]> git.proxmox.com Git - mirror_spl.git/blob - module/spl/spl-kmem.c
Proxmox VE kernel compat, invalidate_inodes()
[mirror_spl.git] / module / spl / spl-kmem.c
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting Layer (SPL) Kmem Implementation.
25 \*****************************************************************************/
26
27 #include <sys/kmem.h>
28 #include <spl-debug.h>
29
30 #ifdef SS_DEBUG_SUBSYS
31 #undef SS_DEBUG_SUBSYS
32 #endif
33
34 #define SS_DEBUG_SUBSYS SS_KMEM
35
36 /*
37 * The minimum amount of memory measured in pages to be free at all
38 * times on the system. This is similar to Linux's zone->pages_min
39 * multiplied by the number of zones and is sized based on that.
40 */
41 pgcnt_t minfree = 0;
42 EXPORT_SYMBOL(minfree);
43
44 /*
45 * The desired amount of memory measured in pages to be free at all
46 * times on the system. This is similar to Linux's zone->pages_low
47 * multiplied by the number of zones and is sized based on that.
48 * Assuming all zones are being used roughly equally, when we drop
49 * below this threshold asynchronous page reclamation is triggered.
50 */
51 pgcnt_t desfree = 0;
52 EXPORT_SYMBOL(desfree);
53
54 /*
55 * When above this amount of memory measures in pages the system is
56 * determined to have enough free memory. This is similar to Linux's
57 * zone->pages_high multiplied by the number of zones and is sized based
58 * on that. Assuming all zones are being used roughly equally, when
59 * asynchronous page reclamation reaches this threshold it stops.
60 */
61 pgcnt_t lotsfree = 0;
62 EXPORT_SYMBOL(lotsfree);
63
64 /* Unused always 0 in this implementation */
65 pgcnt_t needfree = 0;
66 EXPORT_SYMBOL(needfree);
67
68 pgcnt_t swapfs_minfree = 0;
69 EXPORT_SYMBOL(swapfs_minfree);
70
71 pgcnt_t swapfs_reserve = 0;
72 EXPORT_SYMBOL(swapfs_reserve);
73
74 vmem_t *heap_arena = NULL;
75 EXPORT_SYMBOL(heap_arena);
76
77 vmem_t *zio_alloc_arena = NULL;
78 EXPORT_SYMBOL(zio_alloc_arena);
79
80 vmem_t *zio_arena = NULL;
81 EXPORT_SYMBOL(zio_arena);
82
83 #ifndef HAVE_GET_VMALLOC_INFO
84 get_vmalloc_info_t get_vmalloc_info_fn = SYMBOL_POISON;
85 EXPORT_SYMBOL(get_vmalloc_info_fn);
86 #endif /* HAVE_GET_VMALLOC_INFO */
87
88 #ifdef HAVE_PGDAT_HELPERS
89 # ifndef HAVE_FIRST_ONLINE_PGDAT
90 first_online_pgdat_t first_online_pgdat_fn = SYMBOL_POISON;
91 EXPORT_SYMBOL(first_online_pgdat_fn);
92 # endif /* HAVE_FIRST_ONLINE_PGDAT */
93
94 # ifndef HAVE_NEXT_ONLINE_PGDAT
95 next_online_pgdat_t next_online_pgdat_fn = SYMBOL_POISON;
96 EXPORT_SYMBOL(next_online_pgdat_fn);
97 # endif /* HAVE_NEXT_ONLINE_PGDAT */
98
99 # ifndef HAVE_NEXT_ZONE
100 next_zone_t next_zone_fn = SYMBOL_POISON;
101 EXPORT_SYMBOL(next_zone_fn);
102 # endif /* HAVE_NEXT_ZONE */
103
104 #else /* HAVE_PGDAT_HELPERS */
105
106 # ifndef HAVE_PGDAT_LIST
107 struct pglist_data *pgdat_list_addr = SYMBOL_POISON;
108 EXPORT_SYMBOL(pgdat_list_addr);
109 # endif /* HAVE_PGDAT_LIST */
110
111 #endif /* HAVE_PGDAT_HELPERS */
112
113 #ifdef NEED_GET_ZONE_COUNTS
114 # ifndef HAVE_GET_ZONE_COUNTS
115 get_zone_counts_t get_zone_counts_fn = SYMBOL_POISON;
116 EXPORT_SYMBOL(get_zone_counts_fn);
117 # endif /* HAVE_GET_ZONE_COUNTS */
118
119 unsigned long
120 spl_global_page_state(spl_zone_stat_item_t item)
121 {
122 unsigned long active;
123 unsigned long inactive;
124 unsigned long free;
125
126 get_zone_counts(&active, &inactive, &free);
127 switch (item) {
128 case SPL_NR_FREE_PAGES: return free;
129 case SPL_NR_INACTIVE: return inactive;
130 case SPL_NR_ACTIVE: return active;
131 default: ASSERT(0); /* Unsupported */
132 }
133
134 return 0;
135 }
136 #else
137 # ifdef HAVE_GLOBAL_PAGE_STATE
138 unsigned long
139 spl_global_page_state(spl_zone_stat_item_t item)
140 {
141 unsigned long pages = 0;
142
143 switch (item) {
144 case SPL_NR_FREE_PAGES:
145 # ifdef HAVE_ZONE_STAT_ITEM_NR_FREE_PAGES
146 pages += global_page_state(NR_FREE_PAGES);
147 # endif
148 break;
149 case SPL_NR_INACTIVE:
150 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE
151 pages += global_page_state(NR_INACTIVE);
152 # endif
153 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_ANON
154 pages += global_page_state(NR_INACTIVE_ANON);
155 # endif
156 # ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_FILE
157 pages += global_page_state(NR_INACTIVE_FILE);
158 # endif
159 break;
160 case SPL_NR_ACTIVE:
161 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE
162 pages += global_page_state(NR_ACTIVE);
163 # endif
164 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_ANON
165 pages += global_page_state(NR_ACTIVE_ANON);
166 # endif
167 # ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_FILE
168 pages += global_page_state(NR_ACTIVE_FILE);
169 # endif
170 break;
171 default:
172 ASSERT(0); /* Unsupported */
173 }
174
175 return pages;
176 }
177 # else
178 # error "Both global_page_state() and get_zone_counts() unavailable"
179 # endif /* HAVE_GLOBAL_PAGE_STATE */
180 #endif /* NEED_GET_ZONE_COUNTS */
181 EXPORT_SYMBOL(spl_global_page_state);
182
183 #if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK)
184 invalidate_inodes_t invalidate_inodes_fn = SYMBOL_POISON;
185 EXPORT_SYMBOL(invalidate_inodes_fn);
186 #endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */
187
188 #ifndef HAVE_SHRINK_DCACHE_MEMORY
189 shrink_dcache_memory_t shrink_dcache_memory_fn = SYMBOL_POISON;
190 EXPORT_SYMBOL(shrink_dcache_memory_fn);
191 #endif /* HAVE_SHRINK_DCACHE_MEMORY */
192
193 #ifndef HAVE_SHRINK_ICACHE_MEMORY
194 shrink_icache_memory_t shrink_icache_memory_fn = SYMBOL_POISON;
195 EXPORT_SYMBOL(shrink_icache_memory_fn);
196 #endif /* HAVE_SHRINK_ICACHE_MEMORY */
197
198 pgcnt_t
199 spl_kmem_availrmem(void)
200 {
201 /* The amount of easily available memory */
202 return (spl_global_page_state(SPL_NR_FREE_PAGES) +
203 spl_global_page_state(SPL_NR_INACTIVE));
204 }
205 EXPORT_SYMBOL(spl_kmem_availrmem);
206
207 size_t
208 vmem_size(vmem_t *vmp, int typemask)
209 {
210 struct vmalloc_info vmi;
211 size_t size = 0;
212
213 ASSERT(vmp == NULL);
214 ASSERT(typemask & (VMEM_ALLOC | VMEM_FREE));
215
216 get_vmalloc_info(&vmi);
217 if (typemask & VMEM_ALLOC)
218 size += (size_t)vmi.used;
219
220 if (typemask & VMEM_FREE)
221 size += (size_t)(VMALLOC_TOTAL - vmi.used);
222
223 return size;
224 }
225 EXPORT_SYMBOL(vmem_size);
226
227 int
228 kmem_debugging(void)
229 {
230 return 0;
231 }
232 EXPORT_SYMBOL(kmem_debugging);
233
234 #ifndef HAVE_KVASPRINTF
235 /* Simplified asprintf. */
236 char *kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
237 {
238 unsigned int len;
239 char *p;
240 va_list aq;
241
242 va_copy(aq, ap);
243 len = vsnprintf(NULL, 0, fmt, aq);
244 va_end(aq);
245
246 p = kmalloc(len+1, gfp);
247 if (!p)
248 return NULL;
249
250 vsnprintf(p, len+1, fmt, ap);
251
252 return p;
253 }
254 EXPORT_SYMBOL(kvasprintf);
255 #endif /* HAVE_KVASPRINTF */
256
257 char *
258 kmem_vasprintf(const char *fmt, va_list ap)
259 {
260 va_list aq;
261 char *ptr;
262
263 do {
264 va_copy(aq, ap);
265 ptr = kvasprintf(GFP_KERNEL, fmt, aq);
266 va_end(aq);
267 } while (ptr == NULL);
268
269 return ptr;
270 }
271 EXPORT_SYMBOL(kmem_vasprintf);
272
273 char *
274 kmem_asprintf(const char *fmt, ...)
