim = reclaim;
906 skc->skc_private = priv;
907 skc->skc_vmp = vmp;
908 skc->skc_linux_cache = NULL;
909 skc->skc_flags = flags;
910 skc->skc_obj_size = size;
911 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
912 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
913 skc->skc_reap = SPL_KMEM_CACHE_REAP;
914 atomic_set(&skc->skc_ref, 0);
915
916 INIT_LIST_HEAD(&skc->skc_list);
917 INIT_LIST_HEAD(&skc->skc_complete_list);
918 INIT_LIST_HEAD(&skc->skc_partial_list);
919 skc->skc_emergency_tree = RB_ROOT;
920 spin_lock_init(&skc->skc_lock);
921 init_waitqueue_head(&skc->skc_waitq);
922 skc->skc_slab_fail = 0;
923 skc->skc_slab_create = 0;
924 skc->skc_slab_destroy = 0;
925 skc->skc_slab_total = 0;
926 skc->skc_slab_alloc = 0;
927 skc->skc_slab_max = 0;
928 skc->skc_obj_total = 0;
929 skc->skc_obj_alloc = 0;
930 skc->skc_obj_max = 0;
931 skc->skc_obj_deadlock = 0;
932 skc->skc_obj_emergency = 0;
933 skc->skc_obj_emergency_max = 0;
934
935 /*
936 * Verify the requested alignment restriction is sane.
937 */
938 if (align) {
939 VERIFY(ISP2(align));
940 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
941 VERIFY3U(align, <=, PAGE_SIZE);
942 skc->skc_obj_align = align;
943 }
944
945 /*
946 * When no specific type of slab is requested (kmem, vmem, or
947 * linuxslab) then select a cache type based on the object size
948 * and default tunables.
949 */
950 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB))) {
951
952 /*
953 * Objects smaller than spl_kmem_cache_slab_limit can
954 * use the Linux slab for better space-efficiency. By
955 * default this functionality is disabled until its
956 * performance characteristics are fully understood.
957 */
958 if (spl_kmem_cache_slab_limit &&
959 size <= (size_t)spl_kmem_cache_slab_limit)
960 skc->skc_flags |= KMC_SLAB;
961
962 /*
963 * Small objects, less than spl_kmem_cache_kmem_limit per
964 * object should use kmem because their slabs are small.
965 */
966 else if (spl_obj_size(skc) <= spl_kmem_cache_kmem_limit)
967 skc->skc_flags |= KMC_KMEM;
968
969 /*
970 * All other objects are considered large and are placed
971 * on vmem backed slabs.
972 */
973 else
974 skc->skc_flags |= KMC_VMEM;
975 }
976
977 /*
978 * Given the type of slab allocate the required resources.
979 */
980 if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
981 rc = spl_slab_size(skc,
982 &skc->skc_slab_objs, &skc->skc_slab_size);
983 if (rc)
984 goto out;
985
986 rc = spl_magazine_create(skc);
987 if (rc)
988 goto out;
989 } else {
990 unsigned long slabflags = 0;
991
992 if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE)) {
993 rc = EINVAL;
994 goto out;
995 }
996
997 #if defined(SLAB_USERCOPY)
998 /*
999 * Required for PAX-enabled kernels if the slab is to be
1000 * used for coping between user and kernel space.
1001 */
1002 slabflags |= SLAB_USERCOPY;
1003 #endif
1004
1005 #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY)
1006 /*
1007 * Newer grsec patchset uses kmem_cache_create_usercopy()
1008 * instead of SLAB_USERCOPY flag
1009 */
1010 skc->skc_linux_cache = kmem_cache_create_usercopy(
1011 skc->skc_name, size, align, slabflags, 0, size, NULL);
1012 #else
1013 skc->skc_linux_cache = kmem_cache_create(
1014 skc->skc_name, size, align, slabflags, NULL);
1015 #endif
1016 if (skc->skc_linux_cache == NULL) {
1017 rc = ENOMEM;
1018 goto out;
1019 }
1020
1021 #if defined(HAVE_KMEM_CACHE_ALLOCFLAGS)
1022 skc->skc_linux_cache->allocflags |= __GFP_COMP;
1023 #elif defined(HAVE_KMEM_CACHE_GFPFLAGS)
1024 skc->skc_linux_cache->gfpflags |= __GFP_COMP;
1025 #endif
1026 skc->skc_flags |= KMC_NOMAGAZINE;
1027 }
1028
1029 if (spl_kmem_cache_expire & KMC_EXPIRE_AGE)
1030 skc->skc_taskqid = taskq_dispatch_delay(spl_kmem_cache_taskq,
1031 spl_cache_age, skc, TQ_SLEEP,
1032 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
1033
1034 down_write(&spl_kmem_cache_sem);
1035 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
1036 up_write(&spl_kmem_cache_sem);
1037
1038 return (skc);
1039 out:
1040 kfree(skc->skc_name);
1041 kfree(skc);
1042 return (NULL);
1043 }
1044 EXPORT_SYMBOL(spl_kmem_cache_create);
1045
1046 /*
1047 * Register a move callback for cache defragmentation.
