]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/buffer.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4 21#include <linux/kernel.h>
f361bf4a 22#include <linux/sched/signal.h>
1da177e4
LT
23#include <linux/syscalls.h>
24#include <linux/fs.h>
ae259a9c 25#include <linux/iomap.h>
1da177e4
LT
26#include <linux/mm.h>
27#include <linux/percpu.h>
28#include <linux/slab.h>
16f7e0fe 29#include <linux/capability.h>
1da177e4
LT
30#include <linux/blkdev.h>
31#include <linux/file.h>
32#include <linux/quotaops.h>
33#include <linux/highmem.h>
630d9c47 34#include <linux/export.h>
bafc0dba 35#include <linux/backing-dev.h>
1da177e4
LT
36#include <linux/writeback.h>
37#include <linux/hash.h>
38#include <linux/suspend.h>
39#include <linux/buffer_head.h>
55e829af 40#include <linux/task_io_accounting_ops.h>
1da177e4
LT
41#include <linux/bio.h>
42#include <linux/notifier.h>
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
fb1c8f93 46#include <linux/bit_spinlock.h>
29f3ad7d 47#include <linux/pagevec.h>
5305cb83 48#include <trace/events/block.h>
1da177e4
LT
49
50static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
2a222ca9 51static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
8e8f9298 52 enum rw_hint hint, struct writeback_control *wbc);
1da177e4
LT
53
54#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
a3f3c29c 56void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
1da177e4
LT
57{
58 bh->b_end_io = handler;
59 bh->b_private = private;
60}
1fe72eaa 61EXPORT_SYMBOL(init_buffer);
1da177e4 62
f0059afd
TH
63inline void touch_buffer(struct buffer_head *bh)
64{
5305cb83 65 trace_block_touch_buffer(bh);
f0059afd
TH
66 mark_page_accessed(bh->b_page);
67}
68EXPORT_SYMBOL(touch_buffer);
69
fc9b52cd 70void __lock_buffer(struct buffer_head *bh)
1da177e4 71{
74316201 72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
73}
74EXPORT_SYMBOL(__lock_buffer);
75
fc9b52cd 76void unlock_buffer(struct buffer_head *bh)
1da177e4 77{
51b07fc3 78 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 79 smp_mb__after_atomic();
1da177e4
LT
80 wake_up_bit(&bh->b_state, BH_Lock);
81}
1fe72eaa 82EXPORT_SYMBOL(unlock_buffer);
1da177e4 83
b4597226
MG
84/*
85 * Returns if the page has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the PageDirty information is stale. If
87 * any of the pages are locked, it is assumed they are locked for IO.
88 */
89void buffer_check_dirty_writeback(struct page *page,
90 bool *dirty, bool *writeback)
91{
92 struct buffer_head *head, *bh;
93 *dirty = false;
94 *writeback = false;
95
96 BUG_ON(!PageLocked(page));
97
98 if (!page_has_buffers(page))
99 return;
100
101 if (PageWriteback(page))
102 *writeback = true;
103
104 head = page_buffers(page);
105 bh = head;
106 do {
107 if (buffer_locked(bh))
108 *writeback = true;
109
110 if (buffer_dirty(bh))
111 *dirty = true;
112
113 bh = bh->b_this_page;
114 } while (bh != head);
115}
116EXPORT_SYMBOL(buffer_check_dirty_writeback);
117
1da177e4
LT
118/*
119 * Block until a buffer comes unlocked. This doesn't stop it
120 * from becoming locked again - you have to lock it yourself
121 * if you want to preserve its state.
122 */
123void __wait_on_buffer(struct buffer_head * bh)
124{
74316201 125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 126}
1fe72eaa 127EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
128
129static void
130__clear_page_buffers(struct page *page)
131{
132 ClearPagePrivate(page);
4c21e2f2 133 set_page_private(page, 0);
09cbfeaf 134 put_page(page);
1da177e4
LT
135}
136
b744c2ac 137static void buffer_io_error(struct buffer_head *bh, char *msg)
1da177e4 138{
432f16e6
RE
139 if (!test_bit(BH_Quiet, &bh->b_state))
140 printk_ratelimited(KERN_ERR
a1c6f057
DM
141 "Buffer I/O error on dev %pg, logical block %llu%s\n",
142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
1da177e4
LT
143}
144
145/*
68671f35
DM
146 * End-of-IO handler helper function which does not touch the bh after
147 * unlocking it.
148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149 * a race there is benign: unlock_buffer() only use the bh's address for
150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
151 * itself.
1da177e4 152 */
68671f35 153static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
154{
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
70246286 158 /* This happens, due to failed read-ahead attempts. */
1da177e4
LT
159 clear_buffer_uptodate(bh);
160 }
161 unlock_buffer(bh);
68671f35
DM
162}
163
164/*
165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
166 * unlock the buffer. This is what ll_rw_block uses too.