275 {
276 va_list ap;
277 char *ptr;
278
279 do {
280 va_start(ap, fmt);
281 ptr = kvasprintf(GFP_KERNEL, fmt, ap);
282 va_end(ap);
283 } while (ptr == NULL);
284
285 return ptr;
286 }
287 EXPORT_SYMBOL(kmem_asprintf);
288
289 static char *
290 __strdup(const char *str, int flags)
291 {
292 char *ptr;
293 int n;
294
295 n = strlen(str);
296 ptr = kmalloc_nofail(n + 1, flags);
297 if (ptr)
298 memcpy(ptr, str, n + 1);
299
300 return ptr;
301 }
302
303 char *
304 strdup(const char *str)
305 {
306 return __strdup(str, KM_SLEEP);
307 }
308 EXPORT_SYMBOL(strdup);
309
310 void
311 strfree(char *str)
312 {
313 kfree(str);
314 }
315 EXPORT_SYMBOL(strfree);
316
317 /*
318 * Memory allocation interfaces and debugging for basic kmem_*
319 * and vmem_* style memory allocation. When DEBUG_KMEM is enabled
320 * the SPL will keep track of the total memory allocated, and
321 * report any memory leaked when the module is unloaded.
322 */
323 #ifdef DEBUG_KMEM
324
325 /* Shim layer memory accounting */
326 # ifdef HAVE_ATOMIC64_T
327 atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
328 unsigned long long kmem_alloc_max = 0;
329 atomic64_t vmem_alloc_used = ATOMIC64_INIT(0);
330 unsigned long long vmem_alloc_max = 0;
331 # else /* HAVE_ATOMIC64_T */
332 atomic_t kmem_alloc_used = ATOMIC_INIT(0);
333 unsigned long long kmem_alloc_max = 0;
334 atomic_t vmem_alloc_used = ATOMIC_INIT(0);
335 unsigned long long vmem_alloc_max = 0;
336 # endif /* HAVE_ATOMIC64_T */
337
338 EXPORT_SYMBOL(kmem_alloc_used);
339 EXPORT_SYMBOL(kmem_alloc_max);
340 EXPORT_SYMBOL(vmem_alloc_used);
341 EXPORT_SYMBOL(vmem_alloc_max);
342
343 /* When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
344 * but also the location of every alloc and free. When the SPL module is
345 * unloaded a list of all leaked addresses and where they were allocated
346 * will be dumped to the console. Enabling this feature has a significant
347 * impact on performance but it makes finding memory leaks straight forward.
348 *
349 * Not surprisingly with debugging enabled the xmem_locks are very highly
350 * contended particularly on xfree(). If we want to run with this detailed
351 * debugging enabled for anything other than debugging we need to minimize
352 * the contention by moving to a lock per xmem_table entry model.
353 */
354 # ifdef DEBUG_KMEM_TRACKING
355
356 # define KMEM_HASH_BITS 10
357 # define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
358
359 # define VMEM_HASH_BITS 10
360 # define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS)
361
362 typedef struct kmem_debug {
363 struct hlist_node kd_hlist; /* Hash node linkage */
364 struct list_head kd_list; /* List of all allocations */
365 void *kd_addr; /* Allocation pointer */
366 size_t kd_size; /* Allocation size */
367 const char *kd_func; /* Allocation function */
368 int kd_line; /* Allocation line */
369 } kmem_debug_t;
370
371 spinlock_t kmem_lock;
372 struct hlist_head kmem_table[KMEM_TABLE_SIZE];
373 struct list_head kmem_list;
374
375 spinlock_t vmem_lock;
376 struct hlist_head vmem_table[VMEM_TABLE_SIZE];
377 struct list_head vmem_list;
378
379 EXPORT_SYMBOL(kmem_lock);
380 EXPORT_SYMBOL(kmem_table);
381 EXPORT_SYMBOL(kmem_list);
382
383 EXPORT_SYMBOL(vmem_lock);
384 EXPORT_SYMBOL(vmem_table);
385 EXPORT_SYMBOL(vmem_list);
386
387 static kmem_debug_t *
388 kmem_del_init(spinlock_t *lock, struct hlist_head *table, int bits, void *addr)
389 {
390 struct hlist_head *head;
391 struct hlist_node *node;
392 struct kmem_debug *p;
393 unsigned long flags;
394 SENTRY;
395
396 spin_lock_irqsave(lock, flags);
397
398 head = &table[hash_ptr(addr, bits)];
399 hlist_for_each_entry_rcu(p, node, head, kd_hlist) {
400 if (p->kd_addr == addr) {
401 hlist_del_init(&p->kd_hlist);
402 list_del_init(&p->kd_list);
403 spin_unlock_irqrestore(lock, flags);
404 return p;
405 }
406 }
407
408 spin_unlock_irqrestore(lock, flags);
409
410 SRETURN(NULL);
411 }
412
413 void *
414 kmem_alloc_track(size_t size, int flags, const char *func, int line,
415 int node_alloc, int node)
416 {
417 void *ptr = NULL;
418 kmem_debug_t *dptr;
419 unsigned long irq_flags;
420 SENTRY;
421
422 /* Function may be called with KM_NOSLEEP so failure is possible */
423 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
424 flags & ~__GFP_ZERO);
425
426 if (unlikely(dptr == NULL)) {
427 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
428 "kmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
429 sizeof(kmem_debug_t), flags, func, line,
430 kmem_alloc_used_read(), kmem_alloc_max);
431 } else {
432 /*
433 * Marked unlikely because we should never be doing this,
434 * we tolerate to up 2 pages but a single page is best.
435 */
436 if (unlikely((size > PAGE_SIZE*2) && !(flags & KM_NODEBUG))) {
437 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "large "
438 "kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
439 (unsigned long long) size, flags, func, line,
440 kmem_alloc_used_read(), kmem_alloc_max);
441 spl_debug_dumpstack(NULL);
442 }
443
444 /*
445 * We use __strdup() below because the string pointed to by
446 * __FUNCTION__ might not be available by the time we want
447 * to print it since the module might have been unloaded.
448 * This can only fail in the KM_NOSLEEP case.
449 */
450 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
451 if (unlikely(dptr->kd_func == NULL)) {
452 kfree(dptr);
453 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
454 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
455 func, line, kmem_alloc_used_read(), kmem_alloc_max);
456 goto out;
457 }
458
459 /* Use the correct allocator */
460 if (node_alloc) {
461 ASSERT(!(flags & __GFP_ZERO));
462 ptr = kmalloc_node_nofail(size, flags, node);
463 } else if (flags & __GFP_ZERO) {
464 ptr = kzalloc_nofail(size, flags & ~__GFP_ZERO);
465 } else {
466 ptr = kmalloc_nofail(size, flags);
467 }
468
469 if (unlikely(ptr == NULL)) {
470 kfree(dptr->kd_func);
471 kfree(dptr);
472 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "kmem_alloc"
473 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
474 (unsigned long long) size, flags, func, line,
475 kmem_alloc_used_read(), kmem_alloc_max);
476 goto out;
477 }
478
479 kmem_alloc_used_add(size);
480 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
481 kmem_alloc_max = kmem_alloc_used_read();
482
483 INIT_HLIST_NODE(&dptr->kd_hlist);
484 INIT_LIST_HEAD(&dptr->kd_list);
485
486 dptr->kd_addr = ptr;
487 dptr->kd_size = size;
488 dptr->kd_line = line;
489
490 spin_lock_irqsave(&kmem_lock, irq_flags);
491 hlist_add_head_rcu(&dptr->kd_hlist,
492 &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
493 list_add_tail(&dptr->kd_list, &kmem_list);
494 spin_unlock_irqrestore(&kmem_lock, irq_flags);
495
496 SDEBUG_LIMIT(SD_INFO,
497 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
498 (unsigned long long) size, flags, func, line, ptr,
499 kmem_alloc_used_read(), kmem_alloc_max);
500 }
501 out:
502 SRETURN(ptr);
503 }
504 EXPORT_SYMBOL(kmem_alloc_track);
505
506 void
507 kmem_free_track(void *ptr, size_t size)
508 {
509 kmem_debug_t *dptr;
510 SENTRY;
511
512 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
513 (unsigned long long) size);
514
515 dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
516
517 /* Must exist in hash due to kmem_alloc() */
518 ASSERT(dptr);
519
520 /* Size must match */
521 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
522 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
523 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
524
525 kmem_alloc_used_sub(size);
526 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
527 (unsigned long long) size, kmem_alloc_used_read(),
528 kmem_alloc_max);
529
530 kfree(dptr->kd_func);
531
532 memset(dptr, 0x5a, sizeof(kmem_debug_t));
533 kfree(dptr);
534
535 memset(ptr, 0x5a, size);
536 kfree(ptr);
537
538 SEXIT;
539 }
540 EXPORT_SYMBOL(kmem_free_track);
541
542 void *
543 vmem_alloc_track(size_t size, int flags, const char *func, int line)
544 {
545 void *ptr = NULL;
546 kmem_debug_t *dptr;
547 unsigned long irq_flags;
548 SENTRY;
549
550 ASSERT(flags & KM_SLEEP);
551
552 /* Function may be called with KM_NOSLEEP so failure is possible */
553 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
554 flags & ~__GFP_ZERO);
555 if (unlikely(dptr == NULL)) {
556 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
557 "vmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
558 sizeof(kmem_debug_t), flags, func, line,
559 vmem_alloc_used_read(), vmem_alloc_max);
560 } else {
561 /*
562 * We use __strdup() below because the string pointed to by
563 * __FUNCTION__ might not be available by the time we want
564 * to print it, since the module might have been unloaded.
565 * This can never fail because we have already asserted
566 * that flags is KM_SLEEP.
