]> git.proxmox.com Git - mirror_spl.git/blob - module/spl/spl-kmem-cache.c
Fix kmem cache deadlock logic
[mirror_spl.git] / module / spl / spl-kmem-cache.c
1 /*
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://zfsonlinux.org/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include <sys/kmem.h>
26 #include <sys/kmem_cache.h>
27 #include <sys/taskq.h>
28 #include <sys/timer.h>
29 #include <sys/vmem.h>
30 #include <linux/slab.h>
31 #include <linux/swap.h>
32 #include <linux/mm_compat.h>
33 #include <linux/wait_compat.h>
34
35 /*
36 * Within the scope of spl-kmem.c file the kmem_cache_* definitions
37 * are removed to allow access to the real Linux slab allocator.
38 */
39 #undef kmem_cache_destroy
40 #undef kmem_cache_create
41 #undef kmem_cache_alloc
42 #undef kmem_cache_free
43
44
45 /*
46 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
47 * with smp_mb__{before,after}_atomic() because they were redundant. This is
48 * only used inside our SLAB allocator, so we implement an internal wrapper
49 * here to give us smp_mb__{before,after}_atomic() on older kernels.
50 */
51 #ifndef smp_mb__before_atomic
52 #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
53 #endif
54
55 #ifndef smp_mb__after_atomic
56 #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
57 #endif
58
59 /*
60 * Cache expiration was implemented because it was part of the default Solaris
61 * kmem_cache behavior. The idea is that per-cpu objects which haven't been
62 * accessed in several seconds should be returned to the cache. On the other
63 * hand Linux slabs never move objects back to the slabs unless there is
64 * memory pressure on the system. By default the Linux method is enabled
65 * because it has been shown to improve responsiveness on low memory systems.
66 * This policy may be changed by setting KMC_EXPIRE_AGE or KMC_EXPIRE_MEM.
67 */
68 unsigned int spl_kmem_cache_expire = KMC_EXPIRE_MEM;
69 EXPORT_SYMBOL(spl_kmem_cache_expire);
70 module_param(spl_kmem_cache_expire, uint, 0644);
71 MODULE_PARM_DESC(spl_kmem_cache_expire, "By age (0x1) or low memory (0x2)");
72
73 /*
74 * Cache magazines are an optimization designed to minimize the cost of
75 * allocating memory. They do this by keeping a per-cpu cache of recently
76 * freed objects, which can then be reallocated without taking a lock. This
77 * can improve performance on highly contended caches. However, because
78 * objects in magazines will prevent otherwise empty slabs from being
79 * immediately released this may not be ideal for low memory machines.
80 *
81 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
82 * magazine size. When this value is set to 0 the magazine size will be
83 * automatically determined based on the object size. Otherwise magazines
84 * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines
85 * may never be entirely disabled in this implementation.
86 */
87 unsigned int spl_kmem_cache_magazine_size = 0;
88 module_param(spl_kmem_cache_magazine_size, uint, 0444);
89 MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
90 "Default magazine size (2-256), set automatically (0)\n");
91
92 /*
93 * The default behavior is to report the number of objects remaining in the
94 * cache. This allows the Linux VM to repeatedly reclaim objects from the
95 * cache when memory is low satisfy other memory allocations. Alternately,
96 * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
97 * is reclaimed. This may increase the likelihood of out of memory events.
98 */
99 unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */;
100 module_param(spl_kmem_cache_reclaim, uint, 0644);
101 MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)");
102
103 unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
104 module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
105 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
106
107 unsigned int spl_kmem_cache_obj_per_slab_min = SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN;
108 module_param(spl_kmem_cache_obj_per_slab_min, uint, 0644);
109 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab_min,
110 "Minimal number of objects per slab");
111
112 unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
113 module_param(spl_kmem_cache_max_size, uint, 0644);
114 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
115
116 /*
117 * For small objects the Linux slab allocator should be used to make the most
118 * efficient use of the memory. However, large objects are not supported by
119 * the Linux slab and therefore the SPL implementation is preferred. A cutoff
120 * of 16K was determined to be optimal for architectures using 4K pages.
121 */
122 #if PAGE_SIZE == 4096
123 unsigned int spl_kmem_cache_slab_limit = 16384;
124 #else
125 unsigned int spl_kmem_cache_slab_limit = 0;
126 #endif
127 module_param(spl_kmem_cache_slab_limit, uint, 0644);
128 MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
129 "Objects less than N bytes use the Linux slab");
130
131 /*
132 * This value defaults to a threshold designed to avoid allocations which
133 * have been deemed costly by the kernel.
134 */
135 unsigned int spl_kmem_cache_kmem_limit =
136 ((1 << (PAGE_ALLOC_COSTLY_ORDER - 1)) * PAGE_SIZE) /
137 SPL_KMEM_CACHE_OBJ_PER_SLAB;
138 module_param(spl_kmem_cache_kmem_limit, uint, 0644);
139 MODULE_PARM_DESC(spl_kmem_cache_kmem_limit,
140 "Objects less than N bytes use the kmalloc");
141
142 /*
143 * The number of threads available to allocate new slabs for caches. This
144 * should not need to be tuned but it is available for performance analysis.
145 */
146 unsigned int spl_kmem_cache_kmem_threads = 4;
147 module_param(spl_kmem_cache_kmem_threads, uint, 0444);
148 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
149 "Number of spl_kmem_cache threads");
150
151 /*
152 * Slab allocation interfaces
153 *
154 * While the Linux slab implementation was inspired by the Solaris
155 * implementation I cannot use it to emulate the Solaris APIs. I
156 * require two features which are not provided by the Linux slab.
157 *
158 * 1) Constructors AND destructors. Recent versions of the Linux
159 * kernel have removed support for destructors. This is a deal
160 * breaker for the SPL which contains particularly expensive
161 * initializers for mutex's, condition variables, etc. We also
162 * require a minimal level of cleanup for these data types unlike
163 * many Linux data types which do need to be explicitly destroyed.
164 *
165 * 2) Virtual address space backed slab. Callers of the Solaris slab
166 * expect it to work well for both small are very large allocations.
167 * Because of memory fragmentation the Linux slab which is backed
168 * by kmalloc'ed memory performs very badly when confronted with
169 * large numbers of large allocations. Basing the slab on the
170 * virtual address space removes the need for contiguous pages
171 * and greatly improve performance for large allocations.
172 *
173 * For these reasons, the SPL has its own slab implementation with
174 * the needed features. It is not as highly optimized as either the
175 * Solaris or Linux slabs, but it should get me most of what is
176 * needed until it can be optimized or obsoleted by another approach.
177 *
178 * One serious concern I do have about this method is the relatively
179 * small virtual address space on 32bit arches. This will seriously
180 * constrain the size of the slab caches and their performance.
181 */
182
183 struct list_head spl_kmem_cache_list; /* List of caches */
184 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
185 taskq_t *spl_kmem_cache_taskq; /* Task queue for ageing / reclaim */
186
187 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
188
189 SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
190 SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
191 spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
192
193 static void *
194 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
195 {
196 gfp_t lflags = kmem_flags_convert(flags);
197 void *ptr;
198
199 if (skc->skc_flags & KMC_KMEM) {
200 ASSERT(ISP2(size));
201 ptr = (void *)__get_free_pages(lflags, get_order(size));
202 } else {
203 ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM, PAGE_KERNEL);
204 }
205
206 /* Resulting allocated memory will be page aligned */
207 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
208
209 return (ptr);
210 }
211
212 static void
213 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
214 {
215 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
216
217 /*
218 * The Linux direct reclaim path uses this out of band value to
219 * determine if forward progress is being made. Normally this is
220 * incremented by kmem_freepages() which is part of the various
221 * Linux slab implementations. However, since we are using none
222 * of that infrastructure we are responsible for incrementing it.