1048 * XXX: Unimplemented but harmless to stub out for now.
1049 */
1050 void
1051 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
1052 kmem_cbrc_t (move)(void *, void *, size_t, void *))
1053 {
1054 ASSERT(move != NULL);
1055 }
1056 EXPORT_SYMBOL(spl_kmem_cache_set_move);
1057
1058 /*
1059 * Destroy a cache and all objects associated with the cache.
1060 */
1061 void
1062 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
1063 {
1064 DECLARE_WAIT_QUEUE_HEAD(wq);
1065 taskqid_t id;
1066
1067 ASSERT(skc->skc_magic == SKC_MAGIC);
1068 ASSERT(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB));
1069
1070 down_write(&spl_kmem_cache_sem);
1071 list_del_init(&skc->skc_list);
1072 up_write(&spl_kmem_cache_sem);
1073
1074 /* Cancel any and wait for any pending delayed tasks */
1075 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1076
1077 spin_lock(&skc->skc_lock);
1078 id = skc->skc_taskqid;
1079 spin_unlock(&skc->skc_lock);
1080
1081 taskq_cancel_id(spl_kmem_cache_taskq, id);
1082
1083 /*
1084 * Wait until all current callers complete, this is mainly
1085 * to catch the case where a low memory situation triggers a
1086 * cache reaping action which races with this destroy.
1087 */
1088 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1089
1090 if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
1091 spl_magazine_destroy(skc);
1092 spl_slab_reclaim(skc);
1093 } else {
1094 ASSERT(skc->skc_flags & KMC_SLAB);
1095 kmem_cache_destroy(skc->skc_linux_cache);
1096 }
1097
1098 spin_lock(&skc->skc_lock);
1099
1100 /*
1101 * Validate there are no objects in use and free all the
1102 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
1103 */
1104 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1105 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1106 ASSERT3U(skc->skc_slab_total, ==, 0);
1107 ASSERT3U(skc->skc_obj_total, ==, 0);
1108 ASSERT3U(skc->skc_obj_emergency, ==, 0);
1109 ASSERT(list_empty(&skc->skc_complete_list));
1110
1111 spin_unlock(&skc->skc_lock);
1112
1113 kfree(skc->skc_name);
1114 kfree(skc);
1115 }
1116 EXPORT_SYMBOL(spl_kmem_cache_destroy);
1117
1118 /*
1119 * Allocate an object from a slab attached to the cache. This is used to
1120 * repopulate the per-cpu magazine caches in batches when they run low.
1121 */
1122 static void *
1123 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
1124 {
1125 spl_kmem_obj_t *sko;
1126
1127 ASSERT(skc->skc_magic == SKC_MAGIC);
1128 ASSERT(sks->sks_magic == SKS_MAGIC);
1129
1130 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
1131 ASSERT(sko->sko_magic == SKO_MAGIC);
1132 ASSERT(sko->sko_addr != NULL);
1133
1134 /* Remove from sks_free_list */
1135 list_del_init(&sko->sko_list);
1136
1137 sks->sks_age = jiffies;
1138 sks->sks_ref++;
1139 skc->skc_obj_alloc++;
1140
1141 /* Track max obj usage statistics */
1142 if (skc->skc_obj_alloc > skc->skc_obj_max)
1143 skc->skc_obj_max = skc->skc_obj_alloc;
1144
1145 /* Track max slab usage statistics */
1146 if (sks->sks_ref == 1) {
1147 skc->skc_slab_alloc++;
1148
1149 if (skc->skc_slab_alloc > skc->skc_slab_max)
1150 skc->skc_slab_max = skc->skc_slab_alloc;
1151 }
1152
1153 return (sko->sko_addr);
1154 }
1155
1156 /*
1157 * Generic slab allocation function to run by the global work queues.