567 */
568 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
569 if (unlikely(dptr->kd_func == NULL)) {
570 kfree(dptr);
571 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
572 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
573 func, line, vmem_alloc_used_read(), vmem_alloc_max);
574 goto out;
575 }
576
577 /* Use the correct allocator */
578 if (flags & __GFP_ZERO) {
579 ptr = vzalloc_nofail(size, flags & ~__GFP_ZERO);
580 } else {
581 ptr = vmalloc_nofail(size, flags);
582 }
583
584 if (unlikely(ptr == NULL)) {
585 kfree(dptr->kd_func);
586 kfree(dptr);
587 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "vmem_alloc"
588 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
589 (unsigned long long) size, flags, func, line,
590 vmem_alloc_used_read(), vmem_alloc_max);
591 goto out;
592 }
593
594 vmem_alloc_used_add(size);
595 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
596 vmem_alloc_max = vmem_alloc_used_read();
597
598 INIT_HLIST_NODE(&dptr->kd_hlist);
599 INIT_LIST_HEAD(&dptr->kd_list);
600
601 dptr->kd_addr = ptr;
602 dptr->kd_size = size;
603 dptr->kd_line = line;
604
605 spin_lock_irqsave(&vmem_lock, irq_flags);
606 hlist_add_head_rcu(&dptr->kd_hlist,
607 &vmem_table[hash_ptr(ptr, VMEM_HASH_BITS)]);
608 list_add_tail(&dptr->kd_list, &vmem_list);
609 spin_unlock_irqrestore(&vmem_lock, irq_flags);
610
611 SDEBUG_LIMIT(SD_INFO,
612 "vmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
613 (unsigned long long) size, flags, func, line,
614 ptr, vmem_alloc_used_read(), vmem_alloc_max);
615 }
616 out:
617 SRETURN(ptr);
618 }
619 EXPORT_SYMBOL(vmem_alloc_track);
620
621 void
622 vmem_free_track(void *ptr, size_t size)
623 {
624 kmem_debug_t *dptr;
625 SENTRY;
626
627 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
628 (unsigned long long) size);
629
630 dptr = kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);
631
632 /* Must exist in hash due to vmem_alloc() */
633 ASSERT(dptr);
634
635 /* Size must match */
636 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
637 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
638 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
639
640 vmem_alloc_used_sub(size);
641 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
642 (unsigned long long) size, vmem_alloc_used_read(),
643 vmem_alloc_max);
644
645 kfree(dptr->kd_func);
646
647 memset(dptr, 0x5a, sizeof(kmem_debug_t));
648 kfree(dptr);
649
650 memset(ptr, 0x5a, size);
651 vfree(ptr);
652
653 SEXIT;
654 }
655 EXPORT_SYMBOL(vmem_free_track);
656
657 # else /* DEBUG_KMEM_TRACKING */
658
659 void *
660 kmem_alloc_debug(size_t size, int flags, const char *func, int line,
661 int node_alloc, int node)
662 {
663 void *ptr;
664 SENTRY;
665
666 /*
667 * Marked unlikely because we should never be doing this,
668 * we tolerate to up 2 pages but a single page is best.
669 */
670 if (unlikely((size > PAGE_SIZE * 2) && !(flags & KM_NODEBUG))) {
671 SDEBUG(SD_CONSOLE | SD_WARNING,
672 "large kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
673 (unsigned long long) size, flags, func, line,
674 kmem_alloc_used_read(), kmem_alloc_max);
675 spl_debug_dumpstack(NULL);
676 }
677
678 /* Use the correct allocator */
679 if (node_alloc) {
680 ASSERT(!(flags & __GFP_ZERO));
681 ptr = kmalloc_node_nofail(size, flags, node);
682 } else if (flags & __GFP_ZERO) {
683 ptr = kzalloc_nofail(size, flags & (~__GFP_ZERO));
684 } else {
685 ptr = kmalloc_nofail(size, flags);
686 }
687
688 if (unlikely(ptr == NULL)) {
689 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
690 "kmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
691 (unsigned long long) size, flags, func, line,
692 kmem_alloc_used_read(), kmem_alloc_max);
693 } else {
694 kmem_alloc_used_add(size);
695 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
696 kmem_alloc_max = kmem_alloc_used_read();
697
698 SDEBUG_LIMIT(SD_INFO,
699 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
700 (unsigned long long) size, flags, func, line, ptr,
701 kmem_alloc_used_read(), kmem_alloc_max);
702 }
703
704 SRETURN(ptr);
705 }
706 EXPORT_SYMBOL(kmem_alloc_debug);
707
708 void
709 kmem_free_debug(void *ptr, size_t size)
710 {
711 SENTRY;
712
713 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
714 (unsigned long long) size);
715
716 kmem_alloc_used_sub(size);
717 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
718 (unsigned long long) size, kmem_alloc_used_read(),
719 kmem_alloc_max);
720 kfree(ptr);
721
722 SEXIT;
723 }
724 EXPORT_SYMBOL(kmem_free_debug);
725
726 void *
727 vmem_alloc_debug(size_t size, int flags, const char *func, int line)
728 {
729 void *ptr;
730 SENTRY;
731
732 ASSERT(flags & KM_SLEEP);
733
734 /* Use the correct allocator */
735 if (flags & __GFP_ZERO) {
736 ptr = vzalloc_nofail(size, flags & (~__GFP_ZERO));
737 } else {
738 ptr = vmalloc_nofail(size, flags);
739 }
740
741 if (unlikely(ptr == NULL)) {
742 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
743 "vmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
744 (unsigned long long) size, flags, func, line,
745 vmem_alloc_used_read(), vmem_alloc_max);
746 } else {
747 vmem_alloc_used_add(size);
748 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
749 vmem_alloc_max = vmem_alloc_used_read();
750
751 SDEBUG_LIMIT(SD_INFO, "vmem_alloc(%llu, 0x%x) = %p "
752 "(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
753 vmem_alloc_used_read(), vmem_alloc_max);
754 }
755
756 SRETURN(ptr);
757 }
758 EXPORT_SYMBOL(vmem_alloc_debug);
759
760 void
761 vmem_free_debug(void *ptr, size_t size)
762 {
763 SENTRY;
764
765 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
766 (unsigned long long) size);
767
768 vmem_alloc_used_sub(size);
769 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
770 (unsigned long long) size, vmem_alloc_used_read(),
771 vmem_alloc_max);
772 vfree(ptr);
773
774 SEXIT;
775 }
776 EXPORT_SYMBOL(vmem_free_debug);
777
778 # endif /* DEBUG_KMEM_TRACKING */
779 #endif /* DEBUG_KMEM */
780
781 /*
782 * Slab allocation interfaces
783 *
784 * While the Linux slab implementation was inspired by the Solaris
785 * implementation I cannot use it to emulate the Solaris APIs. I
786 * require two features which are not provided by the Linux slab.
787 *
788 * 1) Constructors AND destructors. Recent versions of the Linux
789 * kernel have removed support for destructors. This is a deal
790 * breaker for the SPL which contains particularly expensive
791 * initializers for mutex's, condition variables, etc. We also
792 * require a minimal level of cleanup for these data types unlike
793 * many Linux data type which do need to be explicitly destroyed.
794 *
795 * 2) Virtual address space backed slab. Callers of the Solaris slab
796 * expect it to work well for both small are very large allocations.
797 * Because of memory fragmentation the Linux slab which is backed
798 * by kmalloc'ed memory performs very badly when confronted with
799 * large numbers of large allocations. Basing the slab on the
800 * virtual address space removes the need for contiguous pages
801 * and greatly improve performance for large allocations.
802 *
803 * For these reasons, the SPL has its own slab implementation with
804 * the needed features. It is not as highly optimized as either the
805 * Solaris or Linux slabs, but it should get me most of what is
806 * needed until it can be optimized or obsoleted by another approach.
807 *
808 * One serious concern I do have about this method is the relatively
809 * small virtual address space on 32bit arches. This will seriously
810 * constrain the size of the slab caches and their performance.
811 *
812 * XXX: Improve the partial slab list by carefully maintaining a
813 * strict ordering of fullest to emptiest slabs based on
814 * the slab reference count. This guarantees the when freeing
815 * slabs back to the system we need only linearly traverse the
816 * last N slabs in the list to discover all the freeable slabs.
817 *
818 * XXX: NUMA awareness for optionally allocating memory close to a
819 * particular core. This can be advantageous if you know the slab
820 * object will be short lived and primarily accessed from one core.
821 *
822 * XXX: Slab coloring may also yield performance improvements and would
823 * be desirable to implement.
824 */
825
826 struct list_head spl_kmem_cache_list; /* List of caches */
827 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
828
829 static int spl_cache_flush(spl_kmem_cache_t *skc,
830 spl_kmem_magazine_t *skm, int flush);
831
832 SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
833 SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
834 spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
835
836 static void *
837 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
838 {
839 void *ptr;
840
841 ASSERT(ISP2(size));
842
843 if (skc->skc_flags & KMC_KMEM) {
844 ptr = (void *)__get_free_pages(flags, get_order(size));
845 } else {
846 /*
847 * As part of vmalloc() an __pte_alloc_kernel() allocation
848 * may occur. This internal allocation does not honor the
849 * gfp flags passed to vmalloc(). This means even when
850 * vmalloc(GFP_NOFS) is called it is possible synchronous
851 * reclaim will occur. This reclaim can trigger file IO
852 * which can result in a deadlock. This issue can be avoided
853 * by explicitly setting PF_MEMALLOC on the process to
854 * subvert synchronous reclaim. The following bug has
855 * been filed at kernel.org to track the issue.
856 *
857 * https://bugzilla.kernel.org/show_bug.cgi?id=30702
858 *
859 * NOTE: Only set PF_MEMALLOC if it's not already set, and
860 * then only clear it when we were the one who set it.
861 */
862 if (!(flags & __GFP_FS) && !(current->flags & PF_MEMALLOC)) {
863 current->flags |= PF_MEMALLOC;
864 ptr = __vmalloc(size, flags|__GFP_HIGHMEM, PAGE_KERNEL);
865 current->flags &= ~PF_MEMALLOC;
866 } else {
867 ptr = __vmalloc(size, flags|__GFP_HIGHMEM, PAGE_KERNEL);
868 }
869 }
870
871 /* Resulting allocated memory will be page aligned */
872 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
873
874 return ptr;
875 }
876
877 static void
878 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
879 {
880 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
881 ASSERT(ISP2(size));
882
883 if (skc->skc_flags & KMC_KMEM)
884 free_pages((unsigned long)ptr, get_order(size));
885 else
886 vfree(ptr);
887 }
888
889 /*
890 * Required space for each aligned sks.
