]> git.proxmox.com Git - mirror_spl.git/blob - module/spl/spl-kmem-cache.c
Add hooks for disabling direct reclaim
[mirror_spl.git] / module / spl / spl-kmem-cache.c
1 /*
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://zfsonlinux.org/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include <sys/kmem.h>
26 #include <sys/kmem_cache.h>
27 #include <sys/taskq.h>
28 #include <sys/timer.h>
29 #include <sys/vmem.h>
30 #include <linux/slab.h>
31 #include <linux/swap.h>
32 #include <linux/mm_compat.h>
33 #include <linux/wait_compat.h>
34
35 /*
36 * Within the scope of spl-kmem.c file the kmem_cache_* definitions
37 * are removed to allow access to the real Linux slab allocator.
38 */
39 #undef kmem_cache_destroy
40 #undef kmem_cache_create
41 #undef kmem_cache_alloc
42 #undef kmem_cache_free
43
44
45 /*
46 * Cache expiration was implemented because it was part of the default Solaris
47 * kmem_cache behavior. The idea is that per-cpu objects which haven't been
48 * accessed in several seconds should be returned to the cache. On the other
49 * hand Linux slabs never move objects back to the slabs unless there is
50 * memory pressure on the system. By default the Linux method is enabled
51 * because it has been shown to improve responsiveness on low memory systems.
52 * This policy may be changed by setting KMC_EXPIRE_AGE or KMC_EXPIRE_MEM.
53 */
54 unsigned int spl_kmem_cache_expire = KMC_EXPIRE_MEM;
55 EXPORT_SYMBOL(spl_kmem_cache_expire);
56 module_param(spl_kmem_cache_expire, uint, 0644);
57 MODULE_PARM_DESC(spl_kmem_cache_expire, "By age (0x1) or low memory (0x2)");
58
59 /*
60 * The default behavior is to report the number of objects remaining in the
61 * cache. This allows the Linux VM to repeatedly reclaim objects from the
62 * cache when memory is low satisfy other memory allocations. Alternately,
63 * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
64 * is reclaimed. This may increase the likelihood of out of memory events.
65 */
66 unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */;
67 module_param(spl_kmem_cache_reclaim, uint, 0644);
68 MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)");
69
70 unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
71 module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
72 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
73
74 unsigned int spl_kmem_cache_obj_per_slab_min = SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN;
75 module_param(spl_kmem_cache_obj_per_slab_min, uint, 0644);
76 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab_min,
77 "Minimal number of objects per slab");
78
79 unsigned int spl_kmem_cache_max_size = 32;
80 module_param(spl_kmem_cache_max_size, uint, 0644);
81 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
82
83 /*
84 * For small objects the Linux slab allocator should be used to make the most
85 * efficient use of the memory. However, large objects are not supported by
86 * the Linux slab and therefore the SPL implementation is preferred. A cutoff
87 * of 16K was determined to be optimal for architectures using 4K pages.
88 */
89 #if PAGE_SIZE == 4096
90 unsigned int spl_kmem_cache_slab_limit = 16384;
91 #else
92 unsigned int spl_kmem_cache_slab_limit = 0;
93 #endif
94 module_param(spl_kmem_cache_slab_limit, uint, 0644);
95 MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
96 "Objects less than N bytes use the Linux slab");
97
98 unsigned int spl_kmem_cache_kmem_limit = (PAGE_SIZE / 4);
99 module_param(spl_kmem_cache_kmem_limit, uint, 0644);
100 MODULE_PARM_DESC(spl_kmem_cache_kmem_limit,
101 "Objects less than N bytes use the kmalloc");
102
103 /*
104 * Slab allocation interfaces
105 *
106 * While the Linux slab implementation was inspired by the Solaris
107 * implementation I cannot use it to emulate the Solaris APIs. I
108 * require two features which are not provided by the Linux slab.
109 *
110 * 1) Constructors AND destructors. Recent versions of the Linux
111 * kernel have removed support for destructors. This is a deal
112 * breaker for the SPL which contains particularly expensive
113 * initializers for mutex's, condition variables, etc. We also
114 * require a minimal level of cleanup for these data types unlike
115 * many Linux data types which do need to be explicitly destroyed.
116 *
117 * 2) Virtual address space backed slab. Callers of the Solaris slab
118 * expect it to work well for both small are very large allocations.
119 * Because of memory fragmentation the Linux slab which is backed
120 * by kmalloc'ed memory performs very badly when confronted with
121 * large numbers of large allocations. Basing the slab on the
122 * virtual address space removes the need for contiguous pages
123 * and greatly improve performance for large allocations.
124 *
125 * For these reasons, the SPL has its own slab implementation with
126 * the needed features. It is not as highly optimized as either the
127 * Solaris or Linux slabs, but it should get me most of what is
128 * needed until it can be optimized or obsoleted by another approach.
129 *
130 * One serious concern I do have about this method is the relatively
131 * small virtual address space on 32bit arches. This will seriously
132 * constrain the size of the slab caches and their performance.
133 */
134
135 struct list_head spl_kmem_cache_list; /* List of caches */
136 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
137 taskq_t *spl_kmem_cache_taskq; /* Task queue for ageing / reclaim */
138
139 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
140
141 SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
142 SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
143 spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
144
145 static void *
146 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
147 {
148 gfp_t lflags = kmem_flags_convert(flags);
149 void *ptr;
150
151 ASSERT(ISP2(size));
152
153 if (skc->skc_flags & KMC_KMEM)
154 ptr = (void *)__get_free_pages(lflags, get_order(size));
155 else
156 ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM, PAGE_KERNEL);
157
158 /* Resulting allocated memory will be page aligned */
159 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
160
161 return (ptr);
162 }
163
164 static void
165 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
166 {
167 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
168 ASSERT(ISP2(size));
169
170 /*
171 * The Linux direct reclaim path uses this out of band value to
172 * determine if forward progress is being made. Normally this is
173 * incremented by kmem_freepages() which is part of the various
174 * Linux slab implementations. However, since we are using none
175 * of that infrastructure we are responsible for incrementing it.
176 */
177 if (current->reclaim_state)
178 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
179
180 if (skc->skc_flags & KMC_KMEM)
181 free_pages((unsigned long)ptr, get_order(size));
182 else
183 vfree(ptr);
184 }
185
186 /*
187 * Required space for each aligned sks.
188 */
189 static inline uint32_t
190 spl_sks_size(spl_kmem_cache_t *skc)
191 {
192 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
193 skc->skc_obj_align, uint32_t));
194 }
195
196 /*
197 * Required space for each aligned object.
198 */
199 static inline uint32_t
200 spl_obj_size(spl_kmem_cache_t *skc)
201 {
202 uint32_t align = skc->skc_obj_align;
203
204 return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
205 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
206 }
207
208 /*
209 * Lookup the spl_kmem_object_t for an object given that object.
210 */
211 static inline spl_kmem_obj_t *
212 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
213 {
214 return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
215 skc->skc_obj_align, uint32_t));
216 }
217
218 /*
219 * Required space for each offslab object taking in to account alignment
220 * restrictions and the power-of-two requirement of kv_alloc().
