]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - block/blk-core.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
18fbda91 36#include <linux/debugfs.h>
55782138
LZ
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/block.h>
1da177e4 40
8324aa91 41#include "blk.h"
43a5e4e2 42#include "blk-mq.h"
bd166ef1 43#include "blk-mq-sched.h"
87760e5e 44#include "blk-wbt.h"
8324aa91 45
18fbda91
OS
46#ifdef CONFIG_DEBUG_FS
47struct dentry *blk_debugfs_root;
48#endif
49
d07335e5 50EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 51EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 52EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 53EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 54EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 55
a73f730d
TH
56DEFINE_IDA(blk_queue_ida);
57
1da177e4
LT
58/*
59 * For the allocated request tables
60 */
d674d414 61struct kmem_cache *request_cachep;
1da177e4
LT
62
63/*
64 * For queue allocation
65 */
6728cb0e 66struct kmem_cache *blk_requestq_cachep;
1da177e4 67
1da177e4
LT
68/*
69 * Controlling structure to kblockd
70 */
ff856bad 71static struct workqueue_struct *kblockd_workqueue;
1da177e4 72
d40f75a0
TH
73static void blk_clear_congested(struct request_list *rl, int sync)
74{
d40f75a0
TH
75#ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77#else
482cf79c
TH
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
dc3b17cc 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
84#endif
85}
86
87static void blk_set_congested(struct request_list *rl, int sync)
88{
d40f75a0
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91#else
482cf79c
TH
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
dc3b17cc 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
d40f75a0
TH
95#endif
96}
97
8324aa91 98void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
99{
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111}
112
2a4aa30c 113void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 114{
1afb20f3
FT
115 memset(rq, 0, sizeof(*rq));
116
1da177e4 117 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 118 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 119 rq->cpu = -1;
63a71386 120 rq->q = q;
a2dec7b3 121 rq->__sector = (sector_t) -1;
2e662b65
JA
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
63a71386 124 rq->tag = -1;
bd166ef1 125 rq->internal_tag = -1;
b243ddcb 126 rq->start_time = jiffies;
9195291e 127 set_start_time_ns(rq);
09e099d4 128 rq->part = NULL;
1da177e4 129}
2a4aa30c 130EXPORT_SYMBOL(blk_rq_init);
1da177e4 131
2a842aca
CH
132static const struct {
133 int errno;
134 const char *name;
135} blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
03a07c92 146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
2a842aca 147
4e4cbee9
CH
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
2a842aca
CH
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153};
154
155blk_status_t errno_to_blk_status(int errno)
156{
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165}
166EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168int blk_status_to_errno(blk_status_t status)
169{
170 int idx = (__force int)status;
171
34bd9c1c 172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
173 return -EIO;
174 return blk_errors[idx].errno;
175}
176EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178static void print_req_error(struct request *req, blk_status_t status)
179{
180 int idx = (__force int)status;
181
34bd9c1c 182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
2a842aca
CH
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189}
190
5bb23a68 191static void req_bio_endio(struct request *rq, struct bio *bio,
2a842aca 192 unsigned int nbytes, blk_status_t error)
1da177e4 193{
78d8e58a 194 if (error)
4e4cbee9 195 bio->bi_status = error;
797e7dbb 196
e8064021 197 if (unlikely(rq->rq_flags & RQF_QUIET))
b7c44ed9 198 bio_set_flag(bio, BIO_QUIET);
08bafc03 199
f79ea416 200 bio_advance(bio, nbytes);
7ba1ba12 201
143a87f4 202 /* don't actually finish bio if it's part of flush sequence */
e8064021 203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
4246a0b6 204 bio_endio(bio);
1da177e4 205}
1da177e4 206
1da177e4
LT
207void blk_dump_rq_flags(struct request *rq, char *msg)
208{
aebf526b
CH
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
5953316d 211 (unsigned long long) rq->cmd_flags);
1da177e4 212
83096ebf
TH
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 218}
1da177e4
LT
219EXPORT_SYMBOL(blk_dump_rq_flags);
220
3cca6dc1 221static void blk_delay_work(struct work_struct *work)
1da177e4 222{
3cca6dc1 223 struct request_queue *q;
1da177e4 224
3cca6dc1
JA
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
24ecfbe2 227 __blk_run_queue(q);
3cca6dc1 228 spin_unlock_irq(q->queue_lock);
1da177e4 229}
1da177e4
LT
230
231/**
3cca6dc1
JA
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
1da177e4
LT
235 *
236 * Description:
3cca6dc1
JA
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
2fff8a92 239 * restarted around the specified time.
3cca6dc1
JA
240 */
241void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 242{
2fff8a92 243 lockdep_assert_held(q->queue_lock);
332ebbf7 244 WARN_ON_ONCE(q->mq_ops);
2fff8a92 245
70460571
BVA
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
2ad8b1ef 249}
3cca6dc1 250EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 251
21491412
JA
252/**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261void blk_start_queue_async(struct request_queue *q)
262{
2fff8a92 263 lockdep_assert_held(q->queue_lock);
332ebbf7 264 WARN_ON_ONCE(q->mq_ops);
2fff8a92 265
21491412
JA
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268}
269EXPORT_SYMBOL(blk_start_queue_async);
270
1da177e4
LT
271/**
272 * blk_start_queue - restart a previously stopped queue
165125e1 273 * @q: The &struct request_queue in question
1da177e4
LT
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
2fff8a92 278 * entered. Also see blk_stop_queue().
1da177e4 279 **/
165125e1 280void blk_start_queue(struct request_queue *q)
1da177e4 281{
2fff8a92 282 lockdep_assert_held(q->queue_lock);
4309af10 283 WARN_ON(!in_interrupt() && !irqs_disabled());
332ebbf7 284 WARN_ON_ONCE(q->mq_ops);
a038e253 285
75ad23bc 286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 287 __blk_run_queue(q);
1da177e4 288}
1da177e4
LT
289EXPORT_SYMBOL(blk_start_queue);
290
291/**
292 * blk_stop_queue - stop a queue
165125e1 293 * @q: The &struct request_queue in question
1da177e4
LT
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
2fff8a92 303 * blk_start_queue() to restart queue operations.
1da177e4 304 **/
165125e1 305void blk_stop_queue(struct request_queue *q)
1da177e4 306{
2fff8a92 307 lockdep_assert_held(q->queue_lock);
332ebbf7 308 WARN_ON_ONCE(q->mq_ops);
2fff8a92 309
136b5721 310 cancel_delayed_work(&q->delay_work);
75ad23bc 311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
312}
313EXPORT_SYMBOL(blk_stop_queue);
314
315/**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
59c51591 324 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
da527770 328 * This function does not cancel any asynchronous activity arising
da3dae54 329 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 330 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 331 *
1da177e4
LT
332 */
333void blk_sync_queue(struct request_queue *q)
334{
70ed28b9 335 del_timer_sync(&q->timeout);
f04c1fe7
ML
336
337 if (q->mq_ops) {
338 struct blk_mq_hw_ctx *hctx;
339 int i;
340
21c6e939 341 queue_for_each_hw_ctx(q, hctx, i)
9f993737 342 cancel_delayed_work_sync(&hctx->run_work);
f04c1fe7
ML
343 } else {
344 cancel_delayed_work_sync(&q->delay_work);
345 }
1da177e4
LT
346}
347EXPORT_SYMBOL(blk_sync_queue);
348
c246e80d
BVA
349/**
350 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
351 * @q: The queue to run
352 *
353 * Description:
354 * Invoke request handling on a queue if there are any pending requests.
355 * May be used to restart request handling after a request has completed.
356 * This variant runs the queue whether or not the queue has been
357 * stopped. Must be called with the queue lock held and interrupts
358 * disabled. See also @blk_run_queue.
359 */
360inline void __blk_run_queue_uncond(struct request_queue *q)
361{
2fff8a92 362 lockdep_assert_held(q->queue_lock);
332ebbf7 363 WARN_ON_ONCE(q->mq_ops);
2fff8a92 364
c246e80d
BVA
365 if (unlikely(blk_queue_dead(q)))
366 return;
367
24faf6f6
BVA
368 /*
369 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
370 * the queue lock internally. As a result multiple threads may be
371 * running such a request function concurrently. Keep track of the
372 * number of active request_fn invocations such that blk_drain_queue()
373 * can wait until all these request_fn calls have finished.
374 */
375 q->request_fn_active++;
c246e80d 376 q->request_fn(q);
24faf6f6 377 q->request_fn_active--;
c246e80d 378}
a7928c15 379EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 380
1da177e4 381/**
80a4b58e 382 * __blk_run_queue - run a single device queue
1da177e4 383 * @q: The queue to run
80a4b58e
JA
384 *
385 * Description:
2fff8a92 386 * See @blk_run_queue.
1da177e4 387 */
24ecfbe2 388void __blk_run_queue(struct request_queue *q)
1da177e4 389{
2fff8a92 390 lockdep_assert_held(q->queue_lock);
332ebbf7 391 WARN_ON_ONCE(q->mq_ops);
2fff8a92 392
a538cd03
TH
393 if (unlikely(blk_queue_stopped(q)))
394 return;
395
c246e80d 396 __blk_run_queue_uncond(q);
75ad23bc
NP
397}
398EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 399
24ecfbe2
CH
400/**
401 * blk_run_queue_async - run a single device queue in workqueue context
402 * @q: The queue to run
403 *
404 * Description:
405 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
2fff8a92
BVA
406 * of us.
407 *
408 * Note:
409 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
410 * has canceled q->delay_work, callers must hold the queue lock to avoid
411 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
24ecfbe2
CH
412 */
413void blk_run_queue_async(struct request_queue *q)
414{
2fff8a92 415 lockdep_assert_held(q->queue_lock);
332ebbf7 416 WARN_ON_ONCE(q->mq_ops);
2fff8a92 417
70460571 418 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 419 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 420}
c21e6beb 421EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 422
75ad23bc
NP
423/**
424 * blk_run_queue - run a single device queue
425 * @q: The queue to run
80a4b58e
JA
426 *
427 * Description:
428 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 429 * May be used to restart queueing when a request has completed.
75ad23bc
NP
430 */
431void blk_run_queue(struct request_queue *q)
432{
433 unsigned long flags;
434
332ebbf7
BVA
435 WARN_ON_ONCE(q->mq_ops);
436
75ad23bc 437 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 438 __blk_run_queue(q);
1da177e4
LT
439 spin_unlock_irqrestore(q->queue_lock, flags);
440}
441EXPORT_SYMBOL(blk_run_queue);
442
165125e1 443void blk_put_queue(struct request_queue *q)
483f4afc
AV
444{
445 kobject_put(&q->kobj);
446}
d86e0e83 447EXPORT_SYMBOL(blk_put_queue);
483f4afc 448
e3c78ca5 449/**
807592a4 450 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 451 * @q: queue to drain
c9a929dd 452 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 453 *
c9a929dd
TH
454 * Drain requests from @q. If @drain_all is set, all requests are drained.
455 * If not, only ELVPRIV requests are drained. The caller is responsible
456 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 457 */
807592a4
BVA
458static void __blk_drain_queue(struct request_queue *q, bool drain_all)
459 __releases(q->queue_lock)
460 __acquires(q->queue_lock)
e3c78ca5 461{
458f27a9
AH
462 int i;
463
807592a4 464 lockdep_assert_held(q->queue_lock);
332ebbf7 465 WARN_ON_ONCE(q->mq_ops);
807592a4 466
e3c78ca5 467 while (true) {
481a7d64 468 bool drain = false;
e3c78ca5 469
b855b04a
TH
470 /*
471 * The caller might be trying to drain @q before its
472 * elevator is initialized.
473 */
474 if (q->elevator)
475 elv_drain_elevator(q);
476
5efd6113 477 blkcg_drain_queue(q);
e3c78ca5 478
4eabc941
TH
479 /*
480 * This function might be called on a queue which failed
b855b04a
TH
481 * driver init after queue creation or is not yet fully
482 * active yet. Some drivers (e.g. fd and loop) get unhappy
483 * in such cases. Kick queue iff dispatch queue has
484 * something on it and @q has request_fn set.
4eabc941 485 */
b855b04a 486 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 487 __blk_run_queue(q);
c9a929dd 488
8a5ecdd4 489 drain |= q->nr_rqs_elvpriv;
24faf6f6 490 drain |= q->request_fn_active;
481a7d64
TH
491
492 /*
493 * Unfortunately, requests are queued at and tracked from
494 * multiple places and there's no single counter which can
495 * be drained. Check all the queues and counters.
496 */
497 if (drain_all) {
e97c293c 498 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
499 drain |= !list_empty(&q->queue_head);
500 for (i = 0; i < 2; i++) {
8a5ecdd4 501 drain |= q->nr_rqs[i];
481a7d64 502 drain |= q->in_flight[i];
7c94e1c1
ML
503 if (fq)
504 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
505 }
506 }
e3c78ca5 507
481a7d64 508 if (!drain)
e3c78ca5 509 break;
807592a4
BVA
510
511 spin_unlock_irq(q->queue_lock);
512
e3c78ca5 513 msleep(10);
807592a4
BVA
514
515 spin_lock_irq(q->queue_lock);
e3c78ca5 516 }
458f27a9
AH
517
518 /*
519 * With queue marked dead, any woken up waiter will fail the
520 * allocation path, so the wakeup chaining is lost and we're
521 * left with hung waiters. We need to wake up those waiters.
522 */
523 if (q->request_fn) {
a051661c
TH
524 struct request_list *rl;
525
a051661c
TH
526 blk_queue_for_each_rl(rl, q)
527 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
528 wake_up_all(&rl->wait[i]);
458f27a9 529 }
e3c78ca5
TH
530}
531
d732580b
TH
532/**
533 * blk_queue_bypass_start - enter queue bypass mode
534 * @q: queue of interest
535 *
536 * In bypass mode, only the dispatch FIFO queue of @q is used. This
537 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 538 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
539 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
540 * inside queue or RCU read lock.
d732580b
TH
541 */
542void blk_queue_bypass_start(struct request_queue *q)
543{
332ebbf7
BVA
544 WARN_ON_ONCE(q->mq_ops);
545
d732580b 546 spin_lock_irq(q->queue_lock);
776687bc 547 q->bypass_depth++;
d732580b
TH
548 queue_flag_set(QUEUE_FLAG_BYPASS, q);
549 spin_unlock_irq(q->queue_lock);
550
776687bc
TH
551 /*
552 * Queues start drained. Skip actual draining till init is
553 * complete. This avoids lenghty delays during queue init which
554 * can happen many times during boot.
555 */
556 if (blk_queue_init_done(q)) {
807592a4
BVA
557 spin_lock_irq(q->queue_lock);
558 __blk_drain_queue(q, false);
559 spin_unlock_irq(q->queue_lock);
560
b82d4b19
TH
561 /* ensure blk_queue_bypass() is %true inside RCU read lock */
562 synchronize_rcu();
563 }
d732580b
TH
564}
565EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
566
567/**
568 * blk_queue_bypass_end - leave queue bypass mode
569 * @q: queue of interest
570 *
571 * Leave bypass mode and restore the normal queueing behavior.