223 */
224 if (current->reclaim_state)
225 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
226
227 if (skc->skc_flags & KMC_KMEM) {
228 ASSERT(ISP2(size));
229 free_pages((unsigned long)ptr, get_order(size));
230 } else {
231 vfree(ptr);
232 }
233 }
234
235 /*
236 * Required space for each aligned sks.
237 */
238 static inline uint32_t
239 spl_sks_size(spl_kmem_cache_t *skc)
240 {
241 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
242 skc->skc_obj_align, uint32_t));
243 }
244
245 /*
246 * Required space for each aligned object.
247 */
248 static inline uint32_t
249 spl_obj_size(spl_kmem_cache_t *skc)
250 {
251 uint32_t align = skc->skc_obj_align;
252
253 return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
254 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
255 }
256
257 /*
258 * Lookup the spl_kmem_object_t for an object given that object.
259 */
260 static inline spl_kmem_obj_t *
261 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
262 {
263 return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
264 skc->skc_obj_align, uint32_t));
265 }
266
267 /*
268 * Required space for each offslab object taking in to account alignment
269 * restrictions and the power-of-two requirement of kv_alloc().
270 */
271 static inline uint32_t
272 spl_offslab_size(spl_kmem_cache_t *skc)
273 {
274 return (1UL << (fls64(spl_obj_size(skc)) + 1));
275 }
276
277 /*
278 * It's important that we pack the spl_kmem_obj_t structure and the
279 * actual objects in to one large address space to minimize the number
280 * of calls to the allocator. It is far better to do a few large
281 * allocations and then subdivide it ourselves. Now which allocator
282 * we use requires balancing a few trade offs.
283 *
284 * For small objects we use kmem_alloc() because as long as you are
285 * only requesting a small number of pages (ideally just one) its cheap.
286 * However, when you start requesting multiple pages with kmem_alloc()
287 * it gets increasingly expensive since it requires contiguous pages.
288 * For this reason we shift to vmem_alloc() for slabs of large objects
289 * which removes the need for contiguous pages. We do not use
290 * vmem_alloc() in all cases because there is significant locking
291 * overhead in __get_vm_area_node(). This function takes a single
292 * global lock when acquiring an available virtual address range which
293 * serializes all vmem_alloc()'s for all slab caches. Using slightly
294 * different allocation functions for small and large objects should
295 * give us the best of both worlds.
296 *
297 * KMC_ONSLAB KMC_OFFSLAB
298 *
299 * +------------------------+ +-----------------+
300 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
301 * | skc_obj_size <-+ | | +-----------------+ | |
302 * | spl_kmem_obj_t | | | |
303 * | skc_obj_size <---+ | +-----------------+ | |
304 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
305 * | ... v | | spl_kmem_obj_t | |
306 * +------------------------+ +-----------------+ v
307 */
308 static spl_kmem_slab_t *
309 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
310 {
311 spl_kmem_slab_t *sks;
312 spl_kmem_obj_t *sko, *n;
313 void *base, *obj;
314 uint32_t obj_size, offslab_size = 0;
315 int i, rc = 0;
316
317 base = kv_alloc(skc, skc->skc_slab_size, flags);
318 if (base == NULL)
319 return (NULL);
320
321 sks = (spl_kmem_slab_t *)base;
322 sks->sks_magic = SKS_MAGIC;
323 sks->sks_objs = skc->skc_slab_objs;
324 sks->sks_age = jiffies;
325 sks->sks_cache = skc;
326 INIT_LIST_HEAD(&sks->sks_list);
327 INIT_LIST_HEAD(&sks->sks_free_list);
328 sks->sks_ref = 0;
329 obj_size = spl_obj_size(skc);
330
331 if (skc->skc_flags & KMC_OFFSLAB)
332 offslab_size = spl_offslab_size(skc);
333
334 for (i = 0; i < sks->sks_objs; i++) {
335 if (skc->skc_flags & KMC_OFFSLAB) {
336 obj = kv_alloc(skc, offslab_size, flags);
337 if (!obj) {
338 rc = -ENOMEM;
339 goto out;
340 }
341 } else {
342 obj = base + spl_sks_size(skc) + (i * obj_size);
343 }
344
345 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
346 sko = spl_sko_from_obj(skc, obj);
347 sko->sko_addr = obj;
348 sko->sko_magic = SKO_MAGIC;
349 sko->sko_slab = sks;
350 INIT_LIST_HEAD(&sko->sko_list);
351 list_add_tail(&sko->sko_list, &sks->sks_free_list);
352 }
353
354 out:
355 if (rc) {
356 if (skc->skc_flags & KMC_OFFSLAB)
357 list_for_each_entry_safe(sko,
358 n, &sks->sks_free_list, sko_list)
359 kv_free(skc, sko->sko_addr, offslab_size);
360
361 kv_free(skc, base, skc->skc_slab_size);
362 sks = NULL;
363 }
364
365 return (sks);
366 }
367
368 /*
369 * Remove a slab from complete or partial list, it must be called with
370 * the 'skc->skc_lock' held but the actual free must be performed
371 * outside the lock to prevent deadlocking on vmem addresses.
372 */
373 static void
374 spl_slab_free(spl_kmem_slab_t *sks,
375 struct list_head *sks_list, struct list_head *sko_list)
376 {
377 spl_kmem_cache_t *skc;
378
379 ASSERT(sks->sks_magic == SKS_MAGIC);
380 ASSERT(sks->sks_ref == 0);
381
382 skc = sks->sks_cache;
383 ASSERT(skc->skc_magic == SKC_MAGIC);
384 ASSERT(spin_is_locked(&skc->skc_lock));
385
386 /*
387 * Update slab/objects counters in the cache, then remove the
388 * slab from the skc->skc_partial_list. Finally add the slab
389 * and all its objects in to the private work lists where the
390 * destructors will be called and the memory freed to the system.
391 */
392 skc->skc_obj_total -= sks->sks_objs;
393 skc->skc_slab_total--;
394 list_del(&sks->sks_list);
395 list_add(&sks->sks_list, sks_list);
396 list_splice_init(&sks->sks_free_list, sko_list);
397 }
398
399 /*
400 * Reclaim empty slabs at the end of the partial list.
401 */
402 static void
403 spl_slab_reclaim(spl_kmem_cache_t *skc)
404 {
405 spl_kmem_slab_t *sks, *m;
406 spl_kmem_obj_t *sko, *n;
407 LIST_HEAD(sks_list);
408 LIST_HEAD(sko_list);
409 uint32_t size = 0;
410
411 /*
412 * Empty slabs and objects must be moved to a private list so they
413 * can be safely freed outside the spin lock. All empty slabs are
414 * at the end of skc->skc_partial_list, therefore once a non-empty
415 * slab is found we can stop scanning.
