]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/bio.c
block: remove bio_clone() and all references.
[mirror_ubuntu-artful-kernel.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
1da177e4 31
55782138 32#include <trace/events/block.h>
9e234eea 33#include "blk.h"
0bfc2455 34
392ddc32
JA
35/*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39#define BIO_INLINE_VECS 4
40
1da177e4
LT
41/*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
1da177e4 46#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
ed996a52 47static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
1da177e4
LT
48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49};
50#undef BV
51
1da177e4
LT
52/*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
51d654e1 56struct bio_set *fs_bio_set;
3f86a82a 57EXPORT_SYMBOL(fs_bio_set);
1da177e4 58
bb799ca0
JA
59/*
60 * Our slab pool management
61 */
62struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67};
68static DEFINE_MUTEX(bio_slab_lock);
69static struct bio_slab *bio_slabs;
70static unsigned int bio_slab_nr, bio_slab_max;
71
72static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73{
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
389d7b26 76 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 77 unsigned int new_bio_slab_max;
bb799ca0
JA
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
f06f135d 84 bslab = &bio_slabs[i];
bb799ca0
JA
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 100 new_bio_slab_max = bio_slab_max << 1;
389d7b26 101 new_bio_slabs = krealloc(bio_slabs,
386bc35a 102 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
103 GFP_KERNEL);
104 if (!new_bio_slabs)
bb799ca0 105 goto out_unlock;
386bc35a 106 bio_slab_max = new_bio_slab_max;
389d7b26 107 bio_slabs = new_bio_slabs;
bb799ca0
JA
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
117 if (!slab)
118 goto out_unlock;
119
bb799ca0
JA
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126}
127
128static void bio_put_slab(struct bio_set *bs)
129{
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153out:
154 mutex_unlock(&bio_slab_lock);
155}
156
7ba1ba12
MP
157unsigned int bvec_nr_vecs(unsigned short idx)
158{
159 return bvec_slabs[idx].nr_vecs;
160}
161
9f060e22 162void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 163{
ed996a52
CH
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 169
ed996a52 170 if (idx == BVEC_POOL_MAX) {
9f060e22 171 mempool_free(bv, pool);
ed996a52 172 } else {
bb799ca0
JA
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177}
178
9f060e22
KO
179struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
1da177e4
LT
181{
182 struct bio_vec *bvl;
1da177e4 183
7ff9345f
JA
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
ed996a52 214 if (*idx == BVEC_POOL_MAX) {
7ff9345f 215fallback:
9f060e22 216 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 220
0a0d96b0 221 /*
7ff9345f
JA
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
0a0d96b0 225 */
7ff9345f 226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 227
0a0d96b0 228 /*
d0164adc 229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 230 * is set, retry with the 1-entry mempool
0a0d96b0 231 */
7ff9345f 232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 234 *idx = BVEC_POOL_MAX;
7ff9345f
JA
235 goto fallback;
236 }
237 }
238
ed996a52 239 (*idx)++;
1da177e4
LT
240 return bvl;
241}
242
4254bba1 243static void __bio_free(struct bio *bio)
1da177e4 244{
4254bba1 245 bio_disassociate_task(bio);
1da177e4 246
7ba1ba12 247 if (bio_integrity(bio))
1e2a410f 248 bio_integrity_free(bio);
4254bba1 249}
7ba1ba12 250
4254bba1
KO
251static void bio_free(struct bio *bio)
252{
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
255
256 __bio_free(bio);
257
258 if (bs) {
ed996a52 259 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
260
261 /*
262 * If we have front padding, adjust the bio pointer before freeing
263 */
264 p = bio;
bb799ca0
JA
265 p -= bs->front_pad;
266
4254bba1
KO
267 mempool_free(p, bs->bio_pool);
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
271 }
3676347a
PO
272}
273
3a83f467
ML
274void bio_init(struct bio *bio, struct bio_vec *table,
275 unsigned short max_vecs)
1da177e4 276{
2b94de55 277 memset(bio, 0, sizeof(*bio));
c4cf5261 278 atomic_set(&bio->__bi_remaining, 1);
dac56212 279 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
280
281 bio->bi_io_vec = table;
282 bio->bi_max_vecs = max_vecs;
1da177e4 283}
a112a71d 284EXPORT_SYMBOL(bio_init);
1da177e4 285
f44b48c7
KO
286/**
287 * bio_reset - reinitialize a bio
288 * @bio: bio to reset
289 *
290 * Description:
291 * After calling bio_reset(), @bio will be in the same state as a freshly
292 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
293 * preserved are the ones that are initialized by bio_alloc_bioset(). See
294 * comment in struct bio.
295 */
296void bio_reset(struct bio *bio)
297{
298 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
299
4254bba1 300 __bio_free(bio);
f44b48c7
KO
301
302 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 303 bio->bi_flags = flags;
c4cf5261 304 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
305}
306EXPORT_SYMBOL(bio_reset);
307
38f8baae 308static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 309{
4246a0b6
CH
310 struct bio *parent = bio->bi_private;
311
4e4cbee9
CH
312 if (!parent->bi_status)
313 parent->bi_status = bio->bi_status;
196d38bc 314 bio_put(bio);
38f8baae
CH
315 return parent;
316}
317
318static void bio_chain_endio(struct bio *bio)
319{
320 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
321}
322
323/**
324 * bio_chain - chain bio completions
1051a902
RD
325 * @bio: the target bio
326 * @parent: the @bio's parent bio
196d38bc
KO
327 *
328 * The caller won't have a bi_end_io called when @bio completes - instead,
329 * @parent's bi_end_io won't be called until both @parent and @bio have
330 * completed; the chained bio will also be freed when it completes.
331 *
332 * The caller must not set bi_private or bi_end_io in @bio.
333 */
334void bio_chain(struct bio *bio, struct bio *parent)
335{
336 BUG_ON(bio->bi_private || bio->bi_end_io);
337
338 bio->bi_private = parent;
339 bio->bi_end_io = bio_chain_endio;
c4cf5261 340 bio_inc_remaining(parent);
196d38bc
KO
341}
342EXPORT_SYMBOL(bio_chain);
343
df2cb6da
KO
344static void bio_alloc_rescue(struct work_struct *work)
345{
346 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
347 struct bio *bio;
348
349 while (1) {
350 spin_lock(&bs->rescue_lock);
351 bio = bio_list_pop(&bs->rescue_list);
352 spin_unlock(&bs->rescue_lock);
353
354 if (!bio)
355 break;
356
357 generic_make_request(bio);
358 }
359}
360
361static void punt_bios_to_rescuer(struct bio_set *bs)
362{
363 struct bio_list punt, nopunt;
364 struct bio *bio;
365
47e0fb46
N
366 if (WARN_ON_ONCE(!bs->rescue_workqueue))
367 return;
df2cb6da
KO
368 /*
369 * In order to guarantee forward progress we must punt only bios that
370 * were allocated from this bio_set; otherwise, if there was a bio on
371 * there for a stacking driver higher up in the stack, processing it
372 * could require allocating bios from this bio_set, and doing that from
373 * our own rescuer would be bad.
374 *
375 * Since bio lists are singly linked, pop them all instead of trying to
376 * remove from the middle of the list:
377 */
378
379 bio_list_init(&punt);
380 bio_list_init(&nopunt);
381
f5fe1b51 382 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 383 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 384 current->bio_list[0] = nopunt;
df2cb6da 385
f5fe1b51
N
386 bio_list_init(&nopunt);
387 while ((bio = bio_list_pop(&current->bio_list[1])))
388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
389 current->bio_list[1] = nopunt;
df2cb6da
KO
390
391 spin_lock(&bs->rescue_lock);
392 bio_list_merge(&bs->rescue_list, &punt);
393 spin_unlock(&bs->rescue_lock);
394
395 queue_work(bs->rescue_workqueue, &bs->rescue_work);
396}
397
1da177e4
LT
398/**
399 * bio_alloc_bioset - allocate a bio for I/O
400 * @gfp_mask: the GFP_ mask given to the slab allocator
401 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 402 * @bs: the bio_set to allocate from.
