]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/bio.c
blk-throttle: add a simple idle detection
[mirror_ubuntu-artful-kernel.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
1da177e4 31
55782138 32#include <trace/events/block.h>
9e234eea 33#include "blk.h"
0bfc2455 34
392ddc32
JA
35/*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39#define BIO_INLINE_VECS 4
40
1da177e4
LT
41/*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
1da177e4 46#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
ed996a52 47static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
1da177e4
LT
48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49};
50#undef BV
51
1da177e4
LT
52/*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
51d654e1 56struct bio_set *fs_bio_set;
3f86a82a 57EXPORT_SYMBOL(fs_bio_set);
1da177e4 58
bb799ca0
JA
59/*
60 * Our slab pool management
61 */
62struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67};
68static DEFINE_MUTEX(bio_slab_lock);
69static struct bio_slab *bio_slabs;
70static unsigned int bio_slab_nr, bio_slab_max;
71
72static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73{
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
389d7b26 76 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 77 unsigned int new_bio_slab_max;
bb799ca0
JA
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
f06f135d 84 bslab = &bio_slabs[i];
bb799ca0
JA
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 100 new_bio_slab_max = bio_slab_max << 1;
389d7b26 101 new_bio_slabs = krealloc(bio_slabs,
386bc35a 102 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
103 GFP_KERNEL);
104 if (!new_bio_slabs)
bb799ca0 105 goto out_unlock;
386bc35a 106 bio_slab_max = new_bio_slab_max;
389d7b26 107 bio_slabs = new_bio_slabs;
bb799ca0
JA
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
117 if (!slab)
118 goto out_unlock;
119
bb799ca0
JA
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126}
127
128static void bio_put_slab(struct bio_set *bs)
129{
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153out:
154 mutex_unlock(&bio_slab_lock);
155}
156
7ba1ba12
MP
157unsigned int bvec_nr_vecs(unsigned short idx)
158{
159 return bvec_slabs[idx].nr_vecs;
160}
161
9f060e22 162void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 163{
ed996a52
CH
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 169
ed996a52 170 if (idx == BVEC_POOL_MAX) {
9f060e22 171 mempool_free(bv, pool);
ed996a52 172 } else {
bb799ca0
JA
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177}
178
9f060e22
KO
179struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
1da177e4
LT
181{
182 struct bio_vec *bvl;
1da177e4 183
7ff9345f
JA
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
ed996a52 214 if (*idx == BVEC_POOL_MAX) {
7ff9345f 215fallback:
9f060e22 216 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 220
0a0d96b0 221 /*
7ff9345f
JA
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
0a0d96b0 225 */
7ff9345f 226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 227
0a0d96b0 228 /*
d0164adc 229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 230 * is set, retry with the 1-entry mempool
0a0d96b0 231 */
7ff9345f 232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 234 *idx = BVEC_POOL_MAX;
7ff9345f
JA
235 goto fallback;
236 }
237 }
238
ed996a52 239 (*idx)++;
1da177e4
LT
240 return bvl;
241}
242
4254bba1 243static void __bio_free(struct bio *bio)
1da177e4 244{
4254bba1 245 bio_disassociate_task(bio);
1da177e4 246
7ba1ba12 247 if (bio_integrity(bio))
1e2a410f 248 bio_integrity_free(bio);
4254bba1 249}
7ba1ba12 250
4254bba1
KO
251static void bio_free(struct bio *bio)
252{
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
255
256 __bio_free(bio);
257
258 if (bs) {
ed996a52 259 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
260
261 /*
262 * If we have front padding, adjust the bio pointer before freeing
263 */
264 p = bio;
bb799ca0
JA
265 p -= bs->front_pad;
266
4254bba1
KO
267 mempool_free(p, bs->bio_pool);
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
271 }
3676347a
PO
272}
273
3a83f467
ML
274void bio_init(struct bio *bio, struct bio_vec *table,
275 unsigned short max_vecs)
1da177e4 276{
2b94de55 277 memset(bio, 0, sizeof(*bio));
c4cf5261 278 atomic_set(&bio->__bi_remaining, 1);
dac56212 279 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
280
281 bio->bi_io_vec = table;
282 bio->bi_max_vecs = max_vecs;
1da177e4 283}
a112a71d 284EXPORT_SYMBOL(bio_init);
1da177e4 285
f44b48c7
KO
286/**
287 * bio_reset - reinitialize a bio
288 * @bio: bio to reset
289 *
290 * Description:
291 * After calling bio_reset(), @bio will be in the same state as a freshly
292 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
293 * preserved are the ones that are initialized by bio_alloc_bioset(). See
294 * comment in struct bio.
295 */
296void bio_reset(struct bio *bio)
297{
298 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
299
4254bba1 300 __bio_free(bio);
f44b48c7
KO
301
302 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 303 bio->bi_flags = flags;
c4cf5261 304 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
305}
306EXPORT_SYMBOL(bio_reset);
307
38f8baae 308static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 309{
4246a0b6
CH
310 struct bio *parent = bio->bi_private;
311
af3e3a52
CH
312 if (!parent->bi_error)
313 parent->bi_error = bio->bi_error;
196d38bc 314 bio_put(bio);
38f8baae
CH
315 return parent;
316}
317
318static void bio_chain_endio(struct bio *bio)
319{
320 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
321}
322
323/**
324 * bio_chain - chain bio completions
1051a902
RD
325 * @bio: the target bio
326 * @parent: the @bio's parent bio
196d38bc
KO
327 *
328 * The caller won't have a bi_end_io called when @bio completes - instead,
329 * @parent's bi_end_io won't be called until both @parent and @bio have
330 * completed; the chained bio will also be freed when it completes.
331 *
332 * The caller must not set bi_private or bi_end_io in @bio.
333 */
334void bio_chain(struct bio *bio, struct bio *parent)
335{
336 BUG_ON(bio->bi_private || bio->bi_end_io);
337
338 bio->bi_private = parent;
339 bio->bi_end_io = bio_chain_endio;
c4cf5261 340 bio_inc_remaining(parent);
196d38bc
KO
341}
342EXPORT_SYMBOL(bio_chain);
343
df2cb6da
KO
344static void bio_alloc_rescue(struct work_struct *work)
345{
346 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
347 struct bio *bio;
348
349 while (1) {
350 spin_lock(&bs->rescue_lock);
351 bio = bio_list_pop(&bs->rescue_list);
352 spin_unlock(&bs->rescue_lock);
353
354 if (!bio)
355 break;
356
357 generic_make_request(bio);
358 }
359}
360
361static void punt_bios_to_rescuer(struct bio_set *bs)
362{
363 struct bio_list punt, nopunt;
364 struct bio *bio;
365
366 /*
367 * In order to guarantee forward progress we must punt only bios that
368 * were allocated from this bio_set; otherwise, if there was a bio on
369 * there for a stacking driver higher up in the stack, processing it
370 * could require allocating bios from this bio_set, and doing that from
371 * our own rescuer would be bad.
372 *
373 * Since bio lists are singly linked, pop them all instead of trying to
374 * remove from the middle of the list:
375 */
376
377 bio_list_init(&punt);
378 bio_list_init(&nopunt);
379
f5fe1b51 380 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 381 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 382 current->bio_list[0] = nopunt;
df2cb6da 383
f5fe1b51
N
384 bio_list_init(&nopunt);
385 while ((bio = bio_list_pop(&current->bio_list[1])))
386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 current->bio_list[1] = nopunt;
df2cb6da
KO
388
389 spin_lock(&bs->rescue_lock);
390 bio_list_merge(&bs->rescue_list, &punt);
391 spin_unlock(&bs->rescue_lock);
392
393 queue_work(bs->rescue_workqueue, &bs->rescue_work);
394}
395
1da177e4
LT
396/**
397 * bio_alloc_bioset - allocate a bio for I/O
398 * @gfp_mask: the GFP_ mask given to the slab allocator
399 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 400 * @bs: the bio_set to allocate from.
1da177e4
LT
401 *
402 * Description:
3f86a82a
KO
403 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
404 * backed by the @bs's mempool.
405 *
d0164adc
MG
406 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
407 * always be able to allocate a bio. This is due to the mempool guarantees.