416 */
417 spin_lock(&skc->skc_lock);
418 list_for_each_entry_safe_reverse(sks, m,
419 &skc->skc_partial_list, sks_list) {
420
421 if (sks->sks_ref > 0)
422 break;
423
424 spl_slab_free(sks, &sks_list, &sko_list);
425 }
426 spin_unlock(&skc->skc_lock);
427
428 /*
429 * The following two loops ensure all the object destructors are
430 * run, any offslab objects are freed, and the slabs themselves
431 * are freed. This is all done outside the skc->skc_lock since
432 * this allows the destructor to sleep, and allows us to perform
433 * a conditional reschedule when a freeing a large number of
434 * objects and slabs back to the system.
435 */
436 if (skc->skc_flags & KMC_OFFSLAB)
437 size = spl_offslab_size(skc);
438
439 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
440 ASSERT(sko->sko_magic == SKO_MAGIC);
441
442 if (skc->skc_flags & KMC_OFFSLAB)
443 kv_free(skc, sko->sko_addr, size);
444 }
445
446 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
447 ASSERT(sks->sks_magic == SKS_MAGIC);
448 kv_free(skc, sks, skc->skc_slab_size);
449 }
450 }
451
452 static spl_kmem_emergency_t *
453 spl_emergency_search(struct rb_root *root, void *obj)
454 {
455 struct rb_node *node = root->rb_node;
456 spl_kmem_emergency_t *ske;
457 unsigned long address = (unsigned long)obj;
458
459 while (node) {
460 ske = container_of(node, spl_kmem_emergency_t, ske_node);
461
462 if (address < (unsigned long)ske->ske_obj)
463 node = node->rb_left;
464 else if (address > (unsigned long)ske->ske_obj)
465 node = node->rb_right;
466 else
467 return (ske);
468 }
469
470 return (NULL);
471 }
472
473 static int
474 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
475 {
476 struct rb_node **new = &(root->rb_node), *parent = NULL;
477 spl_kmem_emergency_t *ske_tmp;
478 unsigned long address = (unsigned long)ske->ske_obj;
479
480 while (*new) {
481 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
482
483 parent = *new;
484 if (address < (unsigned long)ske_tmp->ske_obj)
485 new = &((*new)->rb_left);
486 else if (address > (unsigned long)ske_tmp->ske_obj)
487 new = &((*new)->rb_right);
488 else
489 return (0);
490 }
491
492 rb_link_node(&ske->ske_node, parent, new);
493 rb_insert_color(&ske->ske_node, root);
494
495 return (1);
496 }
497
498 /*
499 * Allocate a single emergency object and track it in a red black tree.
500 */
501 static int
502 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
503 {
504 gfp_t lflags = kmem_flags_convert(flags);
505 spl_kmem_emergency_t *ske;
506 int empty;
507
508 /* Last chance use a partial slab if one now exists */
509 spin_lock(&skc->skc_lock);
510 empty = list_empty(&skc->skc_partial_list);
511 spin_unlock(&skc->skc_lock);
512 if (!empty)
513 return (-EEXIST);
514
515 ske = kmalloc(sizeof (*ske), lflags);
516 if (ske == NULL)
517 return (-ENOMEM);
518
519 ske->ske_obj = kmalloc(skc->skc_obj_size, lflags);
520 if (ske->ske_obj == NULL) {
521 kfree(ske);
522 return (-ENOMEM);
523 }
524
525 spin_lock(&skc->skc_lock);
526 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
527 if (likely(empty)) {
528 skc->skc_obj_total++;
529 skc->skc_obj_emergency++;
530 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
531 skc->skc_obj_emergency_max = skc->skc_obj_emergency;
532 }
533 spin_unlock(&skc->skc_lock);
534
535 if (unlikely(!empty)) {
536 kfree(ske->ske_obj);
537 kfree(ske);
538 return (-EINVAL);
539 }
540
541 *obj = ske->ske_obj;
542
543 return (0);
544 }
545
546 /*
547 * Locate the passed object in the red black tree and free it.
548 */
549 static int
550 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
551 {
552 spl_kmem_emergency_t *ske;
553
554 spin_lock(&skc->skc_lock);
555 ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
556 if (ske) {
557 rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
558 skc->skc_obj_emergency--;
559 skc->skc_obj_total--;
560 }
561 spin_unlock(&skc->skc_lock);
562
563 if (ske == NULL)
564 return (-ENOENT);
565
566 kfree(ske->ske_obj);
567 kfree(ske);
568
569 return (0);
570 }
571
572 /*
573 * Release objects from the per-cpu magazine back to their slab. The flush
574 * argument contains the max number of entries to remove from the magazine.
575 */
576 static void
577 __spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
578 {
579 int i, count = MIN(flush, skm->skm_avail);
580
581 ASSERT(skc->skc_magic == SKC_MAGIC);
582 ASSERT(skm->skm_magic == SKM_MAGIC);
583 ASSERT(spin_is_locked(&skc->skc_lock));
584
585 for (i = 0; i < count; i++)
586 spl_cache_shrink(skc, skm->skm_objs[i]);
587
588 skm->skm_avail -= count;
589 memmove(skm->skm_objs, &(skm->skm_objs[count]),
590 sizeof (void *) * skm->skm_avail);
591 }
592
593 static void
594 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
595 {
596 spin_lock(&skc->skc_lock);
597 __spl_cache_flush(skc, skm, flush);
598 spin_unlock(&skc->skc_lock);
599 }
600
601 static void
602 spl_magazine_age(void *data)
603 {
604 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
605 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
606
607 ASSERT(skm->skm_magic == SKM_MAGIC);
608 ASSERT(skm->skm_cpu == smp_processor_id());
609 ASSERT(irqs_disabled());
610
611 /* There are no available objects or they are too young to age out */
612 if ((skm->skm_avail == 0) ||
613 time_before(jiffies, skm->skm_age + skc->skc_delay * HZ))
614 return;
615
616 /*
617 * Because we're executing in interrupt context we may have
618 * interrupted the holder of this lock. To avoid a potential
619 * deadlock return if the lock is contended.
620 */
621 if (!spin_trylock(&skc->skc_lock))
622 return;
623
624 __spl_cache_flush(skc, skm, skm->skm_refill);
625 spin_unlock(&skc->skc_lock);
626 }
627
628 /*
629 * Called regularly to keep a downward pressure on the cache.
630 *
631 * Objects older than skc->skc_delay seconds in the per-cpu magazines will
632 * be returned to the caches. This is done to prevent idle magazines from
633 * holding memory which could be better used elsewhere. The delay is
634 * present to prevent thrashing the magazine.
635 *
636 * The newly released objects may result in empty partial slabs. Those
637 * slabs should be released to the system. Otherwise moving the objects
638 * out of the magazines is just wasted work.
639 */
640 static void
641 spl_cache_age(void *data)
642 {
643 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
644 taskqid_t id = 0;
645
646 ASSERT(skc->skc_magic == SKC_MAGIC);
647
648 /* Dynamically disabled at run time */
649 if (!(spl_kmem_cache_expire & KMC_EXPIRE_AGE))
650 return;
651
652 atomic_inc(&skc->skc_ref);
653
654 if (!(skc->skc_flags & KMC_NOMAGAZINE))
655 on_each_cpu(spl_magazine_age, skc, 1);
656
657 spl_slab_reclaim(skc);
658
659 while (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && !id) {
660 id = taskq_dispatch_delay(
661 spl_kmem_cache_taskq, spl_cache_age, skc, TQ_SLEEP,
662 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
663
664 /* Destroy issued after dispatch immediately cancel it */
665 if (test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && id)
666 taskq_cancel_id(spl_kmem_cache_taskq, id);
667 }
668
669 spin_lock(&skc->skc_lock);
670 skc->skc_taskqid = id;
671 spin_unlock(&skc->skc_lock);
672
673 atomic_dec(&skc->skc_ref);
674 }
675
676 /*
677 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
678 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However,
679 * for very small objects we may end up with more than this so as not
680 * to waste space in the minimal allocation of a single page. Also for
681 * very large objects we may use as few as spl_kmem_cache_obj_per_slab_min,
682 * lower than this and we will fail.