221 */
222 static inline uint32_t
223 spl_offslab_size(spl_kmem_cache_t *skc)
224 {
225 return (1UL << (fls64(spl_obj_size(skc)) + 1));
226 }
227
228 /*
229 * It's important that we pack the spl_kmem_obj_t structure and the
230 * actual objects in to one large address space to minimize the number
231 * of calls to the allocator. It is far better to do a few large
232 * allocations and then subdivide it ourselves. Now which allocator
233 * we use requires balancing a few trade offs.
234 *
235 * For small objects we use kmem_alloc() because as long as you are
236 * only requesting a small number of pages (ideally just one) its cheap.
237 * However, when you start requesting multiple pages with kmem_alloc()
238 * it gets increasingly expensive since it requires contiguous pages.
239 * For this reason we shift to vmem_alloc() for slabs of large objects
240 * which removes the need for contiguous pages. We do not use
241 * vmem_alloc() in all cases because there is significant locking
242 * overhead in __get_vm_area_node(). This function takes a single
243 * global lock when acquiring an available virtual address range which
244 * serializes all vmem_alloc()'s for all slab caches. Using slightly
245 * different allocation functions for small and large objects should
246 * give us the best of both worlds.
247 *
248 * KMC_ONSLAB KMC_OFFSLAB
249 *
250 * +------------------------+ +-----------------+
251 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
252 * | skc_obj_size <-+ | | +-----------------+ | |
253 * | spl_kmem_obj_t | | | |
254 * | skc_obj_size <---+ | +-----------------+ | |
255 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
256 * | ... v | | spl_kmem_obj_t | |
257 * +------------------------+ +-----------------+ v
258 */
259 static spl_kmem_slab_t *
260 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
261 {
262 spl_kmem_slab_t *sks;
263 spl_kmem_obj_t *sko, *n;
264 void *base, *obj;
265 uint32_t obj_size, offslab_size = 0;
266 int i, rc = 0;
267
268 base = kv_alloc(skc, skc->skc_slab_size, flags);
269 if (base == NULL)
270 return (NULL);
271
272 sks = (spl_kmem_slab_t *)base;
273 sks->sks_magic = SKS_MAGIC;
274 sks->sks_objs = skc->skc_slab_objs;
275 sks->sks_age = jiffies;
276 sks->sks_cache = skc;
277 INIT_LIST_HEAD(&sks->sks_list);
278 INIT_LIST_HEAD(&sks->sks_free_list);
279 sks->sks_ref = 0;
280 obj_size = spl_obj_size(skc);
281
282 if (skc->skc_flags & KMC_OFFSLAB)
283 offslab_size = spl_offslab_size(skc);
284
285 for (i = 0; i < sks->sks_objs; i++) {
286 if (skc->skc_flags & KMC_OFFSLAB) {
287 obj = kv_alloc(skc, offslab_size, flags);
288 if (!obj) {
289 rc = -ENOMEM;
290 goto out;
291 }
292 } else {
293 obj = base + spl_sks_size(skc) + (i * obj_size);
294 }
295
296 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
297 sko = spl_sko_from_obj(skc, obj);
298 sko->sko_addr = obj;
299 sko->sko_magic = SKO_MAGIC;
300 sko->sko_slab = sks;
301 INIT_LIST_HEAD(&sko->sko_list);
302 list_add_tail(&sko->sko_list, &sks->sks_free_list);
303 }
304
305 out:
306 if (rc) {
307 if (skc->skc_flags & KMC_OFFSLAB)
308 list_for_each_entry_safe(sko,
309 n, &sks->sks_free_list, sko_list)
310 kv_free(skc, sko->sko_addr, offslab_size);
311
312 kv_free(skc, base, skc->skc_slab_size);
313 sks = NULL;
314 }
315
316 return (sks);
317 }
318
319 /*
320 * Remove a slab from complete or partial list, it must be called with
321 * the 'skc->skc_lock' held but the actual free must be performed
322 * outside the lock to prevent deadlocking on vmem addresses.
323 */
324 static void
325 spl_slab_free(spl_kmem_slab_t *sks,
326 struct list_head *sks_list, struct list_head *sko_list)
327 {
328 spl_kmem_cache_t *skc;
329
330 ASSERT(sks->sks_magic == SKS_MAGIC);
331 ASSERT(sks->sks_ref == 0);
332
333 skc = sks->sks_cache;
334 ASSERT(skc->skc_magic == SKC_MAGIC);
335 ASSERT(spin_is_locked(&skc->skc_lock));
336
337 /*
338 * Update slab/objects counters in the cache, then remove the
339 * slab from the skc->skc_partial_list. Finally add the slab
340 * and all its objects in to the private work lists where the
341 * destructors will be called and the memory freed to the system.
342 */
343 skc->skc_obj_total -= sks->sks_objs;
344 skc->skc_slab_total--;
345 list_del(&sks->sks_list);
346 list_add(&sks->sks_list, sks_list);
347 list_splice_init(&sks->sks_free_list, sko_list);
348 }
349
350 /*
351 * Traverse all the partial slabs attached to a cache and free those which
352 * are currently empty, and have not been touched for skc_delay seconds to
353 * avoid thrashing. The count argument is passed to optionally cap the
354 * number of slabs reclaimed, a count of zero means try and reclaim
355 * everything. When flag the is set available slabs freed regardless of age.
356 */
357 static void
358 spl_slab_reclaim(spl_kmem_cache_t *skc, int count, int flag)
359 {
360 spl_kmem_slab_t *sks, *m;
361 spl_kmem_obj_t *sko, *n;
362 LIST_HEAD(sks_list);
363 LIST_HEAD(sko_list);
364 uint32_t size = 0;
365 int i = 0;
366
367 /*
368 * Move empty slabs and objects which have not been touched in
369 * skc_delay seconds on to private lists to be freed outside
370 * the spin lock. This delay time is important to avoid thrashing
371 * however when flag is set the delay will not be used.
372 */
373 spin_lock(&skc->skc_lock);
374 list_for_each_entry_safe_reverse(sks, m,
375 &skc->skc_partial_list, sks_list) {
376 /*
377 * All empty slabs are at the end of skc->skc_partial_list,
378 * therefore once a non-empty slab is found we can stop
379 * scanning. Additionally, stop when reaching the target
380 * reclaim 'count' if a non-zero threshold is given.
381 */
382 if ((sks->sks_ref > 0) || (count && i >= count))
383 break;
384
385 if (time_after(jiffies, sks->sks_age + skc->skc_delay * HZ) ||
386 flag) {
387 spl_slab_free(sks, &sks_list, &sko_list);
388 i++;
389 }
390 }
391 spin_unlock(&skc->skc_lock);
392
393 /*
394 * The following two loops ensure all the object destructors are
395 * run, any offslab objects are freed, and the slabs themselves
396 * are freed. This is all done outside the skc->skc_lock since
397 * this allows the destructor to sleep, and allows us to perform
398 * a conditional reschedule when a freeing a large number of
399 * objects and slabs back to the system.