1158 * It is responsible for allocating a new slab, linking it in to the list
1159 * of partial slabs, and then waking any waiters.
1160 */
1161 static int
1162 __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
1163 {
1164 spl_kmem_slab_t *sks;
1165
1166 fstrans_cookie_t cookie = spl_fstrans_mark();
1167 sks = spl_slab_alloc(skc, flags);
1168 spl_fstrans_unmark(cookie);
1169
1170 spin_lock(&skc->skc_lock);
1171 if (sks) {
1172 skc->skc_slab_total++;
1173 skc->skc_obj_total += sks->sks_objs;
1174 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1175
1176 smp_mb__before_atomic();
1177 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1178 smp_mb__after_atomic();
1179 wake_up_all(&skc->skc_waitq);
1180 }
1181 spin_unlock(&skc->skc_lock);
1182
1183 return (sks == NULL ? -ENOMEM : 0);
1184 }
1185
1186 static void
1187 spl_cache_grow_work(void *data)
1188 {
1189 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
1190 spl_kmem_cache_t *skc = ska->ska_cache;
1191
1192 (void) __spl_cache_grow(skc, ska->ska_flags);
1193
1194 atomic_dec(&skc->skc_ref);
1195 smp_mb__before_atomic();
1196 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
1197 smp_mb__after_atomic();
1198
1199 kfree(ska);
1200 }
1201
1202 /*
1203 * Returns non-zero when a new slab should be available.
1204 */
1205 static int
1206 spl_cache_grow_wait(spl_kmem_cache_t *skc)
1207 {
1208 return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
1209 }
1210
1211 /*
1212 * No available objects on any slabs, create a new slab. Note that this
1213 * functionality is disabled for KMC_SLAB caches which are backed by the
1214 * Linux slab.
1215 */
1216 static int
1217 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1218 {
1219 int remaining, rc = 0;
1220
1221 ASSERT0(flags & ~KM_PUBLIC_MASK);
1222 ASSERT(skc->skc_magic == SKC_MAGIC);
1223 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
1224 might_sleep();
1225 *obj = NULL;
1226
1227 /*
1228 * Before allocating a new slab wait for any reaping to complete and
1229 * then return so the local magazine can be rechecked for new objects.
1230 */
1231 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1232 rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1233 TASK_UNINTERRUPTIBLE);
1234 return (rc ? rc : -EAGAIN);
1235 }
1236
1237 /*
1238 * To reduce the overhead of context switch and improve NUMA locality,
1239 * it tries to allocate a new slab in the current process context with
1240 * KM_NOSLEEP flag. If it fails, it will launch a new taskq to do the
1241 * allocation.
1242 *
1243 * However, this can't be applied to KVM_VMEM due to a bug that
1244 * __vmalloc() doesn't honor gfp flags in page table allocation.
1245 */
1246 if (!(skc->skc_flags & KMC_VMEM)) {
1247 rc = __spl_cache_grow(skc, flags | KM_NOSLEEP);
1248 if (rc == 0)
1249 return (0);
1250 }
1251
1252 /*
1253 * This is handled by dispatching a work request to the global work
1254 * queue. This allows us to asynchronously allocate a new slab while
1255 * retaining the ability to safely fall back to a smaller synchronous
1256 * allocations to ensure forward progress is always maintained.
1257 */
1258 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1259 spl_kmem_alloc_t *ska;
1260
1261 ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1262 if (ska == NULL) {
1263 clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1264 smp_mb__after_atomic();
1265 wake_up_all(&skc->skc_waitq);
1266 return (-ENOMEM);
1267 }
1268
1269 atomic_inc(&skc->skc_ref);
1270 ska->ska_cache = skc;
1271 ska->ska_flags = flags;
1272 taskq_init_ent(&ska->ska_tqe);
1273 taskq_dispatch_ent(spl_kmem_cache_taskq,
1274 spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1275 }
1276
1277 /*
1278 * The goal here is to only detect the rare case where a virtual slab
1279 * allocation has deadlocked. We must be careful to minimize the use
1280 * of emergency objects which are more expensive to track. Therefore,
1281 * we set a very long timeout for the asynchronous allocation and if
1282 * the timeout is reached the cache is flagged as deadlocked. From
1283 * this point only new emergency objects will be allocated until the
1284 * asynchronous allocation completes and clears the deadlocked flag.