683 */
684 static int
685 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
686 {
687 uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
688
689 if (skc->skc_flags & KMC_OFFSLAB) {
690 tgt_objs = spl_kmem_cache_obj_per_slab;
691 tgt_size = P2ROUNDUP(sizeof (spl_kmem_slab_t), PAGE_SIZE);
692
693 if ((skc->skc_flags & KMC_KMEM) &&
694 (spl_obj_size(skc) > (SPL_MAX_ORDER_NR_PAGES * PAGE_SIZE)))
695 return (-ENOSPC);
696 } else {
697 sks_size = spl_sks_size(skc);
698 obj_size = spl_obj_size(skc);
699 max_size = (spl_kmem_cache_max_size * 1024 * 1024);
700 tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
701
702 /*
703 * KMC_KMEM slabs are allocated by __get_free_pages() which
704 * rounds up to the nearest order. Knowing this the size
705 * should be rounded up to the next power of two with a hard
706 * maximum defined by the maximum allowed allocation order.
707 */
708 if (skc->skc_flags & KMC_KMEM) {
709 max_size = SPL_MAX_ORDER_NR_PAGES * PAGE_SIZE;
710 tgt_size = MIN(max_size,
711 PAGE_SIZE * (1 << MAX(get_order(tgt_size) - 1, 1)));
712 }
713
714 if (tgt_size <= max_size) {
715 tgt_objs = (tgt_size - sks_size) / obj_size;
716 } else {
717 tgt_objs = (max_size - sks_size) / obj_size;
718 tgt_size = (tgt_objs * obj_size) + sks_size;
719 }
720 }
721
722 if (tgt_objs == 0)
723 return (-ENOSPC);
724
725 *objs = tgt_objs;
726 *size = tgt_size;
727
728 return (0);
729 }
730
731 /*
732 * Make a guess at reasonable per-cpu magazine size based on the size of
733 * each object and the cost of caching N of them in each magazine. Long
734 * term this should really adapt based on an observed usage heuristic.
735 */
736 static int
737 spl_magazine_size(spl_kmem_cache_t *skc)
738 {
739 uint32_t obj_size = spl_obj_size(skc);
740 int size;
741
742 if (spl_kmem_cache_magazine_size > 0)
743 return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
744
745 /* Per-magazine sizes below assume a 4Kib page size */
746 if (obj_size > (PAGE_SIZE * 256))
747 size = 4; /* Minimum 4Mib per-magazine */
748 else if (obj_size > (PAGE_SIZE * 32))
749 size = 16; /* Minimum 2Mib per-magazine */
750 else if (obj_size > (PAGE_SIZE))
751 size = 64; /* Minimum 256Kib per-magazine */
752 else if (obj_size > (PAGE_SIZE / 4))
753 size = 128; /* Minimum 128Kib per-magazine */
754 else
755 size = 256;
756
757 return (size);
758 }
759
760 /*
761 * Allocate a per-cpu magazine to associate with a specific core.
762 */
763 static spl_kmem_magazine_t *
764 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
765 {
766 spl_kmem_magazine_t *skm;
767 int size = sizeof (spl_kmem_magazine_t) +
768 sizeof (void *) * skc->skc_mag_size;
769
770 skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
771 if (skm) {
772 skm->skm_magic = SKM_MAGIC;
773 skm->skm_avail = 0;
774 skm->skm_size = skc->skc_mag_size;
775 skm->skm_refill = skc->skc_mag_refill;
776 skm->skm_cache = skc;
777 skm->skm_age = jiffies;
778 skm->skm_cpu = cpu;
779 }
780
781 return (skm);
782 }
783
784 /*
785 * Free a per-cpu magazine associated with a specific core.
786 */
787 static void
788 spl_magazine_free(spl_kmem_magazine_t *skm)
789 {
790 ASSERT(skm->skm_magic == SKM_MAGIC);
791 ASSERT(skm->skm_avail == 0);
792 kfree(skm);
793 }
794
795 /*
796 * Create all pre-cpu magazines of reasonable sizes.
797 */
798 static int
799 spl_magazine_create(spl_kmem_cache_t *skc)
800 {
801 int i;
802
803 if (skc->skc_flags & KMC_NOMAGAZINE)
804 return (0);
805
806 skc->skc_mag_size = spl_magazine_size(skc);
807 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
808
809 for_each_online_cpu(i) {
810 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
811 if (!skc->skc_mag[i]) {
812 for (i--; i >= 0; i--)
813 spl_magazine_free(skc->skc_mag[i]);
814
815 return (-ENOMEM);
816 }
817 }
818
819 return (0);
820 }
821
822 /*
823 * Destroy all pre-cpu magazines.
824 */
825 static void
826 spl_magazine_destroy(spl_kmem_cache_t *skc)
827 {
828 spl_kmem_magazine_t *skm;
829 int i;
830
831 if (skc->skc_flags & KMC_NOMAGAZINE)
832 return;
833
834 for_each_online_cpu(i) {
835 skm = skc->skc_mag[i];
836 spl_cache_flush(skc, skm, skm->skm_avail);
837 spl_magazine_free(skm);
838 }
839 }
840
841 /*
842 * Create a object cache based on the following arguments:
843 * name cache name
844 * size cache object size
845 * align cache object alignment
846 * ctor cache object constructor
847 * dtor cache object destructor
848 * reclaim cache object reclaim
849 * priv cache private data for ctor/dtor/reclaim
850 * vmp unused must be NULL
851 * flags
852 * KMC_NOTOUCH Disable cache object aging (unsupported)
853 * KMC_NODEBUG Disable debugging (unsupported)
854 * KMC_NOHASH Disable hashing (unsupported)
855 * KMC_QCACHE Disable qcache (unsupported)
856 * KMC_NOMAGAZINE Enabled for kmem/vmem, Disabled for Linux slab
857 * KMC_KMEM Force kmem backed cache
858 * KMC_VMEM Force vmem backed cache
859 * KMC_SLAB Force Linux slab backed cache
860 * KMC_OFFSLAB Locate objects off the slab
861 */
862 spl_kmem_cache_t *
863 spl_kmem_cache_create(char *name, size_t size, size_t align,
864 spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, spl_kmem_reclaim_t reclaim,
865 void *priv, void *vmp, int flags)
866 {
867 gfp_t lflags = kmem_flags_convert(KM_SLEEP);
868 spl_kmem_cache_t *skc;
869 int rc;
870
871 /*
872 * Unsupported flags
873 */
874 ASSERT0(flags & KMC_NOMAGAZINE);
875 ASSERT0(flags & KMC_NOHASH);
876 ASSERT0(flags & KMC_QCACHE);
877 ASSERT(vmp == NULL);
878
879 might_sleep();
880
881 /*
882 * Allocate memory for a new cache and initialize it. Unfortunately,
883 * this usually ends up being a large allocation of ~32k because
884 * we need to allocate enough memory for the worst case number of
885 * cpus in the magazine, skc_mag[NR_CPUS].