332ebbf7
BVA
572 *
573 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
574 * this function is called for both blk-sq and blk-mq queues.
d732580b
TH
575 */
576void blk_queue_bypass_end(struct request_queue *q)
577{
578 spin_lock_irq(q->queue_lock);
579 if (!--q->bypass_depth)
580 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
581 WARN_ON_ONCE(q->bypass_depth < 0);
582 spin_unlock_irq(q->queue_lock);
583}
584EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
585
aed3ea94
JA
586void blk_set_queue_dying(struct request_queue *q)
587{
1b856086
BVA
588 spin_lock_irq(q->queue_lock);
589 queue_flag_set(QUEUE_FLAG_DYING, q);
590 spin_unlock_irq(q->queue_lock);
aed3ea94 591
d3cfb2a0
ML
592 /*
593 * When queue DYING flag is set, we need to block new req
594 * entering queue, so we call blk_freeze_queue_start() to
595 * prevent I/O from crossing blk_queue_enter().
596 */
597 blk_freeze_queue_start(q);
598
aed3ea94
JA
599 if (q->mq_ops)
600 blk_mq_wake_waiters(q);
601 else {
602 struct request_list *rl;
603
bbfc3c5d 604 spin_lock_irq(q->queue_lock);
aed3ea94
JA
605 blk_queue_for_each_rl(rl, q) {
606 if (rl->rq_pool) {
607 wake_up(&rl->wait[BLK_RW_SYNC]);
608 wake_up(&rl->wait[BLK_RW_ASYNC]);
609 }
610 }
bbfc3c5d 611 spin_unlock_irq(q->queue_lock);
aed3ea94
JA
612 }
613}
614EXPORT_SYMBOL_GPL(blk_set_queue_dying);
615
c9a929dd
TH
616/**
617 * blk_cleanup_queue - shutdown a request queue
618 * @q: request queue to shutdown
619 *
c246e80d
BVA
620 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
621 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 622 */
6728cb0e 623void blk_cleanup_queue(struct request_queue *q)
483f4afc 624{
c9a929dd 625 spinlock_t *lock = q->queue_lock;
e3335de9 626
3f3299d5 627 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 628 mutex_lock(&q->sysfs_lock);
aed3ea94 629 blk_set_queue_dying(q);
c9a929dd 630 spin_lock_irq(lock);
6ecf23af 631
80fd9979 632 /*
3f3299d5 633 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
634 * that, unlike blk_queue_bypass_start(), we aren't performing
635 * synchronize_rcu() after entering bypass mode to avoid the delay
636 * as some drivers create and destroy a lot of queues while
637 * probing. This is still safe because blk_release_queue() will be
638 * called only after the queue refcnt drops to zero and nothing,
639 * RCU or not, would be traversing the queue by then.
640 */
6ecf23af
TH
641 q->bypass_depth++;
642 queue_flag_set(QUEUE_FLAG_BYPASS, q);
643
c9a929dd
TH
644 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
645 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 646 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
647 spin_unlock_irq(lock);
648 mutex_unlock(&q->sysfs_lock);
649
c246e80d
BVA
650 /*
651 * Drain all requests queued before DYING marking. Set DEAD flag to
652 * prevent that q->request_fn() gets invoked after draining finished.
653 */
3ef28e83 654 blk_freeze_queue(q);
9c1051aa
OS
655 spin_lock_irq(lock);
656 if (!q->mq_ops)
43a5e4e2 657 __blk_drain_queue(q, true);
c246e80d 658 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 659 spin_unlock_irq(lock);
c9a929dd 660
5a48fc14
DW
661 /* for synchronous bio-based driver finish in-flight integrity i/o */
662 blk_flush_integrity();
663
c9a929dd 664 /* @q won't process any more request, flush async actions */
dc3b17cc 665 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
c9a929dd
TH
666 blk_sync_queue(q);
667
45a9c9d9
BVA
668 if (q->mq_ops)
669 blk_mq_free_queue(q);
3ef28e83 670 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 671
5e5cfac0
AH
672 spin_lock_irq(lock);
673 if (q->queue_lock != &q->__queue_lock)
674 q->queue_lock = &q->__queue_lock;
675 spin_unlock_irq(lock);
676
c9a929dd 677 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
678 blk_put_queue(q);
679}
1da177e4
LT
680EXPORT_SYMBOL(blk_cleanup_queue);
681
271508db 682/* Allocate memory local to the request queue */
6d247d7f 683static void *alloc_request_simple(gfp_t gfp_mask, void *data)
271508db 684{
6d247d7f
CH
685 struct request_queue *q = data;
686
687 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
271508db
DR
688}
689
6d247d7f 690static void free_request_simple(void *element, void *data)
271508db
DR
691{
692 kmem_cache_free(request_cachep, element);
693}
694
6d247d7f
CH
695static void *alloc_request_size(gfp_t gfp_mask, void *data)
696{
697 struct request_queue *q = data;
698 struct request *rq;
699
700 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
701 q->node);
702 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
703 kfree(rq);
704 rq = NULL;
705 }
706 return rq;
707}
708
709static void free_request_size(void *element, void *data)
710{
711 struct request_queue *q = data;
712
713 if (q->exit_rq_fn)
714 q->exit_rq_fn(q, element);
715 kfree(element);
716}
717
5b788ce3
TH
718int blk_init_rl(struct request_list *rl, struct request_queue *q,
719 gfp_t gfp_mask)
1da177e4 720{
1abec4fd
MS
721 if (unlikely(rl->rq_pool))
722 return 0;
723
5b788ce3 724 rl->q = q;
1faa16d2
JA
725 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
726 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
727 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
728 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 729
6d247d7f
CH
730 if (q->cmd_size) {
731 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
732 alloc_request_size, free_request_size,
733 q, gfp_mask, q->node);
734 } else {
735 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
736 alloc_request_simple, free_request_simple,
737 q, gfp_mask, q->node);
738 }
1da177e4
LT
739 if (!rl->rq_pool)
740 return -ENOMEM;
741
b425e504
BVA
742 if (rl != &q->root_rl)
743 WARN_ON_ONCE(!blk_get_queue(q));
744
1da177e4
LT
745 return 0;
746}
747
b425e504 748void blk_exit_rl(struct request_queue *q, struct request_list *rl)
5b788ce3 749{
b425e504 750 if (rl->rq_pool) {
5b788ce3 751 mempool_destroy(rl->rq_pool);
b425e504
BVA
752 if (rl != &q->root_rl)
753 blk_put_queue(q);
754 }
5b788ce3
TH
755}
756
165125e1 757struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 758{
c304a51b 759 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
760}
761EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 762
6f3b0e8b 763int blk_queue_enter(struct request_queue *q, bool nowait)
3ef28e83
DW
764{
765 while (true) {
766 int ret;
767
768 if (percpu_ref_tryget_live(&q->q_usage_counter))
769 return 0;
770
6f3b0e8b 771 if (nowait)
3ef28e83
DW
772 return -EBUSY;
773
5ed61d3f 774 /*
1671d522 775 * read pair of barrier in blk_freeze_queue_start(),
5ed61d3f 776 * we need to order reading __PERCPU_REF_DEAD flag of
d3cfb2a0
ML
777 * .q_usage_counter and reading .mq_freeze_depth or
778 * queue dying flag, otherwise the following wait may
779 * never return if the two reads are reordered.
5ed61d3f
ML
780 */
781 smp_rmb();
782
3ef28e83
DW
783 ret = wait_event_interruptible(q->mq_freeze_wq,
784 !atomic_read(&q->mq_freeze_depth) ||
785 blk_queue_dying(q));
786 if (blk_queue_dying(q))
787 return -ENODEV;
788 if (ret)
789 return ret;
790 }
791}
792
793void blk_queue_exit(struct request_queue *q)
794{
795 percpu_ref_put(&q->q_usage_counter);
796}
797
798static void blk_queue_usage_counter_release(struct percpu_ref *ref)
799{
800 struct request_queue *q =
801 container_of(ref, struct request_queue, q_usage_counter);
802
803 wake_up_all(&q->mq_freeze_wq);
804}
805
287922eb
CH
806static void blk_rq_timed_out_timer(unsigned long data)
807{
808 struct request_queue *q = (struct request_queue *)data;
809
810 kblockd_schedule_work(&q->timeout_work);
811}
812
165125e1 813struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 814{
165125e1 815 struct request_queue *q;
1946089a 816
8324aa91 817 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 818 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
819 if (!q)
820 return NULL;
821
00380a40 822 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 823 if (q->id < 0)
3d2936f4 824 goto fail_q;
a73f730d 825
93b27e72 826 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
54efd50b
KO
827 if (!q->bio_split)
828 goto fail_id;
829
d03f6cdc
JK
830 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
831 if (!q->backing_dev_info)
832 goto fail_split;
833
a83b576c
JA
834 q->stats = blk_alloc_queue_stats();
835 if (!q->stats)
836 goto fail_stats;
837
dc3b17cc 838 q->backing_dev_info->ra_pages =
09cbfeaf 839 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
dc3b17cc
JK
840 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
841 q->backing_dev_info->name = "block";
5151412d 842 q->node = node_id;
0989a025 843
dc3b17cc 844 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
31373d09 845 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 846 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 847 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 848 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 849 INIT_LIST_HEAD(&q->icq_list);
4eef3049 850#ifdef CONFIG_BLK_CGROUP
e8989fae 851 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 852#endif
3cca6dc1 853 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 854
8324aa91 855 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 856
483f4afc 857 mutex_init(&q->sysfs_lock);
e7e72bf6 858 spin_lock_init(&q->__queue_lock);
483f4afc 859
c94a96ac
VG
860 /*
861 * By default initialize queue_lock to internal lock and driver can
862 * override it later if need be.
863 */
864 q->queue_lock = &q->__queue_lock;
865
b82d4b19
TH
866 /*
867 * A queue starts its life with bypass turned on to avoid
868 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
869 * init. The initial bypass will be finished when the queue is
870 * registered by blk_register_queue().
b82d4b19
TH
871 */
872 q->bypass_depth = 1;
873 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
874
320ae51f
JA
875 init_waitqueue_head(&q->mq_freeze_wq);
876
3ef28e83
DW
877 /*
878 * Init percpu_ref in atomic mode so that it's faster to shutdown.
879 * See blk_register_queue() for details.
880 */
881 if (percpu_ref_init(&q->q_usage_counter,
882 blk_queue_usage_counter_release,
883 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 884 goto fail_bdi;
f51b802c 885
3ef28e83
DW
886 if (blkcg_init_queue(q))
887 goto fail_ref;
888
1da177e4 889 return q;
a73f730d 890
3ef28e83
DW
891fail_ref:
892 percpu_ref_exit(&q->q_usage_counter);
fff4996b 893fail_bdi:
a83b576c
JA
894 blk_free_queue_stats(q->stats);
895fail_stats:
d03f6cdc 896 bdi_put(q->backing_dev_info);
54efd50b
KO
897fail_split:
898 bioset_free(q->bio_split);
a73f730d
TH
899fail_id:
900 ida_simple_remove(&blk_queue_ida, q->id);
901fail_q:
902 kmem_cache_free(blk_requestq_cachep, q);
903 return NULL;
1da177e4 904}
1946089a 905EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
906
907/**
908 * blk_init_queue - prepare a request queue for use with a block device
909 * @rfn: The function to be called to process requests that have been
910 * placed on the queue.
911 * @lock: Request queue spin lock
912 *
913 * Description:
914 * If a block device wishes to use the standard request handling procedures,
915 * which sorts requests and coalesces adjacent requests, then it must
916 * call blk_init_queue(). The function @rfn will be called when there
917 * are requests on the queue that need to be processed. If the device
918 * supports plugging, then @rfn may not be called immediately when requests
919 * are available on the queue, but may be called at some time later instead.
920 * Plugged queues are generally unplugged when a buffer belonging to one
921 * of the requests on the queue is needed, or due to memory pressure.
922 *
923 * @rfn is not required, or even expected, to remove all requests off the
924 * queue, but only as many as it can handle at a time. If it does leave
925 * requests on the queue, it is responsible for arranging that the requests
926 * get dealt with eventually.
927 *
928 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
929 * request queue; this lock will be taken also from interrupt context, so irq
930 * disabling is needed for it.
1da177e4 931 *
710027a4 932 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
933 * it didn't succeed.
934 *
935 * Note:
936 * blk_init_queue() must be paired with a blk_cleanup_queue() call
937 * when the block device is deactivated (such as at module unload).
938 **/
1946089a 939
165125e1 940struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 941{
c304a51b 942 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
943}
944EXPORT_SYMBOL(blk_init_queue);
945
165125e1 946struct request_queue *
1946089a
CL
947blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
948{
5ea708d1 949 struct request_queue *q;
1da177e4 950
5ea708d1
CH
951 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
952 if (!q)
c86d1b8a
MS
953 return NULL;
954
5ea708d1
CH
955 q->request_fn = rfn;
956 if (lock)
957 q->queue_lock = lock;
958 if (blk_init_allocated_queue(q) < 0) {
959 blk_cleanup_queue(q);
960 return NULL;
961 }
18741986 962
7982e90c 963 return q;
01effb0d
MS
964}
965EXPORT_SYMBOL(blk_init_queue_node);
966
dece1635 967static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 968
1da177e4 969
5ea708d1
CH
970int blk_init_allocated_queue(struct request_queue *q)
971{
332ebbf7
BVA
972 WARN_ON_ONCE(q->mq_ops);
973
6d247d7f 974 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
ba483388 975 if (!q->fq)
5ea708d1 976 return -ENOMEM;
7982e90c 977
6d247d7f
CH
978 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
979 goto out_free_flush_queue;
7982e90c 980
a051661c 981 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
6d247d7f 982 goto out_exit_flush_rq;
1da177e4 983
287922eb 984 INIT_WORK(&q->timeout_work, blk_timeout_work);
60ea8226 985 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac 986
f3b144aa
JA
987 /*
988 * This also sets hw/phys segments, boundary and size
989 */
c20e8de2 990 blk_queue_make_request(q, blk_queue_bio);
1da177e4 991
44ec9542
AS
992 q->sg_reserved_size = INT_MAX;
993
eb1c160b
TS
994 /* Protect q->elevator from elevator_change */
995 mutex_lock(&q->sysfs_lock);
996
b82d4b19 997 /* init elevator */
eb1c160b
TS
998 if (elevator_init(q, NULL)) {
999 mutex_unlock(&q->sysfs_lock);
6d247d7f 1000 goto out_exit_flush_rq;
eb1c160b
TS
1001 }
1002
1003 mutex_unlock(&q->sysfs_lock);
5ea708d1 1004 return 0;
eb1c160b 1005
6d247d7f
CH
1006out_exit_flush_rq:
1007 if (q->exit_rq_fn)
1008 q->exit_rq_fn(q, q->fq->flush_rq);
1009out_free_flush_queue:
ba483388 1010 blk_free_flush_queue(q->fq);
5ea708d1 1011 return -ENOMEM;
1da177e4 1012}
5151412d 1013EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 1014
09ac46c4 1015bool blk_get_queue(struct request_queue *q)
1da177e4 1016{
3f3299d5 1017 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
1018 __blk_get_queue(q);
1019 return true;
1da177e4
LT
1020 }
1021
09ac46c4 1022 return false;
1da177e4 1023}
d86e0e83 1024EXPORT_SYMBOL(blk_get_queue);
1da177e4 1025
5b788ce3 1026static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 1027{
e8064021 1028 if (rq->rq_flags & RQF_ELVPRIV) {
5b788ce3 1029 elv_put_request(rl->q, rq);
f1f8cc94 1030 if (rq->elv.icq)
11a3122f 1031 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
1032 }
1033
5b788ce3 1034 mempool_free(rq, rl->rq_pool);
1da177e4
LT
1035}
1036
1da177e4
LT
1037/*
1038 * ioc_batching returns true if the ioc is a valid batching request and
1039 * should be given priority access to a request.