1285 */
1286 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1287 rc = spl_emergency_alloc(skc, flags, obj);
1288 } else {
1289 remaining = wait_event_timeout(skc->skc_waitq,
1290 spl_cache_grow_wait(skc), HZ / 10);
1291
1292 if (!remaining) {
1293 spin_lock(&skc->skc_lock);
1294 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1295 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1296 skc->skc_obj_deadlock++;
1297 }
1298 spin_unlock(&skc->skc_lock);
1299 }
1300
1301 rc = -ENOMEM;
1302 }
1303
1304 return (rc);
1305 }
1306
1307 /*
1308 * Refill a per-cpu magazine with objects from the slabs for this cache.
1309 * Ideally the magazine can be repopulated using existing objects which have
1310 * been released, however if we are unable to locate enough free objects new
1311 * slabs of objects will be created. On success NULL is returned, otherwise
1312 * the address of a single emergency object is returned for use by the caller.
1313 */
1314 static void *
1315 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1316 {
1317 spl_kmem_slab_t *sks;
1318 int count = 0, rc, refill;
1319 void *obj = NULL;
1320
1321 ASSERT(skc->skc_magic == SKC_MAGIC);
1322 ASSERT(skm->skm_magic == SKM_MAGIC);
1323
1324 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1325 spin_lock(&skc->skc_lock);
1326
1327 while (refill > 0) {
1328 /* No slabs available we may need to grow the cache */
1329 if (list_empty(&skc->skc_partial_list)) {
1330 spin_unlock(&skc->skc_lock);
1331
1332 local_irq_enable();
1333 rc = spl_cache_grow(skc, flags, &obj);
1334 local_irq_disable();
1335
1336 /* Emergency object for immediate use by caller */
1337 if (rc == 0 && obj != NULL)
1338 return (obj);
1339
1340 if (rc)
1341 goto out;
1342
1343 /* Rescheduled to different CPU skm is not local */
1344 if (skm != skc->skc_mag[smp_processor_id()])
1345 goto out;
1346
1347 /*
1348 * Potentially rescheduled to the same CPU but
1349 * allocations may have occurred from this CPU while
1350 * we were sleeping so recalculate max refill.
1351 */
1352 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1353
1354 spin_lock(&skc->skc_lock);
1355 continue;
1356 }
1357
1358 /* Grab the next available slab */
1359 sks = list_entry((&skc->skc_partial_list)->next,
1360 spl_kmem_slab_t, sks_list);
1361 ASSERT(sks->sks_magic == SKS_MAGIC);
1362 ASSERT(sks->sks_ref < sks->sks_objs);
1363 ASSERT(!list_empty(&sks->sks_free_list));
1364
1365 /*
1366 * Consume as many objects as needed to refill the requested
1367 * cache. We must also be careful not to overfill it.
1368 */
1369 while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1370 ++count) {
1371 ASSERT(skm->skm_avail < skm->skm_size);
1372 ASSERT(count < skm->skm_size);
1373 skm->skm_objs[skm->skm_avail++] =
1374 spl_cache_obj(skc, sks);
1375 }
1376
1377 /* Move slab to skc_complete_list when full */
1378 if (sks->sks_ref == sks->sks_objs) {
1379 list_del(&sks->sks_list);
1380 list_add(&sks->sks_list, &skc->skc_complete_list);
1381 }
1382 }
1383
1384 spin_unlock(&skc->skc_lock);
1385 out:
1386 return (NULL);
1387 }
1388
1389 /*
1390 * Release an object back to the slab from which it came.
1391 */
1392 static void
1393 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1394 {
1395 spl_kmem_slab_t *sks = NULL;
1396 spl_kmem_obj_t *sko = NULL;
1397
1398 ASSERT(skc->skc_magic == SKC_MAGIC);
1399
1400 sko = spl_sko_from_obj(skc, obj);
1401 ASSERT(sko->sko_magic == SKO_MAGIC);
1402 sks = sko->sko_slab;
1403 ASSERT(sks->sks_magic == SKS_MAGIC);
1404 ASSERT(sks->sks_cache == skc);
1405 list_add(&sko->sko_list, &sks->sks_free_list);
1406
1407 sks->sks_age = jiffies;
1408 sks->sks_ref--;
1409 skc->skc_obj_alloc--;
1410
1411 /*
1412 * Move slab to skc_partial_list when no longer full. Slabs
1413 * are added to the head to keep the partial list is quasi-full
1414 * sorted order. Fuller at the head, emptier at the tail.