1da177e4
LT
403 *
404 * Description:
3f86a82a
KO
405 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
406 * backed by the @bs's mempool.
407 *
d0164adc
MG
408 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
409 * always be able to allocate a bio. This is due to the mempool guarantees.
410 * To make this work, callers must never allocate more than 1 bio at a time
411 * from this pool. Callers that need to allocate more than 1 bio must always
412 * submit the previously allocated bio for IO before attempting to allocate
413 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 414 *
df2cb6da
KO
415 * Note that when running under generic_make_request() (i.e. any block
416 * driver), bios are not submitted until after you return - see the code in
417 * generic_make_request() that converts recursion into iteration, to prevent
418 * stack overflows.
419 *
420 * This would normally mean allocating multiple bios under
421 * generic_make_request() would be susceptible to deadlocks, but we have
422 * deadlock avoidance code that resubmits any blocked bios from a rescuer
423 * thread.
424 *
425 * However, we do not guarantee forward progress for allocations from other
426 * mempools. Doing multiple allocations from the same mempool under
427 * generic_make_request() should be avoided - instead, use bio_set's front_pad
428 * for per bio allocations.
429 *
3f86a82a
KO
430 * RETURNS:
431 * Pointer to new bio on success, NULL on failure.
432 */
7a88fa19
DC
433struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
434 struct bio_set *bs)
1da177e4 435{
df2cb6da 436 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
437 unsigned front_pad;
438 unsigned inline_vecs;
34053979 439 struct bio_vec *bvl = NULL;
451a9ebf
TH
440 struct bio *bio;
441 void *p;
442
3f86a82a
KO
443 if (!bs) {
444 if (nr_iovecs > UIO_MAXIOV)
445 return NULL;
446
447 p = kmalloc(sizeof(struct bio) +
448 nr_iovecs * sizeof(struct bio_vec),
449 gfp_mask);
450 front_pad = 0;
451 inline_vecs = nr_iovecs;
452 } else {
d8f429e1
JN
453 /* should not use nobvec bioset for nr_iovecs > 0 */
454 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
455 return NULL;
df2cb6da
KO
456 /*
457 * generic_make_request() converts recursion to iteration; this
458 * means if we're running beneath it, any bios we allocate and
459 * submit will not be submitted (and thus freed) until after we
460 * return.
461 *
462 * This exposes us to a potential deadlock if we allocate
463 * multiple bios from the same bio_set() while running
464 * underneath generic_make_request(). If we were to allocate
465 * multiple bios (say a stacking block driver that was splitting
466 * bios), we would deadlock if we exhausted the mempool's
467 * reserve.
468 *
469 * We solve this, and guarantee forward progress, with a rescuer
470 * workqueue per bio_set. If we go to allocate and there are
471 * bios on current->bio_list, we first try the allocation
d0164adc
MG
472 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
473 * bios we would be blocking to the rescuer workqueue before
474 * we retry with the original gfp_flags.
df2cb6da
KO
475 */
476
f5fe1b51
N
477 if (current->bio_list &&
478 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
479 !bio_list_empty(&current->bio_list[1])) &&
480 bs->rescue_workqueue)
d0164adc 481 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 482
3f86a82a 483 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
484 if (!p && gfp_mask != saved_gfp) {
485 punt_bios_to_rescuer(bs);
486 gfp_mask = saved_gfp;
487 p = mempool_alloc(bs->bio_pool, gfp_mask);
488 }
489
3f86a82a
KO
490 front_pad = bs->front_pad;
491 inline_vecs = BIO_INLINE_VECS;
492 }
493
451a9ebf
TH
494 if (unlikely(!p))
495 return NULL;
1da177e4 496
3f86a82a 497 bio = p + front_pad;
3a83f467 498 bio_init(bio, NULL, 0);
34053979 499
3f86a82a 500 if (nr_iovecs > inline_vecs) {
ed996a52
CH
501 unsigned long idx = 0;
502
9f060e22 503 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
504 if (!bvl && gfp_mask != saved_gfp) {
505 punt_bios_to_rescuer(bs);
506 gfp_mask = saved_gfp;
9f060e22 507 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
508 }
509
34053979
IM
510 if (unlikely(!bvl))
511 goto err_free;
a38352e0 512
ed996a52 513 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
514 } else if (nr_iovecs) {
515 bvl = bio->bi_inline_vecs;
1da177e4 516 }
3f86a82a
KO
517
518 bio->bi_pool = bs;
34053979 519 bio->bi_max_vecs = nr_iovecs;
34053979 520 bio->bi_io_vec = bvl;
1da177e4 521 return bio;
34053979
IM
522
523err_free:
451a9ebf 524 mempool_free(p, bs->bio_pool);
34053979 525 return NULL;
1da177e4 526}
a112a71d 527EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 528
1da177e4
LT
529void zero_fill_bio(struct bio *bio)
530{
531 unsigned long flags;
7988613b
KO
532 struct bio_vec bv;
533 struct bvec_iter iter;
1da177e4 534
7988613b
KO
535 bio_for_each_segment(bv, bio, iter) {
536 char *data = bvec_kmap_irq(&bv, &flags);
537 memset(data, 0, bv.bv_len);
538 flush_dcache_page(bv.bv_page);
1da177e4
LT
539 bvec_kunmap_irq(data, &flags);
540 }
541}
542EXPORT_SYMBOL(zero_fill_bio);
543
544/**
545 * bio_put - release a reference to a bio
546 * @bio: bio to release reference to
547 *
548 * Description:
549 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 550 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
551 **/
552void bio_put(struct bio *bio)
553{
dac56212 554 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 555 bio_free(bio);
dac56212
JA
556 else {
557 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
558
559 /*
560 * last put frees it
561 */
562 if (atomic_dec_and_test(&bio->__bi_cnt))
563 bio_free(bio);
564 }
1da177e4 565}
a112a71d 566EXPORT_SYMBOL(bio_put);
1da177e4 567
165125e1 568inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
569{
570 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
571 blk_recount_segments(q, bio);
572
573 return bio->bi_phys_segments;
574}
a112a71d 575EXPORT_SYMBOL(bio_phys_segments);
1da177e4 576
59d276fe
KO
577/**
578 * __bio_clone_fast - clone a bio that shares the original bio's biovec
579 * @bio: destination bio
580 * @bio_src: bio to clone
581 *
582 * Clone a &bio. Caller will own the returned bio, but not
583 * the actual data it points to. Reference count of returned
584 * bio will be one.
585 *
586 * Caller must ensure that @bio_src is not freed before @bio.
587 */
588void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
589{
ed996a52 590 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
591
592 /*
593 * most users will be overriding ->bi_bdev with a new target,
594 * so we don't set nor calculate new physical/hw segment counts here
595 */
596 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 597 bio_set_flag(bio, BIO_CLONED);
1eff9d32 598 bio->bi_opf = bio_src->bi_opf;
59d276fe
KO
599 bio->bi_iter = bio_src->bi_iter;
600 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e
PV
601
602 bio_clone_blkcg_association(bio, bio_src);
59d276fe
KO
603}
604EXPORT_SYMBOL(__bio_clone_fast);
605
606/**
607 * bio_clone_fast - clone a bio that shares the original bio's biovec
608 * @bio: bio to clone
609 * @gfp_mask: allocation priority
610 * @bs: bio_set to allocate from
611 *
612 * Like __bio_clone_fast, only also allocates the returned bio
613 */
614struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
615{
616 struct bio *b;
617
618 b = bio_alloc_bioset(gfp_mask, 0, bs);
619 if (!b)
620 return NULL;
621
622 __bio_clone_fast(b, bio);
623
624 if (bio_integrity(bio)) {
625 int ret;
626
627 ret = bio_integrity_clone(b, bio, gfp_mask);
628
629 if (ret < 0) {
630 bio_put(b);
631 return NULL;
632 }
633 }
634
635 return b;
636}
637EXPORT_SYMBOL(bio_clone_fast);
638
f4595875
SL
639/**
640 * bio_clone_bioset - clone a bio
641 * @bio_src: bio to clone
642 * @gfp_mask: allocation priority
643 * @bs: bio_set to allocate from
644 *
645 * Clone bio. Caller will own the returned bio, but not the actual data it
646 * points to. Reference count of returned bio will be one.