1040 */
165125e1 1041static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1042{
1043 if (!ioc)
1044 return 0;
1045
1046 /*
1047 * Make sure the process is able to allocate at least 1 request
1048 * even if the batch times out, otherwise we could theoretically
1049 * lose wakeups.
1050 */
1051 return ioc->nr_batch_requests == q->nr_batching ||
1052 (ioc->nr_batch_requests > 0
1053 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1054}
1055
1056/*
1057 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1058 * will cause the process to be a "batcher" on all queues in the system. This
1059 * is the behaviour we want though - once it gets a wakeup it should be given
1060 * a nice run.
1061 */
165125e1 1062static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
1063{
1064 if (!ioc || ioc_batching(q, ioc))
1065 return;
1066
1067 ioc->nr_batch_requests = q->nr_batching;
1068 ioc->last_waited = jiffies;
1069}
1070
5b788ce3 1071static void __freed_request(struct request_list *rl, int sync)
1da177e4 1072{
5b788ce3 1073 struct request_queue *q = rl->q;
1da177e4 1074
d40f75a0
TH
1075 if (rl->count[sync] < queue_congestion_off_threshold(q))
1076 blk_clear_congested(rl, sync);
1da177e4 1077
1faa16d2
JA
1078 if (rl->count[sync] + 1 <= q->nr_requests) {
1079 if (waitqueue_active(&rl->wait[sync]))
1080 wake_up(&rl->wait[sync]);
1da177e4 1081
5b788ce3 1082 blk_clear_rl_full(rl, sync);
1da177e4
LT
1083 }
1084}
1085
1086/*
1087 * A request has just been released. Account for it, update the full and
1088 * congestion status, wake up any waiters. Called under q->queue_lock.
1089 */
e8064021
CH
1090static void freed_request(struct request_list *rl, bool sync,
1091 req_flags_t rq_flags)
1da177e4 1092{
5b788ce3 1093 struct request_queue *q = rl->q;
1da177e4 1094
8a5ecdd4 1095 q->nr_rqs[sync]--;
1faa16d2 1096 rl->count[sync]--;
e8064021 1097 if (rq_flags & RQF_ELVPRIV)
8a5ecdd4 1098 q->nr_rqs_elvpriv--;
1da177e4 1099
5b788ce3 1100 __freed_request(rl, sync);
1da177e4 1101
1faa16d2 1102 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 1103 __freed_request(rl, sync ^ 1);
1da177e4
LT
1104}
1105
e3a2b3f9
JA
1106int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1107{
1108 struct request_list *rl;
d40f75a0 1109 int on_thresh, off_thresh;
e3a2b3f9 1110
332ebbf7
BVA
1111 WARN_ON_ONCE(q->mq_ops);
1112
e3a2b3f9
JA
1113 spin_lock_irq(q->queue_lock);
1114 q->nr_requests = nr;
1115 blk_queue_congestion_threshold(q);
d40f75a0
TH
1116 on_thresh = queue_congestion_on_threshold(q);
1117 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 1118
d40f75a0
TH
1119 blk_queue_for_each_rl(rl, q) {
1120 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1121 blk_set_congested(rl, BLK_RW_SYNC);
1122 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1123 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 1124
d40f75a0
TH
1125 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1126 blk_set_congested(rl, BLK_RW_ASYNC);
1127 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1128 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 1129
e3a2b3f9
JA
1130 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1131 blk_set_rl_full(rl, BLK_RW_SYNC);
1132 } else {
1133 blk_clear_rl_full(rl, BLK_RW_SYNC);
1134 wake_up(&rl->wait[BLK_RW_SYNC]);
1135 }
1136
1137 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1138 blk_set_rl_full(rl, BLK_RW_ASYNC);
1139 } else {
1140 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1141 wake_up(&rl->wait[BLK_RW_ASYNC]);
1142 }
1143 }
1144
1145 spin_unlock_irq(q->queue_lock);
1146 return 0;
1147}
1148
da8303c6 1149/**
a06e05e6 1150 * __get_request - get a free request
5b788ce3 1151 * @rl: request list to allocate from
ef295ecf 1152 * @op: operation and flags
da8303c6
TH
1153 * @bio: bio to allocate request for (can be %NULL)
1154 * @gfp_mask: allocation mask
1155 *
1156 * Get a free request from @q. This function may fail under memory
1157 * pressure or if @q is dead.
1158 *
da3dae54 1159 * Must be called with @q->queue_lock held and,
a492f075
JL
1160 * Returns ERR_PTR on failure, with @q->queue_lock held.
1161 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1162 */
ef295ecf
CH
1163static struct request *__get_request(struct request_list *rl, unsigned int op,
1164 struct bio *bio, gfp_t gfp_mask)
1da177e4 1165{
5b788ce3 1166 struct request_queue *q = rl->q;
b679281a 1167 struct request *rq;
7f4b35d1
TH
1168 struct elevator_type *et = q->elevator->type;
1169 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1170 struct io_cq *icq = NULL;
ef295ecf 1171 const bool is_sync = op_is_sync(op);
75eb6c37 1172 int may_queue;
e8064021 1173 req_flags_t rq_flags = RQF_ALLOCED;
88ee5ef1 1174
2fff8a92
BVA
1175 lockdep_assert_held(q->queue_lock);
1176
3f3299d5 1177 if (unlikely(blk_queue_dying(q)))
a492f075 1178 return ERR_PTR(-ENODEV);
da8303c6 1179
ef295ecf 1180 may_queue = elv_may_queue(q, op);
88ee5ef1
JA
1181 if (may_queue == ELV_MQUEUE_NO)
1182 goto rq_starved;
1183
1faa16d2
JA
1184 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1185 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1186 /*
1187 * The queue will fill after this allocation, so set
1188 * it as full, and mark this process as "batching".
1189 * This process will be allowed to complete a batch of
1190 * requests, others will be blocked.
1191 */
5b788ce3 1192 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1193 ioc_set_batching(q, ioc);
5b788ce3 1194 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1195 } else {
1196 if (may_queue != ELV_MQUEUE_MUST
1197 && !ioc_batching(q, ioc)) {
1198 /*
1199 * The queue is full and the allocating
1200 * process is not a "batcher", and not
1201 * exempted by the IO scheduler
1202 */
a492f075 1203 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1204 }
1205 }
1da177e4 1206 }
d40f75a0 1207 blk_set_congested(rl, is_sync);
1da177e4
LT
1208 }
1209
082cf69e
JA
1210 /*
1211 * Only allow batching queuers to allocate up to 50% over the defined
1212 * limit of requests, otherwise we could have thousands of requests
1213 * allocated with any setting of ->nr_requests
1214 */
1faa16d2 1215 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1216 return ERR_PTR(-ENOMEM);
fd782a4a 1217
8a5ecdd4 1218 q->nr_rqs[is_sync]++;
1faa16d2
JA
1219 rl->count[is_sync]++;
1220 rl->starved[is_sync] = 0;
cb98fc8b 1221
f1f8cc94
TH
1222 /*
1223 * Decide whether the new request will be managed by elevator. If
e8064021 1224 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
f1f8cc94
TH
1225 * prevent the current elevator from being destroyed until the new
1226 * request is freed. This guarantees icq's won't be destroyed and
1227 * makes creating new ones safe.
1228 *
e6f7f93d
CH
1229 * Flush requests do not use the elevator so skip initialization.
1230 * This allows a request to share the flush and elevator data.
1231 *
f1f8cc94
TH
1232 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1233 * it will be created after releasing queue_lock.
1234 */
e6f7f93d 1235 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
e8064021 1236 rq_flags |= RQF_ELVPRIV;
8a5ecdd4 1237 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1238 if (et->icq_cache && ioc)
1239 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1240 }
cb98fc8b 1241
f253b86b 1242 if (blk_queue_io_stat(q))
e8064021 1243 rq_flags |= RQF_IO_STAT;
1da177e4
LT
1244 spin_unlock_irq(q->queue_lock);
1245
29e2b09a 1246 /* allocate and init request */
5b788ce3 1247 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1248 if (!rq)
b679281a 1249 goto fail_alloc;
1da177e4 1250
29e2b09a 1251 blk_rq_init(q, rq);
a051661c 1252 blk_rq_set_rl(rq, rl);
ef295ecf 1253 rq->cmd_flags = op;
e8064021 1254 rq->rq_flags = rq_flags;
29e2b09a 1255
aaf7c680 1256 /* init elvpriv */
e8064021 1257 if (rq_flags & RQF_ELVPRIV) {
aaf7c680 1258 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1259 if (ioc)
1260 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1261 if (!icq)
1262 goto fail_elvpriv;
29e2b09a 1263 }
aaf7c680
TH
1264
1265 rq->elv.icq = icq;
1266 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1267 goto fail_elvpriv;
1268
1269 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1270 if (icq)
1271 get_io_context(icq->ioc);
1272 }
aaf7c680 1273out:
88ee5ef1
JA
1274 /*
1275 * ioc may be NULL here, and ioc_batching will be false. That's
1276 * OK, if the queue is under the request limit then requests need
1277 * not count toward the nr_batch_requests limit. There will always
1278 * be some limit enforced by BLK_BATCH_TIME.
1279 */
1da177e4
LT
1280 if (ioc_batching(q, ioc))
1281 ioc->nr_batch_requests--;
6728cb0e 1282
e6a40b09 1283 trace_block_getrq(q, bio, op);
1da177e4 1284 return rq;
b679281a 1285
aaf7c680
TH
1286fail_elvpriv:
1287 /*
1288 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1289 * and may fail indefinitely under memory pressure and thus
1290 * shouldn't stall IO. Treat this request as !elvpriv. This will
1291 * disturb iosched and blkcg but weird is bettern than dead.
1292 */
7b2b10e0 1293 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
dc3b17cc 1294 __func__, dev_name(q->backing_dev_info->dev));
aaf7c680 1295
e8064021 1296 rq->rq_flags &= ~RQF_ELVPRIV;
aaf7c680
TH
1297 rq->elv.icq = NULL;
1298
1299 spin_lock_irq(q->queue_lock);
8a5ecdd4 1300 q->nr_rqs_elvpriv--;
aaf7c680
TH
1301 spin_unlock_irq(q->queue_lock);
1302 goto out;
1303
b679281a
TH
1304fail_alloc:
1305 /*
1306 * Allocation failed presumably due to memory. Undo anything we
1307 * might have messed up.
1308 *
1309 * Allocating task should really be put onto the front of the wait
1310 * queue, but this is pretty rare.
1311 */
1312 spin_lock_irq(q->queue_lock);
e8064021 1313 freed_request(rl, is_sync, rq_flags);
b679281a
TH
1314
1315 /*
1316 * in the very unlikely event that allocation failed and no
1317 * requests for this direction was pending, mark us starved so that
1318 * freeing of a request in the other direction will notice
1319 * us. another possible fix would be to split the rq mempool into
1320 * READ and WRITE
1321 */
1322rq_starved:
1323 if (unlikely(rl->count[is_sync] == 0))
1324 rl->starved[is_sync] = 1;
a492f075 1325 return ERR_PTR(-ENOMEM);
1da177e4
LT
1326}
1327
da8303c6 1328/**
a06e05e6 1329 * get_request - get a free request
da8303c6 1330 * @q: request_queue to allocate request from
ef295ecf 1331 * @op: operation and flags
da8303c6 1332 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1333 * @gfp_mask: allocation mask
da8303c6 1334 *
d0164adc
MG
1335 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1336 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1337 *
da3dae54 1338 * Must be called with @q->queue_lock held and,
a492f075
JL
1339 * Returns ERR_PTR on failure, with @q->queue_lock held.
1340 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1341 */
ef295ecf
CH
1342static struct request *get_request(struct request_queue *q, unsigned int op,
1343 struct bio *bio, gfp_t gfp_mask)
1da177e4 1344{
ef295ecf 1345 const bool is_sync = op_is_sync(op);
a06e05e6 1346 DEFINE_WAIT(wait);
a051661c 1347 struct request_list *rl;
1da177e4 1348 struct request *rq;
a051661c 1349
2fff8a92 1350 lockdep_assert_held(q->queue_lock);
332ebbf7 1351 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1352
a051661c 1353 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1354retry:
ef295ecf 1355 rq = __get_request(rl, op, bio, gfp_mask);
a492f075 1356 if (!IS_ERR(rq))
a06e05e6 1357 return rq;
1da177e4 1358
03a07c92
GR
1359 if (op & REQ_NOWAIT) {
1360 blk_put_rl(rl);
1361 return ERR_PTR(-EAGAIN);
1362 }
1363
d0164adc 1364 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1365 blk_put_rl(rl);
a492f075 1366 return rq;
a051661c 1367 }
1da177e4 1368
a06e05e6
TH
1369 /* wait on @rl and retry */
1370 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1371 TASK_UNINTERRUPTIBLE);
1da177e4 1372
e6a40b09 1373 trace_block_sleeprq(q, bio, op);
1da177e4 1374
a06e05e6
TH
1375 spin_unlock_irq(q->queue_lock);
1376 io_schedule();
d6344532 1377
a06e05e6
TH
1378 /*
1379 * After sleeping, we become a "batching" process and will be able
1380 * to allocate at least one request, and up to a big batch of them
1381 * for a small period time. See ioc_batching, ioc_set_batching
1382 */
a06e05e6 1383 ioc_set_batching(q, current->io_context);
05caf8db 1384
a06e05e6
TH
1385 spin_lock_irq(q->queue_lock);
1386 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1387
a06e05e6 1388 goto retry;
1da177e4
LT
1389}
1390
cd6ce148
BVA
1391static struct request *blk_old_get_request(struct request_queue *q,
1392 unsigned int op, gfp_t gfp_mask)
1da177e4
LT
1393{
1394 struct request *rq;
1395
332ebbf7
BVA
1396 WARN_ON_ONCE(q->mq_ops);
1397
7f4b35d1
TH
1398 /* create ioc upfront */
1399 create_io_context(gfp_mask, q->node);
1400
d6344532 1401 spin_lock_irq(q->queue_lock);
cd6ce148 1402 rq = get_request(q, op, NULL, gfp_mask);
0c4de0f3 1403 if (IS_ERR(rq)) {
da8303c6 1404 spin_unlock_irq(q->queue_lock);
0c4de0f3
CH
1405 return rq;
1406 }
1da177e4 1407
0c4de0f3
CH
1408 /* q->queue_lock is unlocked at this point */
1409 rq->__data_len = 0;
1410 rq->__sector = (sector_t) -1;
1411 rq->bio = rq->biotail = NULL;
1da177e4
LT
1412 return rq;
1413}
320ae51f 1414
cd6ce148
BVA
1415struct request *blk_get_request(struct request_queue *q, unsigned int op,
1416 gfp_t gfp_mask)
320ae51f 1417{
d280bab3
BVA
1418 struct request *req;
1419
1420 if (q->mq_ops) {
1421 req = blk_mq_alloc_request(q, op,
6f3b0e8b
CH
1422 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1423 0 : BLK_MQ_REQ_NOWAIT);
d280bab3
BVA
1424 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1425 q->mq_ops->initialize_rq_fn(req);
1426 } else {
1427 req = blk_old_get_request(q, op, gfp_mask);
1428 if (!IS_ERR(req) && q->initialize_rq_fn)
1429 q->initialize_rq_fn(req);
1430 }
1431
1432 return req;
320ae51f 1433}
1da177e4
LT
1434EXPORT_SYMBOL(blk_get_request);
1435
1436/**
1437 * blk_requeue_request - put a request back on queue
1438 * @q: request queue where request should be inserted
1439 * @rq: request to be inserted
1440 *
1441 * Description:
1442 * Drivers often keep queueing requests until the hardware cannot accept
1443 * more, when that condition happens we need to put the request back
1444 * on the queue. Must be called with queue lock held.