400 */
401 if (skc->skc_flags & KMC_OFFSLAB)
402 size = spl_offslab_size(skc);
403
404 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
405 ASSERT(sko->sko_magic == SKO_MAGIC);
406
407 if (skc->skc_flags & KMC_OFFSLAB)
408 kv_free(skc, sko->sko_addr, size);
409 }
410
411 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
412 ASSERT(sks->sks_magic == SKS_MAGIC);
413 kv_free(skc, sks, skc->skc_slab_size);
414 }
415 }
416
417 static spl_kmem_emergency_t *
418 spl_emergency_search(struct rb_root *root, void *obj)
419 {
420 struct rb_node *node = root->rb_node;
421 spl_kmem_emergency_t *ske;
422 unsigned long address = (unsigned long)obj;
423
424 while (node) {
425 ske = container_of(node, spl_kmem_emergency_t, ske_node);
426
427 if (address < (unsigned long)ske->ske_obj)
428 node = node->rb_left;
429 else if (address > (unsigned long)ske->ske_obj)
430 node = node->rb_right;
431 else
432 return (ske);
433 }
434
435 return (NULL);
436 }
437
438 static int
439 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
440 {
441 struct rb_node **new = &(root->rb_node), *parent = NULL;
442 spl_kmem_emergency_t *ske_tmp;
443 unsigned long address = (unsigned long)ske->ske_obj;
444
445 while (*new) {
446 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
447
448 parent = *new;
449 if (address < (unsigned long)ske_tmp->ske_obj)
450 new = &((*new)->rb_left);
451 else if (address > (unsigned long)ske_tmp->ske_obj)
452 new = &((*new)->rb_right);
453 else
454 return (0);
455 }
456
457 rb_link_node(&ske->ske_node, parent, new);
458 rb_insert_color(&ske->ske_node, root);
459
460 return (1);
461 }
462
463 /*
464 * Allocate a single emergency object and track it in a red black tree.
465 */
466 static int
467 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
468 {
469 gfp_t lflags = kmem_flags_convert(flags);
470 spl_kmem_emergency_t *ske;
471 int empty;
472
473 /* Last chance use a partial slab if one now exists */
474 spin_lock(&skc->skc_lock);
475 empty = list_empty(&skc->skc_partial_list);
476 spin_unlock(&skc->skc_lock);
477 if (!empty)
478 return (-EEXIST);
479
480 ske = kmalloc(sizeof (*ske), lflags);
481 if (ske == NULL)
482 return (-ENOMEM);
483
484 ske->ske_obj = kmalloc(skc->skc_obj_size, lflags);
485 if (ske->ske_obj == NULL) {
486 kfree(ske);
487 return (-ENOMEM);
488 }
489
490 spin_lock(&skc->skc_lock);
491 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
492 if (likely(empty)) {
493 skc->skc_obj_total++;
494 skc->skc_obj_emergency++;
495 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
496 skc->skc_obj_emergency_max = skc->skc_obj_emergency;
497 }
498 spin_unlock(&skc->skc_lock);
499
500 if (unlikely(!empty)) {
501 kfree(ske->ske_obj);
502 kfree(ske);
503 return (-EINVAL);
504 }
505
506 *obj = ske->ske_obj;
507
508 return (0);
509 }
510
511 /*
512 * Locate the passed object in the red black tree and free it.
513 */
514 static int
515 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
516 {
517 spl_kmem_emergency_t *ske;
518
519 spin_lock(&skc->skc_lock);
520 ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
521 if (likely(ske)) {
522 rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
523 skc->skc_obj_emergency--;
524 skc->skc_obj_total--;
525 }
526 spin_unlock(&skc->skc_lock);
527
528 if (unlikely(ske == NULL))
529 return (-ENOENT);
530
531 kfree(ske->ske_obj);
532 kfree(ske);
533
534 return (0);
535 }
536
537 /*
538 * Release objects from the per-cpu magazine back to their slab. The flush
539 * argument contains the max number of entries to remove from the magazine.
540 */
541 static void
542 __spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
543 {
544 int i, count = MIN(flush, skm->skm_avail);
545
546 ASSERT(skc->skc_magic == SKC_MAGIC);
547 ASSERT(skm->skm_magic == SKM_MAGIC);
548 ASSERT(spin_is_locked(&skc->skc_lock));
549
550 for (i = 0; i < count; i++)
551 spl_cache_shrink(skc, skm->skm_objs[i]);
552
553 skm->skm_avail -= count;
554 memmove(skm->skm_objs, &(skm->skm_objs[count]),
555 sizeof (void *) * skm->skm_avail);
556 }
557
558 static void
559 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
560 {
561 spin_lock(&skc->skc_lock);
562 __spl_cache_flush(skc, skm, flush);
563 spin_unlock(&skc->skc_lock);
564 }
565
566 static void
567 spl_magazine_age(void *data)
568 {
569 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
570 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
571
572 ASSERT(skm->skm_magic == SKM_MAGIC);
573 ASSERT(skm->skm_cpu == smp_processor_id());
574 ASSERT(irqs_disabled());
575
576 /* There are no available objects or they are too young to age out */
577 if ((skm->skm_avail == 0) ||
578 time_before(jiffies, skm->skm_age + skc->skc_delay * HZ))
579 return;
580
581 /*
582 * Because we're executing in interrupt context we may have
583 * interrupted the holder of this lock. To avoid a potential
584 * deadlock return if the lock is contended.
585 */
586 if (!spin_trylock(&skc->skc_lock))
587 return;
588
589 __spl_cache_flush(skc, skm, skm->skm_refill);
590 spin_unlock(&skc->skc_lock);
591 }
592
593 /*
594 * Called regularly to keep a downward pressure on the cache.
595 *
596 * Objects older than skc->skc_delay seconds in the per-cpu magazines will
597 * be returned to the caches. This is done to prevent idle magazines from
598 * holding memory which could be better used elsewhere. The delay is
599 * present to prevent thrashing the magazine.
600 *
601 * The newly released objects may result in empty partial slabs. Those
602 * slabs should be released to the system. Otherwise moving the objects
603 * out of the magazines is just wasted work.
604 */
605 static void
606 spl_cache_age(void *data)
607 {
608 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
609 taskqid_t id = 0;
610
611 ASSERT(skc->skc_magic == SKC_MAGIC);
612
613 /* Dynamically disabled at run time */
614 if (!(spl_kmem_cache_expire & KMC_EXPIRE_AGE))
615 return;
616
617 atomic_inc(&skc->skc_ref);
618
619 if (!(skc->skc_flags & KMC_NOMAGAZINE))
620 on_each_cpu(spl_magazine_age, skc, 1);
621
622 spl_slab_reclaim(skc, skc->skc_reap, 0);
623
624 while (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && !id) {
625 id = taskq_dispatch_delay(
626 spl_kmem_cache_taskq, spl_cache_age, skc, TQ_SLEEP,
627 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
628
629 /* Destroy issued after dispatch immediately cancel it */
630 if (test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && id)
631 taskq_cancel_id(spl_kmem_cache_taskq, id);
632 }
633
634 spin_lock(&skc->skc_lock);
635 skc->skc_taskqid = id;
636 spin_unlock(&skc->skc_lock);
637
638 atomic_dec(&skc->skc_ref);
639 }
640
641 /*
642 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
643 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However,
644 * for very small objects we may end up with more than this so as not
645 * to waste space in the minimal allocation of a single page. Also for
646 * very large objects we may use as few as spl_kmem_cache_obj_per_slab_min,
647 * lower than this and we will fail.