647 */
648struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
649 struct bio_set *bs)
1da177e4 650{
bdb53207
KO
651 struct bvec_iter iter;
652 struct bio_vec bv;
653 struct bio *bio;
1da177e4 654
bdb53207
KO
655 /*
656 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
657 * bio_src->bi_io_vec to bio->bi_io_vec.
658 *
659 * We can't do that anymore, because:
660 *
661 * - The point of cloning the biovec is to produce a bio with a biovec
662 * the caller can modify: bi_idx and bi_bvec_done should be 0.
663 *
664 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
665 * we tried to clone the whole thing bio_alloc_bioset() would fail.
666 * But the clone should succeed as long as the number of biovecs we
667 * actually need to allocate is fewer than BIO_MAX_PAGES.
668 *
669 * - Lastly, bi_vcnt should not be looked at or relied upon by code
670 * that does not own the bio - reason being drivers don't use it for
671 * iterating over the biovec anymore, so expecting it to be kept up
672 * to date (i.e. for clones that share the parent biovec) is just
673 * asking for trouble and would force extra work on
674 * __bio_clone_fast() anyways.
675 */
676
f4595875 677 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
bdb53207 678 if (!bio)
7ba1ba12 679 return NULL;
bdb53207 680 bio->bi_bdev = bio_src->bi_bdev;
1eff9d32 681 bio->bi_opf = bio_src->bi_opf;
bdb53207
KO
682 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
683 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 684
7afafc8a
AH
685 switch (bio_op(bio)) {
686 case REQ_OP_DISCARD:
687 case REQ_OP_SECURE_ERASE:
a6f0788e 688 case REQ_OP_WRITE_ZEROES:
7afafc8a
AH
689 break;
690 case REQ_OP_WRITE_SAME:
8423ae3d 691 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
7afafc8a
AH
692 break;
693 default:
f4595875 694 bio_for_each_segment(bv, bio_src, iter)
7afafc8a
AH
695 bio->bi_io_vec[bio->bi_vcnt++] = bv;
696 break;
8423ae3d
KO
697 }
698
bdb53207
KO
699 if (bio_integrity(bio_src)) {
700 int ret;
7ba1ba12 701
bdb53207 702 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 703 if (ret < 0) {
bdb53207 704 bio_put(bio);
7ba1ba12 705 return NULL;
059ea331 706 }
3676347a 707 }
1da177e4 708
20bd723e
PV
709 bio_clone_blkcg_association(bio, bio_src);
710
bdb53207 711 return bio;
1da177e4 712}
bf800ef1 713EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
714
715/**
c66a14d0
KO
716 * bio_add_pc_page - attempt to add page to bio
717 * @q: the target queue
718 * @bio: destination bio
719 * @page: page to add
720 * @len: vec entry length
721 * @offset: vec entry offset
1da177e4 722 *
c66a14d0
KO
723 * Attempt to add a page to the bio_vec maplist. This can fail for a
724 * number of reasons, such as the bio being full or target block device
725 * limitations. The target block device must allow bio's up to PAGE_SIZE,
726 * so it is always possible to add a single page to an empty bio.
727 *
728 * This should only be used by REQ_PC bios.
1da177e4 729 */
c66a14d0
KO
730int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
731 *page, unsigned int len, unsigned int offset)
1da177e4
LT
732{
733 int retried_segments = 0;
734 struct bio_vec *bvec;
735
736 /*
737 * cloned bio must not modify vec list
738 */
739 if (unlikely(bio_flagged(bio, BIO_CLONED)))
740 return 0;
741
c66a14d0 742 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
743 return 0;
744
80cfd548
JA
745 /*
746 * For filesystems with a blocksize smaller than the pagesize
747 * we will often be called with the same page as last time and
748 * a consecutive offset. Optimize this special case.
749 */
750 if (bio->bi_vcnt > 0) {
751 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
752
753 if (page == prev->bv_page &&
754 offset == prev->bv_offset + prev->bv_len) {
755 prev->bv_len += len;
fcbf6a08 756 bio->bi_iter.bi_size += len;
80cfd548
JA
757 goto done;
758 }
66cb45aa
JA
759
760 /*
761 * If the queue doesn't support SG gaps and adding this
762 * offset would create a gap, disallow it.
763 */
03100aad 764 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 765 return 0;
80cfd548
JA
766 }
767
768 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
769 return 0;
770
771 /*
fcbf6a08
ML
772 * setup the new entry, we might clear it again later if we
773 * cannot add the page
774 */
775 bvec = &bio->bi_io_vec[bio->bi_vcnt];
776 bvec->bv_page = page;
777 bvec->bv_len = len;
778 bvec->bv_offset = offset;
779 bio->bi_vcnt++;
780 bio->bi_phys_segments++;
781 bio->bi_iter.bi_size += len;
782
783 /*
784 * Perform a recount if the number of segments is greater
785 * than queue_max_segments(q).
1da177e4
LT
786 */
787
fcbf6a08 788 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
789
790 if (retried_segments)
fcbf6a08 791 goto failed;
1da177e4
LT
792
793 retried_segments = 1;
794 blk_recount_segments(q, bio);
795 }
796
1da177e4 797 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 798 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
b7c44ed9 799 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 800
80cfd548 801 done:
1da177e4 802 return len;
fcbf6a08
ML
803
804 failed:
805 bvec->bv_page = NULL;
806 bvec->bv_len = 0;
807 bvec->bv_offset = 0;
808 bio->bi_vcnt--;
809 bio->bi_iter.bi_size -= len;
810 blk_recount_segments(q, bio);
811 return 0;
1da177e4 812}
a112a71d 813EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 814
1da177e4
LT
815/**
816 * bio_add_page - attempt to add page to bio
817 * @bio: destination bio
818 * @page: page to add
819 * @len: vec entry length
820 * @offset: vec entry offset
821 *
c66a14d0
KO
822 * Attempt to add a page to the bio_vec maplist. This will only fail
823 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1da177e4 824 */
c66a14d0
KO
825int bio_add_page(struct bio *bio, struct page *page,
826 unsigned int len, unsigned int offset)
1da177e4 827{
c66a14d0
KO
828 struct bio_vec *bv;
829
830 /*
831 * cloned bio must not modify vec list
832 */
833 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
834 return 0;
762380ad 835
c66a14d0
KO
836 /*
837 * For filesystems with a blocksize smaller than the pagesize
838 * we will often be called with the same page as last time and
839 * a consecutive offset. Optimize this special case.
840 */
841 if (bio->bi_vcnt > 0) {
842 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 843
c66a14d0
KO
844 if (page == bv->bv_page &&
845 offset == bv->bv_offset + bv->bv_len) {
846 bv->bv_len += len;
847 goto done;
848 }
849 }
850
851 if (bio->bi_vcnt >= bio->bi_max_vecs)
852 return 0;
853
854 bv = &bio->bi_io_vec[bio->bi_vcnt];
855 bv->bv_page = page;
856 bv->bv_len = len;
857 bv->bv_offset = offset;
858
859 bio->bi_vcnt++;
860done:
861 bio->bi_iter.bi_size += len;
862 return len;
1da177e4 863}
a112a71d 864EXPORT_SYMBOL(bio_add_page);
1da177e4 865
2cefe4db
KO
866/**
867 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
868 * @bio: bio to add pages to
869 * @iter: iov iterator describing the region to be mapped
870 *
871 * Pins as many pages from *iter and appends them to @bio's bvec array. The
872 * pages will have to be released using put_page() when done.
873 */
874int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
875{
876 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
877 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
878 struct page **pages = (struct page **)bv;
879 size_t offset, diff;
880 ssize_t size;
881
882 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
883 if (unlikely(size <= 0))
884 return size ? size : -EFAULT;
885 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
886
887 /*
888 * Deep magic below: We need to walk the pinned pages backwards
889 * because we are abusing the space allocated for the bio_vecs
890 * for the page array. Because the bio_vecs are larger than the
891 * page pointers by definition this will always work. But it also
892 * means we can't use bio_add_page, so any changes to it's semantics
893 * need to be reflected here as well.