167 */
168void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
169{
170 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
171 put_bh(bh);
172}
1fe72eaa 173EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
174
175void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
176{
1da177e4
LT
177 if (uptodate) {
178 set_buffer_uptodate(bh);
179 } else {
432f16e6 180 buffer_io_error(bh, ", lost sync page write");
87354e5d 181 mark_buffer_write_io_error(bh);
1da177e4
LT
182 clear_buffer_uptodate(bh);
183 }
184 unlock_buffer(bh);
185 put_bh(bh);
186}
1fe72eaa 187EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 188
1da177e4
LT
189/*
190 * Various filesystems appear to want __find_get_block to be non-blocking.
191 * But it's the page lock which protects the buffers. To get around this,
192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
193 * private_lock.
194 *
195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196 * may be quite high. This code could TryLock the page, and if that
197 * succeeds, there is no need to take private_lock. (But if
198 * private_lock is contended then so is mapping->tree_lock).
199 */
200static struct buffer_head *
385fd4c5 201__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
202{
203 struct inode *bd_inode = bdev->bd_inode;
204 struct address_space *bd_mapping = bd_inode->i_mapping;
205 struct buffer_head *ret = NULL;
206 pgoff_t index;
207 struct buffer_head *bh;
208 struct buffer_head *head;
209 struct page *page;
210 int all_mapped = 1;
211
09cbfeaf 212 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
2457aec6 213 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
1da177e4
LT
214 if (!page)
215 goto out;
216
217 spin_lock(&bd_mapping->private_lock);
218 if (!page_has_buffers(page))
219 goto out_unlock;
220 head = page_buffers(page);
221 bh = head;
222 do {
97f76d3d
NK
223 if (!buffer_mapped(bh))
224 all_mapped = 0;
225 else if (bh->b_blocknr == block) {
1da177e4
LT
226 ret = bh;
227 get_bh(bh);
228 goto out_unlock;
229 }
1da177e4
LT
230 bh = bh->b_this_page;
231 } while (bh != head);
232
233 /* we might be here because some of the buffers on this page are
234 * not mapped. This is due to various races between
235 * file io on the block device and getblk. It gets dealt with
236 * elsewhere, don't buffer_error if we had some unmapped buffers
237 */
238 if (all_mapped) {
239 printk("__find_get_block_slow() failed. "
240 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
241 (unsigned long long)block,
242 (unsigned long long)bh->b_blocknr);
243 printk("b_state=0x%08lx, b_size=%zu\n",
244 bh->b_state, bh->b_size);
a1c6f057 245 printk("device %pg blocksize: %d\n", bdev,
72a2ebd8 246 1 << bd_inode->i_blkbits);
1da177e4
LT
247 }
248out_unlock:
249 spin_unlock(&bd_mapping->private_lock);
09cbfeaf 250 put_page(page);
1da177e4
LT
251out:
252 return ret;
253}
254
1da177e4 255/*
5b0830cb 256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
1da177e4
LT
257 */
258static void free_more_memory(void)
259{
c33d6c06 260 struct zoneref *z;
0e88460d 261 int nid;
1da177e4 262
0e175a18 263 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
1da177e4
LT
264 yield();
265
0e88460d 266 for_each_online_node(nid) {
c33d6c06
MG
267
268 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
269 gfp_zone(GFP_NOFS), NULL);
270 if (z->zone)
54a6eb5c 271 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
327c0e96 272 GFP_NOFS, NULL);
1da177e4
LT
273 }
274}
275
276/*
277 * I/O completion handler for block_read_full_page() - pages
278 * which come unlocked at the end of I/O.
279 */
280static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
281{
1da177e4 282 unsigned long flags;
a3972203 283 struct buffer_head *first;
1da177e4
LT
284 struct buffer_head *tmp;
285 struct page *page;
286 int page_uptodate = 1;
287
288 BUG_ON(!buffer_async_read(bh));
289
290 page = bh->b_page;
291 if (uptodate) {
292 set_buffer_uptodate(bh);
293 } else {
294 clear_buffer_uptodate(bh);
432f16e6 295 buffer_io_error(bh, ", async page read");
1da177e4
LT
296 SetPageError(page);
297 }
298
299 /*
300 * Be _very_ careful from here on. Bad things can happen if
301 * two buffer heads end IO at almost the same time and both
302 * decide that the page is now completely done.
303 */
a3972203
NP
304 first = page_buffers(page);
305 local_irq_save(flags);
306 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
307 clear_buffer_async_read(bh);
308 unlock_buffer(bh);
309 tmp = bh;
310 do {
311 if (!buffer_uptodate(tmp))
312 page_uptodate = 0;
313 if (buffer_async_read(tmp)) {
314 BUG_ON(!buffer_locked(tmp));
315 goto still_busy;
316 }
317 tmp = tmp->b_this_page;
318 } while (tmp != bh);
a3972203
NP
319 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
320 local_irq_restore(flags);
1da177e4
LT
321
322 /*
323 * If none of the buffers had errors and they are all
324 * uptodate then we can set the page uptodate.
325 */
326 if (page_uptodate && !PageError(page))
327 SetPageUptodate(page);
328 unlock_page(page);
329 return;
330
331still_busy:
a3972203
NP
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
1da177e4
LT
334 return;
335}
336
337/*
338 * Completion handler for block_write_full_page() - pages which are unlocked
339 * during I/O, and which have PageWriteback cleared upon I/O completion.