648 */
649 static int
650 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
651 {
652 uint32_t sks_size, obj_size, max_size;
653
654 if (skc->skc_flags & KMC_OFFSLAB) {
655 *objs = spl_kmem_cache_obj_per_slab;
656 *size = P2ROUNDUP(sizeof (spl_kmem_slab_t), PAGE_SIZE);
657 return (0);
658 } else {
659 sks_size = spl_sks_size(skc);
660 obj_size = spl_obj_size(skc);
661
662 if (skc->skc_flags & KMC_KMEM)
663 max_size = ((uint32_t)1 << (MAX_ORDER-3)) * PAGE_SIZE;
664 else
665 max_size = (spl_kmem_cache_max_size * 1024 * 1024);
666
667 /* Power of two sized slab */
668 for (*size = PAGE_SIZE; *size <= max_size; *size *= 2) {
669 *objs = (*size - sks_size) / obj_size;
670 if (*objs >= spl_kmem_cache_obj_per_slab)
671 return (0);
672 }
673
674 /*
675 * Unable to satisfy target objects per slab, fall back to
676 * allocating a maximally sized slab and assuming it can
677 * contain the minimum objects count use it. If not fail.
678 */
679 *size = max_size;
680 *objs = (*size - sks_size) / obj_size;
681 if (*objs >= (spl_kmem_cache_obj_per_slab_min))
682 return (0);
683 }
684
685 return (-ENOSPC);
686 }
687
688 /*
689 * Make a guess at reasonable per-cpu magazine size based on the size of
690 * each object and the cost of caching N of them in each magazine. Long
691 * term this should really adapt based on an observed usage heuristic.
692 */
693 static int
694 spl_magazine_size(spl_kmem_cache_t *skc)
695 {
696 uint32_t obj_size = spl_obj_size(skc);
697 int size;
698
699 /* Per-magazine sizes below assume a 4Kib page size */
700 if (obj_size > (PAGE_SIZE * 256))
701 size = 4; /* Minimum 4Mib per-magazine */
702 else if (obj_size > (PAGE_SIZE * 32))
703 size = 16; /* Minimum 2Mib per-magazine */
704 else if (obj_size > (PAGE_SIZE))
705 size = 64; /* Minimum 256Kib per-magazine */
706 else if (obj_size > (PAGE_SIZE / 4))
707 size = 128; /* Minimum 128Kib per-magazine */
708 else
709 size = 256;
710
711 return (size);
712 }
713
714 /*
715 * Allocate a per-cpu magazine to associate with a specific core.
716 */
717 static spl_kmem_magazine_t *
718 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
719 {
720 spl_kmem_magazine_t *skm;
721 int size = sizeof (spl_kmem_magazine_t) +
722 sizeof (void *) * skc->skc_mag_size;
723
724 skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
725 if (skm) {
726 skm->skm_magic = SKM_MAGIC;
727 skm->skm_avail = 0;
728 skm->skm_size = skc->skc_mag_size;
729 skm->skm_refill = skc->skc_mag_refill;
730 skm->skm_cache = skc;
731 skm->skm_age = jiffies;
732 skm->skm_cpu = cpu;
733 }
734
735 return (skm);
736 }
737
738 /*
739 * Free a per-cpu magazine associated with a specific core.
740 */
741 static void
742 spl_magazine_free(spl_kmem_magazine_t *skm)
743 {
744 ASSERT(skm->skm_magic == SKM_MAGIC);
745 ASSERT(skm->skm_avail == 0);
746 kfree(skm);
747 }
748
749 /*
750 * Create all pre-cpu magazines of reasonable sizes.
751 */
752 static int
753 spl_magazine_create(spl_kmem_cache_t *skc)
754 {
755 int i;
756
757 if (skc->skc_flags & KMC_NOMAGAZINE)
758 return (0);
759
760 skc->skc_mag_size = spl_magazine_size(skc);
761 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
762
763 for_each_online_cpu(i) {
764 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
765 if (!skc->skc_mag[i]) {
766 for (i--; i >= 0; i--)
767 spl_magazine_free(skc->skc_mag[i]);
768
769 return (-ENOMEM);
770 }
771 }
772
773 return (0);
774 }
775
776 /*
777 * Destroy all pre-cpu magazines.
778 */
779 static void
780 spl_magazine_destroy(spl_kmem_cache_t *skc)
781 {
782 spl_kmem_magazine_t *skm;
783 int i;
784
785 if (skc->skc_flags & KMC_NOMAGAZINE)
786 return;
787
788 for_each_online_cpu(i) {
789 skm = skc->skc_mag[i];
790 spl_cache_flush(skc, skm, skm->skm_avail);
791 spl_magazine_free(skm);
792 }
793 }
794
795 /*
796 * Create a object cache based on the following arguments:
797 * name cache name
798 * size cache object size
799 * align cache object alignment
800 * ctor cache object constructor
801 * dtor cache object destructor
802 * reclaim cache object reclaim
803 * priv cache private data for ctor/dtor/reclaim
804 * vmp unused must be NULL
805 * flags
806 * KMC_NOTOUCH Disable cache object aging (unsupported)
807 * KMC_NODEBUG Disable debugging (unsupported)
808 * KMC_NOHASH Disable hashing (unsupported)
809 * KMC_QCACHE Disable qcache (unsupported)
810 * KMC_NOMAGAZINE Enabled for kmem/vmem, Disabled for Linux slab
811 * KMC_KMEM Force kmem backed cache
812 * KMC_VMEM Force vmem backed cache
813 * KMC_SLAB Force Linux slab backed cache
814 * KMC_OFFSLAB Locate objects off the slab
815 */
816 spl_kmem_cache_t *
817 spl_kmem_cache_create(char *name, size_t size, size_t align,
818 spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, spl_kmem_reclaim_t reclaim,
819 void *priv, void *vmp, int flags)
820 {
821 gfp_t lflags = kmem_flags_convert(KM_SLEEP);
822 spl_kmem_cache_t *skc;
823 int rc;
824
825 /*
826 * Unsupported flags
827 */
828 ASSERT0(flags & KMC_NOMAGAZINE);
829 ASSERT0(flags & KMC_NOHASH);
830 ASSERT0(flags & KMC_QCACHE);
831 ASSERT(vmp == NULL);
832
833 might_sleep();
834
835 /*
836 * Allocate memory for a new cache and initialize it. Unfortunately,
837 * this usually ends up being a large allocation of ~32k because
838 * we need to allocate enough memory for the worst case number of
839 * cpus in the magazine, skc_mag[NR_CPUS].