894 */
895 bio->bi_iter.bi_size += size;
896 bio->bi_vcnt += nr_pages;
897
898 diff = (nr_pages * PAGE_SIZE - offset) - size;
899 while (nr_pages--) {
900 bv[nr_pages].bv_page = pages[nr_pages];
901 bv[nr_pages].bv_len = PAGE_SIZE;
902 bv[nr_pages].bv_offset = 0;
903 }
904
905 bv[0].bv_offset += offset;
906 bv[0].bv_len -= offset;
907 if (diff)
908 bv[bio->bi_vcnt - 1].bv_len -= diff;
909
910 iov_iter_advance(iter, size);
911 return 0;
912}
913EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
914
9e882242
KO
915struct submit_bio_ret {
916 struct completion event;
917 int error;
918};
919
4246a0b6 920static void submit_bio_wait_endio(struct bio *bio)
9e882242
KO
921{
922 struct submit_bio_ret *ret = bio->bi_private;
923
4e4cbee9 924 ret->error = blk_status_to_errno(bio->bi_status);
9e882242
KO
925 complete(&ret->event);
926}
927
928/**
929 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
930 * @bio: The &struct bio which describes the I/O
931 *
932 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
933 * bio_endio() on failure.
934 */
4e49ea4a 935int submit_bio_wait(struct bio *bio)
9e882242
KO
936{
937 struct submit_bio_ret ret;
938
9e882242
KO
939 init_completion(&ret.event);
940 bio->bi_private = &ret;
941 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 942 bio->bi_opf |= REQ_SYNC;
4e49ea4a 943 submit_bio(bio);
d57d6115 944 wait_for_completion_io(&ret.event);
9e882242
KO
945
946 return ret.error;
947}
948EXPORT_SYMBOL(submit_bio_wait);
949
054bdf64
KO
950/**
951 * bio_advance - increment/complete a bio by some number of bytes
952 * @bio: bio to advance
953 * @bytes: number of bytes to complete
954 *
955 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
956 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
957 * be updated on the last bvec as well.
958 *
959 * @bio will then represent the remaining, uncompleted portion of the io.
960 */
961void bio_advance(struct bio *bio, unsigned bytes)
962{
963 if (bio_integrity(bio))
964 bio_integrity_advance(bio, bytes);
965
4550dd6c 966 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
967}
968EXPORT_SYMBOL(bio_advance);
969
a0787606
KO
970/**
971 * bio_alloc_pages - allocates a single page for each bvec in a bio
972 * @bio: bio to allocate pages for
973 * @gfp_mask: flags for allocation
974 *
975 * Allocates pages up to @bio->bi_vcnt.
976 *
977 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
978 * freed.
979 */
980int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
981{
982 int i;
983 struct bio_vec *bv;
984
985 bio_for_each_segment_all(bv, bio, i) {
986 bv->bv_page = alloc_page(gfp_mask);
987 if (!bv->bv_page) {
988 while (--bv >= bio->bi_io_vec)
989 __free_page(bv->bv_page);
990 return -ENOMEM;
991 }
992 }
993
994 return 0;
995}
996EXPORT_SYMBOL(bio_alloc_pages);
997
16ac3d63
KO
998/**
999 * bio_copy_data - copy contents of data buffers from one chain of bios to
1000 * another
1001 * @src: source bio list
1002 * @dst: destination bio list
1003 *
1004 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1005 * @src and @dst as linked lists of bios.
1006 *
1007 * Stops when it reaches the end of either @src or @dst - that is, copies
1008 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1009 */
1010void bio_copy_data(struct bio *dst, struct bio *src)
1011{
1cb9dda4
KO
1012 struct bvec_iter src_iter, dst_iter;
1013 struct bio_vec src_bv, dst_bv;
16ac3d63 1014 void *src_p, *dst_p;
1cb9dda4 1015 unsigned bytes;
16ac3d63 1016
1cb9dda4
KO
1017 src_iter = src->bi_iter;
1018 dst_iter = dst->bi_iter;
16ac3d63
KO
1019
1020 while (1) {
1cb9dda4
KO
1021 if (!src_iter.bi_size) {
1022 src = src->bi_next;
1023 if (!src)
1024 break;
16ac3d63 1025
1cb9dda4 1026 src_iter = src->bi_iter;
16ac3d63
KO
1027 }
1028
1cb9dda4
KO
1029 if (!dst_iter.bi_size) {
1030 dst = dst->bi_next;
1031 if (!dst)
1032 break;
16ac3d63 1033
1cb9dda4 1034 dst_iter = dst->bi_iter;
16ac3d63
KO
1035 }
1036
1cb9dda4
KO
1037 src_bv = bio_iter_iovec(src, src_iter);
1038 dst_bv = bio_iter_iovec(dst, dst_iter);
1039
1040 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1041
1cb9dda4
KO
1042 src_p = kmap_atomic(src_bv.bv_page);
1043 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1044
1cb9dda4
KO
1045 memcpy(dst_p + dst_bv.bv_offset,
1046 src_p + src_bv.bv_offset,
16ac3d63
KO
1047 bytes);
1048
1049 kunmap_atomic(dst_p);
1050 kunmap_atomic(src_p);
1051
1cb9dda4
KO
1052 bio_advance_iter(src, &src_iter, bytes);
1053 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
1054 }
1055}
1056EXPORT_SYMBOL(bio_copy_data);
1057
1da177e4 1058struct bio_map_data {
152e283f 1059 int is_our_pages;
26e49cfc
KO
1060 struct iov_iter iter;
1061 struct iovec iov[];
1da177e4
LT
1062};
1063
7410b3c6 1064static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
76029ff3 1065 gfp_t gfp_mask)
1da177e4 1066{
f3f63c1c
JA
1067 if (iov_count > UIO_MAXIOV)
1068 return NULL;
1da177e4 1069
c8db4448 1070 return kmalloc(sizeof(struct bio_map_data) +
26e49cfc 1071 sizeof(struct iovec) * iov_count, gfp_mask);
1da177e4
LT
1072}
1073
9124d3fe
DP
1074/**
1075 * bio_copy_from_iter - copy all pages from iov_iter to bio
1076 * @bio: The &struct bio which describes the I/O as destination
1077 * @iter: iov_iter as source
1078 *
1079 * Copy all pages from iov_iter to bio.
1080 * Returns 0 on success, or error on failure.
1081 */
1082static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
c5dec1c3 1083{
9124d3fe 1084 int i;
c5dec1c3 1085 struct bio_vec *bvec;
c5dec1c3 1086
d74c6d51 1087 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1088 ssize_t ret;
c5dec1c3 1089
9124d3fe
DP
1090 ret = copy_page_from_iter(bvec->bv_page,
1091 bvec->bv_offset,
1092 bvec->bv_len,
1093 &iter);
1094
1095 if (!iov_iter_count(&iter))
1096 break;
1097
1098 if (ret < bvec->bv_len)
1099 return -EFAULT;
c5dec1c3
FT
1100 }
1101
9124d3fe
DP
1102 return 0;
1103}
1104
1105/**
1106 * bio_copy_to_iter - copy all pages from bio to iov_iter
1107 * @bio: The &struct bio which describes the I/O as source
1108 * @iter: iov_iter as destination
1109 *
1110 * Copy all pages from bio to iov_iter.
1111 * Returns 0 on success, or error on failure.
1112 */
1113static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1114{
1115 int i;
1116 struct bio_vec *bvec;
1117
1118 bio_for_each_segment_all(bvec, bio, i) {
1119 ssize_t ret;
1120
1121 ret = copy_page_to_iter(bvec->bv_page,
1122 bvec->bv_offset,
1123 bvec->bv_len,
1124 &iter);
1125
1126 if (!iov_iter_count(&iter))
1127 break;
1128
1129 if (ret < bvec->bv_len)
1130 return -EFAULT;
1131 }
1132
1133 return 0;
c5dec1c3
FT
1134}
1135
491221f8 1136void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1137{
1138 struct bio_vec *bvec;
1139 int i;
1140
1141 bio_for_each_segment_all(bvec, bio, i)
1142 __free_page(bvec->bv_page);
1143}
491221f8 1144EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1145
1da177e4
LT
1146/**
1147 * bio_uncopy_user - finish previously mapped bio
1148 * @bio: bio being terminated
1149 *
ddad8dd0 1150 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1151 * to user space in case of a read.