886 */
887 skc = kzalloc(sizeof (*skc), lflags);
888 if (skc == NULL)
889 return (NULL);
890
891 skc->skc_magic = SKC_MAGIC;
892 skc->skc_name_size = strlen(name) + 1;
893 skc->skc_name = (char *)kmalloc(skc->skc_name_size, lflags);
894 if (skc->skc_name == NULL) {
895 kfree(skc);
896 return (NULL);
897 }
898 strncpy(skc->skc_name, name, skc->skc_name_size);
899
900 skc->skc_ctor = ctor;
901 skc->skc_dtor = dtor;
902 skc->skc_reclaim = reclaim;
903 skc->skc_private = priv;
904 skc->skc_vmp = vmp;
905 skc->skc_linux_cache = NULL;
906 skc->skc_flags = flags;
907 skc->skc_obj_size = size;
908 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
909 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
910 skc->skc_reap = SPL_KMEM_CACHE_REAP;
911 atomic_set(&skc->skc_ref, 0);
912
913 INIT_LIST_HEAD(&skc->skc_list);
914 INIT_LIST_HEAD(&skc->skc_complete_list);
915 INIT_LIST_HEAD(&skc->skc_partial_list);
916 skc->skc_emergency_tree = RB_ROOT;
917 spin_lock_init(&skc->skc_lock);
918 init_waitqueue_head(&skc->skc_waitq);
919 skc->skc_slab_fail = 0;
920 skc->skc_slab_create = 0;
921 skc->skc_slab_destroy = 0;
922 skc->skc_slab_total = 0;
923 skc->skc_slab_alloc = 0;
924 skc->skc_slab_max = 0;
925 skc->skc_obj_total = 0;
926 skc->skc_obj_alloc = 0;
927 skc->skc_obj_max = 0;
928 skc->skc_obj_deadlock = 0;
929 skc->skc_obj_emergency = 0;
930 skc->skc_obj_emergency_max = 0;
931
932 /*
933 * Verify the requested alignment restriction is sane.
934 */
935 if (align) {
936 VERIFY(ISP2(align));
937 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
938 VERIFY3U(align, <=, PAGE_SIZE);
939 skc->skc_obj_align = align;
940 }
941
942 /*
943 * When no specific type of slab is requested (kmem, vmem, or
944 * linuxslab) then select a cache type based on the object size
945 * and default tunables.
946 */
947 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB))) {
948
949 /*
950 * Objects smaller than spl_kmem_cache_slab_limit can
951 * use the Linux slab for better space-efficiency. By
952 * default this functionality is disabled until its
953 * performance characteristics are fully understood.
954 */
955 if (spl_kmem_cache_slab_limit &&
956 size <= (size_t)spl_kmem_cache_slab_limit)
957 skc->skc_flags |= KMC_SLAB;
958
959 /*
960 * Small objects, less than spl_kmem_cache_kmem_limit per
961 * object should use kmem because their slabs are small.
962 */
963 else if (spl_obj_size(skc) <= spl_kmem_cache_kmem_limit)
964 skc->skc_flags |= KMC_KMEM;
965
966 /*
967 * All other objects are considered large and are placed
968 * on vmem backed slabs.
969 */
970 else
971 skc->skc_flags |= KMC_VMEM;
972 }
973
974 /*
975 * Given the type of slab allocate the required resources.
976 */
977 if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
978 rc = spl_slab_size(skc,
979 &skc->skc_slab_objs, &skc->skc_slab_size);
980 if (rc)
981 goto out;
982
983 rc = spl_magazine_create(skc);
984 if (rc)
985 goto out;
986 } else {
987 if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE)) {
988 rc = EINVAL;
989 goto out;
990 }
991
992 skc->skc_linux_cache = kmem_cache_create(
993 skc->skc_name, size, align, 0, NULL);
994 if (skc->skc_linux_cache == NULL) {
995 rc = ENOMEM;
996 goto out;
997 }
998
999 #if defined(HAVE_KMEM_CACHE_ALLOCFLAGS)
1000 skc->skc_linux_cache->allocflags |= __GFP_COMP;
1001 #elif defined(HAVE_KMEM_CACHE_GFPFLAGS)
1002 skc->skc_linux_cache->gfpflags |= __GFP_COMP;
1003 #endif
1004 skc->skc_flags |= KMC_NOMAGAZINE;
1005 }
1006
1007 if (spl_kmem_cache_expire & KMC_EXPIRE_AGE)
1008 skc->skc_taskqid = taskq_dispatch_delay(spl_kmem_cache_taskq,
1009 spl_cache_age, skc, TQ_SLEEP,
1010 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
1011
1012 down_write(&spl_kmem_cache_sem);
1013 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
1014 up_write(&spl_kmem_cache_sem);
1015
1016 return (skc);
1017 out:
1018 kfree(skc->skc_name);
1019 kfree(skc);
1020 return (NULL);
1021 }
1022 EXPORT_SYMBOL(spl_kmem_cache_create);
1023
1024 /*
1025 * Register a move callback for cache defragmentation.
1026 * XXX: Unimplemented but harmless to stub out for now.
1027 */
1028 void
1029 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
1030 kmem_cbrc_t (move)(void *, void *, size_t, void *))
1031 {
1032 ASSERT(move != NULL);
1033 }
1034 EXPORT_SYMBOL(spl_kmem_cache_set_move);
1035
1036 /*
1037 * Destroy a cache and all objects associated with the cache.
1038 */
1039 void
1040 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
1041 {
1042 DECLARE_WAIT_QUEUE_HEAD(wq);
1043 taskqid_t id;
1044
1045 ASSERT(skc->skc_magic == SKC_MAGIC);
1046 ASSERT(skc->skc_flags & (KMC_KMEM | KMC_VMEM | KMC_SLAB));
1047
1048 down_write(&spl_kmem_cache_sem);
1049 list_del_init(&skc->skc_list);
1050 up_write(&spl_kmem_cache_sem);
1051
1052 /* Cancel any and wait for any pending delayed tasks */
1053 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1054
1055 spin_lock(&skc->skc_lock);
1056 id = skc->skc_taskqid;
1057 spin_unlock(&skc->skc_lock);
1058
1059 taskq_cancel_id(spl_kmem_cache_taskq, id);
1060
1061 /*
1062 * Wait until all current callers complete, this is mainly
1063 * to catch the case where a low memory situation triggers a
1064 * cache reaping action which races with this destroy.
1065 */
1066 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1067
1068 if (skc->skc_flags & (KMC_KMEM | KMC_VMEM)) {
1069 spl_magazine_destroy(skc);
1070 spl_slab_reclaim(skc);
1071 } else {
1072 ASSERT(skc->skc_flags & KMC_SLAB);
1073 kmem_cache_destroy(skc->skc_linux_cache);
1074 }
1075
1076 spin_lock(&skc->skc_lock);
1077
1078 /*
1079 * Validate there are no objects in use and free all the
1080 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
1081 */
1082 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1083 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1084 ASSERT3U(skc->skc_slab_total, ==, 0);
1085 ASSERT3U(skc->skc_obj_total, ==, 0);
1086 ASSERT3U(skc->skc_obj_emergency, ==, 0);
1087 ASSERT(list_empty(&skc->skc_complete_list));
1088
1089 spin_unlock(&skc->skc_lock);
1090
1091 kfree(skc->skc_name);
1092 kfree(skc);
1093 }
1094 EXPORT_SYMBOL(spl_kmem_cache_destroy);
1095
1096 /*
1097 * Allocate an object from a slab attached to the cache. This is used to
1098 * repopulate the per-cpu magazine caches in batches when they run low.