891 */
892 static inline uint32_t
893 spl_sks_size(spl_kmem_cache_t *skc)
894 {
895 return P2ROUNDUP_TYPED(sizeof(spl_kmem_slab_t),
896 skc->skc_obj_align, uint32_t);
897 }
898
899 /*
900 * Required space for each aligned object.
901 */
902 static inline uint32_t
903 spl_obj_size(spl_kmem_cache_t *skc)
904 {
905 uint32_t align = skc->skc_obj_align;
906
907 return P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
908 P2ROUNDUP_TYPED(sizeof(spl_kmem_obj_t), align, uint32_t);
909 }
910
911 /*
912 * Lookup the spl_kmem_object_t for an object given that object.
913 */
914 static inline spl_kmem_obj_t *
915 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
916 {
917 return obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
918 skc->skc_obj_align, uint32_t);
919 }
920
921 /*
922 * Required space for each offslab object taking in to account alignment
923 * restrictions and the power-of-two requirement of kv_alloc().
924 */
925 static inline uint32_t
926 spl_offslab_size(spl_kmem_cache_t *skc)
927 {
928 return 1UL << (highbit(spl_obj_size(skc)) + 1);
929 }
930
931 /*
932 * It's important that we pack the spl_kmem_obj_t structure and the
933 * actual objects in to one large address space to minimize the number
934 * of calls to the allocator. It is far better to do a few large
935 * allocations and then subdivide it ourselves. Now which allocator
936 * we use requires balancing a few trade offs.
937 *
938 * For small objects we use kmem_alloc() because as long as you are
939 * only requesting a small number of pages (ideally just one) its cheap.
940 * However, when you start requesting multiple pages with kmem_alloc()
941 * it gets increasingly expensive since it requires contiguous pages.
942 * For this reason we shift to vmem_alloc() for slabs of large objects
943 * which removes the need for contiguous pages. We do not use
944 * vmem_alloc() in all cases because there is significant locking
945 * overhead in __get_vm_area_node(). This function takes a single
946 * global lock when acquiring an available virtual address range which
947 * serializes all vmem_alloc()'s for all slab caches. Using slightly
948 * different allocation functions for small and large objects should
949 * give us the best of both worlds.
950 *
951 * KMC_ONSLAB KMC_OFFSLAB
952 *
953 * +------------------------+ +-----------------+
954 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
955 * | skc_obj_size <-+ | | +-----------------+ | |
956 * | spl_kmem_obj_t | | | |
957 * | skc_obj_size <---+ | +-----------------+ | |
958 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
959 * | ... v | | spl_kmem_obj_t | |
960 * +------------------------+ +-----------------+ v
961 */
962 static spl_kmem_slab_t *
963 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
964 {
965 spl_kmem_slab_t *sks;
966 spl_kmem_obj_t *sko, *n;
967 void *base, *obj;
968 uint32_t obj_size, offslab_size = 0;
969 int i, rc = 0;
970
971 base = kv_alloc(skc, skc->skc_slab_size, flags);
972 if (base == NULL)
973 SRETURN(NULL);
974
975 sks = (spl_kmem_slab_t *)base;
976 sks->sks_magic = SKS_MAGIC;
977 sks->sks_objs = skc->skc_slab_objs;
978 sks->sks_age = jiffies;
979 sks->sks_cache = skc;
980 INIT_LIST_HEAD(&sks->sks_list);
981 INIT_LIST_HEAD(&sks->sks_free_list);
982 sks->sks_ref = 0;
983 obj_size = spl_obj_size(skc);
984
985 if (skc->skc_flags & KMC_OFFSLAB)
986 offslab_size = spl_offslab_size(skc);
987
988 for (i = 0; i < sks->sks_objs; i++) {
989 if (skc->skc_flags & KMC_OFFSLAB) {
990 obj = kv_alloc(skc, offslab_size, flags);
991 if (!obj)
992 SGOTO(out, rc = -ENOMEM);
993 } else {
994 obj = base + spl_sks_size(skc) + (i * obj_size);
995 }
996
997 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
998 sko = spl_sko_from_obj(skc, obj);
999 sko->sko_addr = obj;
1000 sko->sko_magic = SKO_MAGIC;
1001 sko->sko_slab = sks;
1002 INIT_LIST_HEAD(&sko->sko_list);
1003 list_add_tail(&sko->sko_list, &sks->sks_free_list);
1004 }
1005
1006 list_for_each_entry(sko, &sks->sks_free_list, sko_list)
1007 if (skc->skc_ctor)
1008 skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
1009 out:
1010 if (rc) {
1011 if (skc->skc_flags & KMC_OFFSLAB)
1012 list_for_each_entry_safe(sko, n, &sks->sks_free_list,
1013 sko_list)
1014 kv_free(skc, sko->sko_addr, offslab_size);
1015
1016 kv_free(skc, base, skc->skc_slab_size);
1017 sks = NULL;
1018 }
1019
1020 SRETURN(sks);
1021 }
1022
1023 /*
1024 * Remove a slab from complete or partial list, it must be called with
1025 * the 'skc->skc_lock' held but the actual free must be performed
1026 * outside the lock to prevent deadlocking on vmem addresses.
1027 */
1028 static void
1029 spl_slab_free(spl_kmem_slab_t *sks,
1030 struct list_head *sks_list, struct list_head *sko_list)
1031 {
1032 spl_kmem_cache_t *skc;
1033 SENTRY;
1034
1035 ASSERT(sks->sks_magic == SKS_MAGIC);
1036 ASSERT(sks->sks_ref == 0);
1037
1038 skc = sks->sks_cache;
1039 ASSERT(skc->skc_magic == SKC_MAGIC);
1040 ASSERT(spin_is_locked(&skc->skc_lock));
1041
1042 /*
1043 * Update slab/objects counters in the cache, then remove the
1044 * slab from the skc->skc_partial_list. Finally add the slab
1045 * and all its objects in to the private work lists where the
1046 * destructors will be called and the memory freed to the system.
1047 */
1048 skc->skc_obj_total -= sks->sks_objs;
1049 skc->skc_slab_total--;
1050 list_del(&sks->sks_list);
1051 list_add(&sks->sks_list, sks_list);
1052 list_splice_init(&sks->sks_free_list, sko_list);
1053
1054 SEXIT;
1055 }
1056
1057 /*
1058 * Traverses all the partial slabs attached to a cache and free those
1059 * which which are currently empty, and have not been touched for
1060 * skc_delay seconds to avoid thrashing. The count argument is
1061 * passed to optionally cap the number of slabs reclaimed, a count
1062 * of zero means try and reclaim everything. When flag is set we
1063 * always free an available slab regardless of age.
1064 */
1065 static void
1066 spl_slab_reclaim(spl_kmem_cache_t *skc, int count, int flag)
1067 {
1068 spl_kmem_slab_t *sks, *m;
1069 spl_kmem_obj_t *sko, *n;
1070 LIST_HEAD(sks_list);
1071 LIST_HEAD(sko_list);
1072 uint32_t size = 0;
1073 int i = 0;
1074 SENTRY;
1075
1076 /*
1077 * Move empty slabs and objects which have not been touched in
1078 * skc_delay seconds on to private lists to be freed outside
1079 * the spin lock. This delay time is important to avoid thrashing
1080 * however when flag is set the delay will not be used.
1081 */
1082 spin_lock(&skc->skc_lock);
1083 list_for_each_entry_safe_reverse(sks,m,&skc->skc_partial_list,sks_list){
1084 /*
1085 * All empty slabs are at the end of skc->skc_partial_list,
1086 * therefore once a non-empty slab is found we can stop
1087 * scanning. Additionally, stop when reaching the target
1088 * reclaim 'count' if a non-zero threshold is given.
1089 */
1090 if ((sks->sks_ref > 0) || (count && i > count))
1091 break;
1092
1093 if (time_after(jiffies,sks->sks_age+skc->skc_delay*HZ)||flag) {
1094 spl_slab_free(sks, &sks_list, &sko_list);
1095 i++;
1096 }
1097 }
1098 spin_unlock(&skc->skc_lock);
1099
1100 /*
1101 * The following two loops ensure all the object destructors are
1102 * run, any offslab objects are freed, and the slabs themselves
1103 * are freed. This is all done outside the skc->skc_lock since
1104 * this allows the destructor to sleep, and allows us to perform
1105 * a conditional reschedule when a freeing a large number of
1106 * objects and slabs back to the system.
1107 */
1108 if (skc->skc_flags & KMC_OFFSLAB)
1109 size = spl_offslab_size(skc);
1110
1111 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
1112 ASSERT(sko->sko_magic == SKO_MAGIC);
1113
1114 if (skc->skc_dtor)
1115 skc->skc_dtor(sko->sko_addr, skc->skc_private);
1116
1117 if (skc->skc_flags & KMC_OFFSLAB)
1118 kv_free(skc, sko->sko_addr, size);
1119
1120 cond_resched();
1121 }
1122
1123 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
1124 ASSERT(sks->sks_magic == SKS_MAGIC);
1125 kv_free(skc, sks, skc->skc_slab_size);
1126 cond_resched();
1127 }
1128
1129 SEXIT;
1130 }
1131
1132 /*
1133 * Called regularly on all caches to age objects out of the magazines
1134 * which have not been access in skc->skc_delay seconds. This prevents
1135 * idle magazines from holding memory which might be better used by
1136 * other caches or parts of the system. The delay is present to
1137 * prevent thrashing the magazine.