408 * To make this work, callers must never allocate more than 1 bio at a time
409 * from this pool. Callers that need to allocate more than 1 bio must always
410 * submit the previously allocated bio for IO before attempting to allocate
411 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 412 *
df2cb6da
KO
413 * Note that when running under generic_make_request() (i.e. any block
414 * driver), bios are not submitted until after you return - see the code in
415 * generic_make_request() that converts recursion into iteration, to prevent
416 * stack overflows.
417 *
418 * This would normally mean allocating multiple bios under
419 * generic_make_request() would be susceptible to deadlocks, but we have
420 * deadlock avoidance code that resubmits any blocked bios from a rescuer
421 * thread.
422 *
423 * However, we do not guarantee forward progress for allocations from other
424 * mempools. Doing multiple allocations from the same mempool under
425 * generic_make_request() should be avoided - instead, use bio_set's front_pad
426 * for per bio allocations.
427 *
3f86a82a
KO
428 * RETURNS:
429 * Pointer to new bio on success, NULL on failure.
430 */
7a88fa19
DC
431struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
432 struct bio_set *bs)
1da177e4 433{
df2cb6da 434 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
435 unsigned front_pad;
436 unsigned inline_vecs;
34053979 437 struct bio_vec *bvl = NULL;
451a9ebf
TH
438 struct bio *bio;
439 void *p;
440
3f86a82a
KO
441 if (!bs) {
442 if (nr_iovecs > UIO_MAXIOV)
443 return NULL;
444
445 p = kmalloc(sizeof(struct bio) +
446 nr_iovecs * sizeof(struct bio_vec),
447 gfp_mask);
448 front_pad = 0;
449 inline_vecs = nr_iovecs;
450 } else {
d8f429e1
JN
451 /* should not use nobvec bioset for nr_iovecs > 0 */
452 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
453 return NULL;
df2cb6da
KO
454 /*
455 * generic_make_request() converts recursion to iteration; this
456 * means if we're running beneath it, any bios we allocate and
457 * submit will not be submitted (and thus freed) until after we
458 * return.
459 *
460 * This exposes us to a potential deadlock if we allocate
461 * multiple bios from the same bio_set() while running
462 * underneath generic_make_request(). If we were to allocate
463 * multiple bios (say a stacking block driver that was splitting
464 * bios), we would deadlock if we exhausted the mempool's
465 * reserve.
466 *
467 * We solve this, and guarantee forward progress, with a rescuer
468 * workqueue per bio_set. If we go to allocate and there are
469 * bios on current->bio_list, we first try the allocation
d0164adc
MG
470 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
471 * bios we would be blocking to the rescuer workqueue before
472 * we retry with the original gfp_flags.
df2cb6da
KO
473 */
474
f5fe1b51
N
475 if (current->bio_list &&
476 (!bio_list_empty(&current->bio_list[0]) ||
477 !bio_list_empty(&current->bio_list[1])))
d0164adc 478 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 479
3f86a82a 480 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
481 if (!p && gfp_mask != saved_gfp) {
482 punt_bios_to_rescuer(bs);
483 gfp_mask = saved_gfp;
484 p = mempool_alloc(bs->bio_pool, gfp_mask);
485 }
486
3f86a82a
KO
487 front_pad = bs->front_pad;
488 inline_vecs = BIO_INLINE_VECS;
489 }
490
451a9ebf
TH
491 if (unlikely(!p))
492 return NULL;
1da177e4 493
3f86a82a 494 bio = p + front_pad;
3a83f467 495 bio_init(bio, NULL, 0);
34053979 496
3f86a82a 497 if (nr_iovecs > inline_vecs) {
ed996a52
CH
498 unsigned long idx = 0;
499
9f060e22 500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
501 if (!bvl && gfp_mask != saved_gfp) {
502 punt_bios_to_rescuer(bs);
503 gfp_mask = saved_gfp;
9f060e22 504 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
505 }
506
34053979
IM
507 if (unlikely(!bvl))
508 goto err_free;
a38352e0 509
ed996a52 510 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
511 } else if (nr_iovecs) {
512 bvl = bio->bi_inline_vecs;
1da177e4 513 }
3f86a82a
KO
514
515 bio->bi_pool = bs;
34053979 516 bio->bi_max_vecs = nr_iovecs;
34053979 517 bio->bi_io_vec = bvl;
1da177e4 518 return bio;
34053979
IM
519
520err_free:
451a9ebf 521 mempool_free(p, bs->bio_pool);
34053979 522 return NULL;
1da177e4 523}
a112a71d 524EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 525
1da177e4
LT
526void zero_fill_bio(struct bio *bio)
527{
528 unsigned long flags;
7988613b
KO
529 struct bio_vec bv;
530 struct bvec_iter iter;
1da177e4 531
7988613b
KO
532 bio_for_each_segment(bv, bio, iter) {
533 char *data = bvec_kmap_irq(&bv, &flags);
534 memset(data, 0, bv.bv_len);
535 flush_dcache_page(bv.bv_page);
1da177e4
LT
536 bvec_kunmap_irq(data, &flags);
537 }
538}
539EXPORT_SYMBOL(zero_fill_bio);
540
541/**
542 * bio_put - release a reference to a bio
543 * @bio: bio to release reference to
544 *
545 * Description:
546 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 547 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
548 **/
549void bio_put(struct bio *bio)
550{
dac56212 551 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 552 bio_free(bio);
dac56212
JA
553 else {
554 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
555
556 /*
557 * last put frees it
558 */
559 if (atomic_dec_and_test(&bio->__bi_cnt))
560 bio_free(bio);
561 }
1da177e4 562}
a112a71d 563EXPORT_SYMBOL(bio_put);
1da177e4 564
165125e1 565inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
566{
567 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
568 blk_recount_segments(q, bio);
569
570 return bio->bi_phys_segments;
571}
a112a71d 572EXPORT_SYMBOL(bio_phys_segments);
1da177e4 573
59d276fe
KO
574/**
575 * __bio_clone_fast - clone a bio that shares the original bio's biovec
576 * @bio: destination bio
577 * @bio_src: bio to clone
578 *
579 * Clone a &bio. Caller will own the returned bio, but not
580 * the actual data it points to. Reference count of returned
581 * bio will be one.
582 *
583 * Caller must ensure that @bio_src is not freed before @bio.
584 */
585void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
586{
ed996a52 587 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
588
589 /*
590 * most users will be overriding ->bi_bdev with a new target,
591 * so we don't set nor calculate new physical/hw segment counts here
592 */
593 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 594 bio_set_flag(bio, BIO_CLONED);
1eff9d32 595 bio->bi_opf = bio_src->bi_opf;
59d276fe
KO
596 bio->bi_iter = bio_src->bi_iter;
597 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e
PV
598
599 bio_clone_blkcg_association(bio, bio_src);
59d276fe
KO
600}
601EXPORT_SYMBOL(__bio_clone_fast);
602
603/**
604 * bio_clone_fast - clone a bio that shares the original bio's biovec
605 * @bio: bio to clone
606 * @gfp_mask: allocation priority
607 * @bs: bio_set to allocate from
608 *
609 * Like __bio_clone_fast, only also allocates the returned bio
610 */
611struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
612{
613 struct bio *b;
614
615 b = bio_alloc_bioset(gfp_mask, 0, bs);
616 if (!b)
617 return NULL;
618
619 __bio_clone_fast(b, bio);
620
621 if (bio_integrity(bio)) {
622 int ret;
623
624 ret = bio_integrity_clone(b, bio, gfp_mask);
625
626 if (ret < 0) {
627 bio_put(b);
628 return NULL;
629 }
630 }
631
632 return b;
633}
634EXPORT_SYMBOL(bio_clone_fast);
635
c18a1e09
ML
636static struct bio *__bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
637 struct bio_set *bs, int offset,
638 int size)
1da177e4 639{
bdb53207
KO
640 struct bvec_iter iter;
641 struct bio_vec bv;
642 struct bio *bio;
c18a1e09
ML
643 struct bvec_iter iter_src = bio_src->bi_iter;
644
645 /* for supporting partial clone */
646 if (offset || size != bio_src->bi_iter.bi_size) {
647 bio_advance_iter(bio_src, &iter_src, offset);
648 iter_src.bi_size = size;
649 }
1da177e4 650
bdb53207
KO
651 /*
652 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
653 * bio_src->bi_io_vec to bio->bi_io_vec.