1445 */
165125e1 1446void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1447{
2fff8a92 1448 lockdep_assert_held(q->queue_lock);
332ebbf7 1449 WARN_ON_ONCE(q->mq_ops);
2fff8a92 1450
242f9dcb
JA
1451 blk_delete_timer(rq);
1452 blk_clear_rq_complete(rq);
5f3ea37c 1453 trace_block_rq_requeue(q, rq);
87760e5e 1454 wbt_requeue(q->rq_wb, &rq->issue_stat);
2056a782 1455
e8064021 1456 if (rq->rq_flags & RQF_QUEUED)
1da177e4
LT
1457 blk_queue_end_tag(q, rq);
1458
ba396a6c
JB
1459 BUG_ON(blk_queued_rq(rq));
1460
1da177e4
LT
1461 elv_requeue_request(q, rq);
1462}
1da177e4
LT
1463EXPORT_SYMBOL(blk_requeue_request);
1464
73c10101
JA
1465static void add_acct_request(struct request_queue *q, struct request *rq,
1466 int where)
1467{
320ae51f 1468 blk_account_io_start(rq, true);
7eaceacc 1469 __elv_add_request(q, rq, where);
73c10101
JA
1470}
1471
074a7aca
TH
1472static void part_round_stats_single(int cpu, struct hd_struct *part,
1473 unsigned long now)
1474{
7276d02e
JA
1475 int inflight;
1476
074a7aca
TH
1477 if (now == part->stamp)
1478 return;
1479
7276d02e
JA
1480 inflight = part_in_flight(part);
1481 if (inflight) {
074a7aca 1482 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1483 inflight * (now - part->stamp));
074a7aca
TH
1484 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1485 }
1486 part->stamp = now;
1487}
1488
1489/**
496aa8a9
RD
1490 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1491 * @cpu: cpu number for stats access
1492 * @part: target partition
1da177e4
LT
1493 *
1494 * The average IO queue length and utilisation statistics are maintained
1495 * by observing the current state of the queue length and the amount of
1496 * time it has been in this state for.
1497 *
1498 * Normally, that accounting is done on IO completion, but that can result
1499 * in more than a second's worth of IO being accounted for within any one
1500 * second, leading to >100% utilisation. To deal with that, we call this
1501 * function to do a round-off before returning the results when reading
1502 * /proc/diskstats. This accounts immediately for all queue usage up to
1503 * the current jiffies and restarts the counters again.
1504 */
c9959059 1505void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1506{
1507 unsigned long now = jiffies;
1508
074a7aca
TH
1509 if (part->partno)
1510 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1511 part_round_stats_single(cpu, part, now);
6f2576af 1512}
074a7aca 1513EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1514
47fafbc7 1515#ifdef CONFIG_PM
c8158819
LM
1516static void blk_pm_put_request(struct request *rq)
1517{
e8064021 1518 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
c8158819
LM
1519 pm_runtime_mark_last_busy(rq->q->dev);
1520}
1521#else
1522static inline void blk_pm_put_request(struct request *rq) {}
1523#endif
1524
165125e1 1525void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1526{
e8064021
CH
1527 req_flags_t rq_flags = req->rq_flags;
1528
1da177e4
LT
1529 if (unlikely(!q))
1530 return;
1da177e4 1531
6f5ba581
CH
1532 if (q->mq_ops) {
1533 blk_mq_free_request(req);
1534 return;
1535 }
1536
2fff8a92
BVA
1537 lockdep_assert_held(q->queue_lock);
1538
c8158819
LM
1539 blk_pm_put_request(req);
1540
8922e16c
TH
1541 elv_completed_request(q, req);
1542
1cd96c24
BH
1543 /* this is a bio leak */
1544 WARN_ON(req->bio != NULL);
1545
87760e5e
JA
1546 wbt_done(q->rq_wb, &req->issue_stat);
1547
1da177e4
LT
1548 /*
1549 * Request may not have originated from ll_rw_blk. if not,
1550 * it didn't come out of our reserved rq pools
1551 */
e8064021 1552 if (rq_flags & RQF_ALLOCED) {
a051661c 1553 struct request_list *rl = blk_rq_rl(req);
ef295ecf 1554 bool sync = op_is_sync(req->cmd_flags);
1da177e4 1555
1da177e4 1556 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1557 BUG_ON(ELV_ON_HASH(req));
1da177e4 1558
a051661c 1559 blk_free_request(rl, req);
e8064021 1560 freed_request(rl, sync, rq_flags);
a051661c 1561 blk_put_rl(rl);
1da177e4
LT
1562 }
1563}
6e39b69e
MC
1564EXPORT_SYMBOL_GPL(__blk_put_request);
1565
1da177e4
LT
1566void blk_put_request(struct request *req)
1567{
165125e1 1568 struct request_queue *q = req->q;
8922e16c 1569
320ae51f
JA
1570 if (q->mq_ops)
1571 blk_mq_free_request(req);
1572 else {
1573 unsigned long flags;
1574
1575 spin_lock_irqsave(q->queue_lock, flags);
1576 __blk_put_request(q, req);
1577 spin_unlock_irqrestore(q->queue_lock, flags);
1578 }
1da177e4 1579}
1da177e4
LT
1580EXPORT_SYMBOL(blk_put_request);
1581
320ae51f
JA
1582bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1583 struct bio *bio)
73c10101 1584{
1eff9d32 1585 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1586
73c10101
JA
1587 if (!ll_back_merge_fn(q, req, bio))
1588 return false;
1589
8c1cf6bb 1590 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1591
1592 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1593 blk_rq_set_mixed_merge(req);
1594
1595 req->biotail->bi_next = bio;
1596 req->biotail = bio;
4f024f37 1597 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1598 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1599
320ae51f 1600 blk_account_io_start(req, false);
73c10101
JA
1601 return true;
1602}
1603
320ae51f
JA
1604bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1605 struct bio *bio)
73c10101 1606{
1eff9d32 1607 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
73c10101 1608
73c10101
JA
1609 if (!ll_front_merge_fn(q, req, bio))
1610 return false;
1611
8c1cf6bb 1612 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1613
1614 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1615 blk_rq_set_mixed_merge(req);
1616
73c10101
JA
1617 bio->bi_next = req->bio;
1618 req->bio = bio;
1619
4f024f37
KO
1620 req->__sector = bio->bi_iter.bi_sector;
1621 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1622 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1623
320ae51f 1624 blk_account_io_start(req, false);
73c10101
JA
1625 return true;
1626}
1627
1e739730
CH
1628bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1629 struct bio *bio)
1630{
1631 unsigned short segments = blk_rq_nr_discard_segments(req);
1632
1633 if (segments >= queue_max_discard_segments(q))
1634 goto no_merge;
1635 if (blk_rq_sectors(req) + bio_sectors(bio) >
1636 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1637 goto no_merge;
1638
1639 req->biotail->bi_next = bio;
1640 req->biotail = bio;
1641 req->__data_len += bio->bi_iter.bi_size;
1642 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1643 req->nr_phys_segments = segments + 1;
1644
1645 blk_account_io_start(req, false);
1646 return true;
1647no_merge:
1648 req_set_nomerge(q, req);
1649 return false;
1650}
1651
bd87b589 1652/**
320ae51f 1653 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1654 * @q: request_queue new bio is being queued at
1655 * @bio: new bio being queued
1656 * @request_count: out parameter for number of traversed plugged requests
ccc2600b
RD
1657 * @same_queue_rq: pointer to &struct request that gets filled in when
1658 * another request associated with @q is found on the plug list
1659 * (optional, may be %NULL)
bd87b589
TH
1660 *
1661 * Determine whether @bio being queued on @q can be merged with a request
1662 * on %current's plugged list. Returns %true if merge was successful,
1663 * otherwise %false.
1664 *
07c2bd37
TH
1665 * Plugging coalesces IOs from the same issuer for the same purpose without
1666 * going through @q->queue_lock. As such it's more of an issuing mechanism
1667 * than scheduling, and the request, while may have elvpriv data, is not
1668 * added on the elevator at this point. In addition, we don't have
1669 * reliable access to the elevator outside queue lock. Only check basic
1670 * merging parameters without querying the elevator.
da41a589
RE
1671 *
1672 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1673 */
320ae51f 1674bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1675 unsigned int *request_count,
1676 struct request **same_queue_rq)
73c10101
JA
1677{
1678 struct blk_plug *plug;
1679 struct request *rq;
92f399c7 1680 struct list_head *plug_list;
73c10101 1681
bd87b589 1682 plug = current->plug;
73c10101 1683 if (!plug)
34fe7c05 1684 return false;
56ebdaf2 1685 *request_count = 0;
73c10101 1686
92f399c7
SL
1687 if (q->mq_ops)
1688 plug_list = &plug->mq_list;
1689 else
1690 plug_list = &plug->list;
1691
1692 list_for_each_entry_reverse(rq, plug_list, queuelist) {
34fe7c05 1693 bool merged = false;
73c10101 1694
5b3f341f 1695 if (rq->q == q) {
1b2e19f1 1696 (*request_count)++;
5b3f341f
SL
1697 /*
1698 * Only blk-mq multiple hardware queues case checks the
1699 * rq in the same queue, there should be only one such
1700 * rq in a queue
1701 **/
1702 if (same_queue_rq)
1703 *same_queue_rq = rq;
1704 }
56ebdaf2 1705
07c2bd37 1706 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1707 continue;
1708
34fe7c05
CH
1709 switch (blk_try_merge(rq, bio)) {
1710 case ELEVATOR_BACK_MERGE:
1711 merged = bio_attempt_back_merge(q, rq, bio);
1712 break;
1713 case ELEVATOR_FRONT_MERGE:
1714 merged = bio_attempt_front_merge(q, rq, bio);
1715 break;
1e739730
CH
1716 case ELEVATOR_DISCARD_MERGE:
1717 merged = bio_attempt_discard_merge(q, rq, bio);
1718 break;
34fe7c05
CH
1719 default:
1720 break;
73c10101 1721 }
34fe7c05
CH
1722
1723 if (merged)
1724 return true;
73c10101 1725 }
34fe7c05
CH
1726
1727 return false;
73c10101
JA
1728}
1729
0809e3ac
JM
1730unsigned int blk_plug_queued_count(struct request_queue *q)
1731{
1732 struct blk_plug *plug;
1733 struct request *rq;
1734 struct list_head *plug_list;
1735 unsigned int ret = 0;
1736
1737 plug = current->plug;
1738 if (!plug)
1739 goto out;
1740
1741 if (q->mq_ops)
1742 plug_list = &plug->mq_list;
1743 else
1744 plug_list = &plug->list;
1745
1746 list_for_each_entry(rq, plug_list, queuelist) {
1747 if (rq->q == q)
1748 ret++;
1749 }
1750out:
1751 return ret;
1752}
1753
da8d7f07 1754void blk_init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1755{
0be0dee6
BVA
1756 struct io_context *ioc = rq_ioc(bio);
1757
1eff9d32 1758 if (bio->bi_opf & REQ_RAHEAD)
a82afdfc 1759 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1760
4f024f37 1761 req->__sector = bio->bi_iter.bi_sector;
5dc8b362
AM
1762 if (ioprio_valid(bio_prio(bio)))
1763 req->ioprio = bio_prio(bio);
0be0dee6
BVA
1764 else if (ioc)
1765 req->ioprio = ioc->ioprio;
1766 else
1767 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
cb6934f8 1768 req->write_hint = bio->bi_write_hint;
bc1c56fd 1769 blk_rq_bio_prep(req->q, req, bio);
52d9e675 1770}
da8d7f07 1771EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
52d9e675 1772
dece1635 1773static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1774{
73c10101 1775 struct blk_plug *plug;
34fe7c05 1776 int where = ELEVATOR_INSERT_SORT;
e4d750c9 1777 struct request *req, *free;
56ebdaf2 1778 unsigned int request_count = 0;
87760e5e 1779 unsigned int wb_acct;
1da177e4 1780
1da177e4
LT
1781 /*
1782 * low level driver can indicate that it wants pages above a
1783 * certain limit bounced to low memory (ie for highmem, or even
1784 * ISA dma in theory)
1785 */
1786 blk_queue_bounce(q, &bio);
1787
af67c31f 1788 blk_queue_split(q, &bio);
23688bf4 1789
e23947bd 1790 if (!bio_integrity_prep(bio))
dece1635 1791 return BLK_QC_T_NONE;
ffecfd1a 1792
f73f44eb 1793 if (op_is_flush(bio->bi_opf)) {
73c10101 1794 spin_lock_irq(q->queue_lock);
ae1b1539 1795 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1796 goto get_rq;
1797 }
1798
73c10101
JA
1799 /*
1800 * Check if we can merge with the plugged list before grabbing
1801 * any locks.
1802 */
0809e3ac
JM
1803 if (!blk_queue_nomerges(q)) {
1804 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1805 return BLK_QC_T_NONE;
0809e3ac
JM
1806 } else
1807 request_count = blk_plug_queued_count(q);
1da177e4 1808
73c10101 1809 spin_lock_irq(q->queue_lock);
2056a782 1810
34fe7c05
CH
1811 switch (elv_merge(q, &req, bio)) {
1812 case ELEVATOR_BACK_MERGE:
1813 if (!bio_attempt_back_merge(q, req, bio))
1814 break;
1815 elv_bio_merged(q, req, bio);
1816 free = attempt_back_merge(q, req);
1817 if (free)
1818 __blk_put_request(q, free);
1819 else
1820 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1821 goto out_unlock;
1822 case ELEVATOR_FRONT_MERGE:
1823 if (!bio_attempt_front_merge(q, req, bio))
1824 break;
1825 elv_bio_merged(q, req, bio);
1826 free = attempt_front_merge(q, req);
1827 if (free)
1828 __blk_put_request(q, free);
1829 else
1830 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1831 goto out_unlock;
1832 default:
1833 break;
1da177e4
LT
1834 }
1835
450991bc 1836get_rq:
87760e5e
JA
1837 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1838
1da177e4 1839 /*
450991bc 1840 * Grab a free request. This is might sleep but can not fail.
d6344532 1841 * Returns with the queue unlocked.
450991bc 1842 */
ef295ecf 1843 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
a492f075 1844 if (IS_ERR(req)) {
87760e5e 1845 __wbt_done(q->rq_wb, wb_acct);
4e4cbee9
CH
1846 if (PTR_ERR(req) == -ENOMEM)
1847 bio->bi_status = BLK_STS_RESOURCE;
1848 else
1849 bio->bi_status = BLK_STS_IOERR;
4246a0b6 1850 bio_endio(bio);
da8303c6
TH
1851 goto out_unlock;
1852 }
d6344532 1853
87760e5e
JA
1854 wbt_track(&req->issue_stat, wb_acct);
1855
450991bc
NP
1856 /*
1857 * After dropping the lock and possibly sleeping here, our request
1858 * may now be mergeable after it had proven unmergeable (above).