1415 */
1416 if (sks->sks_ref == (sks->sks_objs - 1)) {
1417 list_del(&sks->sks_list);
1418 list_add(&sks->sks_list, &skc->skc_partial_list);
1419 }
1420
1421 /*
1422 * Move empty slabs to the end of the partial list so
1423 * they can be easily found and freed during reclamation.
1424 */
1425 if (sks->sks_ref == 0) {
1426 list_del(&sks->sks_list);
1427 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1428 skc->skc_slab_alloc--;
1429 }
1430 }
1431
1432 /*
1433 * Allocate an object from the per-cpu magazine, or if the magazine
1434 * is empty directly allocate from a slab and repopulate the magazine.
1435 */
1436 void *
1437 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1438 {
1439 spl_kmem_magazine_t *skm;
1440 void *obj = NULL;
1441
1442 ASSERT0(flags & ~KM_PUBLIC_MASK);
1443 ASSERT(skc->skc_magic == SKC_MAGIC);
1444 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1445
1446 /*
1447 * Allocate directly from a Linux slab. All optimizations are left
1448 * to the underlying cache we only need to guarantee that KM_SLEEP
1449 * callers will never fail.
1450 */
1451 if (skc->skc_flags & KMC_SLAB) {
1452 struct kmem_cache *slc = skc->skc_linux_cache;
1453 do {
1454 obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1455 } while ((obj == NULL) && !(flags & KM_NOSLEEP));
1456
1457 goto ret;
1458 }
1459
1460 local_irq_disable();
1461
1462 restart:
1463 /*
1464 * Safe to update per-cpu structure without lock, but
1465 * in the restart case we must be careful to reacquire
1466 * the local magazine since this may have changed
1467 * when we need to grow the cache.
1468 */
1469 skm = skc->skc_mag[smp_processor_id()];
1470 ASSERT(skm->skm_magic == SKM_MAGIC);
1471
1472 if (likely(skm->skm_avail)) {
1473 /* Object available in CPU cache, use it */
1474 obj = skm->skm_objs[--skm->skm_avail];
1475 skm->skm_age = jiffies;
1476 } else {
1477 obj = spl_cache_refill(skc, skm, flags);
1478 if ((obj == NULL) && !(flags & KM_NOSLEEP))
1479 goto restart;
1480
1481 local_irq_enable();
1482 goto ret;
1483 }
1484
1485 local_irq_enable();
1486 ASSERT(obj);
1487 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1488
1489 ret:
1490 /* Pre-emptively migrate object to CPU L1 cache */
1491 if (obj) {
1492 if (obj && skc->skc_ctor)
1493 skc->skc_ctor(obj, skc->skc_private, flags);
1494 else
1495 prefetchw(obj);
1496 }
1497
1498 return (obj);
1499 }
1500 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1501
1502 /*
1503 * Free an object back to the local per-cpu magazine, there is no
1504 * guarantee that this is the same magazine the object was originally
1505 * allocated from. We may need to flush entire from the magazine
1506 * back to the slabs to make space.
1507 */
1508 void
1509 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1510 {
1511 spl_kmem_magazine_t *skm;
1512 unsigned long flags;
1513 int do_reclaim = 0;
1514 int do_emergency = 0;
1515
1516 ASSERT(skc->skc_magic == SKC_MAGIC);
1517 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1518
1519 /*
1520 * Run the destructor
1521 */
1522 if (skc->skc_dtor)
1523 skc->skc_dtor(obj, skc->skc_private);
1524
1525 /*
1526 * Free the object from the Linux underlying Linux slab.
1527 */
1528 if (skc->skc_flags & KMC_SLAB) {
1529 kmem_cache_free(skc->skc_linux_cache, obj);
1530 return;
1531 }
1532
1533 /*
1534 * While a cache has outstanding emergency objects all freed objects
1535 * must be checked. However, since emergency objects will never use
1536 * a virtual address these objects can be safely excluded as an
1537 * optimization.