654 *
655 * We can't do that anymore, because:
656 *
657 * - The point of cloning the biovec is to produce a bio with a biovec
658 * the caller can modify: bi_idx and bi_bvec_done should be 0.
659 *
660 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
661 * we tried to clone the whole thing bio_alloc_bioset() would fail.
662 * But the clone should succeed as long as the number of biovecs we
663 * actually need to allocate is fewer than BIO_MAX_PAGES.
664 *
665 * - Lastly, bi_vcnt should not be looked at or relied upon by code
666 * that does not own the bio - reason being drivers don't use it for
667 * iterating over the biovec anymore, so expecting it to be kept up
668 * to date (i.e. for clones that share the parent biovec) is just
669 * asking for trouble and would force extra work on
670 * __bio_clone_fast() anyways.
671 */
672
c18a1e09
ML
673 bio = bio_alloc_bioset(gfp_mask, __bio_segments(bio_src,
674 &iter_src), bs);
bdb53207 675 if (!bio)
7ba1ba12 676 return NULL;
bdb53207 677 bio->bi_bdev = bio_src->bi_bdev;
1eff9d32 678 bio->bi_opf = bio_src->bi_opf;
bdb53207
KO
679 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
680 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 681
7afafc8a
AH
682 switch (bio_op(bio)) {
683 case REQ_OP_DISCARD:
684 case REQ_OP_SECURE_ERASE:
a6f0788e 685 case REQ_OP_WRITE_ZEROES:
7afafc8a
AH
686 break;
687 case REQ_OP_WRITE_SAME:
8423ae3d 688 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
7afafc8a
AH
689 break;
690 default:
c18a1e09 691 __bio_for_each_segment(bv, bio_src, iter, iter_src)
7afafc8a
AH
692 bio->bi_io_vec[bio->bi_vcnt++] = bv;
693 break;
8423ae3d
KO
694 }
695
bdb53207
KO
696 if (bio_integrity(bio_src)) {
697 int ret;
7ba1ba12 698
bdb53207 699 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 700 if (ret < 0) {
bdb53207 701 bio_put(bio);
7ba1ba12 702 return NULL;
059ea331 703 }
3676347a 704 }
1da177e4 705
20bd723e
PV
706 bio_clone_blkcg_association(bio, bio_src);
707
bdb53207 708 return bio;
1da177e4 709}
c18a1e09
ML
710
711/**
712 * bio_clone_bioset - clone a bio
713 * @bio_src: bio to clone
714 * @gfp_mask: allocation priority
715 * @bs: bio_set to allocate from
716 *
717 * Clone bio. Caller will own the returned bio, but not the actual data it
718 * points to. Reference count of returned bio will be one.
719 */
720struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
721 struct bio_set *bs)
722{
723 return __bio_clone_bioset(bio_src, gfp_mask, bs, 0,
724 bio_src->bi_iter.bi_size);
725}
bf800ef1 726EXPORT_SYMBOL(bio_clone_bioset);
1da177e4 727
c18a1e09
ML
728/**
729 * bio_clone_bioset_partial - clone a partial bio
730 * @bio_src: bio to clone
731 * @gfp_mask: allocation priority
732 * @bs: bio_set to allocate from
733 * @offset: cloned starting from the offset
734 * @size: size for the cloned bio
735 *
736 * Clone bio. Caller will own the returned bio, but not the actual data it
737 * points to. Reference count of returned bio will be one.
738 */
739struct bio *bio_clone_bioset_partial(struct bio *bio_src, gfp_t gfp_mask,
740 struct bio_set *bs, int offset,
741 int size)
742{
743 return __bio_clone_bioset(bio_src, gfp_mask, bs, offset, size);
744}
745EXPORT_SYMBOL(bio_clone_bioset_partial);
746
1da177e4 747/**
c66a14d0
KO
748 * bio_add_pc_page - attempt to add page to bio
749 * @q: the target queue
750 * @bio: destination bio
751 * @page: page to add
752 * @len: vec entry length
753 * @offset: vec entry offset
1da177e4 754 *
c66a14d0
KO
755 * Attempt to add a page to the bio_vec maplist. This can fail for a
756 * number of reasons, such as the bio being full or target block device
757 * limitations. The target block device must allow bio's up to PAGE_SIZE,
758 * so it is always possible to add a single page to an empty bio.
759 *
760 * This should only be used by REQ_PC bios.
1da177e4 761 */
c66a14d0
KO
762int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
763 *page, unsigned int len, unsigned int offset)
1da177e4
LT
764{
765 int retried_segments = 0;
766 struct bio_vec *bvec;
767
768 /*
769 * cloned bio must not modify vec list
770 */
771 if (unlikely(bio_flagged(bio, BIO_CLONED)))
772 return 0;
773
c66a14d0 774 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
775 return 0;
776
80cfd548
JA
777 /*
778 * For filesystems with a blocksize smaller than the pagesize
779 * we will often be called with the same page as last time and
780 * a consecutive offset. Optimize this special case.
781 */
782 if (bio->bi_vcnt > 0) {
783 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
784
785 if (page == prev->bv_page &&
786 offset == prev->bv_offset + prev->bv_len) {
787 prev->bv_len += len;
fcbf6a08 788 bio->bi_iter.bi_size += len;
80cfd548
JA
789 goto done;
790 }
66cb45aa
JA
791
792 /*
793 * If the queue doesn't support SG gaps and adding this
794 * offset would create a gap, disallow it.
795 */
03100aad 796 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 797 return 0;
80cfd548
JA
798 }
799
800 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
801 return 0;
802
803 /*
fcbf6a08
ML
804 * setup the new entry, we might clear it again later if we
805 * cannot add the page
806 */
807 bvec = &bio->bi_io_vec[bio->bi_vcnt];
808 bvec->bv_page = page;
809 bvec->bv_len = len;
810 bvec->bv_offset = offset;
811 bio->bi_vcnt++;
812 bio->bi_phys_segments++;
813 bio->bi_iter.bi_size += len;
814
815 /*
816 * Perform a recount if the number of segments is greater
817 * than queue_max_segments(q).
1da177e4
LT
818 */
819
fcbf6a08 820 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
821
822 if (retried_segments)
fcbf6a08 823 goto failed;
1da177e4
LT
824
825 retried_segments = 1;
826 blk_recount_segments(q, bio);
827 }
828
1da177e4 829 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 830 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
b7c44ed9 831 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 832
80cfd548 833 done:
1da177e4 834 return len;
fcbf6a08
ML
835
836 failed:
837 bvec->bv_page = NULL;
838 bvec->bv_len = 0;
839 bvec->bv_offset = 0;
840 bio->bi_vcnt--;
841 bio->bi_iter.bi_size -= len;
842 blk_recount_segments(q, bio);
843 return 0;
1da177e4 844}
a112a71d 845EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 846
1da177e4
LT
847/**
848 * bio_add_page - attempt to add page to bio
849 * @bio: destination bio
850 * @page: page to add
851 * @len: vec entry length
852 * @offset: vec entry offset
853 *
c66a14d0
KO
854 * Attempt to add a page to the bio_vec maplist. This will only fail
855 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1da177e4 856 */
c66a14d0
KO
857int bio_add_page(struct bio *bio, struct page *page,
858 unsigned int len, unsigned int offset)
1da177e4 859{
c66a14d0
KO
860 struct bio_vec *bv;
861
862 /*
863 * cloned bio must not modify vec list
864 */
865 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
866 return 0;
762380ad 867
c66a14d0
KO
868 /*
869 * For filesystems with a blocksize smaller than the pagesize
870 * we will often be called with the same page as last time and
871 * a consecutive offset. Optimize this special case.
872 */
873 if (bio->bi_vcnt > 0) {
874 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 875
c66a14d0
KO
876 if (page == bv->bv_page &&
877 offset == bv->bv_offset + bv->bv_len) {
878 bv->bv_len += len;
879 goto done;
880 }
881 }
882
883 if (bio->bi_vcnt >= bio->bi_max_vecs)
884 return 0;
885
886 bv = &bio->bi_io_vec[bio->bi_vcnt];
887 bv->bv_page = page;
888 bv->bv_len = len;
889 bv->bv_offset = offset;
890
891 bio->bi_vcnt++;
892done:
893 bio->bi_iter.bi_size += len;
894 return len;
1da177e4 895}
a112a71d 896EXPORT_SYMBOL(bio_add_page);
1da177e4 897
2cefe4db
KO
898/**
899 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
900 * @bio: bio to add pages to
901 * @iter: iov iterator describing the region to be mapped
902 *
903 * Pins as many pages from *iter and appends them to @bio's bvec array. The
904 * pages will have to be released using put_page() when done.