1859 * We don't worry about that case for efficiency. It won't happen
1860 * often, and the elevators are able to handle it.
1da177e4 1861 */
da8d7f07 1862 blk_init_request_from_bio(req, bio);
1da177e4 1863
9562ad9a 1864 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1865 req->cpu = raw_smp_processor_id();
73c10101
JA
1866
1867 plug = current->plug;
721a9602 1868 if (plug) {
dc6d36c9
JA
1869 /*
1870 * If this is the first request added after a plug, fire
7aef2e78 1871 * of a plug trace.
0a6219a9
ML
1872 *
1873 * @request_count may become stale because of schedule
1874 * out, so check plug list again.
dc6d36c9 1875 */
0a6219a9 1876 if (!request_count || list_empty(&plug->list))
dc6d36c9 1877 trace_block_plug(q);
3540d5e8 1878 else {
50d24c34
SL
1879 struct request *last = list_entry_rq(plug->list.prev);
1880 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1881 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
3540d5e8 1882 blk_flush_plug_list(plug, false);
019ceb7d
SL
1883 trace_block_plug(q);
1884 }
73c10101 1885 }
73c10101 1886 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1887 blk_account_io_start(req, true);
73c10101
JA
1888 } else {
1889 spin_lock_irq(q->queue_lock);
1890 add_acct_request(q, req, where);
24ecfbe2 1891 __blk_run_queue(q);
73c10101
JA
1892out_unlock:
1893 spin_unlock_irq(q->queue_lock);
1894 }
dece1635
JA
1895
1896 return BLK_QC_T_NONE;
1da177e4
LT
1897}
1898
1899/*
1900 * If bio->bi_dev is a partition, remap the location
1901 */
1902static inline void blk_partition_remap(struct bio *bio)
1903{
1904 struct block_device *bdev = bio->bi_bdev;
1905
778889d8
ST
1906 /*
1907 * Zone reset does not include bi_size so bio_sectors() is always 0.
1908 * Include a test for the reset op code and perform the remap if needed.
1909 */
1910 if (bdev != bdev->bd_contains &&
1911 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1da177e4
LT
1912 struct hd_struct *p = bdev->bd_part;
1913
4f024f37 1914 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1915 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1916
d07335e5
MS
1917 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1918 bdev->bd_dev,
4f024f37 1919 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1920 }
1921}
1922
1da177e4
LT
1923static void handle_bad_sector(struct bio *bio)
1924{
1925 char b[BDEVNAME_SIZE];
1926
1927 printk(KERN_INFO "attempt to access beyond end of device\n");
6296b960 1928 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1da177e4 1929 bdevname(bio->bi_bdev, b),
1eff9d32 1930 bio->bi_opf,
f73a1c7d 1931 (unsigned long long)bio_end_sector(bio),
77304d2a 1932 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1933}
1934
c17bb495
AM
1935#ifdef CONFIG_FAIL_MAKE_REQUEST
1936
1937static DECLARE_FAULT_ATTR(fail_make_request);
1938
1939static int __init setup_fail_make_request(char *str)
1940{
1941 return setup_fault_attr(&fail_make_request, str);
1942}
1943__setup("fail_make_request=", setup_fail_make_request);
1944
b2c9cd37 1945static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1946{
b2c9cd37 1947 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1948}
1949
1950static int __init fail_make_request_debugfs(void)
1951{
dd48c085
AM
1952 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1953 NULL, &fail_make_request);
1954
21f9fcd8 1955 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1956}
1957
1958late_initcall(fail_make_request_debugfs);
1959
1960#else /* CONFIG_FAIL_MAKE_REQUEST */
1961
b2c9cd37
AM
1962static inline bool should_fail_request(struct hd_struct *part,
1963 unsigned int bytes)
c17bb495 1964{
b2c9cd37 1965 return false;
c17bb495
AM
1966}
1967
1968#endif /* CONFIG_FAIL_MAKE_REQUEST */
1969
c07e2b41
JA
1970/*
1971 * Check whether this bio extends beyond the end of the device.
1972 */
1973static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1974{
1975 sector_t maxsector;
1976
1977 if (!nr_sectors)
1978 return 0;
1979
1980 /* Test device or partition size, when known. */
77304d2a 1981 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1982 if (maxsector) {
4f024f37 1983 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1984
1985 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1986 /*
1987 * This may well happen - the kernel calls bread()
1988 * without checking the size of the device, e.g., when
1989 * mounting a device.
1990 */
1991 handle_bad_sector(bio);
1992 return 1;
1993 }
1994 }
1995
1996 return 0;
1997}
1998
27a84d54
CH
1999static noinline_for_stack bool
2000generic_make_request_checks(struct bio *bio)
1da177e4 2001{
165125e1 2002 struct request_queue *q;
5a7bbad2 2003 int nr_sectors = bio_sectors(bio);
4e4cbee9 2004 blk_status_t status = BLK_STS_IOERR;
5a7bbad2
CH
2005 char b[BDEVNAME_SIZE];
2006 struct hd_struct *part;
1da177e4
LT
2007
2008 might_sleep();
1da177e4 2009
c07e2b41
JA
2010 if (bio_check_eod(bio, nr_sectors))
2011 goto end_io;
1da177e4 2012
5a7bbad2
CH
2013 q = bdev_get_queue(bio->bi_bdev);
2014 if (unlikely(!q)) {
2015 printk(KERN_ERR
2016 "generic_make_request: Trying to access "
2017 "nonexistent block-device %s (%Lu)\n",
2018 bdevname(bio->bi_bdev, b),
4f024f37 2019 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
2020 goto end_io;
2021 }
c17bb495 2022
03a07c92
GR
2023 /*
2024 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2025 * if queue is not a request based queue.
2026 */
2027
2028 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2029 goto not_supported;
2030
5a7bbad2 2031 part = bio->bi_bdev->bd_part;
4f024f37 2032 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 2033 should_fail_request(&part_to_disk(part)->part0,
4f024f37 2034 bio->bi_iter.bi_size))
5a7bbad2 2035 goto end_io;
2056a782 2036
5a7bbad2
CH
2037 /*
2038 * If this device has partitions, remap block n
2039 * of partition p to block n+start(p) of the disk.
2040 */
2041 blk_partition_remap(bio);
2056a782 2042
5a7bbad2
CH
2043 if (bio_check_eod(bio, nr_sectors))
2044 goto end_io;
1e87901e 2045
5a7bbad2
CH
2046 /*
2047 * Filter flush bio's early so that make_request based
2048 * drivers without flush support don't have to worry
2049 * about them.
2050 */
f3a8ab7d 2051 if (op_is_flush(bio->bi_opf) &&
c888a8f9 2052 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1eff9d32 2053 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
5a7bbad2 2054 if (!nr_sectors) {
4e4cbee9 2055 status = BLK_STS_OK;
51fd77bd
JA
2056 goto end_io;
2057 }
5a7bbad2 2058 }
5ddfe969 2059
288dab8a
CH
2060 switch (bio_op(bio)) {
2061 case REQ_OP_DISCARD:
2062 if (!blk_queue_discard(q))
2063 goto not_supported;
2064 break;
2065 case REQ_OP_SECURE_ERASE:
2066 if (!blk_queue_secure_erase(q))
2067 goto not_supported;
2068 break;
2069 case REQ_OP_WRITE_SAME:
2070 if (!bdev_write_same(bio->bi_bdev))
2071 goto not_supported;
58886785 2072 break;
2d253440
ST
2073 case REQ_OP_ZONE_REPORT:
2074 case REQ_OP_ZONE_RESET:
2075 if (!bdev_is_zoned(bio->bi_bdev))
2076 goto not_supported;
288dab8a 2077 break;
a6f0788e
CK
2078 case REQ_OP_WRITE_ZEROES:
2079 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
2080 goto not_supported;
2081 break;
288dab8a
CH
2082 default:
2083 break;
5a7bbad2 2084 }
01edede4 2085
7f4b35d1
TH
2086 /*
2087 * Various block parts want %current->io_context and lazy ioc
2088 * allocation ends up trading a lot of pain for a small amount of
2089 * memory. Just allocate it upfront. This may fail and block
2090 * layer knows how to live with it.
2091 */
2092 create_io_context(GFP_ATOMIC, q->node);
2093
ae118896
TH
2094 if (!blkcg_bio_issue_check(q, bio))
2095 return false;
27a84d54 2096
fbbaf700
N
2097 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2098 trace_block_bio_queue(q, bio);
2099 /* Now that enqueuing has been traced, we need to trace
2100 * completion as well.
2101 */
2102 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2103 }
27a84d54 2104 return true;
a7384677 2105
288dab8a 2106not_supported:
4e4cbee9 2107 status = BLK_STS_NOTSUPP;
a7384677 2108end_io:
4e4cbee9 2109 bio->bi_status = status;
4246a0b6 2110 bio_endio(bio);
27a84d54 2111 return false;
1da177e4
LT
2112}
2113
27a84d54
CH
2114/**
2115 * generic_make_request - hand a buffer to its device driver for I/O
2116 * @bio: The bio describing the location in memory and on the device.
2117 *
2118 * generic_make_request() is used to make I/O requests of block
2119 * devices. It is passed a &struct bio, which describes the I/O that needs
2120 * to be done.
2121 *
2122 * generic_make_request() does not return any status. The
2123 * success/failure status of the request, along with notification of
2124 * completion, is delivered asynchronously through the bio->bi_end_io
2125 * function described (one day) else where.
2126 *
2127 * The caller of generic_make_request must make sure that bi_io_vec
2128 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2129 * set to describe the device address, and the
2130 * bi_end_io and optionally bi_private are set to describe how
2131 * completion notification should be signaled.
2132 *
2133 * generic_make_request and the drivers it calls may use bi_next if this
2134 * bio happens to be merged with someone else, and may resubmit the bio to
2135 * a lower device by calling into generic_make_request recursively, which
2136 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2137 */
dece1635 2138blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2139{
f5fe1b51
N
2140 /*
2141 * bio_list_on_stack[0] contains bios submitted by the current
2142 * make_request_fn.
2143 * bio_list_on_stack[1] contains bios that were submitted before
2144 * the current make_request_fn, but that haven't been processed
2145 * yet.
2146 */
2147 struct bio_list bio_list_on_stack[2];
dece1635 2148 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2149
27a84d54 2150 if (!generic_make_request_checks(bio))
dece1635 2151 goto out;
27a84d54
CH
2152
2153 /*
2154 * We only want one ->make_request_fn to be active at a time, else
2155 * stack usage with stacked devices could be a problem. So use
2156 * current->bio_list to keep a list of requests submited by a
2157 * make_request_fn function. current->bio_list is also used as a
2158 * flag to say if generic_make_request is currently active in this
2159 * task or not. If it is NULL, then no make_request is active. If
2160 * it is non-NULL, then a make_request is active, and new requests
2161 * should be added at the tail
2162 */
bddd87c7 2163 if (current->bio_list) {
f5fe1b51 2164 bio_list_add(&current->bio_list[0], bio);
dece1635 2165 goto out;
d89d8796 2166 }
27a84d54 2167
d89d8796
NB
2168 /* following loop may be a bit non-obvious, and so deserves some
2169 * explanation.
2170 * Before entering the loop, bio->bi_next is NULL (as all callers
2171 * ensure that) so we have a list with a single bio.
2172 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2173 * we assign bio_list to a pointer to the bio_list_on_stack,
2174 * thus initialising the bio_list of new bios to be
27a84d54 2175 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2176 * through a recursive call to generic_make_request. If it
2177 * did, we find a non-NULL value in bio_list and re-enter the loop
2178 * from the top. In this case we really did just take the bio
bddd87c7 2179 * of the top of the list (no pretending) and so remove it from
27a84d54 2180 * bio_list, and call into ->make_request() again.
d89d8796
NB
2181 */
2182 BUG_ON(bio->bi_next);
f5fe1b51
N
2183 bio_list_init(&bio_list_on_stack[0]);
2184 current->bio_list = bio_list_on_stack;
d89d8796 2185 do {
27a84d54
CH
2186 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2187
03a07c92 2188 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
79bd9959
N
2189 struct bio_list lower, same;
2190
2191 /* Create a fresh bio_list for all subordinate requests */
f5fe1b51
N
2192 bio_list_on_stack[1] = bio_list_on_stack[0];
2193 bio_list_init(&bio_list_on_stack[0]);
dece1635 2194 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2195
2196 blk_queue_exit(q);
27a84d54 2197
79bd9959
N
2198 /* sort new bios into those for a lower level
2199 * and those for the same level
2200 */
2201 bio_list_init(&lower);
2202 bio_list_init(&same);
f5fe1b51 2203 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
79bd9959
N
2204 if (q == bdev_get_queue(bio->bi_bdev))
2205 bio_list_add(&same, bio);
2206 else
2207 bio_list_add(&lower, bio);
2208 /* now assemble so we handle the lowest level first */
f5fe1b51
N
2209 bio_list_merge(&bio_list_on_stack[0], &lower);
2210 bio_list_merge(&bio_list_on_stack[0], &same);
2211 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
3ef28e83 2212 } else {
03a07c92
GR
2213 if (unlikely(!blk_queue_dying(q) &&
2214 (bio->bi_opf & REQ_NOWAIT)))
2215 bio_wouldblock_error(bio);
2216 else
2217 bio_io_error(bio);
3ef28e83 2218 }
f5fe1b51 2219 bio = bio_list_pop(&bio_list_on_stack[0]);
d89d8796 2220 } while (bio);
bddd87c7 2221 current->bio_list = NULL; /* deactivate */
dece1635
JA
2222
2223out:
2224 return ret;
d89d8796 2225}
1da177e4
LT
2226EXPORT_SYMBOL(generic_make_request);
2227
2228/**
710027a4 2229 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2230 * @bio: The &struct bio which describes the I/O
2231 *
2232 * submit_bio() is very similar in purpose to generic_make_request(), and
2233 * uses that function to do most of the work. Both are fairly rough
710027a4 2234 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2235 *
2236 */
4e49ea4a 2237blk_qc_t submit_bio(struct bio *bio)
1da177e4 2238{
bf2de6f5
JA
2239 /*
2240 * If it's a regular read/write or a barrier with data attached,
2241 * go through the normal accounting stuff before submission.
2242 */
e2a60da7 2243 if (bio_has_data(bio)) {
4363ac7c
MP
2244 unsigned int count;
2245
95fe6c1a 2246 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
4363ac7c
MP
2247 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2248 else
2249 count = bio_sectors(bio);
2250
a8ebb056 2251 if (op_is_write(bio_op(bio))) {
bf2de6f5
JA
2252 count_vm_events(PGPGOUT, count);
2253 } else {
4f024f37 2254 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2255 count_vm_events(PGPGIN, count);
2256 }
2257
2258 if (unlikely(block_dump)) {
2259 char b[BDEVNAME_SIZE];
8dcbdc74 2260 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2261 current->comm, task_pid_nr(current),
a8ebb056 2262 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
4f024f37 2263 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2264 bdevname(bio->bi_bdev, b),
2265 count);
bf2de6f5 2266 }
1da177e4
LT
2267 }
2268
dece1635 2269 return generic_make_request(bio);
1da177e4 2270}
1da177e4
LT
2271EXPORT_SYMBOL(submit_bio);
2272
82124d60 2273/**
bf4e6b4e
HR
2274 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2275 * for new the queue limits
82124d60
KU
2276 * @q: the queue
2277 * @rq: the request being checked
2278 *
2279 * Description:
2280 * @rq may have been made based on weaker limitations of upper-level queues
2281 * in request stacking drivers, and it may violate the limitation of @q.