340 */
35c80d5f 341void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4 342{
1da177e4 343 unsigned long flags;
a3972203 344 struct buffer_head *first;
1da177e4
LT
345 struct buffer_head *tmp;
346 struct page *page;
347
348 BUG_ON(!buffer_async_write(bh));
349
350 page = bh->b_page;
351 if (uptodate) {
352 set_buffer_uptodate(bh);
353 } else {
432f16e6 354 buffer_io_error(bh, ", lost async page write");
87354e5d 355 mark_buffer_write_io_error(bh);
1da177e4
LT
356 clear_buffer_uptodate(bh);
357 SetPageError(page);
358 }
359
a3972203
NP
360 first = page_buffers(page);
361 local_irq_save(flags);
362 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
363
1da177e4
LT
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
371 }
372 tmp = tmp->b_this_page;
373 }
a3972203
NP
374 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
375 local_irq_restore(flags);
1da177e4
LT
376 end_page_writeback(page);
377 return;
378
379still_busy:
a3972203
NP
380 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
381 local_irq_restore(flags);
1da177e4
LT
382 return;
383}
1fe72eaa 384EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
385
386/*
387 * If a page's buffers are under async readin (end_buffer_async_read
388 * completion) then there is a possibility that another thread of
389 * control could lock one of the buffers after it has completed
390 * but while some of the other buffers have not completed. This
391 * locked buffer would confuse end_buffer_async_read() into not unlocking
392 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
393 * that this buffer is not under async I/O.
394 *
395 * The page comes unlocked when it has no locked buffer_async buffers
396 * left.
397 *
398 * PageLocked prevents anyone starting new async I/O reads any of
399 * the buffers.
400 *
401 * PageWriteback is used to prevent simultaneous writeout of the same
402 * page.
403 *
404 * PageLocked prevents anyone from starting writeback of a page which is
405 * under read I/O (PageWriteback is only ever set against a locked page).
406 */
407static void mark_buffer_async_read(struct buffer_head *bh)
408{
409 bh->b_end_io = end_buffer_async_read;
410 set_buffer_async_read(bh);
411}
412
1fe72eaa
HS
413static void mark_buffer_async_write_endio(struct buffer_head *bh,
414 bh_end_io_t *handler)
1da177e4 415{
35c80d5f 416 bh->b_end_io = handler;
1da177e4
LT
417 set_buffer_async_write(bh);
418}
35c80d5f
CM
419
420void mark_buffer_async_write(struct buffer_head *bh)
421{
422 mark_buffer_async_write_endio(bh, end_buffer_async_write);
423}
1da177e4
LT
424EXPORT_SYMBOL(mark_buffer_async_write);
425
426
427/*
428 * fs/buffer.c contains helper functions for buffer-backed address space's
429 * fsync functions. A common requirement for buffer-based filesystems is
430 * that certain data from the backing blockdev needs to be written out for
431 * a successful fsync(). For example, ext2 indirect blocks need to be
432 * written back and waited upon before fsync() returns.
433 *
434 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
435 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
436 * management of a list of dependent buffers at ->i_mapping->private_list.
437 *
438 * Locking is a little subtle: try_to_free_buffers() will remove buffers
439 * from their controlling inode's queue when they are being freed. But
440 * try_to_free_buffers() will be operating against the *blockdev* mapping
441 * at the time, not against the S_ISREG file which depends on those buffers.
442 * So the locking for private_list is via the private_lock in the address_space
443 * which backs the buffers. Which is different from the address_space
444 * against which the buffers are listed. So for a particular address_space,
445 * mapping->private_lock does *not* protect mapping->private_list! In fact,
446 * mapping->private_list will always be protected by the backing blockdev's
447 * ->private_lock.
448 *
449 * Which introduces a requirement: all buffers on an address_space's
450 * ->private_list must be from the same address_space: the blockdev's.
451 *
452 * address_spaces which do not place buffers at ->private_list via these
453 * utility functions are free to use private_lock and private_list for
454 * whatever they want. The only requirement is that list_empty(private_list)
455 * be true at clear_inode() time.
456 *
457 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
458 * filesystems should do that. invalidate_inode_buffers() should just go
459 * BUG_ON(!list_empty).
460 *
461 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
462 * take an address_space, not an inode. And it should be called
463 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
464 * queued up.
465 *
466 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
467 * list if it is already on a list. Because if the buffer is on a list,
468 * it *must* already be on the right one. If not, the filesystem is being
469 * silly. This will save a ton of locking. But first we have to ensure
470 * that buffers are taken *off* the old inode's list when they are freed
471 * (presumably in truncate). That requires careful auditing of all
472 * filesystems (do it inside bforget()). It could also be done by bringing
473 * b_inode back.