1152 */
1153int bio_uncopy_user(struct bio *bio)
1154{
1155 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1156 int ret = 0;
1da177e4 1157
35dc2483
RD
1158 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1159 /*
1160 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1161 * don't copy into a random user address space, just free
1162 * and return -EINTR so user space doesn't expect any data.
35dc2483 1163 */
2d99b55d
HR
1164 if (!current->mm)
1165 ret = -EINTR;
1166 else if (bio_data_dir(bio) == READ)
9124d3fe 1167 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1168 if (bmd->is_our_pages)
1169 bio_free_pages(bio);
35dc2483 1170 }
c8db4448 1171 kfree(bmd);
1da177e4
LT
1172 bio_put(bio);
1173 return ret;
1174}
1175
1176/**
c5dec1c3 1177 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1178 * @q: destination block queue
1179 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1180 * @iter: iovec iterator
1181 * @gfp_mask: memory allocation flags
1da177e4
LT
1182 *
1183 * Prepares and returns a bio for indirect user io, bouncing data
1184 * to/from kernel pages as necessary. Must be paired with
1185 * call bio_uncopy_user() on io completion.
1186 */
152e283f
FT
1187struct bio *bio_copy_user_iov(struct request_queue *q,
1188 struct rq_map_data *map_data,
26e49cfc
KO
1189 const struct iov_iter *iter,
1190 gfp_t gfp_mask)
1da177e4 1191{
1da177e4 1192 struct bio_map_data *bmd;
1da177e4
LT
1193 struct page *page;
1194 struct bio *bio;
1195 int i, ret;
c5dec1c3 1196 int nr_pages = 0;
26e49cfc 1197 unsigned int len = iter->count;
bd5cecea 1198 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1199
26e49cfc 1200 for (i = 0; i < iter->nr_segs; i++) {
c5dec1c3
FT
1201 unsigned long uaddr;
1202 unsigned long end;
1203 unsigned long start;
1204
26e49cfc
KO
1205 uaddr = (unsigned long) iter->iov[i].iov_base;
1206 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1207 >> PAGE_SHIFT;
c5dec1c3
FT
1208 start = uaddr >> PAGE_SHIFT;
1209
cb4644ca
JA
1210 /*
1211 * Overflow, abort
1212 */
1213 if (end < start)
1214 return ERR_PTR(-EINVAL);
1215
c5dec1c3 1216 nr_pages += end - start;
c5dec1c3
FT
1217 }
1218
69838727
FT
1219 if (offset)
1220 nr_pages++;
1221
26e49cfc 1222 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1da177e4
LT
1223 if (!bmd)
1224 return ERR_PTR(-ENOMEM);
1225
26e49cfc
KO
1226 /*
1227 * We need to do a deep copy of the iov_iter including the iovecs.
1228 * The caller provided iov might point to an on-stack or otherwise
1229 * shortlived one.
1230 */
1231 bmd->is_our_pages = map_data ? 0 : 1;
1232 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1233 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1234 iter->nr_segs, iter->count);
1235
1da177e4 1236 ret = -ENOMEM;
a9e9dc24 1237 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1238 if (!bio)
1239 goto out_bmd;
1240
1da177e4 1241 ret = 0;
56c451f4
FT
1242
1243 if (map_data) {
e623ddb4 1244 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1245 i = map_data->offset / PAGE_SIZE;
1246 }
1da177e4 1247 while (len) {
e623ddb4 1248 unsigned int bytes = PAGE_SIZE;
1da177e4 1249
56c451f4
FT
1250 bytes -= offset;
1251
1da177e4
LT
1252 if (bytes > len)
1253 bytes = len;
1254
152e283f 1255 if (map_data) {
e623ddb4 1256 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1257 ret = -ENOMEM;
1258 break;
1259 }
e623ddb4
FT
1260
1261 page = map_data->pages[i / nr_pages];
1262 page += (i % nr_pages);
1263
1264 i++;
1265 } else {
152e283f 1266 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1267 if (!page) {
1268 ret = -ENOMEM;
1269 break;
1270 }
1da177e4
LT
1271 }
1272
56c451f4 1273 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1274 break;
1da177e4
LT
1275
1276 len -= bytes;
56c451f4 1277 offset = 0;
1da177e4
LT
1278 }
1279
1280 if (ret)
1281 goto cleanup;
1282
1283 /*
1284 * success
1285 */
26e49cfc 1286 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1287 (map_data && map_data->from_user)) {
9124d3fe 1288 ret = bio_copy_from_iter(bio, *iter);
c5dec1c3
FT
1289 if (ret)
1290 goto cleanup;
1da177e4
LT
1291 }
1292
26e49cfc 1293 bio->bi_private = bmd;
1da177e4
LT
1294 return bio;
1295cleanup:
152e283f 1296 if (!map_data)
1dfa0f68 1297 bio_free_pages(bio);
1da177e4
LT
1298 bio_put(bio);
1299out_bmd:
c8db4448 1300 kfree(bmd);
1da177e4
LT
1301 return ERR_PTR(ret);
1302}
1303
37f19e57
CH
1304/**
1305 * bio_map_user_iov - map user iovec into bio
1306 * @q: the struct request_queue for the bio
1307 * @iter: iovec iterator
1308 * @gfp_mask: memory allocation flags
1309 *
1310 * Map the user space address into a bio suitable for io to a block
1311 * device. Returns an error pointer in case of error.
1312 */
1313struct bio *bio_map_user_iov(struct request_queue *q,
1314 const struct iov_iter *iter,
1315 gfp_t gfp_mask)
1da177e4 1316{
26e49cfc 1317 int j;
f1970baf 1318 int nr_pages = 0;
1da177e4
LT
1319 struct page **pages;
1320 struct bio *bio;
f1970baf
JB
1321 int cur_page = 0;
1322 int ret, offset;
26e49cfc
KO
1323 struct iov_iter i;
1324 struct iovec iov;
1da177e4 1325
26e49cfc
KO
1326 iov_for_each(iov, i, *iter) {
1327 unsigned long uaddr = (unsigned long) iov.iov_base;
1328 unsigned long len = iov.iov_len;
f1970baf
JB
1329 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1330 unsigned long start = uaddr >> PAGE_SHIFT;
1331
cb4644ca
JA
1332 /*
1333 * Overflow, abort
1334 */
1335 if (end < start)
1336 return ERR_PTR(-EINVAL);
1337
f1970baf
JB
1338 nr_pages += end - start;
1339 /*
a441b0d0 1340 * buffer must be aligned to at least logical block size for now
f1970baf 1341 */
ad2d7225 1342 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1343 return ERR_PTR(-EINVAL);
1344 }
1345
1346 if (!nr_pages)
1da177e4
LT
1347 return ERR_PTR(-EINVAL);
1348
a9e9dc24 1349 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1350 if (!bio)
1351 return ERR_PTR(-ENOMEM);
1352
1353 ret = -ENOMEM;
a3bce90e 1354 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1355 if (!pages)
1356 goto out;
1357
26e49cfc
KO
1358 iov_for_each(iov, i, *iter) {
1359 unsigned long uaddr = (unsigned long) iov.iov_base;
1360 unsigned long len = iov.iov_len;
f1970baf
JB
1361 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1362 unsigned long start = uaddr >> PAGE_SHIFT;
1363 const int local_nr_pages = end - start;
1364 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1365
f5dd33c4 1366 ret = get_user_pages_fast(uaddr, local_nr_pages,
26e49cfc
KO
1367 (iter->type & WRITE) != WRITE,
1368 &pages[cur_page]);
99172157
JA
1369 if (ret < local_nr_pages) {
1370 ret = -EFAULT;
f1970baf 1371 goto out_unmap;
99172157 1372 }
f1970baf 1373
bd5cecea 1374 offset = offset_in_page(uaddr);
f1970baf
JB
1375 for (j = cur_page; j < page_limit; j++) {
1376 unsigned int bytes = PAGE_SIZE - offset;
1377
1378 if (len <= 0)
1379 break;
1380
1381 if (bytes > len)
1382 bytes = len;
1383
1384 /*
1385 * sorry...