1538 */
1539 if (!is_vmalloc_addr(obj)) {
1540 spin_lock(&skc->skc_lock);
1541 do_emergency = (skc->skc_obj_emergency > 0);
1542 spin_unlock(&skc->skc_lock);
1543
1544 if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1545 return;
1546 }
1547
1548 local_irq_save(flags);
1549
1550 /*
1551 * Safe to update per-cpu structure without lock, but
1552 * no remote memory allocation tracking is being performed
1553 * it is entirely possible to allocate an object from one
1554 * CPU cache and return it to another.
1555 */
1556 skm = skc->skc_mag[smp_processor_id()];
1557 ASSERT(skm->skm_magic == SKM_MAGIC);
1558
1559 /*
1560 * Per-CPU cache full, flush it to make space for this object,
1561 * this may result in an empty slab which can be reclaimed once
1562 * interrupts are re-enabled.
1563 */
1564 if (unlikely(skm->skm_avail >= skm->skm_size)) {
1565 spl_cache_flush(skc, skm, skm->skm_refill);
1566 do_reclaim = 1;
1567 }
1568
1569 /* Available space in cache, use it */
1570 skm->skm_objs[skm->skm_avail++] = obj;
1571
1572 local_irq_restore(flags);
1573
1574 if (do_reclaim)
1575 spl_slab_reclaim(skc);
1576 }
1577 EXPORT_SYMBOL(spl_kmem_cache_free);
1578
1579 /*
1580 * The generic shrinker function for all caches. Under Linux a shrinker
1581 * may not be tightly coupled with a slab cache. In fact Linux always
1582 * systematically tries calling all registered shrinker callbacks which
1583 * report that they contain unused objects. Because of this we only
1584 * register one shrinker function in the shim layer for all slab caches.
1585 * We always attempt to shrink all caches when this generic shrinker
1586 * is called.
1587 *
1588 * If sc->nr_to_scan is zero, the caller is requesting a query of the
1589 * number of objects which can potentially be freed. If it is nonzero,
1590 * the request is to free that many objects.
1591 *
1592 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
1593 * in struct shrinker and also require the shrinker to return the number
1594 * of objects freed.
1595 *
1596 * Older kernels require the shrinker to return the number of freeable
1597 * objects following the freeing of nr_to_free.
1598 *
1599 * Linux semantics differ from those under Solaris, which are to
1600 * free all available objects which may (and probably will) be more
1601 * objects than the requested nr_to_scan.
1602 */
1603 static spl_shrinker_t
1604 __spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
1605 struct shrink_control *sc)
1606 {
1607 spl_kmem_cache_t *skc;
1608 int alloc = 0;
1609
1610 /*
1611 * No shrinking in a transaction context. Can cause deadlocks.
1612 */
1613 if (sc->nr_to_scan && spl_fstrans_check())
1614 return (SHRINK_STOP);
1615
1616 down_read(&spl_kmem_cache_sem);
1617 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1618 if (sc->nr_to_scan) {
1619 #ifdef HAVE_SPLIT_SHRINKER_CALLBACK
1620 uint64_t oldalloc = skc->skc_obj_alloc;
1621 spl_kmem_cache_reap_now(skc,
1622 MAX(sc->nr_to_scan>>fls64(skc->skc_slab_objs), 1));
1623 if (oldalloc > skc->skc_obj_alloc)
1624 alloc += oldalloc - skc->skc_obj_alloc;
1625 #else
1626 spl_kmem_cache_reap_now(skc,
1627 MAX(sc->nr_to_scan>>fls64(skc->skc_slab_objs), 1));
1628 alloc += skc->skc_obj_alloc;
1629 #endif /* HAVE_SPLIT_SHRINKER_CALLBACK */
1630 } else {
1631 /* Request to query number of freeable objects */
1632 alloc += skc->skc_obj_alloc;
1633 }
1634 }
1635 up_read(&spl_kmem_cache_sem);
1636
1637 /*
1638 * When KMC_RECLAIM_ONCE is set allow only a single reclaim pass.
1639 * This functionality only exists to work around a rare issue where
1640 * shrink_slabs() is repeatedly invoked by many cores causing the
1641 * system to thrash.