474 */
475
476/*
477 * The buffer's backing address_space's private_lock must be held
478 */
dbacefc9 479static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
480{
481 list_del_init(&bh->b_assoc_buffers);
58ff407b 482 WARN_ON(!bh->b_assoc_map);
58ff407b 483 bh->b_assoc_map = NULL;
1da177e4
LT
484}
485
486int inode_has_buffers(struct inode *inode)
487{
488 return !list_empty(&inode->i_data.private_list);
489}
490
491/*
492 * osync is designed to support O_SYNC io. It waits synchronously for
493 * all already-submitted IO to complete, but does not queue any new
494 * writes to the disk.
495 *
496 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
497 * you dirty the buffers, and then use osync_inode_buffers to wait for
498 * completion. Any other dirty buffers which are not yet queued for
499 * write will not be flushed to disk by the osync.
500 */
501static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
502{
503 struct buffer_head *bh;
504 struct list_head *p;
505 int err = 0;
506
507 spin_lock(lock);
508repeat:
509 list_for_each_prev(p, list) {
510 bh = BH_ENTRY(p);
511 if (buffer_locked(bh)) {
512 get_bh(bh);
513 spin_unlock(lock);
514 wait_on_buffer(bh);
515 if (!buffer_uptodate(bh))
516 err = -EIO;
517 brelse(bh);
518 spin_lock(lock);
519 goto repeat;
520 }
521 }
522 spin_unlock(lock);
523 return err;
524}
525
01a05b33 526static void do_thaw_one(struct super_block *sb, void *unused)
c2d75438 527{
01a05b33 528 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
a1c6f057 529 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
01a05b33 530}
c2d75438 531
01a05b33
AV
532static void do_thaw_all(struct work_struct *work)
533{
534 iterate_supers(do_thaw_one, NULL);
053c525f 535 kfree(work);
c2d75438
ES
536 printk(KERN_WARNING "Emergency Thaw complete\n");
537}
538
539/**
540 * emergency_thaw_all -- forcibly thaw every frozen filesystem
541 *
542 * Used for emergency unfreeze of all filesystems via SysRq
543 */
544void emergency_thaw_all(void)
545{
053c525f
JA
546 struct work_struct *work;
547
548 work = kmalloc(sizeof(*work), GFP_ATOMIC);
549 if (work) {
550 INIT_WORK(work, do_thaw_all);
551 schedule_work(work);
552 }
c2d75438
ES
553}
554
1da177e4 555/**
78a4a50a 556 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 557 * @mapping: the mapping which wants those buffers written
1da177e4
LT
558 *
559 * Starts I/O against the buffers at mapping->private_list, and waits upon
560 * that I/O.
561 *
67be2dd1
MW
562 * Basically, this is a convenience function for fsync().
563 * @mapping is a file or directory which needs those buffers to be written for
564 * a successful fsync().
1da177e4
LT
565 */
566int sync_mapping_buffers(struct address_space *mapping)
567{
252aa6f5 568 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
569
570 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
571 return 0;
572
573 return fsync_buffers_list(&buffer_mapping->private_lock,
574 &mapping->private_list);
575}
576EXPORT_SYMBOL(sync_mapping_buffers);
577
578/*
579 * Called when we've recently written block `bblock', and it is known that
580 * `bblock' was for a buffer_boundary() buffer. This means that the block at
581 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
582 * dirty, schedule it for IO. So that indirects merge nicely with their data.
583 */
584void write_boundary_block(struct block_device *bdev,
585 sector_t bblock, unsigned blocksize)
586{
587 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
588 if (bh) {
589 if (buffer_dirty(bh))
dfec8a14 590 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
1da177e4
LT
591 put_bh(bh);
592 }
593}
594
595void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
596{
597 struct address_space *mapping = inode->i_mapping;
598 struct address_space *buffer_mapping = bh->b_page->mapping;
599
600 mark_buffer_dirty(bh);
252aa6f5
RA
601 if (!mapping->private_data) {
602 mapping->private_data = buffer_mapping;
1da177e4 603 } else {
252aa6f5 604 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 605 }
535ee2fb 606 if (!bh->b_assoc_map) {
1da177e4
LT
607 spin_lock(&buffer_mapping->private_lock);
608 list_move_tail(&bh->b_assoc_buffers,
609 &mapping->private_list);
58ff407b 610 bh->b_assoc_map = mapping;
1da177e4
LT
611 spin_unlock(&buffer_mapping->private_lock);
612 }
613}
614EXPORT_SYMBOL(mark_buffer_dirty_inode);
615
787d2214
NP
616/*
617 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
618 * dirty.
619 *
620 * If warn is true, then emit a warning if the page is not uptodate and has
621 * not been truncated.
c4843a75 622 *
81f8c3a4 623 * The caller must hold lock_page_memcg().
787d2214 624 */
c4843a75 625static void __set_page_dirty(struct page *page, struct address_space *mapping,
62cccb8c 626 int warn)
787d2214 627{
227d53b3
KM
628 unsigned long flags;
629
630 spin_lock_irqsave(&mapping->tree_lock, flags);
787d2214
NP
631 if (page->mapping) { /* Race with truncate? */
632 WARN_ON_ONCE(warn && !PageUptodate(page));
62cccb8c 633 account_page_dirtied(page, mapping);
787d2214
NP
634 radix_tree_tag_set(&mapping->page_tree,
635 page_index(page), PAGECACHE_TAG_DIRTY);
636 }
227d53b3 637 spin_unlock_irqrestore(&mapping->tree_lock, flags);
787d2214
NP
638}
639
1da177e4
LT
640/*
641 * Add a page to the dirty page list.