1386 */
defd94b7
MC
1387 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1388 bytes)
f1970baf
JB
1389 break;
1390
1391 len -= bytes;
1392 offset = 0;
1393 }
1da177e4 1394
f1970baf 1395 cur_page = j;
1da177e4 1396 /*
f1970baf 1397 * release the pages we didn't map into the bio, if any
1da177e4 1398 */
f1970baf 1399 while (j < page_limit)
09cbfeaf 1400 put_page(pages[j++]);
1da177e4
LT
1401 }
1402
1da177e4
LT
1403 kfree(pages);
1404
b7c44ed9 1405 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1406
1407 /*
5fad1b64 1408 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1409 * it would normally disappear when its bi_end_io is run.
1410 * however, we need it for the unmap, so grab an extra
1411 * reference to it
1412 */
1413 bio_get(bio);
1da177e4 1414 return bio;
f1970baf
JB
1415
1416 out_unmap:
26e49cfc
KO
1417 for (j = 0; j < nr_pages; j++) {
1418 if (!pages[j])
f1970baf 1419 break;
09cbfeaf 1420 put_page(pages[j]);
f1970baf
JB
1421 }
1422 out:
1da177e4
LT
1423 kfree(pages);
1424 bio_put(bio);
1425 return ERR_PTR(ret);
1426}
1427
1da177e4
LT
1428static void __bio_unmap_user(struct bio *bio)
1429{
1430 struct bio_vec *bvec;
1431 int i;
1432
1433 /*
1434 * make sure we dirty pages we wrote to
1435 */
d74c6d51 1436 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1437 if (bio_data_dir(bio) == READ)
1438 set_page_dirty_lock(bvec->bv_page);
1439
09cbfeaf 1440 put_page(bvec->bv_page);
1da177e4
LT
1441 }
1442
1443 bio_put(bio);
1444}
1445
1446/**
1447 * bio_unmap_user - unmap a bio
1448 * @bio: the bio being unmapped
1449 *
5fad1b64
BVA
1450 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1451 * process context.
1da177e4
LT
1452 *
1453 * bio_unmap_user() may sleep.
1454 */
1455void bio_unmap_user(struct bio *bio)
1456{
1457 __bio_unmap_user(bio);
1458 bio_put(bio);
1459}
1460
4246a0b6 1461static void bio_map_kern_endio(struct bio *bio)
b823825e 1462{
b823825e 1463 bio_put(bio);
b823825e
JA
1464}
1465
75c72b83
CH
1466/**
1467 * bio_map_kern - map kernel address into bio
1468 * @q: the struct request_queue for the bio
1469 * @data: pointer to buffer to map
1470 * @len: length in bytes
1471 * @gfp_mask: allocation flags for bio allocation
1472 *
1473 * Map the kernel address into a bio suitable for io to a block
1474 * device. Returns an error pointer in case of error.
1475 */
1476struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1477 gfp_t gfp_mask)
df46b9a4
MC
1478{
1479 unsigned long kaddr = (unsigned long)data;
1480 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1481 unsigned long start = kaddr >> PAGE_SHIFT;
1482 const int nr_pages = end - start;
1483 int offset, i;
1484 struct bio *bio;
1485
a9e9dc24 1486 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1487 if (!bio)
1488 return ERR_PTR(-ENOMEM);
1489
1490 offset = offset_in_page(kaddr);
1491 for (i = 0; i < nr_pages; i++) {
1492 unsigned int bytes = PAGE_SIZE - offset;
1493
1494 if (len <= 0)
1495 break;
1496
1497 if (bytes > len)
1498 bytes = len;
1499
defd94b7 1500 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1501 offset) < bytes) {
1502 /* we don't support partial mappings */
1503 bio_put(bio);
1504 return ERR_PTR(-EINVAL);
1505 }
df46b9a4
MC
1506
1507 data += bytes;
1508 len -= bytes;
1509 offset = 0;
1510 }
1511
b823825e 1512 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1513 return bio;
1514}
a112a71d 1515EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1516
4246a0b6 1517static void bio_copy_kern_endio(struct bio *bio)
68154e90 1518{
1dfa0f68
CH
1519 bio_free_pages(bio);
1520 bio_put(bio);
1521}
1522
4246a0b6 1523static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1524{
42d2683a 1525 char *p = bio->bi_private;
1dfa0f68 1526 struct bio_vec *bvec;
68154e90
FT
1527 int i;
1528
d74c6d51 1529 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1530 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1531 p += bvec->bv_len;
68154e90
FT
1532 }
1533
4246a0b6 1534 bio_copy_kern_endio(bio);
68154e90
FT
1535}
1536
1537/**
1538 * bio_copy_kern - copy kernel address into bio
1539 * @q: the struct request_queue for the bio
1540 * @data: pointer to buffer to copy
1541 * @len: length in bytes
1542 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1543 * @reading: data direction is READ
68154e90
FT
1544 *
1545 * copy the kernel address into a bio suitable for io to a block
1546 * device. Returns an error pointer in case of error.
1547 */
1548struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1549 gfp_t gfp_mask, int reading)
1550{
42d2683a
CH
1551 unsigned long kaddr = (unsigned long)data;
1552 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1553 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1554 struct bio *bio;
1555 void *p = data;
1dfa0f68 1556 int nr_pages = 0;
68154e90 1557
42d2683a
CH
1558 /*
1559 * Overflow, abort
1560 */
1561 if (end < start)
1562 return ERR_PTR(-EINVAL);
68154e90 1563
42d2683a
CH
1564 nr_pages = end - start;
1565 bio = bio_kmalloc(gfp_mask, nr_pages);
1566 if (!bio)
1567 return ERR_PTR(-ENOMEM);
68154e90 1568
42d2683a
CH
1569 while (len) {
1570 struct page *page;
1571 unsigned int bytes = PAGE_SIZE;
68154e90 1572
42d2683a
CH
1573 if (bytes > len)
1574 bytes = len;
1575
1576 page = alloc_page(q->bounce_gfp | gfp_mask);
1577 if (!page)
1578 goto cleanup;
1579
1580 if (!reading)
1581 memcpy(page_address(page), p, bytes);
1582
1583 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1584 break;
1585
1586 len -= bytes;
1587 p += bytes;
68154e90
FT
1588 }
1589
1dfa0f68
CH
1590 if (reading) {
1591 bio->bi_end_io = bio_copy_kern_endio_read;
1592 bio->bi_private = data;
1593 } else {
1594 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1595 }
76029ff3 1596
68154e90 1597 return bio;
42d2683a
CH
1598
1599cleanup:
1dfa0f68 1600 bio_free_pages(bio);
42d2683a
CH
1601 bio_put(bio);
1602 return ERR_PTR(-ENOMEM);
68154e90
FT
1603}
1604
1da177e4
LT
1605/*
1606 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1607 * for performing direct-IO in BIOs.
1608 *
1609 * The problem is that we cannot run set_page_dirty() from interrupt context
1610 * because the required locks are not interrupt-safe. So what we can do is to
1611 * mark the pages dirty _before_ performing IO. And in interrupt context,
1612 * check that the pages are still dirty. If so, fine. If not, redirty them
1613 * in process context.
1614 *
1615 * We special-case compound pages here: normally this means reads into hugetlb
1616 * pages. The logic in here doesn't really work right for compound pages
1617 * because the VM does not uniformly chase down the head page in all cases.
1618 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1619 * handle them at all. So we skip compound pages here at an early stage.
1620 *
1621 * Note that this code is very hard to test under normal circumstances because
1622 * direct-io pins the pages with get_user_pages(). This makes
1623 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1624 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1625 * pagecache.
1626 *
1627 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1628 * deferred bio dirtying paths.