1099 */
1100 static void *
1101 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
1102 {
1103 spl_kmem_obj_t *sko;
1104
1105 ASSERT(skc->skc_magic == SKC_MAGIC);
1106 ASSERT(sks->sks_magic == SKS_MAGIC);
1107 ASSERT(spin_is_locked(&skc->skc_lock));
1108
1109 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
1110 ASSERT(sko->sko_magic == SKO_MAGIC);
1111 ASSERT(sko->sko_addr != NULL);
1112
1113 /* Remove from sks_free_list */
1114 list_del_init(&sko->sko_list);
1115
1116 sks->sks_age = jiffies;
1117 sks->sks_ref++;
1118 skc->skc_obj_alloc++;
1119
1120 /* Track max obj usage statistics */
1121 if (skc->skc_obj_alloc > skc->skc_obj_max)
1122 skc->skc_obj_max = skc->skc_obj_alloc;
1123
1124 /* Track max slab usage statistics */
1125 if (sks->sks_ref == 1) {
1126 skc->skc_slab_alloc++;
1127
1128 if (skc->skc_slab_alloc > skc->skc_slab_max)
1129 skc->skc_slab_max = skc->skc_slab_alloc;
1130 }
1131
1132 return (sko->sko_addr);
1133 }
1134
1135 /*
1136 * Generic slab allocation function to run by the global work queues.
1137 * It is responsible for allocating a new slab, linking it in to the list
1138 * of partial slabs, and then waking any waiters.
1139 */
1140 static void
1141 spl_cache_grow_work(void *data)
1142 {
1143 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
1144 spl_kmem_cache_t *skc = ska->ska_cache;
1145 spl_kmem_slab_t *sks;
1146
1147 #if defined(PF_MEMALLOC_NOIO)
1148 unsigned noio_flag = memalloc_noio_save();
1149 sks = spl_slab_alloc(skc, ska->ska_flags);
1150 memalloc_noio_restore(noio_flag);
1151 #else
1152 fstrans_cookie_t cookie = spl_fstrans_mark();
1153 sks = spl_slab_alloc(skc, ska->ska_flags);
1154 spl_fstrans_unmark(cookie);
1155 #endif
1156 spin_lock(&skc->skc_lock);
1157 if (sks) {
1158 skc->skc_slab_total++;
1159 skc->skc_obj_total += sks->sks_objs;
1160 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1161 }
1162
1163 atomic_dec(&skc->skc_ref);
1164 smp_mb__before_atomic();
1165 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
1166 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1167 smp_mb__after_atomic();
1168 wake_up_all(&skc->skc_waitq);
1169 spin_unlock(&skc->skc_lock);
1170
1171 kfree(ska);
1172 }
1173
1174 /*
1175 * Returns non-zero when a new slab should be available.
1176 */
1177 static int
1178 spl_cache_grow_wait(spl_kmem_cache_t *skc)
1179 {
1180 return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
1181 }
1182
1183 /*
1184 * No available objects on any slabs, create a new slab. Note that this
1185 * functionality is disabled for KMC_SLAB caches which are backed by the
1186 * Linux slab.
1187 */
1188 static int
1189 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1190 {
1191 int remaining, rc = 0;
1192
1193 ASSERT0(flags & ~KM_PUBLIC_MASK);
1194 ASSERT(skc->skc_magic == SKC_MAGIC);
1195 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
1196 might_sleep();
1197 *obj = NULL;
1198
1199 /*
1200 * Before allocating a new slab wait for any reaping to complete and
1201 * then return so the local magazine can be rechecked for new objects.
1202 */
1203 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1204 rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1205 TASK_UNINTERRUPTIBLE);
1206 return (rc ? rc : -EAGAIN);
1207 }
1208
1209 /*
1210 * This is handled by dispatching a work request to the global work
1211 * queue. This allows us to asynchronously allocate a new slab while
1212 * retaining the ability to safely fall back to a smaller synchronous
1213 * allocations to ensure forward progress is always maintained.
1214 */
1215 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1216 spl_kmem_alloc_t *ska;
1217
1218 ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1219 if (ska == NULL) {
1220 clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1221 smp_mb__after_atomic();
1222 wake_up_all(&skc->skc_waitq);
1223 return (-ENOMEM);
1224 }
1225
1226 atomic_inc(&skc->skc_ref);
1227 ska->ska_cache = skc;
1228 ska->ska_flags = flags;
1229 taskq_init_ent(&ska->ska_tqe);
1230 taskq_dispatch_ent(spl_kmem_cache_taskq,
1231 spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1232 }
1233
1234 /*
1235 * The goal here is to only detect the rare case where a virtual slab
1236 * allocation has deadlocked. We must be careful to minimize the use
1237 * of emergency objects which are more expensive to track. Therefore,
1238 * we set a very long timeout for the asynchronous allocation and if
1239 * the timeout is reached the cache is flagged as deadlocked. From
1240 * this point only new emergency objects will be allocated until the
1241 * asynchronous allocation completes and clears the deadlocked flag.
1242 */
1243 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1244 rc = spl_emergency_alloc(skc, flags, obj);
1245 } else {
1246 remaining = wait_event_timeout(skc->skc_waitq,
1247 spl_cache_grow_wait(skc), HZ / 10);
1248
1249 if (!remaining) {
1250 spin_lock(&skc->skc_lock);
1251 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1252 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1253 skc->skc_obj_deadlock++;
1254 }
1255 spin_unlock(&skc->skc_lock);
1256 }
1257
1258 rc = -ENOMEM;
1259 }
1260
1261 return (rc);
1262 }
1263
1264 /*
1265 * Refill a per-cpu magazine with objects from the slabs for this cache.
1266 * Ideally the magazine can be repopulated using existing objects which have
1267 * been released, however if we are unable to locate enough free objects new
1268 * slabs of objects will be created. On success NULL is returned, otherwise
1269 * the address of a single emergency object is returned for use by the caller.
1270 */
1271 static void *
1272 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1273 {
1274 spl_kmem_slab_t *sks;
1275 int count = 0, rc, refill;
1276 void *obj = NULL;
1277
1278 ASSERT(skc->skc_magic == SKC_MAGIC);
1279 ASSERT(skm->skm_magic == SKM_MAGIC);
1280
1281 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1282 spin_lock(&skc->skc_lock);
1283
1284 while (refill > 0) {
1285 /* No slabs available we may need to grow the cache */
1286 if (list_empty(&skc->skc_partial_list)) {
1287 spin_unlock(&skc->skc_lock);
1288
1289 local_irq_enable();
1290 rc = spl_cache_grow(skc, flags, &obj);
1291 local_irq_disable();
1292
1293 /* Emergency object for immediate use by caller */
1294 if (rc == 0 && obj != NULL)
1295 return (obj);
1296
1297 if (rc)
1298 goto out;
1299
1300 /* Rescheduled to different CPU skm is not local */
1301 if (skm != skc->skc_mag[smp_processor_id()])
1302 goto out;
1303
1304 /*
1305 * Potentially rescheduled to the same CPU but
1306 * allocations may have occurred from this CPU while
1307 * we were sleeping so recalculate max refill.