1138 */
1139 static void
1140 spl_magazine_age(void *data)
1141 {
1142 spl_kmem_magazine_t *skm =
1143 spl_get_work_data(data, spl_kmem_magazine_t, skm_work.work);
1144 spl_kmem_cache_t *skc = skm->skm_cache;
1145 int i = smp_processor_id();
1146
1147 ASSERT(skm->skm_magic == SKM_MAGIC);
1148 ASSERT(skc->skc_magic == SKC_MAGIC);
1149 ASSERT(skc->skc_mag[i] == skm);
1150
1151 if (skm->skm_avail > 0 &&
1152 time_after(jiffies, skm->skm_age + skc->skc_delay * HZ))
1153 (void)spl_cache_flush(skc, skm, skm->skm_refill);
1154
1155 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
1156 schedule_delayed_work_on(i, &skm->skm_work,
1157 skc->skc_delay / 3 * HZ);
1158 }
1159
1160 /*
1161 * Called regularly to keep a downward pressure on the size of idle
1162 * magazines and to release free slabs from the cache. This function
1163 * never calls the registered reclaim function, that only occurs
1164 * under memory pressure or with a direct call to spl_kmem_reap().
1165 */
1166 static void
1167 spl_cache_age(void *data)
1168 {
1169 spl_kmem_cache_t *skc =
1170 spl_get_work_data(data, spl_kmem_cache_t, skc_work.work);
1171
1172 ASSERT(skc->skc_magic == SKC_MAGIC);
1173 spl_slab_reclaim(skc, skc->skc_reap, 0);
1174
1175 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
1176 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
1177 }
1178
1179 /*
1180 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
1181 * When on-slab we want to target SPL_KMEM_CACHE_OBJ_PER_SLAB. However,
1182 * for very small objects we may end up with more than this so as not
1183 * to waste space in the minimal allocation of a single page. Also for
1184 * very large objects we may use as few as SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN,
1185 * lower than this and we will fail.
1186 */
1187 static int
1188 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
1189 {
1190 uint32_t sks_size, obj_size, max_size;
1191
1192 if (skc->skc_flags & KMC_OFFSLAB) {
1193 *objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;
1194 *size = sizeof(spl_kmem_slab_t);
1195 } else {
1196 sks_size = spl_sks_size(skc);
1197 obj_size = spl_obj_size(skc);
1198
1199 if (skc->skc_flags & KMC_KMEM)
1200 max_size = ((uint32_t)1 << (MAX_ORDER-3)) * PAGE_SIZE;
1201 else
1202 max_size = (32 * 1024 * 1024);
1203
1204 /* Power of two sized slab */
1205 for (*size = PAGE_SIZE; *size <= max_size; *size *= 2) {
1206 *objs = (*size - sks_size) / obj_size;
1207 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB)
1208 SRETURN(0);
1209 }
1210
1211 /*
1212 * Unable to satisfy target objects per slab, fall back to
1213 * allocating a maximally sized slab and assuming it can
1214 * contain the minimum objects count use it. If not fail.
1215 */
1216 *size = max_size;
1217 *objs = (*size - sks_size) / obj_size;
1218 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN)
1219 SRETURN(0);
1220 }
1221
1222 SRETURN(-ENOSPC);
1223 }
1224
1225 /*
1226 * Make a guess at reasonable per-cpu magazine size based on the size of
1227 * each object and the cost of caching N of them in each magazine. Long
1228 * term this should really adapt based on an observed usage heuristic.
1229 */
1230 static int
1231 spl_magazine_size(spl_kmem_cache_t *skc)
1232 {
1233 uint32_t obj_size = spl_obj_size(skc);
1234 int size;
1235 SENTRY;
1236
1237 /* Per-magazine sizes below assume a 4Kib page size */
1238 if (obj_size > (PAGE_SIZE * 256))
1239 size = 4; /* Minimum 4Mib per-magazine */
1240 else if (obj_size > (PAGE_SIZE * 32))
1241 size = 16; /* Minimum 2Mib per-magazine */
1242 else if (obj_size > (PAGE_SIZE))
1243 size = 64; /* Minimum 256Kib per-magazine */
1244 else if (obj_size > (PAGE_SIZE / 4))
1245 size = 128; /* Minimum 128Kib per-magazine */
1246 else
1247 size = 256;
1248
1249 SRETURN(size);
1250 }
1251
1252 /*
1253 * Allocate a per-cpu magazine to associate with a specific core.
1254 */
1255 static spl_kmem_magazine_t *
1256 spl_magazine_alloc(spl_kmem_cache_t *skc, int node)
1257 {
1258 spl_kmem_magazine_t *skm;
1259 int size = sizeof(spl_kmem_magazine_t) +
1260 sizeof(void *) * skc->skc_mag_size;
1261 SENTRY;
1262
1263 skm = kmem_alloc_node(size, KM_SLEEP, node);
1264 if (skm) {
1265 skm->skm_magic = SKM_MAGIC;
1266 skm->skm_avail = 0;
1267 skm->skm_size = skc->skc_mag_size;
1268 skm->skm_refill = skc->skc_mag_refill;
1269 skm->skm_cache = skc;
1270 spl_init_delayed_work(&skm->skm_work, spl_magazine_age, skm);
1271 skm->skm_age = jiffies;
1272 }
1273
1274 SRETURN(skm);
1275 }
1276
1277 /*
1278 * Free a per-cpu magazine associated with a specific core.
1279 */
1280 static void
1281 spl_magazine_free(spl_kmem_magazine_t *skm)
1282 {
1283 int size = sizeof(spl_kmem_magazine_t) +
1284 sizeof(void *) * skm->skm_size;
1285
1286 SENTRY;
1287 ASSERT(skm->skm_magic == SKM_MAGIC);
1288 ASSERT(skm->skm_avail == 0);
1289
1290 kmem_free(skm, size);
1291 SEXIT;
1292 }
1293
1294 /*
1295 * Create all pre-cpu magazines of reasonable sizes.
1296 */
1297 static int
1298 spl_magazine_create(spl_kmem_cache_t *skc)
1299 {
1300 int i;
1301 SENTRY;
1302
1303 skc->skc_mag_size = spl_magazine_size(skc);
1304 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
1305
1306 for_each_online_cpu(i) {
1307 skc->skc_mag[i] = spl_magazine_alloc(skc, cpu_to_node(i));
1308 if (!skc->skc_mag[i]) {
1309 for (i--; i >= 0; i--)
1310 spl_magazine_free(skc->skc_mag[i]);
1311
1312 SRETURN(-ENOMEM);
1313 }
1314 }
1315
1316 /* Only after everything is allocated schedule magazine work */
1317 for_each_online_cpu(i)
1318 schedule_delayed_work_on(i, &skc->skc_mag[i]->skm_work,
1319 skc->skc_delay / 3 * HZ);
1320
1321 SRETURN(0);
1322 }
1323
1324 /*
1325 * Destroy all pre-cpu magazines.
1326 */
1327 static void
1328 spl_magazine_destroy(spl_kmem_cache_t *skc)
1329 {
1330 spl_kmem_magazine_t *skm;
1331 int i;
1332 SENTRY;
1333
1334 for_each_online_cpu(i) {
1335 skm = skc->skc_mag[i];
1336 (void)spl_cache_flush(skc, skm, skm->skm_avail);
1337 spl_magazine_free(skm);
1338 }
1339
1340 SEXIT;
1341 }
1342
1343 /*
1344 * Create a object cache based on the following arguments:
1345 * name cache name
1346 * size cache object size
1347 * align cache object alignment
1348 * ctor cache object constructor
1349 * dtor cache object destructor
1350 * reclaim cache object reclaim
1351 * priv cache private data for ctor/dtor/reclaim
1352 * vmp unused must be NULL
1353 * flags
1354 * KMC_NOTOUCH Disable cache object aging (unsupported)
1355 * KMC_NODEBUG Disable debugging (unsupported)
1356 * KMC_NOMAGAZINE Disable magazine (unsupported)
1357 * KMC_NOHASH Disable hashing (unsupported)
1358 * KMC_QCACHE Disable qcache (unsupported)
1359 * KMC_KMEM Force kmem backed cache
1360 * KMC_VMEM Force vmem backed cache
1361 * KMC_OFFSLAB Locate objects off the slab
1362 */
1363 spl_kmem_cache_t *
1364 spl_kmem_cache_create(char *name, size_t size, size_t align,
1365 spl_kmem_ctor_t ctor,
1366 spl_kmem_dtor_t dtor,
1367 spl_kmem_reclaim_t reclaim,
1368 void *priv, void *vmp, int flags)
1369 {
1370 spl_kmem_cache_t *skc;
1371 int rc, kmem_flags = KM_SLEEP;
1372 SENTRY;
1373
1374 ASSERTF(!(flags & KMC_NOMAGAZINE), "Bad KMC_NOMAGAZINE (%x)\n", flags);
1375 ASSERTF(!(flags & KMC_NOHASH), "Bad KMC_NOHASH (%x)\n", flags);
1376 ASSERTF(!(flags & KMC_QCACHE), "Bad KMC_QCACHE (%x)\n", flags);
1377 ASSERT(vmp == NULL);
1378
1379 /* We may be called when there is a non-zero preempt_count or
1380 * interrupts are disabled is which case we must not sleep.