840 */
841 skc = kzalloc(sizeof (*skc), lflags);
842 if (skc == NULL)
843 return (NULL);
844
845 skc->skc_magic = SKC_MAGIC;
846 skc->skc_name_size = strlen(name) + 1;
847 skc->skc_name = (char *)kmalloc(skc->skc_name_size, lflags);
848 if (skc->skc_name == NULL) {
849 kfree(skc);
850 return (NULL);
851 }
852 strncpy(skc->skc_name, name, skc->skc_name_size);
853
854 skc->skc_ctor = ctor;
855 skc->skc_dtor = dtor;
856 skc->skc_reclaim = reclaim;
857 skc->skc_private = priv;
858 skc->skc_vmp = vmp;
859 skc->skc_linux_cache = NULL;
860 skc->skc_flags = flags;
861 skc->skc_obj_size = size;
862 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
863 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
864 skc->skc_reap = SPL_KMEM_CACHE_REAP;
865 atomic_set(&skc->skc_ref, 0);
866
867 INIT_LIST_HEAD(&skc->skc_list);
868 INIT_LIST_HEAD(&skc->skc_complete_list);
869 INIT_LIST_HEAD(&skc->skc_partial_list);
870 skc->skc_emergency_tree = RB_ROOT;
871 spin_lock_init(&skc->skc_lock);
872 init_waitqueue_head(&skc->skc_waitq);
873 skc->skc_slab_fail = 0;
874 skc->skc_slab_create = 0;
875 skc->skc_slab_destroy = 0;
876 skc->skc_slab_total = 0;
877 skc->skc_slab_alloc = 0;
878 skc->skc_slab_max = 0;
879 skc->skc_obj_total = 0;
880 skc->skc_obj_alloc = 0;
881 skc->skc_obj_max = 0;
882 skc->skc_obj_deadlock = 0;
883 skc->skc_obj_emergency = 0;
884 skc->skc_obj_emergency_max = 0;
885
886 /*
887 * Verify the requested alignment restriction is sane.
888 */
889 if (align) {
890 VERIFY(ISP2(align));
891 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
892 VERIFY3U(align, <=, PAGE_SIZE);
893 skc->skc_obj_align = align;
894 }
895
896 /*
897 * When no specific type of slab is requested (kmem, vmem, or
898 * linuxslab) then select a cache type based on the object size
899 * and default tunables.
900 */
901 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB))) {
902
903 /*
904 * Objects smaller than spl_kmem_cache_slab_limit can
905 * use the Linux slab for better space-efficiency. By
906 * default this functionality is disabled until its
907 * performance characteristics are fully understood.
908 */
909 if (spl_kmem_cache_slab_limit &&
910 size <= (size_t)spl_kmem_cache_slab_limit)
911 skc->skc_flags |= KMC_SLAB;
912
913 /*
914 * Small objects, less than spl_kmem_cache_kmem_limit per
915 * object should use kmem because their slabs are small.
916 */
917 else if (spl_obj_size(skc) <= spl_kmem_cache_kmem_limit)
918 skc->skc_flags |= KMC_KMEM;
919
920 /*
921 * All other objects are considered large and are placed
922 * on vmem backed slabs.
923 */
924 else
925 skc->skc_flags |= KMC_VMEM;
926 }
927
928 /*
929 * Given the type of slab allocate the required resources.
930 */
931 if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
932 rc = spl_slab_size(skc,
933 &skc->skc_slab_objs, &skc->skc_slab_size);
934 if (rc)
935 goto out;
936
937 rc = spl_magazine_create(skc);
938 if (rc)
939 goto out;
940 } else {
941 skc->skc_linux_cache = kmem_cache_create(
942 skc->skc_name, size, align, 0, NULL);
943 if (skc->skc_linux_cache == NULL) {
944 rc = ENOMEM;
945 goto out;
946 }
947
948 #if defined(HAVE_KMEM_CACHE_ALLOCFLAGS)
949 skc->skc_linux_cache->allocflags |= __GFP_COMP;
950 #elif defined(HAVE_KMEM_CACHE_GFPFLAGS)
951 skc->skc_linux_cache->gfpflags |= __GFP_COMP;
952 #endif
953 skc->skc_flags |= KMC_NOMAGAZINE;
954 }
955
956 if (spl_kmem_cache_expire & KMC_EXPIRE_AGE)
957 skc->skc_taskqid = taskq_dispatch_delay(spl_kmem_cache_taskq,
958 spl_cache_age, skc, TQ_SLEEP,
959 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
960
961 down_write(&spl_kmem_cache_sem);
962 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
963 up_write(&spl_kmem_cache_sem);
964
965 return (skc);
966 out:
967 kfree(skc->skc_name);
968 kfree(skc);
969 return (NULL);
970 }
971 EXPORT_SYMBOL(spl_kmem_cache_create);
972
973 /*
974 * Register a move callback for cache defragmentation.
975 * XXX: Unimplemented but harmless to stub out for now.
976 */
977 void
978 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
979 kmem_cbrc_t (move)(void *, void *, size_t, void *))
980 {
981 ASSERT(move != NULL);
982 }
983 EXPORT_SYMBOL(spl_kmem_cache_set_move);
984
985 /*
986 * Destroy a cache and all objects associated with the cache.
987 */
988 void
989 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
990 {
991 DECLARE_WAIT_QUEUE_HEAD(wq);
992 taskqid_t id;
993
994 ASSERT(skc->skc_magic == SKC_MAGIC);
995 ASSERT(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB));
996
997 down_write(&spl_kmem_cache_sem);
998 list_del_init(&skc->skc_list);
999 up_write(&spl_kmem_cache_sem);
1000
1001 /* Cancel any and wait for any pending delayed tasks */
1002 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1003
1004 spin_lock(&skc->skc_lock);
1005 id = skc->skc_taskqid;
1006 spin_unlock(&skc->skc_lock);
1007
1008 taskq_cancel_id(spl_kmem_cache_taskq, id);
1009
1010 /*
1011 * Wait until all current callers complete, this is mainly
1012 * to catch the case where a low memory situation triggers a
1013 * cache reaping action which races with this destroy.
1014 */
1015 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1016
1017 if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
1018 spl_magazine_destroy(skc);
1019 spl_slab_reclaim(skc, 0, 1);
1020 } else {
1021 ASSERT(skc->skc_flags & KMC_SLAB);
1022 kmem_cache_destroy(skc->skc_linux_cache);
1023 }
1024
1025 spin_lock(&skc->skc_lock);
1026
1027 /*
1028 * Validate there are no objects in use and free all the
1029 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
1030 */
1031 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1032 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1033 ASSERT3U(skc->skc_slab_total, ==, 0);
1034 ASSERT3U(skc->skc_obj_total, ==, 0);
1035 ASSERT3U(skc->skc_obj_emergency, ==, 0);
1036 ASSERT(list_empty(&skc->skc_complete_list));
1037
1038 spin_unlock(&skc->skc_lock);
1039
1040 kfree(skc->skc_name);
1041 kfree(skc);
1042 }
1043 EXPORT_SYMBOL(spl_kmem_cache_destroy);
1044
1045 /*
1046 * Allocate an object from a slab attached to the cache. This is used to
1047 * repopulate the per-cpu magazine caches in batches when they run low.