1308 */
1309 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1310
1311 spin_lock(&skc->skc_lock);
1312 continue;
1313 }
1314
1315 /* Grab the next available slab */
1316 sks = list_entry((&skc->skc_partial_list)->next,
1317 spl_kmem_slab_t, sks_list);
1318 ASSERT(sks->sks_magic == SKS_MAGIC);
1319 ASSERT(sks->sks_ref < sks->sks_objs);
1320 ASSERT(!list_empty(&sks->sks_free_list));
1321
1322 /*
1323 * Consume as many objects as needed to refill the requested
1324 * cache. We must also be careful not to overfill it.
1325 */
1326 while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1327 ++count) {
1328 ASSERT(skm->skm_avail < skm->skm_size);
1329 ASSERT(count < skm->skm_size);
1330 skm->skm_objs[skm->skm_avail++] =
1331 spl_cache_obj(skc, sks);
1332 }
1333
1334 /* Move slab to skc_complete_list when full */
1335 if (sks->sks_ref == sks->sks_objs) {
1336 list_del(&sks->sks_list);
1337 list_add(&sks->sks_list, &skc->skc_complete_list);
1338 }
1339 }
1340
1341 spin_unlock(&skc->skc_lock);
1342 out:
1343 return (NULL);
1344 }
1345
1346 /*
1347 * Release an object back to the slab from which it came.
1348 */
1349 static void
1350 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1351 {
1352 spl_kmem_slab_t *sks = NULL;
1353 spl_kmem_obj_t *sko = NULL;
1354
1355 ASSERT(skc->skc_magic == SKC_MAGIC);
1356 ASSERT(spin_is_locked(&skc->skc_lock));
1357
1358 sko = spl_sko_from_obj(skc, obj);
1359 ASSERT(sko->sko_magic == SKO_MAGIC);
1360 sks = sko->sko_slab;
1361 ASSERT(sks->sks_magic == SKS_MAGIC);
1362 ASSERT(sks->sks_cache == skc);
1363 list_add(&sko->sko_list, &sks->sks_free_list);
1364
1365 sks->sks_age = jiffies;
1366 sks->sks_ref--;
1367 skc->skc_obj_alloc--;
1368
1369 /*
1370 * Move slab to skc_partial_list when no longer full. Slabs
1371 * are added to the head to keep the partial list is quasi-full
1372 * sorted order. Fuller at the head, emptier at the tail.
1373 */
1374 if (sks->sks_ref == (sks->sks_objs - 1)) {
1375 list_del(&sks->sks_list);
1376 list_add(&sks->sks_list, &skc->skc_partial_list);
1377 }
1378
1379 /*
1380 * Move empty slabs to the end of the partial list so
1381 * they can be easily found and freed during reclamation.
1382 */
1383 if (sks->sks_ref == 0) {
1384 list_del(&sks->sks_list);
1385 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1386 skc->skc_slab_alloc--;
1387 }
1388 }
1389
1390 /*
1391 * Allocate an object from the per-cpu magazine, or if the magazine
1392 * is empty directly allocate from a slab and repopulate the magazine.
1393 */
1394 void *
1395 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1396 {
1397 spl_kmem_magazine_t *skm;
1398 void *obj = NULL;
1399
1400 ASSERT0(flags & ~KM_PUBLIC_MASK);
1401 ASSERT(skc->skc_magic == SKC_MAGIC);
1402 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1403
1404 atomic_inc(&skc->skc_ref);
1405
1406 /*
1407 * Allocate directly from a Linux slab. All optimizations are left
1408 * to the underlying cache we only need to guarantee that KM_SLEEP
1409 * callers will never fail.
1410 */
1411 if (skc->skc_flags & KMC_SLAB) {
1412 struct kmem_cache *slc = skc->skc_linux_cache;
1413 do {
1414 obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1415 } while ((obj == NULL) && !(flags & KM_NOSLEEP));
1416
1417 goto ret;
1418 }
1419
1420 local_irq_disable();
1421
1422 restart:
1423 /*
1424 * Safe to update per-cpu structure without lock, but
1425 * in the restart case we must be careful to reacquire
1426 * the local magazine since this may have changed
1427 * when we need to grow the cache.
1428 */
1429 skm = skc->skc_mag[smp_processor_id()];
1430 ASSERT(skm->skm_magic == SKM_MAGIC);
1431
1432 if (likely(skm->skm_avail)) {
1433 /* Object available in CPU cache, use it */
1434 obj = skm->skm_objs[--skm->skm_avail];
1435 skm->skm_age = jiffies;
1436 } else {
1437 obj = spl_cache_refill(skc, skm, flags);
1438 if ((obj == NULL) && !(flags & KM_NOSLEEP))
1439 goto restart;
1440
1441 local_irq_enable();
1442 goto ret;
1443 }
1444
1445 local_irq_enable();
1446 ASSERT(obj);
1447 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1448
1449 ret:
1450 /* Pre-emptively migrate object to CPU L1 cache */
1451 if (obj) {
1452 if (obj && skc->skc_ctor)
1453 skc->skc_ctor(obj, skc->skc_private, flags);
1454 else
1455 prefetchw(obj);
1456 }
1457
1458 atomic_dec(&skc->skc_ref);
1459
1460 return (obj);
1461 }
1462 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1463
1464 /*
1465 * Free an object back to the local per-cpu magazine, there is no
1466 * guarantee that this is the same magazine the object was originally
1467 * allocated from. We may need to flush entire from the magazine
1468 * back to the slabs to make space.
1469 */
1470 void
1471 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1472 {
1473 spl_kmem_magazine_t *skm;
1474 unsigned long flags;
1475 int do_reclaim = 0;
1476 int do_emergency = 0;
1477
1478 ASSERT(skc->skc_magic == SKC_MAGIC);
1479 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1480 atomic_inc(&skc->skc_ref);
1481
1482 /*
1483 * Run the destructor
1484 */
1485 if (skc->skc_dtor)
1486 skc->skc_dtor(obj, skc->skc_private);
1487
1488 /*
1489 * Free the object from the Linux underlying Linux slab.
1490 */
1491 if (skc->skc_flags & KMC_SLAB) {
1492 kmem_cache_free(skc->skc_linux_cache, obj);
1493 goto out;
1494 }
1495
1496 /*
1497 * While a cache has outstanding emergency objects all freed objects
1498 * must be checked. However, since emergency objects will never use
1499 * a virtual address these objects can be safely excluded as an
1500 * optimization.
1501 */
1502 if (!is_vmalloc_addr(obj)) {
1503 spin_lock(&skc->skc_lock);
1504 do_emergency = (skc->skc_obj_emergency > 0);
1505 spin_unlock(&skc->skc_lock);
1506
1507 if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1508 goto out;
1509 }
1510
1511 local_irq_save(flags);
1512
1513 /*
1514 * Safe to update per-cpu structure without lock, but
1515 * no remote memory allocation tracking is being performed
1516 * it is entirely possible to allocate an object from one
1517 * CPU cache and return it to another.
1518 */
1519 skm = skc->skc_mag[smp_processor_id()];
1520 ASSERT(skm->skm_magic == SKM_MAGIC);
1521
1522 /*
1523 * Per-CPU cache full, flush it to make space for this object,
1524 * this may result in an empty slab which can be reclaimed once
1525 * interrupts are re-enabled.