1642 */
1643 if ((spl_kmem_cache_reclaim & KMC_RECLAIM_ONCE) && sc->nr_to_scan)
1644 return (SHRINK_STOP);
1645
1646 return (MAX(alloc, 0));
1647 }
1648
1649 SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
1650
1651 /*
1652 * Call the registered reclaim function for a cache. Depending on how
1653 * many and which objects are released it may simply repopulate the
1654 * local magazine which will then need to age-out. Objects which cannot
1655 * fit in the magazine we will be released back to their slabs which will
1656 * also need to age out before being release. This is all just best
1657 * effort and we do not want to thrash creating and destroying slabs.
1658 */
1659 void
1660 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count)
1661 {
1662 ASSERT(skc->skc_magic == SKC_MAGIC);
1663 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1664
1665 atomic_inc(&skc->skc_ref);
1666
1667 /*
1668 * Execute the registered reclaim callback if it exists.
1669 */
1670 if (skc->skc_flags & KMC_SLAB) {
1671 if (skc->skc_reclaim)
1672 skc->skc_reclaim(skc->skc_private);
1673 goto out;
1674 }
1675
1676 /*
1677 * Prevent concurrent cache reaping when contended.
1678 */
1679 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1680 goto out;
1681
1682 /*
1683 * When a reclaim function is available it may be invoked repeatedly
1684 * until at least a single slab can be freed. This ensures that we
1685 * do free memory back to the system. This helps minimize the chance
1686 * of an OOM event when the bulk of memory is used by the slab.
1687 *
1688 * When free slabs are already available the reclaim callback will be
1689 * skipped. Additionally, if no forward progress is detected despite
1690 * a reclaim function the cache will be skipped to avoid deadlock.
1691 *
1692 * Longer term this would be the correct place to add the code which
1693 * repacks the slabs in order minimize fragmentation.
1694 */
1695 if (skc->skc_reclaim) {
1696 uint64_t objects = UINT64_MAX;
1697 int do_reclaim;
1698
1699 do {
1700 spin_lock(&skc->skc_lock);
1701 do_reclaim =
1702 (skc->skc_slab_total > 0) &&
1703 ((skc->skc_slab_total-skc->skc_slab_alloc) == 0) &&
1704 (skc->skc_obj_alloc < objects);
1705
1706 objects = skc->skc_obj_alloc;
1707 spin_unlock(&skc->skc_lock);
1708
1709 if (do_reclaim)
1710 skc->skc_reclaim(skc->skc_private);
1711
1712 } while (do_reclaim);
1713 }
1714
1715 /* Reclaim from the magazine and free all now empty slabs. */
1716 if (spl_kmem_cache_expire & KMC_EXPIRE_MEM) {
1717 spl_kmem_magazine_t *skm;
1718 unsigned long irq_flags;
1719
1720 local_irq_save(irq_flags);
1721 skm = skc->skc_mag[smp_processor_id()];
1722 spl_cache_flush(skc, skm, skm->skm_avail);
1723 local_irq_restore(irq_flags);
1724 }
1725
1726 spl_slab_reclaim(skc);
1727 clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1728 smp_mb__after_atomic();
1729 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1730 out:
1731 atomic_dec(&skc->skc_ref);
1732 }
1733 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1734
1735 /*
1736 * Reap all free slabs from all registered caches.
1737 */
1738 void
1739 spl_kmem_reap(void)
1740 {
1741 struct shrink_control sc;
1742
1743 sc.nr_to_scan = KMC_REAP_CHUNK;
1744 sc.gfp_mask = GFP_KERNEL;
1745
1746 (void) __spl_kmem_cache_generic_shrinker(NULL, &sc);
1747 }
1748 EXPORT_SYMBOL(spl_kmem_reap);
1749
1750 int
1751 spl_kmem_cache_init(void)
1752 {
1753 init_rwsem(&spl_kmem_cache_sem);
1754 INIT_LIST_HEAD(&spl_kmem_cache_list);
1755 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1756 spl_kmem_cache_kmem_threads, maxclsyspri,
1757 spl_kmem_cache_kmem_threads * 8, INT_MAX,
1758 TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1759 spl_register_shrinker(&spl_kmem_cache_shrinker);
1760
1761 return (0);
1762 }
1763
1764 void
1765 spl_kmem_cache_fini(void)
1766 {
1767 spl_unregister_shrinker(&spl_kmem_cache_shrinker);
1768 taskq_destroy(spl_kmem_cache_taskq);
1769 }