905 */
906int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
907{
908 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
909 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
910 struct page **pages = (struct page **)bv;
911 size_t offset, diff;
912 ssize_t size;
913
914 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
915 if (unlikely(size <= 0))
916 return size ? size : -EFAULT;
917 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
918
919 /*
920 * Deep magic below: We need to walk the pinned pages backwards
921 * because we are abusing the space allocated for the bio_vecs
922 * for the page array. Because the bio_vecs are larger than the
923 * page pointers by definition this will always work. But it also
924 * means we can't use bio_add_page, so any changes to it's semantics
925 * need to be reflected here as well.
926 */
927 bio->bi_iter.bi_size += size;
928 bio->bi_vcnt += nr_pages;
929
930 diff = (nr_pages * PAGE_SIZE - offset) - size;
931 while (nr_pages--) {
932 bv[nr_pages].bv_page = pages[nr_pages];
933 bv[nr_pages].bv_len = PAGE_SIZE;
934 bv[nr_pages].bv_offset = 0;
935 }
936
937 bv[0].bv_offset += offset;
938 bv[0].bv_len -= offset;
939 if (diff)
940 bv[bio->bi_vcnt - 1].bv_len -= diff;
941
942 iov_iter_advance(iter, size);
943 return 0;
944}
945EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
946
9e882242
KO
947struct submit_bio_ret {
948 struct completion event;
949 int error;
950};
951
4246a0b6 952static void submit_bio_wait_endio(struct bio *bio)
9e882242
KO
953{
954 struct submit_bio_ret *ret = bio->bi_private;
955
4246a0b6 956 ret->error = bio->bi_error;
9e882242
KO
957 complete(&ret->event);
958}
959
960/**
961 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
962 * @bio: The &struct bio which describes the I/O
963 *
964 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
965 * bio_endio() on failure.
966 */
4e49ea4a 967int submit_bio_wait(struct bio *bio)
9e882242
KO
968{
969 struct submit_bio_ret ret;
970
9e882242
KO
971 init_completion(&ret.event);
972 bio->bi_private = &ret;
973 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 974 bio->bi_opf |= REQ_SYNC;
4e49ea4a 975 submit_bio(bio);
d57d6115 976 wait_for_completion_io(&ret.event);
9e882242
KO
977
978 return ret.error;
979}
980EXPORT_SYMBOL(submit_bio_wait);
981
054bdf64
KO
982/**
983 * bio_advance - increment/complete a bio by some number of bytes
984 * @bio: bio to advance
985 * @bytes: number of bytes to complete
986 *
987 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
988 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
989 * be updated on the last bvec as well.
990 *
991 * @bio will then represent the remaining, uncompleted portion of the io.
992 */
993void bio_advance(struct bio *bio, unsigned bytes)
994{
995 if (bio_integrity(bio))
996 bio_integrity_advance(bio, bytes);
997
4550dd6c 998 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
999}
1000EXPORT_SYMBOL(bio_advance);
1001
a0787606
KO
1002/**
1003 * bio_alloc_pages - allocates a single page for each bvec in a bio
1004 * @bio: bio to allocate pages for
1005 * @gfp_mask: flags for allocation
1006 *
1007 * Allocates pages up to @bio->bi_vcnt.
1008 *
1009 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
1010 * freed.
1011 */
1012int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
1013{
1014 int i;
1015 struct bio_vec *bv;
1016
1017 bio_for_each_segment_all(bv, bio, i) {
1018 bv->bv_page = alloc_page(gfp_mask);
1019 if (!bv->bv_page) {
1020 while (--bv >= bio->bi_io_vec)
1021 __free_page(bv->bv_page);
1022 return -ENOMEM;
1023 }
1024 }
1025
1026 return 0;
1027}
1028EXPORT_SYMBOL(bio_alloc_pages);
1029
16ac3d63
KO
1030/**
1031 * bio_copy_data - copy contents of data buffers from one chain of bios to
1032 * another
1033 * @src: source bio list
1034 * @dst: destination bio list
1035 *
1036 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1037 * @src and @dst as linked lists of bios.
1038 *
1039 * Stops when it reaches the end of either @src or @dst - that is, copies
1040 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1041 */
1042void bio_copy_data(struct bio *dst, struct bio *src)
1043{
1cb9dda4
KO
1044 struct bvec_iter src_iter, dst_iter;
1045 struct bio_vec src_bv, dst_bv;
16ac3d63 1046 void *src_p, *dst_p;
1cb9dda4 1047 unsigned bytes;
16ac3d63 1048
1cb9dda4
KO
1049 src_iter = src->bi_iter;
1050 dst_iter = dst->bi_iter;
16ac3d63
KO
1051
1052 while (1) {
1cb9dda4
KO
1053 if (!src_iter.bi_size) {
1054 src = src->bi_next;
1055 if (!src)
1056 break;
16ac3d63 1057
1cb9dda4 1058 src_iter = src->bi_iter;
16ac3d63
KO
1059 }
1060
1cb9dda4
KO
1061 if (!dst_iter.bi_size) {
1062 dst = dst->bi_next;
1063 if (!dst)
1064 break;
16ac3d63 1065
1cb9dda4 1066 dst_iter = dst->bi_iter;
16ac3d63
KO
1067 }
1068
1cb9dda4
KO
1069 src_bv = bio_iter_iovec(src, src_iter);
1070 dst_bv = bio_iter_iovec(dst, dst_iter);
1071
1072 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1073
1cb9dda4
KO
1074 src_p = kmap_atomic(src_bv.bv_page);
1075 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1076
1cb9dda4
KO
1077 memcpy(dst_p + dst_bv.bv_offset,
1078 src_p + src_bv.bv_offset,
16ac3d63
KO
1079 bytes);
1080
1081 kunmap_atomic(dst_p);
1082 kunmap_atomic(src_p);
1083
1cb9dda4
KO
1084 bio_advance_iter(src, &src_iter, bytes);
1085 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
1086 }
1087}
1088EXPORT_SYMBOL(bio_copy_data);
1089
1da177e4 1090struct bio_map_data {
152e283f 1091 int is_our_pages;
26e49cfc
KO
1092 struct iov_iter iter;
1093 struct iovec iov[];
1da177e4
LT
1094};
1095
7410b3c6 1096static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
76029ff3 1097 gfp_t gfp_mask)
1da177e4 1098{
f3f63c1c
JA
1099 if (iov_count > UIO_MAXIOV)
1100 return NULL;
1da177e4 1101
c8db4448 1102 return kmalloc(sizeof(struct bio_map_data) +
26e49cfc 1103 sizeof(struct iovec) * iov_count, gfp_mask);
1da177e4
LT
1104}
1105
9124d3fe
DP
1106/**
1107 * bio_copy_from_iter - copy all pages from iov_iter to bio
1108 * @bio: The &struct bio which describes the I/O as destination
1109 * @iter: iov_iter as source
1110 *
1111 * Copy all pages from iov_iter to bio.
1112 * Returns 0 on success, or error on failure.
1113 */
1114static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
c5dec1c3 1115{
9124d3fe 1116 int i;
c5dec1c3 1117 struct bio_vec *bvec;
c5dec1c3 1118
d74c6d51 1119 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1120 ssize_t ret;
c5dec1c3 1121
9124d3fe
DP
1122 ret = copy_page_from_iter(bvec->bv_page,
1123 bvec->bv_offset,
1124 bvec->bv_len,
1125 &iter);
1126
1127 if (!iov_iter_count(&iter))
1128 break;
1129
1130 if (ret < bvec->bv_len)
1131 return -EFAULT;
c5dec1c3
FT
1132 }
1133
9124d3fe
DP
1134 return 0;
1135}
1136
1137/**
1138 * bio_copy_to_iter - copy all pages from bio to iov_iter
1139 * @bio: The &struct bio which describes the I/O as source
1140 * @iter: iov_iter as destination
1141 *
1142 * Copy all pages from bio to iov_iter.