1048 */
1049 static void *
1050 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
1051 {
1052 spl_kmem_obj_t *sko;
1053
1054 ASSERT(skc->skc_magic == SKC_MAGIC);
1055 ASSERT(sks->sks_magic == SKS_MAGIC);
1056 ASSERT(spin_is_locked(&skc->skc_lock));
1057
1058 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
1059 ASSERT(sko->sko_magic == SKO_MAGIC);
1060 ASSERT(sko->sko_addr != NULL);
1061
1062 /* Remove from sks_free_list */
1063 list_del_init(&sko->sko_list);
1064
1065 sks->sks_age = jiffies;
1066 sks->sks_ref++;
1067 skc->skc_obj_alloc++;
1068
1069 /* Track max obj usage statistics */
1070 if (skc->skc_obj_alloc > skc->skc_obj_max)
1071 skc->skc_obj_max = skc->skc_obj_alloc;
1072
1073 /* Track max slab usage statistics */
1074 if (sks->sks_ref == 1) {
1075 skc->skc_slab_alloc++;
1076
1077 if (skc->skc_slab_alloc > skc->skc_slab_max)
1078 skc->skc_slab_max = skc->skc_slab_alloc;
1079 }
1080
1081 return (sko->sko_addr);
1082 }
1083
1084 /*
1085 * Generic slab allocation function to run by the global work queues.
1086 * It is responsible for allocating a new slab, linking it in to the list
1087 * of partial slabs, and then waking any waiters.
1088 */
1089 static void
1090 spl_cache_grow_work(void *data)
1091 {
1092 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
1093 spl_kmem_cache_t *skc = ska->ska_cache;
1094 spl_kmem_slab_t *sks;
1095
1096 #if defined(PF_MEMALLOC_NOIO)
1097 unsigned noio_flag = memalloc_noio_save();
1098 sks = spl_slab_alloc(skc, ska->ska_flags);
1099 memalloc_noio_restore(noio_flag);
1100 #else
1101 fstrans_cookie_t cookie = spl_fstrans_mark();
1102 sks = spl_slab_alloc(skc, ska->ska_flags);
1103 spl_fstrans_unmark(cookie);
1104 #endif
1105 spin_lock(&skc->skc_lock);
1106 if (sks) {
1107 skc->skc_slab_total++;
1108 skc->skc_obj_total += sks->sks_objs;
1109 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1110 }
1111
1112 atomic_dec(&skc->skc_ref);
1113 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
1114 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1115 wake_up_all(&skc->skc_waitq);
1116 spin_unlock(&skc->skc_lock);
1117
1118 kfree(ska);
1119 }
1120
1121 /*
1122 * Returns non-zero when a new slab should be available.
1123 */
1124 static int
1125 spl_cache_grow_wait(spl_kmem_cache_t *skc)
1126 {
1127 return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
1128 }
1129
1130 /*
1131 * No available objects on any slabs, create a new slab. Note that this
1132 * functionality is disabled for KMC_SLAB caches which are backed by the
1133 * Linux slab.
1134 */
1135 static int
1136 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1137 {
1138 int remaining, rc = 0;
1139
1140 ASSERT0(flags & ~KM_PUBLIC_MASK);
1141 ASSERT(skc->skc_magic == SKC_MAGIC);
1142 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
1143 might_sleep();
1144 *obj = NULL;
1145
1146 /*
1147 * Before allocating a new slab wait for any reaping to complete and
1148 * then return so the local magazine can be rechecked for new objects.
1149 */
1150 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1151 rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1152 TASK_UNINTERRUPTIBLE);
1153 return (rc ? rc : -EAGAIN);
1154 }
1155
1156 /*
1157 * This is handled by dispatching a work request to the global work
1158 * queue. This allows us to asynchronously allocate a new slab while
1159 * retaining the ability to safely fall back to a smaller synchronous
1160 * allocations to ensure forward progress is always maintained.
1161 */
1162 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1163 spl_kmem_alloc_t *ska;
1164
1165 ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1166 if (ska == NULL) {
1167 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
1168 wake_up_all(&skc->skc_waitq);
1169 return (-ENOMEM);
1170 }
1171
1172 atomic_inc(&skc->skc_ref);
1173 ska->ska_cache = skc;
1174 ska->ska_flags = flags;
1175 taskq_init_ent(&ska->ska_tqe);
1176 taskq_dispatch_ent(spl_kmem_cache_taskq,
1177 spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1178 }
1179
1180 /*
1181 * The goal here is to only detect the rare case where a virtual slab
1182 * allocation has deadlocked. We must be careful to minimize the use
1183 * of emergency objects which are more expensive to track. Therefore,
1184 * we set a very long timeout for the asynchronous allocation and if
1185 * the timeout is reached the cache is flagged as deadlocked. From
1186 * this point only new emergency objects will be allocated until the
1187 * asynchronous allocation completes and clears the deadlocked flag.
1188 */
1189 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1190 rc = spl_emergency_alloc(skc, flags, obj);
1191 } else {
1192 remaining = wait_event_timeout(skc->skc_waitq,
1193 spl_cache_grow_wait(skc), HZ);
1194
1195 if (!remaining && test_bit(KMC_BIT_VMEM, &skc->skc_flags)) {
1196 spin_lock(&skc->skc_lock);
1197 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1198 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1199 skc->skc_obj_deadlock++;
1200 }
1201 spin_unlock(&skc->skc_lock);
1202 }
1203
1204 rc = -ENOMEM;
1205 }
1206
1207 return (rc);
1208 }
1209
1210 /*
1211 * Refill a per-cpu magazine with objects from the slabs for this cache.
1212 * Ideally the magazine can be repopulated using existing objects which have
1213 * been released, however if we are unable to locate enough free objects new
1214 * slabs of objects will be created. On success NULL is returned, otherwise
1215 * the address of a single emergency object is returned for use by the caller.
1216 */
1217 static void *
1218 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1219 {
1220 spl_kmem_slab_t *sks;
1221 int count = 0, rc, refill;
1222 void *obj = NULL;
1223
1224 ASSERT(skc->skc_magic == SKC_MAGIC);
1225 ASSERT(skm->skm_magic == SKM_MAGIC);
1226
1227 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1228 spin_lock(&skc->skc_lock);
1229
1230 while (refill > 0) {
1231 /* No slabs available we may need to grow the cache */
1232 if (list_empty(&skc->skc_partial_list)) {
1233 spin_unlock(&skc->skc_lock);
1234
1235 local_irq_enable();
1236 rc = spl_cache_grow(skc, flags, &obj);
1237 local_irq_disable();
1238
1239 /* Emergency object for immediate use by caller */
1240 if (rc == 0 && obj != NULL)
1241 return (obj);
1242
1243 if (rc)
1244 goto out;
1245
1246 /* Rescheduled to different CPU skm is not local */
1247 if (skm != skc->skc_mag[smp_processor_id()])
1248 goto out;
1249
1250 /*
1251 * Potentially rescheduled to the same CPU but
1252 * allocations may have occurred from this CPU while
1253 * we were sleeping so recalculate max refill.