1381 */
1382 if (current_thread_info()->preempt_count || irqs_disabled())
1383 kmem_flags = KM_NOSLEEP;
1384
1385 /* Allocate memory for a new cache an initialize it. Unfortunately,
1386 * this usually ends up being a large allocation of ~32k because
1387 * we need to allocate enough memory for the worst case number of
1388 * cpus in the magazine, skc_mag[NR_CPUS]. Because of this we
1389 * explicitly pass KM_NODEBUG to suppress the kmem warning */
1390 skc = (spl_kmem_cache_t *)kmem_zalloc(sizeof(*skc),
1391 kmem_flags | KM_NODEBUG);
1392 if (skc == NULL)
1393 SRETURN(NULL);
1394
1395 skc->skc_magic = SKC_MAGIC;
1396 skc->skc_name_size = strlen(name) + 1;
1397 skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, kmem_flags);
1398 if (skc->skc_name == NULL) {
1399 kmem_free(skc, sizeof(*skc));
1400 SRETURN(NULL);
1401 }
1402 strncpy(skc->skc_name, name, skc->skc_name_size);
1403
1404 skc->skc_ctor = ctor;
1405 skc->skc_dtor = dtor;
1406 skc->skc_reclaim = reclaim;
1407 skc->skc_private = priv;
1408 skc->skc_vmp = vmp;
1409 skc->skc_flags = flags;
1410 skc->skc_obj_size = size;
1411 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
1412 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
1413 skc->skc_reap = SPL_KMEM_CACHE_REAP;
1414 atomic_set(&skc->skc_ref, 0);
1415
1416 INIT_LIST_HEAD(&skc->skc_list);
1417 INIT_LIST_HEAD(&skc->skc_complete_list);
1418 INIT_LIST_HEAD(&skc->skc_partial_list);
1419 spin_lock_init(&skc->skc_lock);
1420 skc->skc_slab_fail = 0;
1421 skc->skc_slab_create = 0;
1422 skc->skc_slab_destroy = 0;
1423 skc->skc_slab_total = 0;
1424 skc->skc_slab_alloc = 0;
1425 skc->skc_slab_max = 0;
1426 skc->skc_obj_total = 0;
1427 skc->skc_obj_alloc = 0;
1428 skc->skc_obj_max = 0;
1429
1430 if (align) {
1431 VERIFY(ISP2(align));
1432 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); /* Min alignment */
1433 VERIFY3U(align, <=, PAGE_SIZE); /* Max alignment */
1434 skc->skc_obj_align = align;
1435 }
1436
1437 /* If none passed select a cache type based on object size */
1438 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM))) {
1439 if (spl_obj_size(skc) < (PAGE_SIZE / 8))
1440 skc->skc_flags |= KMC_KMEM;
1441 else
1442 skc->skc_flags |= KMC_VMEM;
1443 }
1444
1445 rc = spl_slab_size(skc, &skc->skc_slab_objs, &skc->skc_slab_size);
1446 if (rc)
1447 SGOTO(out, rc);
1448
1449 rc = spl_magazine_create(skc);
1450 if (rc)
1451 SGOTO(out, rc);
1452
1453 spl_init_delayed_work(&skc->skc_work, spl_cache_age, skc);
1454 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
1455
1456 down_write(&spl_kmem_cache_sem);
1457 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
1458 up_write(&spl_kmem_cache_sem);
1459
1460 SRETURN(skc);
1461 out:
1462 kmem_free(skc->skc_name, skc->skc_name_size);
1463 kmem_free(skc, sizeof(*skc));
1464 SRETURN(NULL);
1465 }
1466 EXPORT_SYMBOL(spl_kmem_cache_create);
1467
1468 /*
1469 * Register a move callback to for cache defragmentation.
1470 * XXX: Unimplemented but harmless to stub out for now.
1471 */
1472 void
1473 spl_kmem_cache_set_move(kmem_cache_t *skc,
1474 kmem_cbrc_t (move)(void *, void *, size_t, void *))
1475 {
1476 ASSERT(move != NULL);
1477 }
1478 EXPORT_SYMBOL(spl_kmem_cache_set_move);
1479
1480 /*
1481 * Destroy a cache and all objects associated with the cache.
1482 */
1483 void
1484 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
1485 {
1486 DECLARE_WAIT_QUEUE_HEAD(wq);
1487 int i;
1488 SENTRY;
1489
1490 ASSERT(skc->skc_magic == SKC_MAGIC);
1491
1492 down_write(&spl_kmem_cache_sem);
1493 list_del_init(&skc->skc_list);
1494 up_write(&spl_kmem_cache_sem);
1495
1496 /* Cancel any and wait for any pending delayed work */
1497 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1498 cancel_delayed_work_sync(&skc->skc_work);
1499 for_each_online_cpu(i)
1500 cancel_delayed_work_sync(&skc->skc_mag[i]->skm_work);
1501
1502 flush_scheduled_work();
1503
1504 /* Wait until all current callers complete, this is mainly
1505 * to catch the case where a low memory situation triggers a
1506 * cache reaping action which races with this destroy. */
1507 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1508
1509 spl_magazine_destroy(skc);
1510 spl_slab_reclaim(skc, 0, 1);
1511 spin_lock(&skc->skc_lock);
1512
1513 /* Validate there are no objects in use and free all the
1514 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */
1515 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1516 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1517 ASSERT3U(skc->skc_slab_total, ==, 0);
1518 ASSERT3U(skc->skc_obj_total, ==, 0);
1519 ASSERT(list_empty(&skc->skc_complete_list));
1520
1521 kmem_free(skc->skc_name, skc->skc_name_size);
1522 spin_unlock(&skc->skc_lock);
1523
1524 kmem_free(skc, sizeof(*skc));
1525
1526 SEXIT;
1527 }
1528 EXPORT_SYMBOL(spl_kmem_cache_destroy);
1529
1530 /*
1531 * Allocate an object from a slab attached to the cache. This is used to
1532 * repopulate the per-cpu magazine caches in batches when they run low.
1533 */
1534 static void *
1535 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
1536 {
1537 spl_kmem_obj_t *sko;
1538
1539 ASSERT(skc->skc_magic == SKC_MAGIC);
1540 ASSERT(sks->sks_magic == SKS_MAGIC);
1541 ASSERT(spin_is_locked(&skc->skc_lock));
1542
1543 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
1544 ASSERT(sko->sko_magic == SKO_MAGIC);
1545 ASSERT(sko->sko_addr != NULL);
1546
1547 /* Remove from sks_free_list */
1548 list_del_init(&sko->sko_list);
1549
1550 sks->sks_age = jiffies;
1551 sks->sks_ref++;
1552 skc->skc_obj_alloc++;
1553
1554 /* Track max obj usage statistics */
1555 if (skc->skc_obj_alloc > skc->skc_obj_max)
1556 skc->skc_obj_max = skc->skc_obj_alloc;
1557
1558 /* Track max slab usage statistics */
1559 if (sks->sks_ref == 1) {
1560 skc->skc_slab_alloc++;
1561
1562 if (skc->skc_slab_alloc > skc->skc_slab_max)
1563 skc->skc_slab_max = skc->skc_slab_alloc;
1564 }
1565
1566 return sko->sko_addr;
1567 }
1568
1569 /*
1570 * No available objects on any slabs, create a new slab. Since this
1571 * is an expensive operation we do it without holding the spin lock and
1572 * only briefly acquire it when we link in the fully allocated and
1573 * constructed slab.
1574 */
1575 static spl_kmem_slab_t *
1576 spl_cache_grow(spl_kmem_cache_t *skc, int flags)
1577 {
1578 spl_kmem_slab_t *sks;
1579 SENTRY;
1580
1581 ASSERT(skc->skc_magic == SKC_MAGIC);
1582 local_irq_enable();
1583 might_sleep();
1584
1585 /*
1586 * Before allocating a new slab check if the slab is being reaped.
1587 * If it is there is a good chance we can wait until it finishes
1588 * and then use one of the newly freed but not aged-out slabs.
1589 */
1590 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1591 schedule();
1592 SGOTO(out, sks= NULL);
1593 }
1594
1595 /* Allocate a new slab for the cache */
1596 sks = spl_slab_alloc(skc, flags | __GFP_NORETRY | KM_NODEBUG);
1597 if (sks == NULL)
1598 SGOTO(out, sks = NULL);
1599
1600 /* Link the new empty slab in to the end of skc_partial_list. */
1601 spin_lock(&skc->skc_lock);
1602 skc->skc_slab_total++;
1603 skc->skc_obj_total += sks->sks_objs;
1604 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1605 spin_unlock(&skc->skc_lock);
1606 out:
1607 local_irq_disable();
1608
1609 SRETURN(sks);
1610 }
1611
1612 /*
1613 * Refill a per-cpu magazine with objects from the slabs for this
1614 * cache. Ideally the magazine can be repopulated using existing
1615 * objects which have been released, however if we are unable to
1616 * locate enough free objects new slabs of objects will be created.
1617 */
1618 static int
1619 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1620 {
1621 spl_kmem_slab_t *sks;
1622 int rc = 0, refill;
1623 SENTRY;
1624
1625 ASSERT(skc->skc_magic == SKC_MAGIC);
1626 ASSERT(skm->skm_magic == SKM_MAGIC);
1627
1628 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1629 spin_lock(&skc->skc_lock);
1630
1631 while (refill > 0) {
1632 /* No slabs available we may need to grow the cache */
1633 if (list_empty(&skc->skc_partial_list)) {
1634 spin_unlock(&skc->skc_lock);
1635
1636 sks = spl_cache_grow(skc, flags);
1637 if (!sks)
1638 SGOTO(out, rc);
1639
1640 /* Rescheduled to different CPU skm is not local */
1641 if (skm != skc->skc_mag[smp_processor_id()])
1642 SGOTO(out, rc);
1643
1644 /* Potentially rescheduled to the same CPU but
1645 * allocations may have occurred from this CPU while
1646 * we were sleeping so recalculate max refill. */
1647 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1648
1649 spin_lock(&skc->skc_lock);
1650 continue;
1651 }
1652
1653 /* Grab the next available slab */
1654 sks = list_entry((&skc->skc_partial_list)->next,
1655 spl_kmem_slab_t, sks_list);
1656 ASSERT(sks->sks_magic == SKS_MAGIC);
1657 ASSERT(sks->sks_ref < sks->sks_objs);
1658 ASSERT(!list_empty(&sks->sks_free_list));
1659
1660 /* Consume as many objects as needed to refill the requested
1661 * cache. We must also be careful not to overfill it. */
1662 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++rc) {
1663 ASSERT(skm->skm_avail < skm->skm_size);
1664 ASSERT(rc < skm->skm_size);
1665 skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks);
1666 }
1667
1668 /* Move slab to skc_complete_list when full */
1669 if (sks->sks_ref == sks->sks_objs) {
1670 list_del(&sks->sks_list);
1671 list_add(&sks->sks_list, &skc->skc_complete_list);
1672 }
1673 }
1674
1675 spin_unlock(&skc->skc_lock);
1676 out:
1677 /* Returns the number of entries added to cache */
1678 SRETURN(rc);
1679 }
1680
1681 /*
1682 * Release an object back to the slab from which it came.