1143 * Returns 0 on success, or error on failure.
1144 */
1145static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1146{
1147 int i;
1148 struct bio_vec *bvec;
1149
1150 bio_for_each_segment_all(bvec, bio, i) {
1151 ssize_t ret;
1152
1153 ret = copy_page_to_iter(bvec->bv_page,
1154 bvec->bv_offset,
1155 bvec->bv_len,
1156 &iter);
1157
1158 if (!iov_iter_count(&iter))
1159 break;
1160
1161 if (ret < bvec->bv_len)
1162 return -EFAULT;
1163 }
1164
1165 return 0;
c5dec1c3
FT
1166}
1167
491221f8 1168void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1169{
1170 struct bio_vec *bvec;
1171 int i;
1172
1173 bio_for_each_segment_all(bvec, bio, i)
1174 __free_page(bvec->bv_page);
1175}
491221f8 1176EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1177
1da177e4
LT
1178/**
1179 * bio_uncopy_user - finish previously mapped bio
1180 * @bio: bio being terminated
1181 *
ddad8dd0 1182 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1183 * to user space in case of a read.
1184 */
1185int bio_uncopy_user(struct bio *bio)
1186{
1187 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1188 int ret = 0;
1da177e4 1189
35dc2483
RD
1190 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1191 /*
1192 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1193 * don't copy into a random user address space, just free
1194 * and return -EINTR so user space doesn't expect any data.
35dc2483 1195 */
2d99b55d
HR
1196 if (!current->mm)
1197 ret = -EINTR;
1198 else if (bio_data_dir(bio) == READ)
9124d3fe 1199 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1200 if (bmd->is_our_pages)
1201 bio_free_pages(bio);
35dc2483 1202 }
c8db4448 1203 kfree(bmd);
1da177e4
LT
1204 bio_put(bio);
1205 return ret;
1206}
1207
1208/**
c5dec1c3 1209 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1210 * @q: destination block queue
1211 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1212 * @iter: iovec iterator
1213 * @gfp_mask: memory allocation flags
1da177e4
LT
1214 *
1215 * Prepares and returns a bio for indirect user io, bouncing data
1216 * to/from kernel pages as necessary. Must be paired with
1217 * call bio_uncopy_user() on io completion.
1218 */
152e283f
FT
1219struct bio *bio_copy_user_iov(struct request_queue *q,
1220 struct rq_map_data *map_data,
26e49cfc
KO
1221 const struct iov_iter *iter,
1222 gfp_t gfp_mask)
1da177e4 1223{
1da177e4 1224 struct bio_map_data *bmd;
1da177e4
LT
1225 struct page *page;
1226 struct bio *bio;
1227 int i, ret;
c5dec1c3 1228 int nr_pages = 0;
26e49cfc 1229 unsigned int len = iter->count;
bd5cecea 1230 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1231
26e49cfc 1232 for (i = 0; i < iter->nr_segs; i++) {
c5dec1c3
FT
1233 unsigned long uaddr;
1234 unsigned long end;
1235 unsigned long start;
1236
26e49cfc
KO
1237 uaddr = (unsigned long) iter->iov[i].iov_base;
1238 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1239 >> PAGE_SHIFT;
c5dec1c3
FT
1240 start = uaddr >> PAGE_SHIFT;
1241
cb4644ca
JA
1242 /*
1243 * Overflow, abort
1244 */
1245 if (end < start)
1246 return ERR_PTR(-EINVAL);
1247
c5dec1c3 1248 nr_pages += end - start;
c5dec1c3
FT
1249 }
1250
69838727
FT
1251 if (offset)
1252 nr_pages++;
1253
26e49cfc 1254 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1da177e4
LT
1255 if (!bmd)
1256 return ERR_PTR(-ENOMEM);
1257
26e49cfc
KO
1258 /*
1259 * We need to do a deep copy of the iov_iter including the iovecs.
1260 * The caller provided iov might point to an on-stack or otherwise
1261 * shortlived one.
1262 */
1263 bmd->is_our_pages = map_data ? 0 : 1;
1264 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1265 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1266 iter->nr_segs, iter->count);
1267
1da177e4 1268 ret = -ENOMEM;
a9e9dc24 1269 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1270 if (!bio)
1271 goto out_bmd;
1272
1da177e4 1273 ret = 0;
56c451f4
FT
1274
1275 if (map_data) {
e623ddb4 1276 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1277 i = map_data->offset / PAGE_SIZE;
1278 }
1da177e4 1279 while (len) {
e623ddb4 1280 unsigned int bytes = PAGE_SIZE;
1da177e4 1281
56c451f4
FT
1282 bytes -= offset;
1283
1da177e4
LT
1284 if (bytes > len)
1285 bytes = len;
1286
152e283f 1287 if (map_data) {
e623ddb4 1288 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1289 ret = -ENOMEM;
1290 break;
1291 }
e623ddb4
FT
1292
1293 page = map_data->pages[i / nr_pages];
1294 page += (i % nr_pages);
1295
1296 i++;
1297 } else {
152e283f 1298 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1299 if (!page) {
1300 ret = -ENOMEM;
1301 break;
1302 }
1da177e4
LT
1303 }
1304
56c451f4 1305 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1306 break;
1da177e4
LT
1307
1308 len -= bytes;
56c451f4 1309 offset = 0;
1da177e4
LT
1310 }
1311
1312 if (ret)
1313 goto cleanup;
1314
1315 /*
1316 * success
1317 */
26e49cfc 1318 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1319 (map_data && map_data->from_user)) {
9124d3fe 1320 ret = bio_copy_from_iter(bio, *iter);
c5dec1c3
FT
1321 if (ret)
1322 goto cleanup;
1da177e4
LT
1323 }
1324
26e49cfc 1325 bio->bi_private = bmd;
1da177e4
LT
1326 return bio;
1327cleanup:
152e283f 1328 if (!map_data)
1dfa0f68 1329 bio_free_pages(bio);
1da177e4
LT
1330 bio_put(bio);
1331out_bmd:
c8db4448 1332 kfree(bmd);
1da177e4
LT
1333 return ERR_PTR(ret);
1334}
1335
37f19e57
CH
1336/**
1337 * bio_map_user_iov - map user iovec into bio
1338 * @q: the struct request_queue for the bio
1339 * @iter: iovec iterator
1340 * @gfp_mask: memory allocation flags
1341 *
1342 * Map the user space address into a bio suitable for io to a block
1343 * device. Returns an error pointer in case of error.
1344 */
1345struct bio *bio_map_user_iov(struct request_queue *q,
1346 const struct iov_iter *iter,
1347 gfp_t gfp_mask)
1da177e4 1348{
26e49cfc 1349 int j;
f1970baf 1350 int nr_pages = 0;
1da177e4
LT
1351 struct page **pages;
1352 struct bio *bio;
f1970baf
JB
1353 int cur_page = 0;
1354 int ret, offset;
26e49cfc
KO
1355 struct iov_iter i;
1356 struct iovec iov;
1da177e4 1357
26e49cfc
KO
1358 iov_for_each(iov, i, *iter) {
1359 unsigned long uaddr = (unsigned long) iov.iov_base;
1360 unsigned long len = iov.iov_len;
f1970baf
JB
1361 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1362 unsigned long start = uaddr >> PAGE_SHIFT;
1363
cb4644ca
JA
1364 /*
1365 * Overflow, abort
1366 */
1367 if (end < start)
1368 return ERR_PTR(-EINVAL);
1369
f1970baf
JB
1370 nr_pages += end - start;
1371 /*
a441b0d0 1372 * buffer must be aligned to at least logical block size for now
f1970baf 1373 */
ad2d7225 1374 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1375 return ERR_PTR(-EINVAL);
1376 }
1377
1378 if (!nr_pages)
1da177e4
LT
1379 return ERR_PTR(-EINVAL);
1380
a9e9dc24 1381 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1382 if (!bio)
1383 return ERR_PTR(-ENOMEM);
1384
1385 ret = -ENOMEM;
a3bce90e 1386 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1387 if (!pages)
1388 goto out;
1389
26e49cfc
KO
1390 iov_for_each(iov, i, *iter) {
1391 unsigned long uaddr = (unsigned long) iov.iov_base;
1392 unsigned long len = iov.iov_len;
f1970baf
JB
1393 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1394 unsigned long start = uaddr >> PAGE_SHIFT;
1395 const int local_nr_pages = end - start;
1396 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1397
f5dd33c4 1398 ret = get_user_pages_fast(uaddr, local_nr_pages,
26e49cfc
KO
1399 (iter->type & WRITE) != WRITE,
1400 &pages[cur_page]);
99172157
JA
1401 if (ret < local_nr_pages) {
1402 ret = -EFAULT;
f1970baf 1403 goto out_unmap;
99172157 1404 }
f1970baf 1405
bd5cecea 1406 offset = offset_in_page(uaddr);
f1970baf
JB
1407 for (j = cur_page; j < page_limit; j++) {
1408 unsigned int bytes = PAGE_SIZE - offset;
1409
1410 if (len <= 0)
1411 break;
1412
1413 if (bytes > len)
1414 bytes = len;
1415
1416 /*
1417 * sorry...