1254 */
1255 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1256
1257 spin_lock(&skc->skc_lock);
1258 continue;
1259 }
1260
1261 /* Grab the next available slab */
1262 sks = list_entry((&skc->skc_partial_list)->next,
1263 spl_kmem_slab_t, sks_list);
1264 ASSERT(sks->sks_magic == SKS_MAGIC);
1265 ASSERT(sks->sks_ref < sks->sks_objs);
1266 ASSERT(!list_empty(&sks->sks_free_list));
1267
1268 /*
1269 * Consume as many objects as needed to refill the requested
1270 * cache. We must also be careful not to overfill it.
1271 */
1272 while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1273 ++count) {
1274 ASSERT(skm->skm_avail < skm->skm_size);
1275 ASSERT(count < skm->skm_size);
1276 skm->skm_objs[skm->skm_avail++] =
1277 spl_cache_obj(skc, sks);
1278 }
1279
1280 /* Move slab to skc_complete_list when full */
1281 if (sks->sks_ref == sks->sks_objs) {
1282 list_del(&sks->sks_list);
1283 list_add(&sks->sks_list, &skc->skc_complete_list);
1284 }
1285 }
1286
1287 spin_unlock(&skc->skc_lock);
1288 out:
1289 return (NULL);
1290 }
1291
1292 /*
1293 * Release an object back to the slab from which it came.
1294 */
1295 static void
1296 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1297 {
1298 spl_kmem_slab_t *sks = NULL;
1299 spl_kmem_obj_t *sko = NULL;
1300
1301 ASSERT(skc->skc_magic == SKC_MAGIC);
1302 ASSERT(spin_is_locked(&skc->skc_lock));
1303
1304 sko = spl_sko_from_obj(skc, obj);
1305 ASSERT(sko->sko_magic == SKO_MAGIC);
1306 sks = sko->sko_slab;
1307 ASSERT(sks->sks_magic == SKS_MAGIC);
1308 ASSERT(sks->sks_cache == skc);
1309 list_add(&sko->sko_list, &sks->sks_free_list);
1310
1311 sks->sks_age = jiffies;
1312 sks->sks_ref--;
1313 skc->skc_obj_alloc--;
1314
1315 /*
1316 * Move slab to skc_partial_list when no longer full. Slabs
1317 * are added to the head to keep the partial list is quasi-full
1318 * sorted order. Fuller at the head, emptier at the tail.
1319 */
1320 if (sks->sks_ref == (sks->sks_objs - 1)) {
1321 list_del(&sks->sks_list);
1322 list_add(&sks->sks_list, &skc->skc_partial_list);
1323 }
1324
1325 /*
1326 * Move empty slabs to the end of the partial list so
1327 * they can be easily found and freed during reclamation.
1328 */
1329 if (sks->sks_ref == 0) {
1330 list_del(&sks->sks_list);
1331 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1332 skc->skc_slab_alloc--;
1333 }
1334 }
1335
1336 /*
1337 * Allocate an object from the per-cpu magazine, or if the magazine
1338 * is empty directly allocate from a slab and repopulate the magazine.
1339 */
1340 void *
1341 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1342 {
1343 spl_kmem_magazine_t *skm;
1344 void *obj = NULL;
1345
1346 ASSERT0(flags & ~KM_PUBLIC_MASK);
1347 ASSERT(skc->skc_magic == SKC_MAGIC);
1348 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1349
1350 atomic_inc(&skc->skc_ref);
1351
1352 /*
1353 * Allocate directly from a Linux slab. All optimizations are left
1354 * to the underlying cache we only need to guarantee that KM_SLEEP
1355 * callers will never fail.
1356 */
1357 if (skc->skc_flags & KMC_SLAB) {
1358 struct kmem_cache *slc = skc->skc_linux_cache;
1359 do {
1360 obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1361 } while ((obj == NULL) && !(flags & KM_NOSLEEP));
1362
1363 goto ret;
1364 }
1365
1366 local_irq_disable();
1367
1368 restart:
1369 /*
1370 * Safe to update per-cpu structure without lock, but
1371 * in the restart case we must be careful to reacquire
1372 * the local magazine since this may have changed
1373 * when we need to grow the cache.
1374 */
1375 skm = skc->skc_mag[smp_processor_id()];
1376 ASSERT(skm->skm_magic == SKM_MAGIC);
1377
1378 if (likely(skm->skm_avail)) {
1379 /* Object available in CPU cache, use it */
1380 obj = skm->skm_objs[--skm->skm_avail];
1381 skm->skm_age = jiffies;
1382 } else {
1383 obj = spl_cache_refill(skc, skm, flags);
1384 if (obj == NULL)
1385 goto restart;
1386 }
1387
1388 local_irq_enable();
1389 ASSERT(obj);
1390 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1391
1392 ret:
1393 /* Pre-emptively migrate object to CPU L1 cache */
1394 if (obj) {
1395 if (obj && skc->skc_ctor)
1396 skc->skc_ctor(obj, skc->skc_private, flags);
1397 else
1398 prefetchw(obj);
1399 }
1400
1401 atomic_dec(&skc->skc_ref);
1402
1403 return (obj);
1404 }
1405
1406 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1407
1408 /*
1409 * Free an object back to the local per-cpu magazine, there is no
1410 * guarantee that this is the same magazine the object was originally
1411 * allocated from. We may need to flush entire from the magazine
1412 * back to the slabs to make space.
1413 */
1414 void
1415 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1416 {
1417 spl_kmem_magazine_t *skm;
1418 unsigned long flags;
1419
1420 ASSERT(skc->skc_magic == SKC_MAGIC);
1421 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1422 atomic_inc(&skc->skc_ref);
1423
1424 /*
1425 * Run the destructor
1426 */
1427 if (skc->skc_dtor)
1428 skc->skc_dtor(obj, skc->skc_private);
1429
1430 /*
1431 * Free the object from the Linux underlying Linux slab.
1432 */
1433 if (skc->skc_flags & KMC_SLAB) {
1434 kmem_cache_free(skc->skc_linux_cache, obj);
1435 goto out;
1436 }
1437
1438 /*
1439 * Only virtual slabs may have emergency objects and these objects
1440 * are guaranteed to have physical addresses. They must be removed
1441 * from the tree of emergency objects and the freed.
1442 */
1443 if ((skc->skc_flags & KMC_VMEM) && !is_vmalloc_addr(obj)) {
1444 spl_emergency_free(skc, obj);
1445 goto out;
1446 }
1447
1448 local_irq_save(flags);
1449
1450 /*
1451 * Safe to update per-cpu structure without lock, but
1452 * no remote memory allocation tracking is being performed
1453 * it is entirely possible to allocate an object from one
1454 * CPU cache and return it to another.
1455 */
1456 skm = skc->skc_mag[smp_processor_id()];
1457 ASSERT(skm->skm_magic == SKM_MAGIC);
1458
1459 /* Per-CPU cache full, flush it to make space */
1460 if (unlikely(skm->skm_avail >= skm->skm_size))
1461 spl_cache_flush(skc, skm, skm->skm_refill);
1462
1463 /* Available space in cache, use it */
1464 skm->skm_objs[skm->skm_avail++] = obj;
1465
1466 local_irq_restore(flags);
1467 out:
1468 atomic_dec(&skc->skc_ref);
1469 }
1470 EXPORT_SYMBOL(spl_kmem_cache_free);
1471
1472 /*
1473 * The generic shrinker function for all caches. Under Linux a shrinker
1474 * may not be tightly coupled with a slab cache. In fact Linux always
1475 * systematically tries calling all registered shrinker callbacks which
1476 * report that they contain unused objects. Because of this we only
1477 * register one shrinker function in the shim layer for all slab caches.