1683 */
1684 static void
1685 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1686 {
1687 spl_kmem_slab_t *sks = NULL;
1688 spl_kmem_obj_t *sko = NULL;
1689 SENTRY;
1690
1691 ASSERT(skc->skc_magic == SKC_MAGIC);
1692 ASSERT(spin_is_locked(&skc->skc_lock));
1693
1694 sko = spl_sko_from_obj(skc, obj);
1695 ASSERT(sko->sko_magic == SKO_MAGIC);
1696 sks = sko->sko_slab;
1697 ASSERT(sks->sks_magic == SKS_MAGIC);
1698 ASSERT(sks->sks_cache == skc);
1699 list_add(&sko->sko_list, &sks->sks_free_list);
1700
1701 sks->sks_age = jiffies;
1702 sks->sks_ref--;
1703 skc->skc_obj_alloc--;
1704
1705 /* Move slab to skc_partial_list when no longer full. Slabs
1706 * are added to the head to keep the partial list is quasi-full
1707 * sorted order. Fuller at the head, emptier at the tail. */
1708 if (sks->sks_ref == (sks->sks_objs - 1)) {
1709 list_del(&sks->sks_list);
1710 list_add(&sks->sks_list, &skc->skc_partial_list);
1711 }
1712
1713 /* Move empty slabs to the end of the partial list so
1714 * they can be easily found and freed during reclamation. */
1715 if (sks->sks_ref == 0) {
1716 list_del(&sks->sks_list);
1717 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1718 skc->skc_slab_alloc--;
1719 }
1720
1721 SEXIT;
1722 }
1723
1724 /*
1725 * Release a batch of objects from a per-cpu magazine back to their
1726 * respective slabs. This occurs when we exceed the magazine size,
1727 * are under memory pressure, when the cache is idle, or during
1728 * cache cleanup. The flush argument contains the number of entries
1729 * to remove from the magazine.
1730 */
1731 static int
1732 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
1733 {
1734 int i, count = MIN(flush, skm->skm_avail);
1735 SENTRY;
1736
1737 ASSERT(skc->skc_magic == SKC_MAGIC);
1738 ASSERT(skm->skm_magic == SKM_MAGIC);
1739
1740 /*
1741 * XXX: Currently we simply return objects from the magazine to
1742 * the slabs in fifo order. The ideal thing to do from a memory
1743 * fragmentation standpoint is to cheaply determine the set of
1744 * objects in the magazine which will result in the largest
1745 * number of free slabs if released from the magazine.
1746 */
1747 spin_lock(&skc->skc_lock);
1748 for (i = 0; i < count; i++)
1749 spl_cache_shrink(skc, skm->skm_objs[i]);
1750
1751 skm->skm_avail -= count;
1752 memmove(skm->skm_objs, &(skm->skm_objs[count]),
1753 sizeof(void *) * skm->skm_avail);
1754
1755 spin_unlock(&skc->skc_lock);
1756
1757 SRETURN(count);
1758 }
1759
1760 /*
1761 * Allocate an object from the per-cpu magazine, or if the magazine
1762 * is empty directly allocate from a slab and repopulate the magazine.
1763 */
1764 void *
1765 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1766 {
1767 spl_kmem_magazine_t *skm;
1768 unsigned long irq_flags;
1769 void *obj = NULL;
1770 SENTRY;
1771
1772 ASSERT(skc->skc_magic == SKC_MAGIC);
1773 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1774 ASSERT(flags & KM_SLEEP);
1775 atomic_inc(&skc->skc_ref);
1776 local_irq_save(irq_flags);
1777
1778 restart:
1779 /* Safe to update per-cpu structure without lock, but
1780 * in the restart case we must be careful to reacquire
1781 * the local magazine since this may have changed
1782 * when we need to grow the cache. */
1783 skm = skc->skc_mag[smp_processor_id()];
1784 ASSERTF(skm->skm_magic == SKM_MAGIC, "%x != %x: %s/%p/%p %x/%x/%x\n",
1785 skm->skm_magic, SKM_MAGIC, skc->skc_name, skc, skm,
1786 skm->skm_size, skm->skm_refill, skm->skm_avail);
1787
1788 if (likely(skm->skm_avail)) {
1789 /* Object available in CPU cache, use it */
1790 obj = skm->skm_objs[--skm->skm_avail];
1791 skm->skm_age = jiffies;
1792 } else {
1793 /* Per-CPU cache empty, directly allocate from
1794 * the slab and refill the per-CPU cache. */
1795 (void)spl_cache_refill(skc, skm, flags);
1796 SGOTO(restart, obj = NULL);
1797 }
1798
1799 local_irq_restore(irq_flags);
1800 ASSERT(obj);
1801 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1802
1803 /* Pre-emptively migrate object to CPU L1 cache */
1804 prefetchw(obj);
1805 atomic_dec(&skc->skc_ref);
1806
1807 SRETURN(obj);
1808 }
1809 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1810
1811 /*
1812 * Free an object back to the local per-cpu magazine, there is no
1813 * guarantee that this is the same magazine the object was originally
1814 * allocated from. We may need to flush entire from the magazine
1815 * back to the slabs to make space.
1816 */
1817 void
1818 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1819 {
1820 spl_kmem_magazine_t *skm;
1821 unsigned long flags;
1822 SENTRY;
1823
1824 ASSERT(skc->skc_magic == SKC_MAGIC);
1825 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1826 atomic_inc(&skc->skc_ref);
1827 local_irq_save(flags);
1828
1829 /* Safe to update per-cpu structure without lock, but
1830 * no remote memory allocation tracking is being performed
1831 * it is entirely possible to allocate an object from one
1832 * CPU cache and return it to another. */
1833 skm = skc->skc_mag[smp_processor_id()];
1834 ASSERT(skm->skm_magic == SKM_MAGIC);
1835
1836 /* Per-CPU cache full, flush it to make space */
1837 if (unlikely(skm->skm_avail >= skm->skm_size))
1838 (void)spl_cache_flush(skc, skm, skm->skm_refill);
1839
1840 /* Available space in cache, use it */
1841 skm->skm_objs[skm->skm_avail++] = obj;
1842
1843 local_irq_restore(flags);
1844 atomic_dec(&skc->skc_ref);
1845
1846 SEXIT;
1847 }
1848 EXPORT_SYMBOL(spl_kmem_cache_free);
1849
1850 /*
1851 * The generic shrinker function for all caches. Under Linux a shrinker
1852 * may not be tightly coupled with a slab cache. In fact Linux always
1853 * systematically tries calling all registered shrinker callbacks which
1854 * report that they contain unused objects. Because of this we only
1855 * register one shrinker function in the shim layer for all slab caches.
1856 * We always attempt to shrink all caches when this generic shrinker
1857 * is called. The shrinker should return the number of free objects
1858 * in the cache when called with nr_to_scan == 0 but not attempt to
1859 * free any objects. When nr_to_scan > 0 it is a request that nr_to_scan
1860 * objects should be freed, because Solaris semantics are to free
1861 * all available objects we may free more objects than requested.
1862 */
1863 static int
1864 __spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
1865 struct shrink_control *sc)
1866 {
1867 spl_kmem_cache_t *skc;
1868 int unused = 0;
1869
1870 down_read(&spl_kmem_cache_sem);
1871 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1872 if (sc->nr_to_scan)
1873 spl_kmem_cache_reap_now(skc);
1874
1875 /*
1876 * Presume everything alloc'ed in reclaimable, this ensures
1877 * we are called again with nr_to_scan > 0 so can try and
1878 * reclaim. The exact number is not important either so
1879 * we forgo taking this already highly contented lock.
1880 */
1881 unused += skc->skc_obj_alloc;
1882 }
1883 up_read(&spl_kmem_cache_sem);
1884
1885 return (unused * sysctl_vfs_cache_pressure) / 100;
1886 }
1887
1888 SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
1889
1890 /*
1891 * Call the registered reclaim function for a cache. Depending on how
1892 * many and which objects are released it may simply repopulate the
1893 * local magazine which will then need to age-out. Objects which cannot
1894 * fit in the magazine we will be released back to their slabs which will
1895 * also need to age out before being release. This is all just best
1896 * effort and we do not want to thrash creating and destroying slabs.
1897 */
1898 void
1899 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1900 {
1901 SENTRY;
1902
1903 ASSERT(skc->skc_magic == SKC_MAGIC);
1904 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1905
1906 /* Prevent concurrent cache reaping when contended */
1907 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1908 SEXIT;
1909 return;
1910 }
1911
1912 atomic_inc(&skc->skc_ref);
1913
1914 if (skc->skc_reclaim)
1915 skc->skc_reclaim(skc->skc_private);
1916
1917 spl_slab_reclaim(skc, skc->skc_reap, 0);
1918 clear_bit(KMC_BIT_REAPING, &skc->skc_flags);
1919 atomic_dec(&skc->skc_ref);
1920
1921 SEXIT;
1922 }
1923 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1924
1925 /*
1926 * Reap all free slabs from all registered caches.