642 *
643 * It is a sad fact of life that this function is called from several places
644 * deeply under spinlocking. It may not sleep.
645 *
646 * If the page has buffers, the uptodate buffers are set dirty, to preserve
647 * dirty-state coherency between the page and the buffers. It the page does
648 * not have buffers then when they are later attached they will all be set
649 * dirty.
650 *
651 * The buffers are dirtied before the page is dirtied. There's a small race
652 * window in which a writepage caller may see the page cleanness but not the
653 * buffer dirtiness. That's fine. If this code were to set the page dirty
654 * before the buffers, a concurrent writepage caller could clear the page dirty
655 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
656 * page on the dirty page list.
657 *
658 * We use private_lock to lock against try_to_free_buffers while using the
659 * page's buffer list. Also use this to protect against clean buffers being
660 * added to the page after it was set dirty.
661 *
662 * FIXME: may need to call ->reservepage here as well. That's rather up to the
663 * address_space though.
664 */
665int __set_page_dirty_buffers(struct page *page)
666{
a8e7d49a 667 int newly_dirty;
787d2214 668 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
669
670 if (unlikely(!mapping))
671 return !TestSetPageDirty(page);
1da177e4
LT
672
673 spin_lock(&mapping->private_lock);
674 if (page_has_buffers(page)) {
675 struct buffer_head *head = page_buffers(page);
676 struct buffer_head *bh = head;
677
678 do {
679 set_buffer_dirty(bh);
680 bh = bh->b_this_page;
681 } while (bh != head);
682 }
c4843a75 683 /*
81f8c3a4
JW
684 * Lock out page->mem_cgroup migration to keep PageDirty
685 * synchronized with per-memcg dirty page counters.
c4843a75 686 */
62cccb8c 687 lock_page_memcg(page);
a8e7d49a 688 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
689 spin_unlock(&mapping->private_lock);
690
a8e7d49a 691 if (newly_dirty)
62cccb8c 692 __set_page_dirty(page, mapping, 1);
c4843a75 693
62cccb8c 694 unlock_page_memcg(page);
c4843a75
GT
695
696 if (newly_dirty)
697 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
698
a8e7d49a 699 return newly_dirty;
1da177e4
LT
700}
701EXPORT_SYMBOL(__set_page_dirty_buffers);
702
703/*
704 * Write out and wait upon a list of buffers.
705 *
706 * We have conflicting pressures: we want to make sure that all
707 * initially dirty buffers get waited on, but that any subsequently
708 * dirtied buffers don't. After all, we don't want fsync to last
709 * forever if somebody is actively writing to the file.
710 *
711 * Do this in two main stages: first we copy dirty buffers to a
712 * temporary inode list, queueing the writes as we go. Then we clean
713 * up, waiting for those writes to complete.
714 *
715 * During this second stage, any subsequent updates to the file may end
716 * up refiling the buffer on the original inode's dirty list again, so
717 * there is a chance we will end up with a buffer queued for write but
718 * not yet completed on that list. So, as a final cleanup we go through
719 * the osync code to catch these locked, dirty buffers without requeuing
720 * any newly dirty buffers for write.
721 */
722static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
723{
724 struct buffer_head *bh;
725 struct list_head tmp;
7eaceacc 726 struct address_space *mapping;
1da177e4 727 int err = 0, err2;
4ee2491e 728 struct blk_plug plug;
1da177e4
LT
729
730 INIT_LIST_HEAD(&tmp);
4ee2491e 731 blk_start_plug(&plug);
1da177e4
LT
732
733 spin_lock(lock);
734 while (!list_empty(list)) {
735 bh = BH_ENTRY(list->next);
535ee2fb 736 mapping = bh->b_assoc_map;
58ff407b 737 __remove_assoc_queue(bh);
535ee2fb
JK
738 /* Avoid race with mark_buffer_dirty_inode() which does
739 * a lockless check and we rely on seeing the dirty bit */
740 smp_mb();
1da177e4
LT
741 if (buffer_dirty(bh) || buffer_locked(bh)) {
742 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 743 bh->b_assoc_map = mapping;
1da177e4
LT
744 if (buffer_dirty(bh)) {
745 get_bh(bh);
746 spin_unlock(lock);
747 /*
748 * Ensure any pending I/O completes so that
9cb569d6
CH
749 * write_dirty_buffer() actually writes the
750 * current contents - it is a noop if I/O is
751 * still in flight on potentially older
752 * contents.
1da177e4 753 */
70fd7614 754 write_dirty_buffer(bh, REQ_SYNC);
9cf6b720
JA
755
756 /*
757 * Kick off IO for the previous mapping. Note
758 * that we will not run the very last mapping,
759 * wait_on_buffer() will do that for us
760 * through sync_buffer().