1418 */
defd94b7
MC
1419 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1420 bytes)
f1970baf
JB
1421 break;
1422
1423 len -= bytes;
1424 offset = 0;
1425 }
1da177e4 1426
f1970baf 1427 cur_page = j;
1da177e4 1428 /*
f1970baf 1429 * release the pages we didn't map into the bio, if any
1da177e4 1430 */
f1970baf 1431 while (j < page_limit)
09cbfeaf 1432 put_page(pages[j++]);
1da177e4
LT
1433 }
1434
1da177e4
LT
1435 kfree(pages);
1436
b7c44ed9 1437 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1438
1439 /*
5fad1b64 1440 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1441 * it would normally disappear when its bi_end_io is run.
1442 * however, we need it for the unmap, so grab an extra
1443 * reference to it
1444 */
1445 bio_get(bio);
1da177e4 1446 return bio;
f1970baf
JB
1447
1448 out_unmap:
26e49cfc
KO
1449 for (j = 0; j < nr_pages; j++) {
1450 if (!pages[j])
f1970baf 1451 break;
09cbfeaf 1452 put_page(pages[j]);
f1970baf
JB
1453 }
1454 out:
1da177e4
LT
1455 kfree(pages);
1456 bio_put(bio);
1457 return ERR_PTR(ret);
1458}
1459
1da177e4
LT
1460static void __bio_unmap_user(struct bio *bio)
1461{
1462 struct bio_vec *bvec;
1463 int i;
1464
1465 /*
1466 * make sure we dirty pages we wrote to
1467 */
d74c6d51 1468 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1469 if (bio_data_dir(bio) == READ)
1470 set_page_dirty_lock(bvec->bv_page);
1471
09cbfeaf 1472 put_page(bvec->bv_page);
1da177e4
LT
1473 }
1474
1475 bio_put(bio);
1476}
1477
1478/**
1479 * bio_unmap_user - unmap a bio
1480 * @bio: the bio being unmapped
1481 *
5fad1b64
BVA
1482 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1483 * process context.
1da177e4
LT
1484 *
1485 * bio_unmap_user() may sleep.
1486 */
1487void bio_unmap_user(struct bio *bio)
1488{
1489 __bio_unmap_user(bio);
1490 bio_put(bio);
1491}
1492
4246a0b6 1493static void bio_map_kern_endio(struct bio *bio)
b823825e 1494{
b823825e 1495 bio_put(bio);
b823825e
JA
1496}
1497
75c72b83
CH
1498/**
1499 * bio_map_kern - map kernel address into bio
1500 * @q: the struct request_queue for the bio
1501 * @data: pointer to buffer to map
1502 * @len: length in bytes
1503 * @gfp_mask: allocation flags for bio allocation
1504 *
1505 * Map the kernel address into a bio suitable for io to a block
1506 * device. Returns an error pointer in case of error.
1507 */
1508struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1509 gfp_t gfp_mask)
df46b9a4
MC
1510{
1511 unsigned long kaddr = (unsigned long)data;
1512 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1513 unsigned long start = kaddr >> PAGE_SHIFT;
1514 const int nr_pages = end - start;
1515 int offset, i;
1516 struct bio *bio;
1517
a9e9dc24 1518 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1519 if (!bio)
1520 return ERR_PTR(-ENOMEM);
1521
1522 offset = offset_in_page(kaddr);
1523 for (i = 0; i < nr_pages; i++) {
1524 unsigned int bytes = PAGE_SIZE - offset;
1525
1526 if (len <= 0)
1527 break;
1528
1529 if (bytes > len)
1530 bytes = len;
1531
defd94b7 1532 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1533 offset) < bytes) {
1534 /* we don't support partial mappings */
1535 bio_put(bio);
1536 return ERR_PTR(-EINVAL);
1537 }
df46b9a4
MC
1538
1539 data += bytes;
1540 len -= bytes;
1541 offset = 0;
1542 }
1543
b823825e 1544 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1545 return bio;
1546}
a112a71d 1547EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1548
4246a0b6 1549static void bio_copy_kern_endio(struct bio *bio)
68154e90 1550{
1dfa0f68
CH
1551 bio_free_pages(bio);
1552 bio_put(bio);
1553}
1554
4246a0b6 1555static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1556{
42d2683a 1557 char *p = bio->bi_private;
1dfa0f68 1558 struct bio_vec *bvec;
68154e90
FT
1559 int i;
1560
d74c6d51 1561 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1562 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1563 p += bvec->bv_len;
68154e90
FT
1564 }
1565
4246a0b6 1566 bio_copy_kern_endio(bio);
68154e90
FT
1567}
1568
1569/**
1570 * bio_copy_kern - copy kernel address into bio
1571 * @q: the struct request_queue for the bio
1572 * @data: pointer to buffer to copy
1573 * @len: length in bytes
1574 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1575 * @reading: data direction is READ
68154e90
FT
1576 *
1577 * copy the kernel address into a bio suitable for io to a block
1578 * device. Returns an error pointer in case of error.
1579 */
1580struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1581 gfp_t gfp_mask, int reading)
1582{
42d2683a
CH
1583 unsigned long kaddr = (unsigned long)data;
1584 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1585 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1586 struct bio *bio;
1587 void *p = data;
1dfa0f68 1588 int nr_pages = 0;
68154e90 1589
42d2683a
CH
1590 /*
1591 * Overflow, abort
1592 */
1593 if (end < start)
1594 return ERR_PTR(-EINVAL);
68154e90 1595
42d2683a
CH
1596 nr_pages = end - start;
1597 bio = bio_kmalloc(gfp_mask, nr_pages);
1598 if (!bio)
1599 return ERR_PTR(-ENOMEM);
68154e90 1600
42d2683a
CH
1601 while (len) {
1602 struct page *page;
1603 unsigned int bytes = PAGE_SIZE;
68154e90 1604
42d2683a
CH
1605 if (bytes > len)
1606 bytes = len;
1607
1608 page = alloc_page(q->bounce_gfp | gfp_mask);
1609 if (!page)
1610 goto cleanup;
1611
1612 if (!reading)
1613 memcpy(page_address(page), p, bytes);
1614
1615 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1616 break;
1617
1618 len -= bytes;
1619 p += bytes;
68154e90
FT
1620 }
1621
1dfa0f68
CH
1622 if (reading) {
1623 bio->bi_end_io = bio_copy_kern_endio_read;
1624 bio->bi_private = data;
1625 } else {
1626 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1627 }
76029ff3 1628
68154e90 1629 return bio;
42d2683a
CH
1630
1631cleanup:
1dfa0f68 1632 bio_free_pages(bio);
42d2683a
CH
1633 bio_put(bio);
1634 return ERR_PTR(-ENOMEM);
68154e90
FT
1635}
1636
1da177e4
LT
1637/*
1638 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1639 * for performing direct-IO in BIOs.
1640 *
1641 * The problem is that we cannot run set_page_dirty() from interrupt context
1642 * because the required locks are not interrupt-safe. So what we can do is to
1643 * mark the pages dirty _before_ performing IO. And in interrupt context,
1644 * check that the pages are still dirty. If so, fine. If not, redirty them
1645 * in process context.