1526 */
1527 if (unlikely(skm->skm_avail >= skm->skm_size)) {
1528 spl_cache_flush(skc, skm, skm->skm_refill);
1529 do_reclaim = 1;
1530 }
1531
1532 /* Available space in cache, use it */
1533 skm->skm_objs[skm->skm_avail++] = obj;
1534
1535 local_irq_restore(flags);
1536
1537 if (do_reclaim)
1538 spl_slab_reclaim(skc);
1539 out:
1540 atomic_dec(&skc->skc_ref);
1541 }
1542 EXPORT_SYMBOL(spl_kmem_cache_free);
1543
1544 /*
1545 * The generic shrinker function for all caches. Under Linux a shrinker
1546 * may not be tightly coupled with a slab cache. In fact Linux always
1547 * systematically tries calling all registered shrinker callbacks which
1548 * report that they contain unused objects. Because of this we only
1549 * register one shrinker function in the shim layer for all slab caches.
1550 * We always attempt to shrink all caches when this generic shrinker
1551 * is called.
1552 *
1553 * If sc->nr_to_scan is zero, the caller is requesting a query of the
1554 * number of objects which can potentially be freed. If it is nonzero,
1555 * the request is to free that many objects.
1556 *
1557 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
1558 * in struct shrinker and also require the shrinker to return the number
1559 * of objects freed.
1560 *
1561 * Older kernels require the shrinker to return the number of freeable
1562 * objects following the freeing of nr_to_free.
1563 *
1564 * Linux semantics differ from those under Solaris, which are to
1565 * free all available objects which may (and probably will) be more
1566 * objects than the requested nr_to_scan.
1567 */
1568 static spl_shrinker_t
1569 __spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
1570 struct shrink_control *sc)
1571 {
1572 spl_kmem_cache_t *skc;
1573 int alloc = 0;
1574
1575 down_read(&spl_kmem_cache_sem);
1576 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1577 if (sc->nr_to_scan) {
1578 #ifdef HAVE_SPLIT_SHRINKER_CALLBACK
1579 uint64_t oldalloc = skc->skc_obj_alloc;
1580 spl_kmem_cache_reap_now(skc,
1581 MAX(sc->nr_to_scan>>fls64(skc->skc_slab_objs), 1));
1582 if (oldalloc > skc->skc_obj_alloc)
1583 alloc += oldalloc - skc->skc_obj_alloc;
1584 #else
1585 spl_kmem_cache_reap_now(skc,
1586 MAX(sc->nr_to_scan>>fls64(skc->skc_slab_objs), 1));
1587 alloc += skc->skc_obj_alloc;
1588 #endif /* HAVE_SPLIT_SHRINKER_CALLBACK */
1589 } else {
1590 /* Request to query number of freeable objects */
1591 alloc += skc->skc_obj_alloc;
1592 }
1593 }
1594 up_read(&spl_kmem_cache_sem);
1595
1596 /*
1597 * When KMC_RECLAIM_ONCE is set allow only a single reclaim pass.
1598 * This functionality only exists to work around a rare issue where
1599 * shrink_slabs() is repeatedly invoked by many cores causing the
1600 * system to thrash.
1601 */
1602 if ((spl_kmem_cache_reclaim & KMC_RECLAIM_ONCE) && sc->nr_to_scan)
1603 return (SHRINK_STOP);
1604
1605 return (MAX(alloc, 0));
1606 }
1607
1608 SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
1609
1610 /*
1611 * Call the registered reclaim function for a cache. Depending on how
1612 * many and which objects are released it may simply repopulate the
1613 * local magazine which will then need to age-out. Objects which cannot
1614 * fit in the magazine we will be released back to their slabs which will
1615 * also need to age out before being release. This is all just best
1616 * effort and we do not want to thrash creating and destroying slabs.
1617 */
1618 void
1619 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count)
1620 {
1621 ASSERT(skc->skc_magic == SKC_MAGIC);
1622 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1623
1624 atomic_inc(&skc->skc_ref);
1625
1626 /*
1627 * Execute the registered reclaim callback if it exists. The
1628 * per-cpu caches will be drained when is set KMC_EXPIRE_MEM.
1629 */
1630 if (skc->skc_flags & KMC_SLAB) {
1631 if (skc->skc_reclaim)
1632 skc->skc_reclaim(skc->skc_private);
1633
1634 if (spl_kmem_cache_expire & KMC_EXPIRE_MEM)
1635 kmem_cache_shrink(skc->skc_linux_cache);
1636
1637 goto out;
1638 }
1639
1640 /*
1641 * Prevent concurrent cache reaping when contended.
1642 */
1643 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1644 goto out;
1645
1646 /*
1647 * When a reclaim function is available it may be invoked repeatedly
1648 * until at least a single slab can be freed. This ensures that we
1649 * do free memory back to the system. This helps minimize the chance
1650 * of an OOM event when the bulk of memory is used by the slab.
1651 *
1652 * When free slabs are already available the reclaim callback will be
1653 * skipped. Additionally, if no forward progress is detected despite
1654 * a reclaim function the cache will be skipped to avoid deadlock.
1655 *
1656 * Longer term this would be the correct place to add the code which
1657 * repacks the slabs in order minimize fragmentation.
1658 */
1659 if (skc->skc_reclaim) {
1660 uint64_t objects = UINT64_MAX;
1661 int do_reclaim;
1662
1663 do {
1664 spin_lock(&skc->skc_lock);
1665 do_reclaim =
1666 (skc->skc_slab_total > 0) &&
1667 ((skc->skc_slab_total-skc->skc_slab_alloc) == 0) &&
1668 (skc->skc_obj_alloc < objects);
1669
1670 objects = skc->skc_obj_alloc;
1671 spin_unlock(&skc->skc_lock);
1672
1673 if (do_reclaim)
1674 skc->skc_reclaim(skc->skc_private);
1675
1676 } while (do_reclaim);
1677 }
1678
1679 /* Reclaim from the magazine and free all now empty slabs. */
1680 if (spl_kmem_cache_expire & KMC_EXPIRE_MEM) {
1681 spl_kmem_magazine_t *skm;
1682 unsigned long irq_flags;
1683
1684 local_irq_save(irq_flags);
1685 skm = skc->skc_mag[smp_processor_id()];
1686 spl_cache_flush(skc, skm, skm->skm_avail);
1687 local_irq_restore(irq_flags);
1688 }
1689
1690 spl_slab_reclaim(skc);
1691 clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1692 smp_mb__after_atomic();
1693 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1694 out:
1695 atomic_dec(&skc->skc_ref);
1696 }
1697 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1698
1699 /*
1700 * Reap all free slabs from all registered caches.
1701 */
1702 void
1703 spl_kmem_reap(void)
1704 {
1705 struct shrink_control sc;
1706
1707 sc.nr_to_scan = KMC_REAP_CHUNK;
1708 sc.gfp_mask = GFP_KERNEL;
1709
1710 (void) __spl_kmem_cache_generic_shrinker(NULL, &sc);
1711 }
1712 EXPORT_SYMBOL(spl_kmem_reap);
1713
1714 int
1715 spl_kmem_cache_init(void)
1716 {
1717 init_rwsem(&spl_kmem_cache_sem);
1718 INIT_LIST_HEAD(&spl_kmem_cache_list);
1719 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1720 spl_kmem_cache_kmem_threads, maxclsyspri, 1, 32, TASKQ_PREPOPULATE);
1721 spl_register_shrinker(&spl_kmem_cache_shrinker);
1722
1723 return (0);
1724 }
1725
1726 void
1727 spl_kmem_cache_fini(void)
1728 {
1729 spl_unregister_shrinker(&spl_kmem_cache_shrinker);
1730 taskq_destroy(spl_kmem_cache_taskq);
1731 }