2282 * Since the block layer and the underlying device driver trust @rq
2283 * after it is inserted to @q, it should be checked against @q before
2284 * the insertion using this generic function.
2285 *
82124d60 2286 * Request stacking drivers like request-based dm may change the queue
bf4e6b4e
HR
2287 * limits when retrying requests on other queues. Those requests need
2288 * to be checked against the new queue limits again during dispatch.
82124d60 2289 */
bf4e6b4e
HR
2290static int blk_cloned_rq_check_limits(struct request_queue *q,
2291 struct request *rq)
82124d60 2292{
8fe0d473 2293 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
82124d60
KU
2294 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2295 return -EIO;
2296 }
2297
2298 /*
2299 * queue's settings related to segment counting like q->bounce_pfn
2300 * may differ from that of other stacking queues.
2301 * Recalculate it to check the request correctly on this queue's
2302 * limitation.
2303 */
2304 blk_recalc_rq_segments(rq);
8a78362c 2305 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2306 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2307 return -EIO;
2308 }
2309
2310 return 0;
2311}
82124d60
KU
2312
2313/**
2314 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2315 * @q: the queue to submit the request
2316 * @rq: the request being queued
2317 */
2a842aca 2318blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
82124d60
KU
2319{
2320 unsigned long flags;
4853abaa 2321 int where = ELEVATOR_INSERT_BACK;
82124d60 2322
bf4e6b4e 2323 if (blk_cloned_rq_check_limits(q, rq))
2a842aca 2324 return BLK_STS_IOERR;
82124d60 2325
b2c9cd37
AM
2326 if (rq->rq_disk &&
2327 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2a842aca 2328 return BLK_STS_IOERR;
82124d60 2329
7fb4898e
KB
2330 if (q->mq_ops) {
2331 if (blk_queue_io_stat(q))
2332 blk_account_io_start(rq, true);
c8e7f707
JA
2333 /*
2334 * Since we have a scheduler attached on the top device,
2335 * bypass a potential scheduler on the bottom device for
2336 * insert.
2337 */
2338 blk_mq_request_bypass_insert(rq);
2a842aca 2339 return BLK_STS_OK;
7fb4898e
KB
2340 }
2341
82124d60 2342 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2343 if (unlikely(blk_queue_dying(q))) {
8ba61435 2344 spin_unlock_irqrestore(q->queue_lock, flags);
2a842aca 2345 return BLK_STS_IOERR;
8ba61435 2346 }
82124d60
KU
2347
2348 /*
2349 * Submitting request must be dequeued before calling this function
2350 * because it will be linked to another request_queue
2351 */
2352 BUG_ON(blk_queued_rq(rq));
2353
f73f44eb 2354 if (op_is_flush(rq->cmd_flags))
4853abaa
JM
2355 where = ELEVATOR_INSERT_FLUSH;
2356
2357 add_acct_request(q, rq, where);
e67b77c7
JM
2358 if (where == ELEVATOR_INSERT_FLUSH)
2359 __blk_run_queue(q);
82124d60
KU
2360 spin_unlock_irqrestore(q->queue_lock, flags);
2361
2a842aca 2362 return BLK_STS_OK;
82124d60
KU
2363}
2364EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2365
80a761fd
TH
2366/**
2367 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2368 * @rq: request to examine
2369 *
2370 * Description:
2371 * A request could be merge of IOs which require different failure
2372 * handling. This function determines the number of bytes which
2373 * can be failed from the beginning of the request without
2374 * crossing into area which need to be retried further.
2375 *
2376 * Return:
2377 * The number of bytes to fail.
80a761fd
TH
2378 */
2379unsigned int blk_rq_err_bytes(const struct request *rq)
2380{
2381 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2382 unsigned int bytes = 0;
2383 struct bio *bio;
2384
e8064021 2385 if (!(rq->rq_flags & RQF_MIXED_MERGE))
80a761fd
TH
2386 return blk_rq_bytes(rq);
2387
2388 /*
2389 * Currently the only 'mixing' which can happen is between
2390 * different fastfail types. We can safely fail portions
2391 * which have all the failfast bits that the first one has -
2392 * the ones which are at least as eager to fail as the first
2393 * one.
2394 */
2395 for (bio = rq->bio; bio; bio = bio->bi_next) {
1eff9d32 2396 if ((bio->bi_opf & ff) != ff)
80a761fd 2397 break;
4f024f37 2398 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2399 }
2400
2401 /* this could lead to infinite loop */
2402 BUG_ON(blk_rq_bytes(rq) && !bytes);
2403 return bytes;
2404}
2405EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2406
320ae51f 2407void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2408{
c2553b58 2409 if (blk_do_io_stat(req)) {
bc58ba94
JA
2410 const int rw = rq_data_dir(req);
2411 struct hd_struct *part;
2412 int cpu;
2413
2414 cpu = part_stat_lock();
09e099d4 2415 part = req->part;
bc58ba94
JA
2416 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2417 part_stat_unlock();
2418 }
2419}
2420
320ae51f 2421void blk_account_io_done(struct request *req)
bc58ba94 2422{
bc58ba94 2423 /*
dd4c133f
TH
2424 * Account IO completion. flush_rq isn't accounted as a
2425 * normal IO on queueing nor completion. Accounting the
2426 * containing request is enough.
bc58ba94 2427 */
e8064021 2428 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
bc58ba94
JA
2429 unsigned long duration = jiffies - req->start_time;
2430 const int rw = rq_data_dir(req);
2431 struct hd_struct *part;
2432 int cpu;
2433
2434 cpu = part_stat_lock();
09e099d4 2435 part = req->part;
bc58ba94
JA
2436
2437 part_stat_inc(cpu, part, ios[rw]);
2438 part_stat_add(cpu, part, ticks[rw], duration);
2439 part_round_stats(cpu, part);
316d315b 2440 part_dec_in_flight(part, rw);
bc58ba94 2441
6c23a968 2442 hd_struct_put(part);
bc58ba94
JA
2443 part_stat_unlock();
2444 }
2445}
2446
47fafbc7 2447#ifdef CONFIG_PM
c8158819
LM
2448/*
2449 * Don't process normal requests when queue is suspended
2450 * or in the process of suspending/resuming
2451 */
2452static struct request *blk_pm_peek_request(struct request_queue *q,
2453 struct request *rq)
2454{
2455 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
e8064021 2456 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
c8158819
LM
2457 return NULL;
2458 else
2459 return rq;
2460}
2461#else
2462static inline struct request *blk_pm_peek_request(struct request_queue *q,
2463 struct request *rq)
2464{
2465 return rq;
2466}
2467#endif
2468
320ae51f
JA
2469void blk_account_io_start(struct request *rq, bool new_io)
2470{
2471 struct hd_struct *part;
2472 int rw = rq_data_dir(rq);
2473 int cpu;
2474
2475 if (!blk_do_io_stat(rq))
2476 return;
2477
2478 cpu = part_stat_lock();
2479
2480 if (!new_io) {
2481 part = rq->part;
2482 part_stat_inc(cpu, part, merges[rw]);
2483 } else {
2484 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2485 if (!hd_struct_try_get(part)) {
2486 /*
2487 * The partition is already being removed,
2488 * the request will be accounted on the disk only
2489 *
2490 * We take a reference on disk->part0 although that
2491 * partition will never be deleted, so we can treat
2492 * it as any other partition.
2493 */
2494 part = &rq->rq_disk->part0;
2495 hd_struct_get(part);
2496 }
2497 part_round_stats(cpu, part);
2498 part_inc_in_flight(part, rw);
2499 rq->part = part;
2500 }
2501
2502 part_stat_unlock();
2503}
2504
3bcddeac 2505/**
9934c8c0
TH
2506 * blk_peek_request - peek at the top of a request queue
2507 * @q: request queue to peek at
2508 *
2509 * Description:
2510 * Return the request at the top of @q. The returned request
2511 * should be started using blk_start_request() before LLD starts
2512 * processing it.
2513 *
2514 * Return:
2515 * Pointer to the request at the top of @q if available. Null
2516 * otherwise.
9934c8c0
TH
2517 */
2518struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2519{
2520 struct request *rq;
2521 int ret;
2522
2fff8a92 2523 lockdep_assert_held(q->queue_lock);
332ebbf7 2524 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2525
158dbda0 2526 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2527
2528 rq = blk_pm_peek_request(q, rq);
2529 if (!rq)
2530 break;
2531
e8064021 2532 if (!(rq->rq_flags & RQF_STARTED)) {
158dbda0
TH
2533 /*
2534 * This is the first time the device driver
2535 * sees this request (possibly after
2536 * requeueing). Notify IO scheduler.
2537 */
e8064021 2538 if (rq->rq_flags & RQF_SORTED)
158dbda0
TH
2539 elv_activate_rq(q, rq);
2540
2541 /*
2542 * just mark as started even if we don't start
2543 * it, a request that has been delayed should
2544 * not be passed by new incoming requests
2545 */
e8064021 2546 rq->rq_flags |= RQF_STARTED;
158dbda0
TH
2547 trace_block_rq_issue(q, rq);
2548 }
2549
2550 if (!q->boundary_rq || q->boundary_rq == rq) {
2551 q->end_sector = rq_end_sector(rq);
2552 q->boundary_rq = NULL;
2553 }
2554
e8064021 2555 if (rq->rq_flags & RQF_DONTPREP)
158dbda0
TH
2556 break;
2557
2e46e8b2 2558 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2559 /*
2560 * make sure space for the drain appears we
2561 * know we can do this because max_hw_segments
2562 * has been adjusted to be one fewer than the
2563 * device can handle
2564 */
2565 rq->nr_phys_segments++;
2566 }
2567
2568 if (!q->prep_rq_fn)
2569 break;
2570
2571 ret = q->prep_rq_fn(q, rq);
2572 if (ret == BLKPREP_OK) {
2573 break;
2574 } else if (ret == BLKPREP_DEFER) {
2575 /*
2576 * the request may have been (partially) prepped.
2577 * we need to keep this request in the front to
e8064021 2578 * avoid resource deadlock. RQF_STARTED will
158dbda0
TH
2579 * prevent other fs requests from passing this one.
2580 */
2e46e8b2 2581 if (q->dma_drain_size && blk_rq_bytes(rq) &&
e8064021 2582 !(rq->rq_flags & RQF_DONTPREP)) {
158dbda0
TH
2583 /*
2584 * remove the space for the drain we added
2585 * so that we don't add it again
2586 */
2587 --rq->nr_phys_segments;
2588 }
2589
2590 rq = NULL;
2591 break;
0fb5b1fb 2592 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
e8064021 2593 rq->rq_flags |= RQF_QUIET;
c143dc90
JB
2594 /*
2595 * Mark this request as started so we don't trigger
2596 * any debug logic in the end I/O path.
2597 */
2598 blk_start_request(rq);
2a842aca
CH
2599 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2600 BLK_STS_TARGET : BLK_STS_IOERR);
158dbda0
TH
2601 } else {
2602 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2603 break;
2604 }
2605 }
2606
2607 return rq;
2608}
9934c8c0 2609EXPORT_SYMBOL(blk_peek_request);
158dbda0 2610
9934c8c0 2611void blk_dequeue_request(struct request *rq)
158dbda0 2612{
9934c8c0
TH
2613 struct request_queue *q = rq->q;
2614
158dbda0
TH
2615 BUG_ON(list_empty(&rq->queuelist));
2616 BUG_ON(ELV_ON_HASH(rq));
2617
2618 list_del_init(&rq->queuelist);
2619
2620 /*
2621 * the time frame between a request being removed from the lists
2622 * and to it is freed is accounted as io that is in progress at
2623 * the driver side.
2624 */
9195291e 2625 if (blk_account_rq(rq)) {
0a7ae2ff 2626 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2627 set_io_start_time_ns(rq);
2628 }
158dbda0
TH
2629}
2630
9934c8c0
TH
2631/**
2632 * blk_start_request - start request processing on the driver
2633 * @req: request to dequeue
2634 *
2635 * Description:
2636 * Dequeue @req and start timeout timer on it. This hands off the
2637 * request to the driver.
2638 *
2639 * Block internal functions which don't want to start timer should
2640 * call blk_dequeue_request().
9934c8c0
TH
2641 */
2642void blk_start_request(struct request *req)
2643{
2fff8a92 2644 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2645 WARN_ON_ONCE(req->q->mq_ops);
2fff8a92 2646
9934c8c0
TH
2647 blk_dequeue_request(req);
2648
cf43e6be 2649 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
88eeca49 2650 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
cf43e6be 2651 req->rq_flags |= RQF_STATS;
87760e5e 2652 wbt_issue(req->q->rq_wb, &req->issue_stat);
cf43e6be
JA
2653 }
2654
4912aa6c 2655 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2656 blk_add_timer(req);
2657}
2658EXPORT_SYMBOL(blk_start_request);
2659
2660/**
2661 * blk_fetch_request - fetch a request from a request queue
2662 * @q: request queue to fetch a request from
2663 *
2664 * Description:
2665 * Return the request at the top of @q. The request is started on
2666 * return and LLD can start processing it immediately.
2667 *
2668 * Return:
2669 * Pointer to the request at the top of @q if available. Null
2670 * otherwise.
9934c8c0
TH
2671 */
2672struct request *blk_fetch_request(struct request_queue *q)
2673{
2674 struct request *rq;
2675
2fff8a92 2676 lockdep_assert_held(q->queue_lock);
332ebbf7 2677 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2678
9934c8c0
TH
2679 rq = blk_peek_request(q);
2680 if (rq)
2681 blk_start_request(rq);
2682 return rq;
2683}
2684EXPORT_SYMBOL(blk_fetch_request);
2685
3bcddeac 2686/**
2e60e022 2687 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2688 * @req: the request being processed
2a842aca 2689 * @error: block status code
8ebf9756 2690 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2691 *
2692 * Description:
8ebf9756
RD
2693 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2694 * the request structure even if @req doesn't have leftover.
2695 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2696 *
2697 * This special helper function is only for request stacking drivers
2698 * (e.g. request-based dm) so that they can handle partial completion.
2699 * Actual device drivers should use blk_end_request instead.
2700 *
2701 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2702 * %false return from this function.
3bcddeac
KU
2703 *
2704 * Return:
2e60e022
TH
2705 * %false - this request doesn't have any more data
2706 * %true - this request has more data
3bcddeac 2707 **/
2a842aca
CH
2708bool blk_update_request(struct request *req, blk_status_t error,
2709 unsigned int nr_bytes)
1da177e4 2710{
f79ea416 2711 int total_bytes;
1da177e4 2712
2a842aca 2713 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
4a0efdc9 2714
2e60e022
TH
2715 if (!req->bio)
2716 return false;
2717
2a842aca
CH
2718 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2719 !(req->rq_flags & RQF_QUIET)))
2720 print_req_error(req, error);
1da177e4 2721
bc58ba94 2722 blk_account_io_completion(req, nr_bytes);
d72d904a 2723
f79ea416
KO
2724 total_bytes = 0;
2725 while (req->bio) {
2726 struct bio *bio = req->bio;
4f024f37 2727 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2728
4f024f37 2729 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2730 req->bio = bio->bi_next;
1da177e4 2731
fbbaf700
N
2732 /* Completion has already been traced */
2733 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
f79ea416 2734 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2735
f79ea416
KO
2736 total_bytes += bio_bytes;
2737 nr_bytes -= bio_bytes;
1da177e4 2738
f79ea416
KO
2739 if (!nr_bytes)
2740 break;
1da177e4
LT
2741 }
2742
2743 /*
2744 * completely done
2745 */
2e60e022
TH
2746 if (!req->bio) {
2747 /*
2748 * Reset counters so that the request stacking driver
2749 * can find how many bytes remain in the request
2750 * later.