1927 */
1928 void
1929 spl_kmem_reap(void)
1930 {
1931 struct shrink_control sc;
1932
1933 sc.nr_to_scan = KMC_REAP_CHUNK;
1934 sc.gfp_mask = GFP_KERNEL;
1935
1936 __spl_kmem_cache_generic_shrinker(NULL, &sc);
1937 }
1938 EXPORT_SYMBOL(spl_kmem_reap);
1939
1940 #if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
1941 static char *
1942 spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
1943 {
1944 int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
1945 int i, flag = 1;
1946
1947 ASSERT(str != NULL && len >= 17);
1948 memset(str, 0, len);
1949
1950 /* Check for a fully printable string, and while we are at
1951 * it place the printable characters in the passed buffer. */
1952 for (i = 0; i < size; i++) {
1953 str[i] = ((char *)(kd->kd_addr))[i];
1954 if (isprint(str[i])) {
1955 continue;
1956 } else {
1957 /* Minimum number of printable characters found
1958 * to make it worthwhile to print this as ascii. */
1959 if (i > min)
1960 break;
1961
1962 flag = 0;
1963 break;
1964 }
1965 }
1966
1967 if (!flag) {
1968 sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
1969 *((uint8_t *)kd->kd_addr),
1970 *((uint8_t *)kd->kd_addr + 2),
1971 *((uint8_t *)kd->kd_addr + 4),
1972 *((uint8_t *)kd->kd_addr + 6),
1973 *((uint8_t *)kd->kd_addr + 8),
1974 *((uint8_t *)kd->kd_addr + 10),
1975 *((uint8_t *)kd->kd_addr + 12),
1976 *((uint8_t *)kd->kd_addr + 14));
1977 }
1978
1979 return str;
1980 }
1981
1982 static int
1983 spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
1984 {
1985 int i;
1986 SENTRY;
1987
1988 spin_lock_init(lock);
1989 INIT_LIST_HEAD(list);
1990
1991 for (i = 0; i < size; i++)
1992 INIT_HLIST_HEAD(&kmem_table[i]);
1993
1994 SRETURN(0);
1995 }
1996
1997 static void
1998 spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
1999 {
2000 unsigned long flags;
2001 kmem_debug_t *kd;
2002 char str[17];
2003 SENTRY;
2004
2005 spin_lock_irqsave(lock, flags);
2006 if (!list_empty(list))
2007 printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
2008 "size", "data", "func", "line");
2009
2010 list_for_each_entry(kd, list, kd_list)
2011 printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
2012 (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
2013 kd->kd_func, kd->kd_line);
2014
2015 spin_unlock_irqrestore(lock, flags);
2016 SEXIT;
2017 }
2018 #else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2019 #define spl_kmem_init_tracking(list, lock, size)
2020 #define spl_kmem_fini_tracking(list, lock)
2021 #endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2022
2023 static void
2024 spl_kmem_init_globals(void)
2025 {
2026 struct zone *zone;
2027
2028 /* For now all zones are includes, it may be wise to restrict
2029 * this to normal and highmem zones if we see problems. */
2030 for_each_zone(zone) {
2031
2032 if (!populated_zone(zone))
2033 continue;
2034
2035 minfree += min_wmark_pages(zone);
2036 desfree += low_wmark_pages(zone);
2037 lotsfree += high_wmark_pages(zone);
2038 }
2039
2040 /* Solaris default values */
2041 swapfs_minfree = MAX(2*1024*1024 >> PAGE_SHIFT, physmem >> 3);
2042 swapfs_reserve = MIN(4*1024*1024 >> PAGE_SHIFT, physmem >> 4);
2043 }
2044
2045 /*
2046 * Called at module init when it is safe to use spl_kallsyms_lookup_name()
2047 */
2048 int
2049 spl_kmem_init_kallsyms_lookup(void)
2050 {
2051 #ifndef HAVE_GET_VMALLOC_INFO
2052 get_vmalloc_info_fn = (get_vmalloc_info_t)
2053 spl_kallsyms_lookup_name("get_vmalloc_info");
2054 if (!get_vmalloc_info_fn) {
2055 printk(KERN_ERR "Error: Unknown symbol get_vmalloc_info\n");
2056 return -EFAULT;
2057 }
2058 #endif /* HAVE_GET_VMALLOC_INFO */
2059
2060 #ifdef HAVE_PGDAT_HELPERS
2061 # ifndef HAVE_FIRST_ONLINE_PGDAT
2062 first_online_pgdat_fn = (first_online_pgdat_t)
2063 spl_kallsyms_lookup_name("first_online_pgdat");
2064 if (!first_online_pgdat_fn) {
2065 printk(KERN_ERR "Error: Unknown symbol first_online_pgdat\n");
2066 return -EFAULT;
2067 }
2068 # endif /* HAVE_FIRST_ONLINE_PGDAT */
2069
2070 # ifndef HAVE_NEXT_ONLINE_PGDAT
2071 next_online_pgdat_fn = (next_online_pgdat_t)
2072 spl_kallsyms_lookup_name("next_online_pgdat");
2073 if (!next_online_pgdat_fn) {
2074 printk(KERN_ERR "Error: Unknown symbol next_online_pgdat\n");
2075 return -EFAULT;
2076 }
2077 # endif /* HAVE_NEXT_ONLINE_PGDAT */
2078
2079 # ifndef HAVE_NEXT_ZONE
2080 next_zone_fn = (next_zone_t)
2081 spl_kallsyms_lookup_name("next_zone");
2082 if (!next_zone_fn) {
2083 printk(KERN_ERR "Error: Unknown symbol next_zone\n");
2084 return -EFAULT;
2085 }
2086 # endif /* HAVE_NEXT_ZONE */
2087
2088 #else /* HAVE_PGDAT_HELPERS */
2089
2090 # ifndef HAVE_PGDAT_LIST
2091 pgdat_list_addr = *(struct pglist_data **)
2092 spl_kallsyms_lookup_name("pgdat_list");
2093 if (!pgdat_list_addr) {
2094 printk(KERN_ERR "Error: Unknown symbol pgdat_list\n");
2095 return -EFAULT;
2096 }
2097 # endif /* HAVE_PGDAT_LIST */
2098 #endif /* HAVE_PGDAT_HELPERS */
2099
2100 #if defined(NEED_GET_ZONE_COUNTS) && !defined(HAVE_GET_ZONE_COUNTS)
2101 get_zone_counts_fn = (get_zone_counts_t)
2102 spl_kallsyms_lookup_name("get_zone_counts");
2103 if (!get_zone_counts_fn) {
2104 printk(KERN_ERR "Error: Unknown symbol get_zone_counts\n");
2105 return -EFAULT;
2106 }
2107 #endif /* NEED_GET_ZONE_COUNTS && !HAVE_GET_ZONE_COUNTS */
2108
2109 /*
2110 * It is now safe to initialize the global tunings which rely on
2111 * the use of the for_each_zone() macro. This macro in turns
2112 * depends on the *_pgdat symbols which are now available.
2113 */
2114 spl_kmem_init_globals();
2115
2116 #if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK)
2117 invalidate_inodes_fn = (invalidate_inodes_t)
2118 spl_kallsyms_lookup_name("invalidate_inodes");
2119 if (!invalidate_inodes_fn) {
2120 printk(KERN_ERR "Error: Unknown symbol invalidate_inodes\n");
2121 return -EFAULT;
2122 }
2123 #endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */
2124
2125 #ifndef HAVE_SHRINK_DCACHE_MEMORY
2126 /* When shrink_dcache_memory_fn == NULL support is disabled */
2127 shrink_dcache_memory_fn = (shrink_dcache_memory_t)
2128 spl_kallsyms_lookup_name("shrink_dcache_memory");
2129 #endif /* HAVE_SHRINK_DCACHE_MEMORY */
2130
2131 #ifndef HAVE_SHRINK_ICACHE_MEMORY
2132 /* When shrink_icache_memory_fn == NULL support is disabled */
2133 shrink_icache_memory_fn = (shrink_icache_memory_t)
2134 spl_kallsyms_lookup_name("shrink_icache_memory");
2135 #endif /* HAVE_SHRINK_ICACHE_MEMORY */
2136
2137 return 0;
2138 }
2139
2140 int
2141 spl_kmem_init(void)
2142 {
2143 int rc = 0;
2144 SENTRY;
2145
2146 init_rwsem(&spl_kmem_cache_sem);
2147 INIT_LIST_HEAD(&spl_kmem_cache_list);
2148
2149 spl_register_shrinker(&spl_kmem_cache_shrinker);
2150
2151 #ifdef DEBUG_KMEM
2152 kmem_alloc_used_set(0);
2153 vmem_alloc_used_set(0);
2154
2155 spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
2156 spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE);
2157 #endif
2158 SRETURN(rc);
2159 }
2160
2161 void
2162 spl_kmem_fini(void)
2163 {
2164 #ifdef DEBUG_KMEM
2165 /* Display all unreclaimed memory addresses, including the
2166 * allocation size and the first few bytes of what's located
2167 * at that address to aid in debugging. Performance is not
2168 * a serious concern here since it is module unload time. */
2169 if (kmem_alloc_used_read() != 0)
2170 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
2171 "kmem leaked %ld/%ld bytes\n",
2172 kmem_alloc_used_read(), kmem_alloc_max);
2173
2174
2175 if (vmem_alloc_used_read() != 0)
2176 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
2177 "vmem leaked %ld/%ld bytes\n",
2178 vmem_alloc_used_read(), vmem_alloc_max);
2179
2180 spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
2181 spl_kmem_fini_tracking(&vmem_list, &vmem_lock);
2182 #endif /* DEBUG_KMEM */
2183 SENTRY;
2184
2185 spl_unregister_shrinker(&spl_kmem_cache_shrinker);
2186
2187 SEXIT;
2188 }