761 */
1da177e4
LT
762 brelse(bh);
763 spin_lock(lock);
764 }
765 }
766 }
767
4ee2491e
JA
768 spin_unlock(lock);
769 blk_finish_plug(&plug);
770 spin_lock(lock);
771
1da177e4
LT
772 while (!list_empty(&tmp)) {
773 bh = BH_ENTRY(tmp.prev);
1da177e4 774 get_bh(bh);
535ee2fb
JK
775 mapping = bh->b_assoc_map;
776 __remove_assoc_queue(bh);
777 /* Avoid race with mark_buffer_dirty_inode() which does
778 * a lockless check and we rely on seeing the dirty bit */
779 smp_mb();
780 if (buffer_dirty(bh)) {
781 list_add(&bh->b_assoc_buffers,
e3892296 782 &mapping->private_list);
535ee2fb
JK
783 bh->b_assoc_map = mapping;
784 }
1da177e4
LT
785 spin_unlock(lock);
786 wait_on_buffer(bh);
787 if (!buffer_uptodate(bh))
788 err = -EIO;
789 brelse(bh);
790 spin_lock(lock);
791 }
792
793 spin_unlock(lock);
794 err2 = osync_buffers_list(lock, list);
795 if (err)
796 return err;
797 else
798 return err2;
799}
800
801/*
802 * Invalidate any and all dirty buffers on a given inode. We are
803 * probably unmounting the fs, but that doesn't mean we have already
804 * done a sync(). Just drop the buffers from the inode list.
805 *
806 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
807 * assumes that all the buffers are against the blockdev. Not true
808 * for reiserfs.
809 */
810void invalidate_inode_buffers(struct inode *inode)
811{
812 if (inode_has_buffers(inode)) {
813 struct address_space *mapping = &inode->i_data;
814 struct list_head *list = &mapping->private_list;
252aa6f5 815 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
816
817 spin_lock(&buffer_mapping->private_lock);
818 while (!list_empty(list))
819 __remove_assoc_queue(BH_ENTRY(list->next));
820 spin_unlock(&buffer_mapping->private_lock);
821 }
822}
52b19ac9 823EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
824
825/*
826 * Remove any clean buffers from the inode's buffer list. This is called
827 * when we're trying to free the inode itself. Those buffers can pin it.
828 *
829 * Returns true if all buffers were removed.
830 */
831int remove_inode_buffers(struct inode *inode)
832{
833 int ret = 1;
834
835 if (inode_has_buffers(inode)) {
836 struct address_space *mapping = &inode->i_data;
837 struct list_head *list = &mapping->private_list;
252aa6f5 838 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
839
840 spin_lock(&buffer_mapping->private_lock);
841 while (!list_empty(list)) {
842 struct buffer_head *bh = BH_ENTRY(list->next);
843 if (buffer_dirty(bh)) {
844 ret = 0;
845 break;
846 }
847 __remove_assoc_queue(bh);
848 }
849 spin_unlock(&buffer_mapping->private_lock);
850 }
851 return ret;
852}
853
854/*
855 * Create the appropriate buffers when given a page for data area and
856 * the size of each buffer.. Use the bh->b_this_page linked list to
857 * follow the buffers created. Return NULL if unable to create more
858 * buffers.
859 *
860 * The retry flag is used to differentiate async IO (paging, swapping)
861 * which may not fail from ordinary buffer allocations.
862 */
863struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
864 int retry)
865{
866 struct buffer_head *bh, *head;
867 long offset;
868
869try_again:
870 head = NULL;
871 offset = PAGE_SIZE;
872 while ((offset -= size) >= 0) {
873 bh = alloc_buffer_head(GFP_NOFS);
874 if (!bh)
875 goto no_grow;
876
1da177e4
LT
877 bh->b_this_page = head;
878 bh->b_blocknr = -1;
879 head = bh;
880
1da177e4
LT
881 bh->b_size = size;
882
883 /* Link the buffer to its page */
884 set_bh_page(bh, page, offset);
1da177e4
LT
885 }
886 return head;
887/*
888 * In case anything failed, we just free everything we got.
889 */
890no_grow:
891 if (head) {
892 do {
893 bh = head;
894 head = head->b_this_page;
895 free_buffer_head(bh);
896 } while (head);
897 }
898
899 /*
900 * Return failure for non-async IO requests. Async IO requests
901 * are not allowed to fail, so we have to wait until buffer heads
902 * become available. But we don't want tasks sleeping with
903 * partially complete buffers, so all were released above.
904 */
905 if (!retry)
906 return NULL;
907
908 /* We're _really_ low on memory. Now we just
909 * wait for old buffer heads to become free due to
910 * finishing IO. Since this is an async request and
911 * the reserve list is empty, we're sure there are
912 * async buffer heads in use.