2751 */
a2dec7b3 2752 req->__data_len = 0;
2e60e022
TH
2753 return false;
2754 }
1da177e4 2755
a2dec7b3 2756 req->__data_len -= total_bytes;
2e46e8b2
TH
2757
2758 /* update sector only for requests with clear definition of sector */
57292b58 2759 if (!blk_rq_is_passthrough(req))
a2dec7b3 2760 req->__sector += total_bytes >> 9;
2e46e8b2 2761
80a761fd 2762 /* mixed attributes always follow the first bio */
e8064021 2763 if (req->rq_flags & RQF_MIXED_MERGE) {
80a761fd 2764 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1eff9d32 2765 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
80a761fd
TH
2766 }
2767
ed6565e7
CH
2768 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2769 /*
2770 * If total number of sectors is less than the first segment
2771 * size, something has gone terribly wrong.
2772 */
2773 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2774 blk_dump_rq_flags(req, "request botched");
2775 req->__data_len = blk_rq_cur_bytes(req);
2776 }
2e46e8b2 2777
ed6565e7
CH
2778 /* recalculate the number of segments */
2779 blk_recalc_rq_segments(req);
2780 }
2e46e8b2 2781
2e60e022 2782 return true;
1da177e4 2783}
2e60e022 2784EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2785
2a842aca 2786static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2e60e022
TH
2787 unsigned int nr_bytes,
2788 unsigned int bidi_bytes)
5efccd17 2789{
2e60e022
TH
2790 if (blk_update_request(rq, error, nr_bytes))
2791 return true;
5efccd17 2792
2e60e022
TH
2793 /* Bidi request must be completed as a whole */
2794 if (unlikely(blk_bidi_rq(rq)) &&
2795 blk_update_request(rq->next_rq, error, bidi_bytes))
2796 return true;
5efccd17 2797
e2e1a148
JA
2798 if (blk_queue_add_random(rq->q))
2799 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2800
2801 return false;
1da177e4
LT
2802}
2803
28018c24
JB
2804/**
2805 * blk_unprep_request - unprepare a request
2806 * @req: the request
2807 *
2808 * This function makes a request ready for complete resubmission (or
2809 * completion). It happens only after all error handling is complete,
2810 * so represents the appropriate moment to deallocate any resources
2811 * that were allocated to the request in the prep_rq_fn. The queue
2812 * lock is held when calling this.
2813 */
2814void blk_unprep_request(struct request *req)
2815{
2816 struct request_queue *q = req->q;
2817
e8064021 2818 req->rq_flags &= ~RQF_DONTPREP;
28018c24
JB
2819 if (q->unprep_rq_fn)
2820 q->unprep_rq_fn(q, req);
2821}
2822EXPORT_SYMBOL_GPL(blk_unprep_request);
2823
2a842aca 2824void blk_finish_request(struct request *req, blk_status_t error)
1da177e4 2825{
cf43e6be
JA
2826 struct request_queue *q = req->q;
2827
2fff8a92 2828 lockdep_assert_held(req->q->queue_lock);
332ebbf7 2829 WARN_ON_ONCE(q->mq_ops);
2fff8a92 2830
cf43e6be 2831 if (req->rq_flags & RQF_STATS)
34dbad5d 2832 blk_stat_add(req);
cf43e6be 2833
e8064021 2834 if (req->rq_flags & RQF_QUEUED)
cf43e6be 2835 blk_queue_end_tag(q, req);
b8286239 2836
ba396a6c 2837 BUG_ON(blk_queued_rq(req));
1da177e4 2838
57292b58 2839 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
dc3b17cc 2840 laptop_io_completion(req->q->backing_dev_info);
1da177e4 2841
e78042e5
MA
2842 blk_delete_timer(req);
2843
e8064021 2844 if (req->rq_flags & RQF_DONTPREP)
28018c24
JB
2845 blk_unprep_request(req);
2846
bc58ba94 2847 blk_account_io_done(req);
b8286239 2848
87760e5e
JA
2849 if (req->end_io) {
2850 wbt_done(req->q->rq_wb, &req->issue_stat);
8ffdc655 2851 req->end_io(req, error);
87760e5e 2852 } else {
b8286239
KU
2853 if (blk_bidi_rq(req))
2854 __blk_put_request(req->next_rq->q, req->next_rq);
2855
cf43e6be 2856 __blk_put_request(q, req);
b8286239 2857 }
1da177e4 2858}
12120077 2859EXPORT_SYMBOL(blk_finish_request);
1da177e4 2860
3b11313a 2861/**
2e60e022
TH
2862 * blk_end_bidi_request - Complete a bidi request
2863 * @rq: the request to complete
2a842aca 2864 * @error: block status code
2e60e022
TH
2865 * @nr_bytes: number of bytes to complete @rq
2866 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2867 *
2868 * Description:
e3a04fe3 2869 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2870 * Drivers that supports bidi can safely call this member for any
2871 * type of request, bidi or uni. In the later case @bidi_bytes is
2872 * just ignored.
336cdb40
KU
2873 *
2874 * Return:
2e60e022
TH
2875 * %false - we are done with this request
2876 * %true - still buffers pending for this request
a0cd1285 2877 **/
2a842aca 2878static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
32fab448
KU
2879 unsigned int nr_bytes, unsigned int bidi_bytes)
2880{
336cdb40 2881 struct request_queue *q = rq->q;
2e60e022 2882 unsigned long flags;
32fab448 2883
332ebbf7
BVA
2884 WARN_ON_ONCE(q->mq_ops);
2885
2e60e022
TH
2886 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2887 return true;
32fab448 2888
336cdb40 2889 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2890 blk_finish_request(rq, error);
336cdb40
KU
2891 spin_unlock_irqrestore(q->queue_lock, flags);
2892
2e60e022 2893 return false;
32fab448
KU
2894}
2895
336cdb40 2896/**
2e60e022
TH
2897 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2898 * @rq: the request to complete
2a842aca 2899 * @error: block status code
e3a04fe3
KU
2900 * @nr_bytes: number of bytes to complete @rq
2901 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2902 *
2903 * Description:
2e60e022
TH
2904 * Identical to blk_end_bidi_request() except that queue lock is
2905 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2906 *
2907 * Return:
2e60e022
TH
2908 * %false - we are done with this request
2909 * %true - still buffers pending for this request
336cdb40 2910 **/
2a842aca 2911static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
b1f74493 2912 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2913{
2fff8a92 2914 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 2915 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 2916
2e60e022
TH
2917 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2918 return true;
336cdb40 2919
2e60e022 2920 blk_finish_request(rq, error);
336cdb40 2921
2e60e022 2922 return false;
336cdb40 2923}
e19a3ab0
KU
2924
2925/**
2926 * blk_end_request - Helper function for drivers to complete the request.
2927 * @rq: the request being processed
2a842aca 2928 * @error: block status code
e19a3ab0
KU
2929 * @nr_bytes: number of bytes to complete
2930 *
2931 * Description:
2932 * Ends I/O on a number of bytes attached to @rq.
2933 * If @rq has leftover, sets it up for the next range of segments.
2934 *
2935 * Return:
b1f74493
FT
2936 * %false - we are done with this request
2937 * %true - still buffers pending for this request
e19a3ab0 2938 **/
2a842aca
CH
2939bool blk_end_request(struct request *rq, blk_status_t error,
2940 unsigned int nr_bytes)
e19a3ab0 2941{
332ebbf7 2942 WARN_ON_ONCE(rq->q->mq_ops);
b1f74493 2943 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2944}
56ad1740 2945EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2946
2947/**
b1f74493
FT
2948 * blk_end_request_all - Helper function for drives to finish the request.
2949 * @rq: the request to finish
2a842aca 2950 * @error: block status code
336cdb40
KU
2951 *
2952 * Description:
b1f74493
FT
2953 * Completely finish @rq.
2954 */
2a842aca 2955void blk_end_request_all(struct request *rq, blk_status_t error)
336cdb40 2956{
b1f74493
FT
2957 bool pending;
2958 unsigned int bidi_bytes = 0;
336cdb40 2959
b1f74493
FT
2960 if (unlikely(blk_bidi_rq(rq)))
2961 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2962
b1f74493
FT
2963 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2964 BUG_ON(pending);
2965}
56ad1740 2966EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2967
e3a04fe3 2968/**
b1f74493
FT
2969 * __blk_end_request - Helper function for drivers to complete the request.
2970 * @rq: the request being processed
2a842aca 2971 * @error: block status code
b1f74493 2972 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2973 *
2974 * Description:
b1f74493 2975 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2976 *
2977 * Return:
b1f74493
FT
2978 * %false - we are done with this request
2979 * %true - still buffers pending for this request
e3a04fe3 2980 **/
2a842aca
CH
2981bool __blk_end_request(struct request *rq, blk_status_t error,
2982 unsigned int nr_bytes)
e3a04fe3 2983{
2fff8a92 2984 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 2985 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 2986
b1f74493 2987 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2988}
56ad1740 2989EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2990
32fab448 2991/**
b1f74493
FT
2992 * __blk_end_request_all - Helper function for drives to finish the request.
2993 * @rq: the request to finish
2a842aca 2994 * @error: block status code
32fab448
KU
2995 *
2996 * Description:
b1f74493 2997 * Completely finish @rq. Must be called with queue lock held.
32fab448 2998 */
2a842aca 2999void __blk_end_request_all(struct request *rq, blk_status_t error)
32fab448 3000{
b1f74493
FT
3001 bool pending;
3002 unsigned int bidi_bytes = 0;
3003
2fff8a92 3004 lockdep_assert_held(rq->q->queue_lock);
332ebbf7 3005 WARN_ON_ONCE(rq->q->mq_ops);
2fff8a92 3006
b1f74493
FT
3007 if (unlikely(blk_bidi_rq(rq)))
3008 bidi_bytes = blk_rq_bytes(rq->next_rq);
3009
3010 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3011 BUG_ON(pending);
32fab448 3012}
56ad1740 3013EXPORT_SYMBOL(__blk_end_request_all);
32fab448 3014
e19a3ab0 3015/**
b1f74493
FT
3016 * __blk_end_request_cur - Helper function to finish the current request chunk.
3017 * @rq: the request to finish the current chunk for
2a842aca 3018 * @error: block status code
e19a3ab0
KU
3019 *
3020 * Description:
b1f74493
FT
3021 * Complete the current consecutively mapped chunk from @rq. Must
3022 * be called with queue lock held.
e19a3ab0
KU
3023 *
3024 * Return:
b1f74493
FT
3025 * %false - we are done with this request
3026 * %true - still buffers pending for this request
3027 */
2a842aca 3028bool __blk_end_request_cur(struct request *rq, blk_status_t error)
e19a3ab0 3029{
b1f74493 3030 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 3031}
56ad1740 3032EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 3033
86db1e29
JA
3034void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3035 struct bio *bio)
1da177e4 3036{
b4f42e28 3037 if (bio_has_data(bio))
fb2dce86 3038 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 3039
4f024f37 3040 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 3041 rq->bio = rq->biotail = bio;
1da177e4 3042
66846572
N
3043 if (bio->bi_bdev)
3044 rq->rq_disk = bio->bi_bdev->bd_disk;
3045}
1da177e4 3046
2d4dc890
IL
3047#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3048/**
3049 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3050 * @rq: the request to be flushed
3051 *
3052 * Description:
3053 * Flush all pages in @rq.
3054 */
3055void rq_flush_dcache_pages(struct request *rq)
3056{
3057 struct req_iterator iter;
7988613b 3058 struct bio_vec bvec;
2d4dc890
IL
3059
3060 rq_for_each_segment(bvec, rq, iter)
7988613b 3061 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
3062}
3063EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3064#endif
3065
ef9e3fac
KU
3066/**
3067 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3068 * @q : the queue of the device being checked
3069 *
3070 * Description:
3071 * Check if underlying low-level drivers of a device are busy.
3072 * If the drivers want to export their busy state, they must set own
3073 * exporting function using blk_queue_lld_busy() first.
3074 *
3075 * Basically, this function is used only by request stacking drivers
3076 * to stop dispatching requests to underlying devices when underlying
3077 * devices are busy. This behavior helps more I/O merging on the queue
3078 * of the request stacking driver and prevents I/O throughput regression
3079 * on burst I/O load.
3080 *
3081 * Return:
3082 * 0 - Not busy (The request stacking driver should dispatch request)
3083 * 1 - Busy (The request stacking driver should stop dispatching request)
3084 */
3085int blk_lld_busy(struct request_queue *q)
3086{
3087 if (q->lld_busy_fn)
3088 return q->lld_busy_fn(q);
3089
3090 return 0;
3091}
3092EXPORT_SYMBOL_GPL(blk_lld_busy);
3093
78d8e58a
MS
3094/**
3095 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3096 * @rq: the clone request to be cleaned up
3097 *
3098 * Description:
3099 * Free all bios in @rq for a cloned request.
3100 */
3101void blk_rq_unprep_clone(struct request *rq)
3102{
3103 struct bio *bio;
3104
3105 while ((bio = rq->bio) != NULL) {
3106 rq->bio = bio->bi_next;
3107
3108 bio_put(bio);
3109 }
3110}
3111EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3112
3113/*
3114 * Copy attributes of the original request to the clone request.
3115 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3116 */
3117static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3118{
3119 dst->cpu = src->cpu;
b0fd271d
KU
3120 dst->__sector = blk_rq_pos(src);
3121 dst->__data_len = blk_rq_bytes(src);
3122 dst->nr_phys_segments = src->nr_phys_segments;
3123 dst->ioprio = src->ioprio;
3124 dst->extra_len = src->extra_len;
78d8e58a
MS
3125}
3126
3127/**
3128 * blk_rq_prep_clone - Helper function to setup clone request
3129 * @rq: the request to be setup
3130 * @rq_src: original request to be cloned
3131 * @bs: bio_set that bios for clone are allocated from
3132 * @gfp_mask: memory allocation mask for bio
3133 * @bio_ctr: setup function to be called for each clone bio.
3134 * Returns %0 for success, non %0 for failure.
3135 * @data: private data to be passed to @bio_ctr
3136 *
3137 * Description:
3138 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3139 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3140 * are not copied, and copying such parts is the caller's responsibility.
3141 * Also, pages which the original bios are pointing to are not copied
3142 * and the cloned bios just point same pages.
3143 * So cloned bios must be completed before original bios, which means
3144 * the caller must complete @rq before @rq_src.