1629 */
1630
1631/*
1632 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1633 */
1634void bio_set_pages_dirty(struct bio *bio)
1635{
cb34e057 1636 struct bio_vec *bvec;
1da177e4
LT
1637 int i;
1638
cb34e057
KO
1639 bio_for_each_segment_all(bvec, bio, i) {
1640 struct page *page = bvec->bv_page;
1da177e4
LT
1641
1642 if (page && !PageCompound(page))
1643 set_page_dirty_lock(page);
1644 }
1645}
1646
86b6c7a7 1647static void bio_release_pages(struct bio *bio)
1da177e4 1648{
cb34e057 1649 struct bio_vec *bvec;
1da177e4
LT
1650 int i;
1651
cb34e057
KO
1652 bio_for_each_segment_all(bvec, bio, i) {
1653 struct page *page = bvec->bv_page;
1da177e4
LT
1654
1655 if (page)
1656 put_page(page);
1657 }
1658}
1659
1660/*
1661 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1662 * If they are, then fine. If, however, some pages are clean then they must
1663 * have been written out during the direct-IO read. So we take another ref on
1664 * the BIO and the offending pages and re-dirty the pages in process context.
1665 *
1666 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1667 * here on. It will run one put_page() against each page and will run one
1668 * bio_put() against the BIO.
1da177e4
LT
1669 */
1670
65f27f38 1671static void bio_dirty_fn(struct work_struct *work);
1da177e4 1672
65f27f38 1673static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1674static DEFINE_SPINLOCK(bio_dirty_lock);
1675static struct bio *bio_dirty_list;
1676
1677/*
1678 * This runs in process context
1679 */
65f27f38 1680static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1681{
1682 unsigned long flags;
1683 struct bio *bio;
1684
1685 spin_lock_irqsave(&bio_dirty_lock, flags);
1686 bio = bio_dirty_list;
1687 bio_dirty_list = NULL;
1688 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1689
1690 while (bio) {
1691 struct bio *next = bio->bi_private;
1692
1693 bio_set_pages_dirty(bio);
1694 bio_release_pages(bio);
1695 bio_put(bio);
1696 bio = next;
1697 }
1698}
1699
1700void bio_check_pages_dirty(struct bio *bio)
1701{
cb34e057 1702 struct bio_vec *bvec;
1da177e4
LT
1703 int nr_clean_pages = 0;
1704 int i;
1705
cb34e057
KO
1706 bio_for_each_segment_all(bvec, bio, i) {
1707 struct page *page = bvec->bv_page;
1da177e4
LT
1708
1709 if (PageDirty(page) || PageCompound(page)) {
09cbfeaf 1710 put_page(page);
cb34e057 1711 bvec->bv_page = NULL;
1da177e4
LT
1712 } else {
1713 nr_clean_pages++;
1714 }
1715 }
1716
1717 if (nr_clean_pages) {
1718 unsigned long flags;
1719
1720 spin_lock_irqsave(&bio_dirty_lock, flags);
1721 bio->bi_private = bio_dirty_list;
1722 bio_dirty_list = bio;
1723 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1724 schedule_work(&bio_dirty_work);
1725 } else {
1726 bio_put(bio);
1727 }
1728}
1729
394ffa50
GZ
1730void generic_start_io_acct(int rw, unsigned long sectors,
1731 struct hd_struct *part)
1732{
1733 int cpu = part_stat_lock();
1734
1735 part_round_stats(cpu, part);
1736 part_stat_inc(cpu, part, ios[rw]);
1737 part_stat_add(cpu, part, sectors[rw], sectors);
1738 part_inc_in_flight(part, rw);
1739
1740 part_stat_unlock();
1741}
1742EXPORT_SYMBOL(generic_start_io_acct);
1743
1744void generic_end_io_acct(int rw, struct hd_struct *part,
1745 unsigned long start_time)
1746{
1747 unsigned long duration = jiffies - start_time;
1748 int cpu = part_stat_lock();
1749
1750 part_stat_add(cpu, part, ticks[rw], duration);
1751 part_round_stats(cpu, part);
1752 part_dec_in_flight(part, rw);
1753
1754 part_stat_unlock();
1755}
1756EXPORT_SYMBOL(generic_end_io_acct);
1757
2d4dc890
IL
1758#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1759void bio_flush_dcache_pages(struct bio *bi)
1760{
7988613b
KO
1761 struct bio_vec bvec;
1762 struct bvec_iter iter;
2d4dc890 1763
7988613b
KO
1764 bio_for_each_segment(bvec, bi, iter)
1765 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1766}
1767EXPORT_SYMBOL(bio_flush_dcache_pages);
1768#endif
1769
c4cf5261
JA
1770static inline bool bio_remaining_done(struct bio *bio)
1771{
1772 /*
1773 * If we're not chaining, then ->__bi_remaining is always 1 and
1774 * we always end io on the first invocation.
1775 */
1776 if (!bio_flagged(bio, BIO_CHAIN))
1777 return true;
1778
1779 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1780
326e1dbb 1781 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1782 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1783 return true;
326e1dbb 1784 }
c4cf5261
JA
1785
1786 return false;
1787}
1788
1da177e4
LT
1789/**
1790 * bio_endio - end I/O on a bio
1791 * @bio: bio
1da177e4
LT
1792 *
1793 * Description:
4246a0b6
CH
1794 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1795 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1796 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1797 *
1798 * bio_endio() can be called several times on a bio that has been chained
1799 * using bio_chain(). The ->bi_end_io() function will only be called the
1800 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1801 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1802 **/
4246a0b6 1803void bio_endio(struct bio *bio)
1da177e4 1804{
ba8c6967 1805again:
2b885517 1806 if (!bio_remaining_done(bio))
ba8c6967 1807 return;
1da177e4 1808
ba8c6967
CH
1809 /*
1810 * Need to have a real endio function for chained bios, otherwise
1811 * various corner cases will break (like stacking block devices that
1812 * save/restore bi_end_io) - however, we want to avoid unbounded
1813 * recursion and blowing the stack. Tail call optimization would
1814 * handle this, but compiling with frame pointers also disables
1815 * gcc's sibling call optimization.
1816 */
1817 if (bio->bi_end_io == bio_chain_endio) {
1818 bio = __bio_chain_endio(bio);
1819 goto again;
196d38bc 1820 }
ba8c6967 1821
fbbaf700 1822 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
a462b950
BVA
1823 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio,
1824 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1825 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1826 }
1827
9e234eea 1828 blk_throtl_bio_endio(bio);
ba8c6967
CH
1829 if (bio->bi_end_io)
1830 bio->bi_end_io(bio);
1da177e4 1831}
a112a71d 1832EXPORT_SYMBOL(bio_endio);
1da177e4 1833
20d0189b
KO
1834/**
1835 * bio_split - split a bio
1836 * @bio: bio to split
1837 * @sectors: number of sectors to split from the front of @bio
1838 * @gfp: gfp mask
1839 * @bs: bio set to allocate from
1840 *
1841 * Allocates and returns a new bio which represents @sectors from the start of
1842 * @bio, and updates @bio to represent the remaining sectors.
1843 *
f3f5da62
MP
1844 * Unless this is a discard request the newly allocated bio will point
1845 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1846 * @bio is not freed before the split.
20d0189b
KO
1847 */
1848struct bio *bio_split(struct bio *bio, int sectors,
1849 gfp_t gfp, struct bio_set *bs)
1850{
1851 struct bio *split = NULL;
1852
1853 BUG_ON(sectors <= 0);
1854 BUG_ON(sectors >= bio_sectors(bio));
1855
f9d03f96 1856 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1857 if (!split)
1858 return NULL;
1859
1860 split->bi_iter.bi_size = sectors << 9;
1861
1862 if (bio_integrity(split))
1863 bio_integrity_trim(split, 0, sectors);
1864
1865 bio_advance(bio, split->bi_iter.bi_size);
1866
fbbaf700
N
1867 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1868 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1869
20d0189b
KO
1870 return split;
1871}
1872EXPORT_SYMBOL(bio_split);
1873
6678d83f
KO
1874/**
1875 * bio_trim - trim a bio
1876 * @bio: bio to trim
1877 * @offset: number of sectors to trim from the front of @bio
1878 * @size: size we want to trim @bio to, in sectors
1879 */
1880void bio_trim(struct bio *bio, int offset, int size)
1881{
1882 /* 'bio' is a cloned bio which we need to trim to match
1883 * the given offset and size.