1478 * We always attempt to shrink all caches when this generic shrinker
1479 * is called.
1480 *
1481 * If sc->nr_to_scan is zero, the caller is requesting a query of the
1482 * number of objects which can potentially be freed. If it is nonzero,
1483 * the request is to free that many objects.
1484 *
1485 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
1486 * in struct shrinker and also require the shrinker to return the number
1487 * of objects freed.
1488 *
1489 * Older kernels require the shrinker to return the number of freeable
1490 * objects following the freeing of nr_to_free.
1491 *
1492 * Linux semantics differ from those under Solaris, which are to
1493 * free all available objects which may (and probably will) be more
1494 * objects than the requested nr_to_scan.
1495 */
1496 static spl_shrinker_t
1497 __spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
1498 struct shrink_control *sc)
1499 {
1500 spl_kmem_cache_t *skc;
1501 int alloc = 0;
1502
1503 down_read(&spl_kmem_cache_sem);
1504 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1505 if (sc->nr_to_scan) {
1506 #ifdef HAVE_SPLIT_SHRINKER_CALLBACK
1507 uint64_t oldalloc = skc->skc_obj_alloc;
1508 spl_kmem_cache_reap_now(skc,
1509 MAX(sc->nr_to_scan>>fls64(skc->skc_slab_objs), 1));
1510 if (oldalloc > skc->skc_obj_alloc)
1511 alloc += oldalloc - skc->skc_obj_alloc;
1512 #else
1513 spl_kmem_cache_reap_now(skc,
1514 MAX(sc->nr_to_scan>>fls64(skc->skc_slab_objs), 1));
1515 alloc += skc->skc_obj_alloc;
1516 #endif /* HAVE_SPLIT_SHRINKER_CALLBACK */
1517 } else {
1518 /* Request to query number of freeable objects */
1519 alloc += skc->skc_obj_alloc;
1520 }
1521 }
1522 up_read(&spl_kmem_cache_sem);
1523
1524 /*
1525 * When KMC_RECLAIM_ONCE is set allow only a single reclaim pass.
1526 * This functionality only exists to work around a rare issue where
1527 * shrink_slabs() is repeatedly invoked by many cores causing the
1528 * system to thrash.
1529 */
1530 if ((spl_kmem_cache_reclaim & KMC_RECLAIM_ONCE) && sc->nr_to_scan)
1531 return (SHRINK_STOP);
1532
1533 return (MAX(alloc, 0));
1534 }
1535
1536 SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
1537
1538 /*
1539 * Call the registered reclaim function for a cache. Depending on how
1540 * many and which objects are released it may simply repopulate the
1541 * local magazine which will then need to age-out. Objects which cannot
1542 * fit in the magazine we will be released back to their slabs which will
1543 * also need to age out before being release. This is all just best
1544 * effort and we do not want to thrash creating and destroying slabs.
1545 */
1546 void
1547 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count)
1548 {
1549 ASSERT(skc->skc_magic == SKC_MAGIC);
1550 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1551
1552 atomic_inc(&skc->skc_ref);
1553
1554 /*
1555 * Execute the registered reclaim callback if it exists. The
1556 * per-cpu caches will be drained when is set KMC_EXPIRE_MEM.
1557 */
1558 if (skc->skc_flags & KMC_SLAB) {
1559 if (skc->skc_reclaim)
1560 skc->skc_reclaim(skc->skc_private);
1561
1562 if (spl_kmem_cache_expire & KMC_EXPIRE_MEM)
1563 kmem_cache_shrink(skc->skc_linux_cache);
1564
1565 goto out;
1566 }
1567
1568 /*
1569 * Prevent concurrent cache reaping when contended.
1570 */
1571 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1572 goto out;
1573
1574 /*
1575 * When a reclaim function is available it may be invoked repeatedly
1576 * until at least a single slab can be freed. This ensures that we
1577 * do free memory back to the system. This helps minimize the chance
1578 * of an OOM event when the bulk of memory is used by the slab.
1579 *
1580 * When free slabs are already available the reclaim callback will be
1581 * skipped. Additionally, if no forward progress is detected despite
1582 * a reclaim function the cache will be skipped to avoid deadlock.
1583 *
1584 * Longer term this would be the correct place to add the code which
1585 * repacks the slabs in order minimize fragmentation.
1586 */
1587 if (skc->skc_reclaim) {
1588 uint64_t objects = UINT64_MAX;
1589 int do_reclaim;
1590
1591 do {
1592 spin_lock(&skc->skc_lock);
1593 do_reclaim =
1594 (skc->skc_slab_total > 0) &&
1595 ((skc->skc_slab_total-skc->skc_slab_alloc) == 0) &&
1596 (skc->skc_obj_alloc < objects);
1597
1598 objects = skc->skc_obj_alloc;
1599 spin_unlock(&skc->skc_lock);
1600
1601 if (do_reclaim)
1602 skc->skc_reclaim(skc->skc_private);
1603
1604 } while (do_reclaim);
1605 }
1606
1607 /* Reclaim from the magazine then the slabs ignoring age and delay. */
1608 if (spl_kmem_cache_expire & KMC_EXPIRE_MEM) {
1609 spl_kmem_magazine_t *skm;
1610 unsigned long irq_flags;
1611
1612 local_irq_save(irq_flags);
1613 skm = skc->skc_mag[smp_processor_id()];
1614 spl_cache_flush(skc, skm, skm->skm_avail);
1615 local_irq_restore(irq_flags);
1616 }
1617
1618 spl_slab_reclaim(skc, count, 1);
1619 clear_bit(KMC_BIT_REAPING, &skc->skc_flags);
1620 smp_wmb();
1621 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1622 out:
1623 atomic_dec(&skc->skc_ref);
1624 }
1625 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1626
1627 /*
1628 * Reap all free slabs from all registered caches.
1629 */
1630 void
1631 spl_kmem_reap(void)
1632 {
1633 struct shrink_control sc;
1634
1635 sc.nr_to_scan = KMC_REAP_CHUNK;
1636 sc.gfp_mask = GFP_KERNEL;
1637
1638 (void) __spl_kmem_cache_generic_shrinker(NULL, &sc);
1639 }
1640 EXPORT_SYMBOL(spl_kmem_reap);
1641
1642 int
1643 spl_kmem_cache_init(void)
1644 {
1645 init_rwsem(&spl_kmem_cache_sem);
1646 INIT_LIST_HEAD(&spl_kmem_cache_list);
1647 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1648 1, maxclsyspri, 1, 32, TASKQ_PREPOPULATE);
1649 spl_register_shrinker(&spl_kmem_cache_shrinker);
1650
1651 return (0);
1652 }
1653
1654 void
1655 spl_kmem_cache_fini(void)
1656 {
1657 spl_unregister_shrinker(&spl_kmem_cache_shrinker);
1658 taskq_destroy(spl_kmem_cache_taskq);
1659 }