1646 *
1647 * We special-case compound pages here: normally this means reads into hugetlb
1648 * pages. The logic in here doesn't really work right for compound pages
1649 * because the VM does not uniformly chase down the head page in all cases.
1650 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1651 * handle them at all. So we skip compound pages here at an early stage.
1652 *
1653 * Note that this code is very hard to test under normal circumstances because
1654 * direct-io pins the pages with get_user_pages(). This makes
1655 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1656 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1657 * pagecache.
1658 *
1659 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1660 * deferred bio dirtying paths.
1661 */
1662
1663/*
1664 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1665 */
1666void bio_set_pages_dirty(struct bio *bio)
1667{
cb34e057 1668 struct bio_vec *bvec;
1da177e4
LT
1669 int i;
1670
cb34e057
KO
1671 bio_for_each_segment_all(bvec, bio, i) {
1672 struct page *page = bvec->bv_page;
1da177e4
LT
1673
1674 if (page && !PageCompound(page))
1675 set_page_dirty_lock(page);
1676 }
1677}
1678
86b6c7a7 1679static void bio_release_pages(struct bio *bio)
1da177e4 1680{
cb34e057 1681 struct bio_vec *bvec;
1da177e4
LT
1682 int i;
1683
cb34e057
KO
1684 bio_for_each_segment_all(bvec, bio, i) {
1685 struct page *page = bvec->bv_page;
1da177e4
LT
1686
1687 if (page)
1688 put_page(page);
1689 }
1690}
1691
1692/*
1693 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1694 * If they are, then fine. If, however, some pages are clean then they must
1695 * have been written out during the direct-IO read. So we take another ref on
1696 * the BIO and the offending pages and re-dirty the pages in process context.
1697 *
1698 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1699 * here on. It will run one put_page() against each page and will run one
1700 * bio_put() against the BIO.
1da177e4
LT
1701 */
1702
65f27f38 1703static void bio_dirty_fn(struct work_struct *work);
1da177e4 1704
65f27f38 1705static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1706static DEFINE_SPINLOCK(bio_dirty_lock);
1707static struct bio *bio_dirty_list;
1708
1709/*
1710 * This runs in process context
1711 */
65f27f38 1712static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1713{
1714 unsigned long flags;
1715 struct bio *bio;
1716
1717 spin_lock_irqsave(&bio_dirty_lock, flags);
1718 bio = bio_dirty_list;
1719 bio_dirty_list = NULL;
1720 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1721
1722 while (bio) {
1723 struct bio *next = bio->bi_private;
1724
1725 bio_set_pages_dirty(bio);
1726 bio_release_pages(bio);
1727 bio_put(bio);
1728 bio = next;
1729 }
1730}
1731
1732void bio_check_pages_dirty(struct bio *bio)
1733{
cb34e057 1734 struct bio_vec *bvec;
1da177e4
LT
1735 int nr_clean_pages = 0;
1736 int i;
1737
cb34e057
KO
1738 bio_for_each_segment_all(bvec, bio, i) {
1739 struct page *page = bvec->bv_page;
1da177e4
LT
1740
1741 if (PageDirty(page) || PageCompound(page)) {
09cbfeaf 1742 put_page(page);
cb34e057 1743 bvec->bv_page = NULL;
1da177e4
LT
1744 } else {
1745 nr_clean_pages++;
1746 }
1747 }
1748
1749 if (nr_clean_pages) {
1750 unsigned long flags;
1751
1752 spin_lock_irqsave(&bio_dirty_lock, flags);
1753 bio->bi_private = bio_dirty_list;
1754 bio_dirty_list = bio;
1755 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1756 schedule_work(&bio_dirty_work);
1757 } else {
1758 bio_put(bio);
1759 }
1760}
1761
394ffa50
GZ
1762void generic_start_io_acct(int rw, unsigned long sectors,
1763 struct hd_struct *part)
1764{
1765 int cpu = part_stat_lock();
1766
1767 part_round_stats(cpu, part);
1768 part_stat_inc(cpu, part, ios[rw]);
1769 part_stat_add(cpu, part, sectors[rw], sectors);
1770 part_inc_in_flight(part, rw);
1771
1772 part_stat_unlock();
1773}
1774EXPORT_SYMBOL(generic_start_io_acct);
1775
1776void generic_end_io_acct(int rw, struct hd_struct *part,
1777 unsigned long start_time)
1778{
1779 unsigned long duration = jiffies - start_time;
1780 int cpu = part_stat_lock();
1781
1782 part_stat_add(cpu, part, ticks[rw], duration);
1783 part_round_stats(cpu, part);
1784 part_dec_in_flight(part, rw);
1785
1786 part_stat_unlock();
1787}
1788EXPORT_SYMBOL(generic_end_io_acct);
1789
2d4dc890
IL
1790#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1791void bio_flush_dcache_pages(struct bio *bi)
1792{
7988613b
KO
1793 struct bio_vec bvec;
1794 struct bvec_iter iter;
2d4dc890 1795
7988613b
KO
1796 bio_for_each_segment(bvec, bi, iter)
1797 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1798}
1799EXPORT_SYMBOL(bio_flush_dcache_pages);
1800#endif
1801
c4cf5261
JA
1802static inline bool bio_remaining_done(struct bio *bio)
1803{
1804 /*
1805 * If we're not chaining, then ->__bi_remaining is always 1 and
1806 * we always end io on the first invocation.
1807 */
1808 if (!bio_flagged(bio, BIO_CHAIN))
1809 return true;
1810
1811 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1812
326e1dbb 1813 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1814 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1815 return true;
326e1dbb 1816 }
c4cf5261
JA
1817
1818 return false;
1819}
1820
1da177e4
LT
1821/**
1822 * bio_endio - end I/O on a bio
1823 * @bio: bio
1da177e4
LT
1824 *
1825 * Description:
4246a0b6
CH
1826 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1827 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1828 * bio unless they own it and thus know that it has an end_io function.
1da177e4 1829 **/
4246a0b6 1830void bio_endio(struct bio *bio)
1da177e4 1831{
ba8c6967 1832again:
2b885517 1833 if (!bio_remaining_done(bio))
ba8c6967 1834 return;
1da177e4 1835
ba8c6967
CH
1836 /*
1837 * Need to have a real endio function for chained bios, otherwise
1838 * various corner cases will break (like stacking block devices that
1839 * save/restore bi_end_io) - however, we want to avoid unbounded
1840 * recursion and blowing the stack. Tail call optimization would
1841 * handle this, but compiling with frame pointers also disables
1842 * gcc's sibling call optimization.
1843 */
1844 if (bio->bi_end_io == bio_chain_endio) {
1845 bio = __bio_chain_endio(bio);
1846 goto again;
196d38bc 1847 }
ba8c6967 1848
9e234eea 1849 blk_throtl_bio_endio(bio);
ba8c6967
CH
1850 if (bio->bi_end_io)
1851 bio->bi_end_io(bio);
1da177e4 1852}
a112a71d 1853EXPORT_SYMBOL(bio_endio);
1da177e4 1854
20d0189b
KO
1855/**
1856 * bio_split - split a bio
1857 * @bio: bio to split
1858 * @sectors: number of sectors to split from the front of @bio
1859 * @gfp: gfp mask
1860 * @bs: bio set to allocate from
1861 *
1862 * Allocates and returns a new bio which represents @sectors from the start of
1863 * @bio, and updates @bio to represent the remaining sectors.
1864 *
f3f5da62
MP
1865 * Unless this is a discard request the newly allocated bio will point
1866 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1867 * @bio is not freed before the split.
20d0189b
KO
1868 */
1869struct bio *bio_split(struct bio *bio, int sectors,
1870 gfp_t gfp, struct bio_set *bs)
1871{
1872 struct bio *split = NULL;
1873
1874 BUG_ON(sectors <= 0);
1875 BUG_ON(sectors >= bio_sectors(bio));
1876
f9d03f96 1877 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1878 if (!split)
1879 return NULL;
1880
1881 split->bi_iter.bi_size = sectors << 9;
1882
1883 if (bio_integrity(split))
1884 bio_integrity_trim(split, 0, sectors);
1885
1886 bio_advance(bio, split->bi_iter.bi_size);
1887
1888 return split;
1889}
1890EXPORT_SYMBOL(bio_split);
1891
6678d83f
KO
1892/**
1893 * bio_trim - trim a bio
1894 * @bio: bio to trim
1895 * @offset: number of sectors to trim from the front of @bio
1896 * @size: size we want to trim @bio to, in sectors
1897 */
1898void bio_trim(struct bio *bio, int offset, int size)
1899{
1900 /* 'bio' is a cloned bio which we need to trim to match
1901 * the given offset and size.