3145 */
3146int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3147 struct bio_set *bs, gfp_t gfp_mask,
3148 int (*bio_ctr)(struct bio *, struct bio *, void *),
3149 void *data)
3150{
3151 struct bio *bio, *bio_src;
3152
3153 if (!bs)
3154 bs = fs_bio_set;
3155
3156 __rq_for_each_bio(bio_src, rq_src) {
3157 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3158 if (!bio)
3159 goto free_and_out;
3160
3161 if (bio_ctr && bio_ctr(bio, bio_src, data))
3162 goto free_and_out;
3163
3164 if (rq->bio) {
3165 rq->biotail->bi_next = bio;
3166 rq->biotail = bio;
3167 } else
3168 rq->bio = rq->biotail = bio;
3169 }
3170
3171 __blk_rq_prep_clone(rq, rq_src);
3172
3173 return 0;
3174
3175free_and_out:
3176 if (bio)
3177 bio_put(bio);
3178 blk_rq_unprep_clone(rq);
3179
3180 return -ENOMEM;
b0fd271d
KU
3181}
3182EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3183
59c3d45e 3184int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3185{
3186 return queue_work(kblockd_workqueue, work);
3187}
1da177e4
LT
3188EXPORT_SYMBOL(kblockd_schedule_work);
3189
ee63cfa7
JA
3190int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3191{
3192 return queue_work_on(cpu, kblockd_workqueue, work);
3193}
3194EXPORT_SYMBOL(kblockd_schedule_work_on);
3195
818cd1cb
JA
3196int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3197 unsigned long delay)
3198{
3199 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3200}
3201EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3202
59c3d45e
JA
3203int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3204 unsigned long delay)
e43473b7
VG
3205{
3206 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3207}
3208EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3209
8ab14595
JA
3210int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3211 unsigned long delay)
3212{
3213 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3214}
3215EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3216
75df7136
SJ
3217/**
3218 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3219 * @plug: The &struct blk_plug that needs to be initialized
3220 *
3221 * Description:
3222 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3223 * pending I/O should the task end up blocking between blk_start_plug() and
3224 * blk_finish_plug(). This is important from a performance perspective, but
3225 * also ensures that we don't deadlock. For instance, if the task is blocking
3226 * for a memory allocation, memory reclaim could end up wanting to free a
3227 * page belonging to that request that is currently residing in our private
3228 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3229 * this kind of deadlock.
3230 */
73c10101
JA
3231void blk_start_plug(struct blk_plug *plug)
3232{
3233 struct task_struct *tsk = current;
3234
dd6cf3e1
SL
3235 /*
3236 * If this is a nested plug, don't actually assign it.
3237 */
3238 if (tsk->plug)
3239 return;
3240
73c10101 3241 INIT_LIST_HEAD(&plug->list);
320ae51f 3242 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3243 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3244 /*
dd6cf3e1
SL
3245 * Store ordering should not be needed here, since a potential
3246 * preempt will imply a full memory barrier
73c10101 3247 */
dd6cf3e1 3248 tsk->plug = plug;
73c10101
JA
3249}
3250EXPORT_SYMBOL(blk_start_plug);
3251
3252static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3253{
3254 struct request *rqa = container_of(a, struct request, queuelist);
3255 struct request *rqb = container_of(b, struct request, queuelist);
3256
975927b9
JM
3257 return !(rqa->q < rqb->q ||
3258 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3259}
3260
49cac01e
JA
3261/*
3262 * If 'from_schedule' is true, then postpone the dispatch of requests
3263 * until a safe kblockd context. We due this to avoid accidental big
3264 * additional stack usage in driver dispatch, in places where the originally
3265 * plugger did not intend it.
3266 */
f6603783 3267static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3268 bool from_schedule)
99e22598 3269 __releases(q->queue_lock)
94b5eb28 3270{
2fff8a92
BVA
3271 lockdep_assert_held(q->queue_lock);
3272
49cac01e 3273 trace_block_unplug(q, depth, !from_schedule);
99e22598 3274
70460571 3275 if (from_schedule)
24ecfbe2 3276 blk_run_queue_async(q);
70460571 3277 else
24ecfbe2 3278 __blk_run_queue(q);
70460571 3279 spin_unlock(q->queue_lock);
94b5eb28
JA
3280}
3281
74018dc3 3282static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3283{
3284 LIST_HEAD(callbacks);
3285
2a7d5559
SL
3286 while (!list_empty(&plug->cb_list)) {
3287 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3288
2a7d5559
SL
3289 while (!list_empty(&callbacks)) {
3290 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3291 struct blk_plug_cb,
3292 list);
2a7d5559 3293 list_del(&cb->list);
74018dc3 3294 cb->callback(cb, from_schedule);
2a7d5559 3295 }
048c9374
N
3296 }
3297}
3298
9cbb1750
N
3299struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3300 int size)
3301{
3302 struct blk_plug *plug = current->plug;
3303 struct blk_plug_cb *cb;
3304
3305 if (!plug)
3306 return NULL;
3307
3308 list_for_each_entry(cb, &plug->cb_list, list)
3309 if (cb->callback == unplug && cb->data == data)
3310 return cb;
3311
3312 /* Not currently on the callback list */
3313 BUG_ON(size < sizeof(*cb));
3314 cb = kzalloc(size, GFP_ATOMIC);
3315 if (cb) {
3316 cb->data = data;
3317 cb->callback = unplug;
3318 list_add(&cb->list, &plug->cb_list);
3319 }
3320 return cb;
3321}
3322EXPORT_SYMBOL(blk_check_plugged);
3323
49cac01e 3324void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3325{
3326 struct request_queue *q;
3327 unsigned long flags;
3328 struct request *rq;
109b8129 3329 LIST_HEAD(list);
94b5eb28 3330 unsigned int depth;
73c10101 3331
74018dc3 3332 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3333
3334 if (!list_empty(&plug->mq_list))
3335 blk_mq_flush_plug_list(plug, from_schedule);
3336
73c10101
JA
3337 if (list_empty(&plug->list))
3338 return;
3339
109b8129
N
3340 list_splice_init(&plug->list, &list);
3341
422765c2 3342 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3343
3344 q = NULL;
94b5eb28 3345 depth = 0;
18811272
JA
3346
3347 /*
3348 * Save and disable interrupts here, to avoid doing it for every
3349 * queue lock we have to take.
3350 */
73c10101 3351 local_irq_save(flags);
109b8129
N
3352 while (!list_empty(&list)) {
3353 rq = list_entry_rq(list.next);
73c10101 3354 list_del_init(&rq->queuelist);
73c10101
JA
3355 BUG_ON(!rq->q);
3356 if (rq->q != q) {
99e22598
JA
3357 /*
3358 * This drops the queue lock
3359 */
3360 if (q)
49cac01e 3361 queue_unplugged(q, depth, from_schedule);
73c10101 3362 q = rq->q;
94b5eb28 3363 depth = 0;
73c10101
JA
3364 spin_lock(q->queue_lock);
3365 }
8ba61435
TH
3366
3367 /*
3368 * Short-circuit if @q is dead
3369 */
3f3299d5 3370 if (unlikely(blk_queue_dying(q))) {
2a842aca 3371 __blk_end_request_all(rq, BLK_STS_IOERR);
8ba61435
TH
3372 continue;
3373 }
3374
73c10101
JA
3375 /*
3376 * rq is already accounted, so use raw insert
3377 */
f73f44eb 3378 if (op_is_flush(rq->cmd_flags))
401a18e9
JA
3379 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3380 else
3381 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3382
3383 depth++;
73c10101
JA
3384 }
3385
99e22598
JA
3386 /*
3387 * This drops the queue lock
3388 */
3389 if (q)
49cac01e 3390 queue_unplugged(q, depth, from_schedule);
73c10101 3391
73c10101
JA
3392 local_irq_restore(flags);
3393}
73c10101
JA
3394
3395void blk_finish_plug(struct blk_plug *plug)
3396{
dd6cf3e1
SL
3397 if (plug != current->plug)
3398 return;
f6603783 3399 blk_flush_plug_list(plug, false);
73c10101 3400
dd6cf3e1 3401 current->plug = NULL;
73c10101 3402}
88b996cd 3403EXPORT_SYMBOL(blk_finish_plug);
73c10101 3404
47fafbc7 3405#ifdef CONFIG_PM
6c954667
LM
3406/**
3407 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3408 * @q: the queue of the device
3409 * @dev: the device the queue belongs to
3410 *
3411 * Description:
3412 * Initialize runtime-PM-related fields for @q and start auto suspend for
3413 * @dev. Drivers that want to take advantage of request-based runtime PM
3414 * should call this function after @dev has been initialized, and its
3415 * request queue @q has been allocated, and runtime PM for it can not happen
3416 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3417 * cases, driver should call this function before any I/O has taken place.
3418 *
3419 * This function takes care of setting up using auto suspend for the device,
3420 * the autosuspend delay is set to -1 to make runtime suspend impossible
3421 * until an updated value is either set by user or by driver. Drivers do
3422 * not need to touch other autosuspend settings.
3423 *
3424 * The block layer runtime PM is request based, so only works for drivers
3425 * that use request as their IO unit instead of those directly use bio's.
3426 */
3427void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3428{
765e40b6
CH
3429 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3430 if (q->mq_ops)
3431 return;
3432
6c954667
LM
3433 q->dev = dev;
3434 q->rpm_status = RPM_ACTIVE;
3435 pm_runtime_set_autosuspend_delay(q->dev, -1);
3436 pm_runtime_use_autosuspend(q->dev);
3437}
3438EXPORT_SYMBOL(blk_pm_runtime_init);
3439
3440/**
3441 * blk_pre_runtime_suspend - Pre runtime suspend check
3442 * @q: the queue of the device
3443 *
3444 * Description:
3445 * This function will check if runtime suspend is allowed for the device
3446 * by examining if there are any requests pending in the queue. If there
3447 * are requests pending, the device can not be runtime suspended; otherwise,
3448 * the queue's status will be updated to SUSPENDING and the driver can
3449 * proceed to suspend the device.
3450 *
3451 * For the not allowed case, we mark last busy for the device so that
3452 * runtime PM core will try to autosuspend it some time later.
3453 *
3454 * This function should be called near the start of the device's
3455 * runtime_suspend callback.
3456 *
3457 * Return:
3458 * 0 - OK to runtime suspend the device
3459 * -EBUSY - Device should not be runtime suspended
3460 */
3461int blk_pre_runtime_suspend(struct request_queue *q)
3462{
3463 int ret = 0;
3464
4fd41a85
KX
3465 if (!q->dev)
3466 return ret;
3467
6c954667
LM
3468 spin_lock_irq(q->queue_lock);
3469 if (q->nr_pending) {
3470 ret = -EBUSY;
3471 pm_runtime_mark_last_busy(q->dev);
3472 } else {
3473 q->rpm_status = RPM_SUSPENDING;
3474 }
3475 spin_unlock_irq(q->queue_lock);
3476 return ret;
3477}
3478EXPORT_SYMBOL(blk_pre_runtime_suspend);
3479
3480/**
3481 * blk_post_runtime_suspend - Post runtime suspend processing
3482 * @q: the queue of the device
3483 * @err: return value of the device's runtime_suspend function
3484 *
3485 * Description:
3486 * Update the queue's runtime status according to the return value of the
3487 * device's runtime suspend function and mark last busy for the device so
3488 * that PM core will try to auto suspend the device at a later time.
3489 *
3490 * This function should be called near the end of the device's
3491 * runtime_suspend callback.
3492 */
3493void blk_post_runtime_suspend(struct request_queue *q, int err)
3494{
4fd41a85
KX
3495 if (!q->dev)
3496 return;
3497
6c954667
LM
3498 spin_lock_irq(q->queue_lock);
3499 if (!err) {
3500 q->rpm_status = RPM_SUSPENDED;
3501 } else {
3502 q->rpm_status = RPM_ACTIVE;
3503 pm_runtime_mark_last_busy(q->dev);
3504 }
3505 spin_unlock_irq(q->queue_lock);
3506}
3507EXPORT_SYMBOL(blk_post_runtime_suspend);
3508
3509/**
3510 * blk_pre_runtime_resume - Pre runtime resume processing
3511 * @q: the queue of the device
3512 *
3513 * Description:
3514 * Update the queue's runtime status to RESUMING in preparation for the
3515 * runtime resume of the device.
3516 *
3517 * This function should be called near the start of the device's
3518 * runtime_resume callback.
3519 */
3520void blk_pre_runtime_resume(struct request_queue *q)
3521{
4fd41a85
KX
3522 if (!q->dev)
3523 return;
3524
6c954667
LM
3525 spin_lock_irq(q->queue_lock);
3526 q->rpm_status = RPM_RESUMING;
3527 spin_unlock_irq(q->queue_lock);
3528}
3529EXPORT_SYMBOL(blk_pre_runtime_resume);
3530
3531/**
3532 * blk_post_runtime_resume - Post runtime resume processing
3533 * @q: the queue of the device
3534 * @err: return value of the device's runtime_resume function
3535 *
3536 * Description:
3537 * Update the queue's runtime status according to the return value of the
3538 * device's runtime_resume function. If it is successfully resumed, process
3539 * the requests that are queued into the device's queue when it is resuming
3540 * and then mark last busy and initiate autosuspend for it.
3541 *
3542 * This function should be called near the end of the device's
3543 * runtime_resume callback.
3544 */
3545void blk_post_runtime_resume(struct request_queue *q, int err)
3546{
4fd41a85
KX
3547 if (!q->dev)
3548 return;
3549
6c954667
LM
3550 spin_lock_irq(q->queue_lock);
3551 if (!err) {
3552 q->rpm_status = RPM_ACTIVE;
3553 __blk_run_queue(q);
3554 pm_runtime_mark_last_busy(q->dev);
c60855cd 3555 pm_request_autosuspend(q->dev);
6c954667
LM
3556 } else {
3557 q->rpm_status = RPM_SUSPENDED;
3558 }
3559 spin_unlock_irq(q->queue_lock);
3560}
3561EXPORT_SYMBOL(blk_post_runtime_resume);
d07ab6d1
MW
3562
3563/**
3564 * blk_set_runtime_active - Force runtime status of the queue to be active
3565 * @q: the queue of the device
3566 *
3567 * If the device is left runtime suspended during system suspend the resume
3568 * hook typically resumes the device and corrects runtime status
3569 * accordingly. However, that does not affect the queue runtime PM status
3570 * which is still "suspended". This prevents processing requests from the
3571 * queue.
3572 *
3573 * This function can be used in driver's resume hook to correct queue
3574 * runtime PM status and re-enable peeking requests from the queue. It
3575 * should be called before first request is added to the queue.
3576 */
3577void blk_set_runtime_active(struct request_queue *q)
3578{
3579 spin_lock_irq(q->queue_lock);
3580 q->rpm_status = RPM_ACTIVE;
3581 pm_runtime_mark_last_busy(q->dev);
3582 pm_request_autosuspend(q->dev);
3583 spin_unlock_irq(q->queue_lock);
3584}
3585EXPORT_SYMBOL(blk_set_runtime_active);
6c954667
LM
3586#endif
3587
1da177e4
LT
3588int __init blk_dev_init(void)
3589{
ef295ecf
CH
3590 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3591 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
0762b23d 3592 FIELD_SIZEOF(struct request, cmd_flags));
ef295ecf
CH
3593 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3594 FIELD_SIZEOF(struct bio, bi_opf));
9eb55b03 3595
89b90be2
TH
3596 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3597 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3598 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3599 if (!kblockd_workqueue)
3600 panic("Failed to create kblockd\n");
3601
3602 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3603 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3604
c2789bd4 3605 blk_requestq_cachep = kmem_cache_create("request_queue",
165125e1 3606 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3607
18fbda91
OS
3608#ifdef CONFIG_DEBUG_FS
3609 blk_debugfs_root = debugfs_create_dir("block", NULL);
3610#endif
3611
d38ecf93 3612 return 0;
1da177e4 3613}