913 */
914 free_more_memory();
915 goto try_again;
916}
917EXPORT_SYMBOL_GPL(alloc_page_buffers);
918
919static inline void
920link_dev_buffers(struct page *page, struct buffer_head *head)
921{
922 struct buffer_head *bh, *tail;
923
924 bh = head;
925 do {
926 tail = bh;
927 bh = bh->b_this_page;
928 } while (bh);
929 tail->b_this_page = head;
930 attach_page_buffers(page, head);
931}
932
bbec0270
LT
933static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
934{
935 sector_t retval = ~((sector_t)0);
936 loff_t sz = i_size_read(bdev->bd_inode);
937
938 if (sz) {
939 unsigned int sizebits = blksize_bits(size);
940 retval = (sz >> sizebits);
941 }
942 return retval;
943}
944
1da177e4
LT
945/*
946 * Initialise the state of a blockdev page's buffers.
947 */
676ce6d5 948static sector_t
1da177e4
LT
949init_page_buffers(struct page *page, struct block_device *bdev,
950 sector_t block, int size)
951{
952 struct buffer_head *head = page_buffers(page);
953 struct buffer_head *bh = head;
954 int uptodate = PageUptodate(page);
bbec0270 955 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
1da177e4
LT
956
957 do {
958 if (!buffer_mapped(bh)) {
959 init_buffer(bh, NULL, NULL);
960 bh->b_bdev = bdev;
961 bh->b_blocknr = block;
962 if (uptodate)
963 set_buffer_uptodate(bh);
080399aa
JM
964 if (block < end_block)
965 set_buffer_mapped(bh);
1da177e4
LT
966 }
967 block++;
968 bh = bh->b_this_page;
969 } while (bh != head);
676ce6d5
HD
970
971 /*
972 * Caller needs to validate requested block against end of device.
973 */
974 return end_block;
1da177e4
LT
975}
976
977/*
978 * Create the page-cache page that contains the requested block.
979 *
676ce6d5 980 * This is used purely for blockdev mappings.
1da177e4 981 */
676ce6d5 982static int
1da177e4 983grow_dev_page(struct block_device *bdev, sector_t block,
3b5e6454 984 pgoff_t index, int size, int sizebits, gfp_t gfp)
1da177e4
LT
985{
986 struct inode *inode = bdev->bd_inode;
987 struct page *page;
988 struct buffer_head *bh;
676ce6d5
HD
989 sector_t end_block;
990 int ret = 0; /* Will call free_more_memory() */
84235de3 991 gfp_t gfp_mask;
1da177e4 992
c62d2555 993 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
3b5e6454 994
84235de3
JW
995 /*
996 * XXX: __getblk_slow() can not really deal with failure and
997 * will endlessly loop on improvised global reclaim. Prefer
998 * looping in the allocator rather than here, at least that
999 * code knows what it's doing.
1000 */
1001 gfp_mask |= __GFP_NOFAIL;
1002
1003 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1da177e4 1004 if (!page)
676ce6d5 1005 return ret;
1da177e4 1006
e827f923 1007 BUG_ON(!PageLocked(page));
1da177e4
LT
1008
1009 if (page_has_buffers(page)) {
1010 bh = page_buffers(page);
1011 if (bh->b_size == size) {
676ce6d5 1012 end_block = init_page_buffers(page, bdev,
f2d5a944
AA
1013 (sector_t)index << sizebits,
1014 size);
676ce6d5 1015 goto done;
1da177e4
LT
1016 }
1017 if (!try_to_free_buffers(page))
1018 goto failed;
1019 }
1020
1021 /*
1022 * Allocate some buffers for this page
1023 */
1024 bh = alloc_page_buffers(page, size, 0);
1025 if (!bh)
1026 goto failed;
1027
1028 /*
1029 * Link the page to the buffers and initialise them. Take the
1030 * lock to be atomic wrt __find_get_block(), which does not
1031 * run under the page lock.
1032 */
1033 spin_lock(&inode->i_mapping->private_lock);
1034 link_dev_buffers(page, bh);
f2d5a944
AA
1035 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1036 size);
1da177e4 1037 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
1038done:
1039 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 1040failed:
1da177e4 1041 unlock_page(page);
09cbfeaf 1042 put_page(page);
676ce6d5 1043 return ret;
1da177e4
LT
1044}
1045
1046/*
1047 * Create buffers for the specified block device block's page. If
1048 * that page was dirty, the buffers are set dirty also.
1da177e4 1049 */
858119e1 1050static int
3b5e6454 1051grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1da177e4 1052{
1da177e4
LT
1053 pgoff_t index;
1054 int sizebits;
1055
1056 sizebits = -1;
1057 do {
1058 sizebits++;
1059 } while ((size << sizebits) < PAGE_SIZE);
1060
1061 index = block >> sizebits;
1da177e4 1062
e5657933
AM
1063 /*
1064 * Check for a block which wants to lie outside our maximum possible
1065 * pagecache index. (this comparison is done using sector_t types).