6678d83f 1902 */
6678d83f
KO
1903
1904 size <<= 9;
4f024f37 1905 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1906 return;
1907
b7c44ed9 1908 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1909
1910 bio_advance(bio, offset << 9);
1911
4f024f37 1912 bio->bi_iter.bi_size = size;
6678d83f
KO
1913}
1914EXPORT_SYMBOL_GPL(bio_trim);
1915
1da177e4
LT
1916/*
1917 * create memory pools for biovec's in a bio_set.
1918 * use the global biovec slabs created for general use.
1919 */
a6c39cb4 1920mempool_t *biovec_create_pool(int pool_entries)
1da177e4 1921{
ed996a52 1922 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1923
9f060e22 1924 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1925}
1926
1927void bioset_free(struct bio_set *bs)
1928{
df2cb6da
KO
1929 if (bs->rescue_workqueue)
1930 destroy_workqueue(bs->rescue_workqueue);
1931
1da177e4
LT
1932 if (bs->bio_pool)
1933 mempool_destroy(bs->bio_pool);
1934
9f060e22
KO
1935 if (bs->bvec_pool)
1936 mempool_destroy(bs->bvec_pool);
1937
7878cba9 1938 bioset_integrity_free(bs);
bb799ca0 1939 bio_put_slab(bs);
1da177e4
LT
1940
1941 kfree(bs);
1942}
a112a71d 1943EXPORT_SYMBOL(bioset_free);
1da177e4 1944
d8f429e1
JN
1945static struct bio_set *__bioset_create(unsigned int pool_size,
1946 unsigned int front_pad,
1947 bool create_bvec_pool)
1da177e4 1948{
392ddc32 1949 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1950 struct bio_set *bs;
1da177e4 1951
1b434498 1952 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1953 if (!bs)
1954 return NULL;
1955
bb799ca0 1956 bs->front_pad = front_pad;
1b434498 1957
df2cb6da
KO
1958 spin_lock_init(&bs->rescue_lock);
1959 bio_list_init(&bs->rescue_list);
1960 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1961
392ddc32 1962 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1963 if (!bs->bio_slab) {
1964 kfree(bs);
1965 return NULL;
1966 }
1967
1968 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1969 if (!bs->bio_pool)
1970 goto bad;
1971
d8f429e1
JN
1972 if (create_bvec_pool) {
1973 bs->bvec_pool = biovec_create_pool(pool_size);
1974 if (!bs->bvec_pool)
1975 goto bad;
1976 }
df2cb6da
KO
1977
1978 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1979 if (!bs->rescue_workqueue)
1980 goto bad;
1da177e4 1981
df2cb6da 1982 return bs;
1da177e4
LT
1983bad:
1984 bioset_free(bs);
1985 return NULL;
1986}
d8f429e1
JN
1987
1988/**
1989 * bioset_create - Create a bio_set
1990 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1991 * @front_pad: Number of bytes to allocate in front of the returned bio
1992 *
1993 * Description:
1994 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1995 * to ask for a number of bytes to be allocated in front of the bio.
1996 * Front pad allocation is useful for embedding the bio inside
1997 * another structure, to avoid allocating extra data to go with the bio.
1998 * Note that the bio must be embedded at the END of that structure always,
1999 * or things will break badly.
2000 */
2001struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
2002{
2003 return __bioset_create(pool_size, front_pad, true);
2004}
a112a71d 2005EXPORT_SYMBOL(bioset_create);
1da177e4 2006
d8f429e1
JN
2007/**
2008 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
2009 * @pool_size: Number of bio to cache in the mempool
2010 * @front_pad: Number of bytes to allocate in front of the returned bio
2011 *
2012 * Description:
2013 * Same functionality as bioset_create() except that mempool is not
2014 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
2015 */
2016struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
2017{
2018 return __bioset_create(pool_size, front_pad, false);
2019}
2020EXPORT_SYMBOL(bioset_create_nobvec);
2021
852c788f 2022#ifdef CONFIG_BLK_CGROUP
1d933cf0
TH
2023
2024/**
2025 * bio_associate_blkcg - associate a bio with the specified blkcg
2026 * @bio: target bio
2027 * @blkcg_css: css of the blkcg to associate
2028 *
2029 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2030 * treat @bio as if it were issued by a task which belongs to the blkcg.
2031 *
2032 * This function takes an extra reference of @blkcg_css which will be put
2033 * when @bio is released. The caller must own @bio and is responsible for
2034 * synchronizing calls to this function.
2035 */
2036int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2037{
2038 if (unlikely(bio->bi_css))
2039 return -EBUSY;
2040 css_get(blkcg_css);
2041 bio->bi_css = blkcg_css;
2042 return 0;
2043}
5aa2a96b 2044EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1d933cf0 2045
852c788f
TH
2046/**
2047 * bio_associate_current - associate a bio with %current
2048 * @bio: target bio
2049 *
2050 * Associate @bio with %current if it hasn't been associated yet. Block
2051 * layer will treat @bio as if it were issued by %current no matter which
2052 * task actually issues it.
2053 *
2054 * This function takes an extra reference of @task's io_context and blkcg
2055 * which will be put when @bio is released. The caller must own @bio,
2056 * ensure %current->io_context exists, and is responsible for synchronizing
2057 * calls to this function.
2058 */
2059int bio_associate_current(struct bio *bio)
2060{
2061 struct io_context *ioc;
852c788f 2062
1d933cf0 2063 if (bio->bi_css)
852c788f
TH
2064 return -EBUSY;
2065
2066 ioc = current->io_context;
2067 if (!ioc)
2068 return -ENOENT;
2069
852c788f
TH
2070 get_io_context_active(ioc);
2071 bio->bi_ioc = ioc;
c165b3e3 2072 bio->bi_css = task_get_css(current, io_cgrp_id);
852c788f
TH
2073 return 0;
2074}
5aa2a96b 2075EXPORT_SYMBOL_GPL(bio_associate_current);
852c788f
TH
2076
2077/**
2078 * bio_disassociate_task - undo bio_associate_current()
2079 * @bio: target bio
2080 */
2081void bio_disassociate_task(struct bio *bio)
2082{
2083 if (bio->bi_ioc) {
2084 put_io_context(bio->bi_ioc);
2085 bio->bi_ioc = NULL;
2086 }
2087 if (bio->bi_css) {
2088 css_put(bio->bi_css);
2089 bio->bi_css = NULL;
2090 }
2091}
2092
20bd723e
PV
2093/**
2094 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2095 * @dst: destination bio
2096 * @src: source bio
2097 */
2098void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2099{
2100 if (src->bi_css)
2101 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2102}
2103
852c788f
TH
2104#endif /* CONFIG_BLK_CGROUP */
2105
1da177e4
LT
2106static void __init biovec_init_slabs(void)
2107{
2108 int i;
2109
ed996a52 2110 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2111 int size;
2112 struct biovec_slab *bvs = bvec_slabs + i;
2113
a7fcd37c
JA
2114 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2115 bvs->slab = NULL;
2116 continue;
2117 }
a7fcd37c 2118
1da177e4
LT
2119 size = bvs->nr_vecs * sizeof(struct bio_vec);
2120 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2121 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2122 }
2123}
2124
2125static int __init init_bio(void)
2126{
bb799ca0
JA
2127 bio_slab_max = 2;
2128 bio_slab_nr = 0;
2129 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2130 if (!bio_slabs)
2131 panic("bio: can't allocate bios\n");
1da177e4 2132
7878cba9 2133 bio_integrity_init();
1da177e4
LT
2134 biovec_init_slabs();
2135
bb799ca0 2136 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
2137 if (!fs_bio_set)
2138 panic("bio: can't allocate bios\n");
2139
a91a2785
MP
2140 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2141 panic("bio: can't create integrity pool\n");
2142
1da177e4
LT
2143 return 0;
2144}
1da177e4 2145subsys_initcall(init_bio);