6678d83f 1884 */
6678d83f
KO
1885
1886 size <<= 9;
4f024f37 1887 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1888 return;
1889
b7c44ed9 1890 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1891
1892 bio_advance(bio, offset << 9);
1893
4f024f37 1894 bio->bi_iter.bi_size = size;
6678d83f
KO
1895}
1896EXPORT_SYMBOL_GPL(bio_trim);
1897
1da177e4
LT
1898/*
1899 * create memory pools for biovec's in a bio_set.
1900 * use the global biovec slabs created for general use.
1901 */
a6c39cb4 1902mempool_t *biovec_create_pool(int pool_entries)
1da177e4 1903{
ed996a52 1904 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1905
9f060e22 1906 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1907}
1908
1909void bioset_free(struct bio_set *bs)
1910{
df2cb6da
KO
1911 if (bs->rescue_workqueue)
1912 destroy_workqueue(bs->rescue_workqueue);
1913
1da177e4
LT
1914 if (bs->bio_pool)
1915 mempool_destroy(bs->bio_pool);
1916
9f060e22
KO
1917 if (bs->bvec_pool)
1918 mempool_destroy(bs->bvec_pool);
1919
7878cba9 1920 bioset_integrity_free(bs);
bb799ca0 1921 bio_put_slab(bs);
1da177e4
LT
1922
1923 kfree(bs);
1924}
a112a71d 1925EXPORT_SYMBOL(bioset_free);
1da177e4 1926
011067b0
N
1927/**
1928 * bioset_create - Create a bio_set
1929 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1930 * @front_pad: Number of bytes to allocate in front of the returned bio
47e0fb46
N
1931 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1932 * and %BIOSET_NEED_RESCUER
011067b0
N
1933 *
1934 * Description:
1935 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1936 * to ask for a number of bytes to be allocated in front of the bio.
1937 * Front pad allocation is useful for embedding the bio inside
1938 * another structure, to avoid allocating extra data to go with the bio.
1939 * Note that the bio must be embedded at the END of that structure always,
1940 * or things will break badly.
1941 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1942 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
47e0fb46
N
1943 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1944 * dispatch queued requests when the mempool runs out of space.
011067b0
N
1945 *
1946 */
1947struct bio_set *bioset_create(unsigned int pool_size,
1948 unsigned int front_pad,
1949 int flags)
1da177e4 1950{
392ddc32 1951 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1952 struct bio_set *bs;
1da177e4 1953
1b434498 1954 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1955 if (!bs)
1956 return NULL;
1957
bb799ca0 1958 bs->front_pad = front_pad;
1b434498 1959
df2cb6da
KO
1960 spin_lock_init(&bs->rescue_lock);
1961 bio_list_init(&bs->rescue_list);
1962 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1963
392ddc32 1964 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1965 if (!bs->bio_slab) {
1966 kfree(bs);
1967 return NULL;
1968 }
1969
1970 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1971 if (!bs->bio_pool)
1972 goto bad;
1973
011067b0 1974 if (flags & BIOSET_NEED_BVECS) {
d8f429e1
JN
1975 bs->bvec_pool = biovec_create_pool(pool_size);
1976 if (!bs->bvec_pool)
1977 goto bad;
1978 }
df2cb6da 1979
47e0fb46
N
1980 if (!(flags & BIOSET_NEED_RESCUER))
1981 return bs;
1982
df2cb6da
KO
1983 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1984 if (!bs->rescue_workqueue)
1985 goto bad;
1da177e4 1986
df2cb6da 1987 return bs;
1da177e4
LT
1988bad:
1989 bioset_free(bs);
1990 return NULL;
1991}
a112a71d 1992EXPORT_SYMBOL(bioset_create);
1da177e4 1993
852c788f 1994#ifdef CONFIG_BLK_CGROUP
1d933cf0
TH
1995
1996/**
1997 * bio_associate_blkcg - associate a bio with the specified blkcg
1998 * @bio: target bio
1999 * @blkcg_css: css of the blkcg to associate
2000 *
2001 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2002 * treat @bio as if it were issued by a task which belongs to the blkcg.
2003 *
2004 * This function takes an extra reference of @blkcg_css which will be put
2005 * when @bio is released. The caller must own @bio and is responsible for
2006 * synchronizing calls to this function.
2007 */
2008int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2009{
2010 if (unlikely(bio->bi_css))
2011 return -EBUSY;
2012 css_get(blkcg_css);
2013 bio->bi_css = blkcg_css;
2014 return 0;
2015}
5aa2a96b 2016EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1d933cf0 2017
852c788f
TH
2018/**
2019 * bio_associate_current - associate a bio with %current
2020 * @bio: target bio
2021 *
2022 * Associate @bio with %current if it hasn't been associated yet. Block
2023 * layer will treat @bio as if it were issued by %current no matter which
2024 * task actually issues it.
2025 *
2026 * This function takes an extra reference of @task's io_context and blkcg
2027 * which will be put when @bio is released. The caller must own @bio,
2028 * ensure %current->io_context exists, and is responsible for synchronizing
2029 * calls to this function.
2030 */
2031int bio_associate_current(struct bio *bio)
2032{
2033 struct io_context *ioc;
852c788f 2034
1d933cf0 2035 if (bio->bi_css)
852c788f
TH
2036 return -EBUSY;
2037
2038 ioc = current->io_context;
2039 if (!ioc)
2040 return -ENOENT;
2041
852c788f
TH
2042 get_io_context_active(ioc);
2043 bio->bi_ioc = ioc;
c165b3e3 2044 bio->bi_css = task_get_css(current, io_cgrp_id);
852c788f
TH
2045 return 0;
2046}
5aa2a96b 2047EXPORT_SYMBOL_GPL(bio_associate_current);
852c788f
TH
2048
2049/**
2050 * bio_disassociate_task - undo bio_associate_current()
2051 * @bio: target bio
2052 */
2053void bio_disassociate_task(struct bio *bio)
2054{
2055 if (bio->bi_ioc) {
2056 put_io_context(bio->bi_ioc);
2057 bio->bi_ioc = NULL;
2058 }
2059 if (bio->bi_css) {
2060 css_put(bio->bi_css);
2061 bio->bi_css = NULL;
2062 }
2063}
2064
20bd723e
PV
2065/**
2066 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2067 * @dst: destination bio
2068 * @src: source bio
2069 */
2070void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2071{
2072 if (src->bi_css)
2073 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2074}
2075
852c788f
TH
2076#endif /* CONFIG_BLK_CGROUP */
2077
1da177e4
LT
2078static void __init biovec_init_slabs(void)
2079{
2080 int i;
2081
ed996a52 2082 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2083 int size;
2084 struct biovec_slab *bvs = bvec_slabs + i;
2085
a7fcd37c
JA
2086 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2087 bvs->slab = NULL;
2088 continue;
2089 }
a7fcd37c 2090
1da177e4
LT
2091 size = bvs->nr_vecs * sizeof(struct bio_vec);
2092 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2093 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2094 }
2095}
2096
2097static int __init init_bio(void)
2098{
bb799ca0
JA
2099 bio_slab_max = 2;
2100 bio_slab_nr = 0;
2101 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2102 if (!bio_slabs)
2103 panic("bio: can't allocate bios\n");
1da177e4 2104
7878cba9 2105 bio_integrity_init();
1da177e4
LT
2106 biovec_init_slabs();
2107
011067b0 2108 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1da177e4
LT
2109 if (!fs_bio_set)
2110 panic("bio: can't allocate bios\n");
2111
a91a2785
MP
2112 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2113 panic("bio: can't create integrity pool\n");
2114
1da177e4
LT
2115 return 0;
2116}
1da177e4 2117subsys_initcall(init_bio);