1066 */
1067 if (unlikely(index != block >> sizebits)) {
e5657933 1068 printk(KERN_ERR "%s: requested out-of-range block %llu for "
a1c6f057 1069 "device %pg\n",
8e24eea7 1070 __func__, (unsigned long long)block,
a1c6f057 1071 bdev);
e5657933
AM
1072 return -EIO;
1073 }
676ce6d5 1074
1da177e4 1075 /* Create a page with the proper size buffers.. */
3b5e6454 1076 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1da177e4
LT
1077}
1078
0026ba40 1079static struct buffer_head *
3b5e6454
GK
1080__getblk_slow(struct block_device *bdev, sector_t block,
1081 unsigned size, gfp_t gfp)
1da177e4
LT
1082{
1083 /* Size must be multiple of hard sectorsize */
e1defc4f 1084 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1085 (size < 512 || size > PAGE_SIZE))) {
1086 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1087 size);
e1defc4f
MP
1088 printk(KERN_ERR "logical block size: %d\n",
1089 bdev_logical_block_size(bdev));
1da177e4
LT
1090
1091 dump_stack();
1092 return NULL;
1093 }
1094
676ce6d5
HD
1095 for (;;) {
1096 struct buffer_head *bh;
1097 int ret;
1da177e4
LT
1098
1099 bh = __find_get_block(bdev, block, size);
1100 if (bh)
1101 return bh;
676ce6d5 1102
3b5e6454 1103 ret = grow_buffers(bdev, block, size, gfp);
676ce6d5
HD
1104 if (ret < 0)
1105 return NULL;
1106 if (ret == 0)
1107 free_more_memory();
1da177e4
LT
1108 }
1109}
1110
1111/*
1112 * The relationship between dirty buffers and dirty pages:
1113 *
1114 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1115 * the page is tagged dirty in its radix tree.
1116 *
1117 * At all times, the dirtiness of the buffers represents the dirtiness of
1118 * subsections of the page. If the page has buffers, the page dirty bit is
1119 * merely a hint about the true dirty state.
1120 *
1121 * When a page is set dirty in its entirety, all its buffers are marked dirty
1122 * (if the page has buffers).
1123 *
1124 * When a buffer is marked dirty, its page is dirtied, but the page's other
1125 * buffers are not.
1126 *
1127 * Also. When blockdev buffers are explicitly read with bread(), they
1128 * individually become uptodate. But their backing page remains not
1129 * uptodate - even if all of its buffers are uptodate. A subsequent
1130 * block_read_full_page() against that page will discover all the uptodate
1131 * buffers, will set the page uptodate and will perform no I/O.
1132 */
1133
1134/**
1135 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1136 * @bh: the buffer_head to mark dirty
1da177e4
LT
1137 *
1138 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1139 * backing page dirty, then tag the page as dirty in its address_space's radix
1140 * tree and then attach the address_space's inode to its superblock's dirty
1141 * inode list.
1142 *
1143 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
250df6ed 1144 * mapping->tree_lock and mapping->host->i_lock.
1da177e4 1145 */
fc9b52cd 1146void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1147{
787d2214 1148 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1149
5305cb83
TH
1150 trace_block_dirty_buffer(bh);
1151
1be62dc1
LT
1152 /*
1153 * Very *carefully* optimize the it-is-already-dirty case.
1154 *
1155 * Don't let the final "is it dirty" escape to before we
1156 * perhaps modified the buffer.
1157 */
1158 if (buffer_dirty(bh)) {
1159 smp_mb();
1160 if (buffer_dirty(bh))
1161 return;
1162 }
1163
a8e7d49a
LT
1164 if (!test_set_buffer_dirty(bh)) {
1165 struct page *page = bh->b_page;
c4843a75 1166 struct address_space *mapping = NULL;
c4843a75 1167
62cccb8c 1168 lock_page_memcg(page);
8e9d78ed 1169 if (!TestSetPageDirty(page)) {
c4843a75 1170 mapping = page_mapping(page);
8e9d78ed 1171 if (mapping)
62cccb8c 1172 __set_page_dirty(page, mapping, 0);
8e9d78ed 1173 }
62cccb8c 1174 unlock_page_memcg(page);
c4843a75
GT
1175 if (mapping)
1176 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
a8e7d49a 1177 }
1da177e4 1178}
1fe72eaa 1179EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4 1180
87354e5d
JL
1181void mark_buffer_write_io_error(struct buffer_head *bh)
1182{
1183 set_buffer_write_io_error(bh);
1184 /* FIXME: do we need to set this in both places? */
1185 if (bh->b_page && bh->b_page->mapping)
1186 mapping_set_error(bh->b_page->mapping, -EIO);
1187 if (bh->b_assoc_map)
1188 mapping_set_error(bh->b_assoc_map, -EIO);
1189}
1190EXPORT_SYMBOL(mark_buffer_write_io_error);
1191
1da177e4
LT
1192/*
1193 * Decrement a buffer_head's reference count. If all buffers against a page
1194 * have zero reference count, are clean and unlocked, and if the page is clean
1195 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1196 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1197 * a page but it ends up not being freed, and buffers may later be reattached).
1198 */
1199void __brelse(struct buffer_head * buf)
1200{
1201 if (atomic_read(&buf->b_count)) {
1202 put_bh(buf);
1203 return;
1204 }
5c752ad9 1205 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1206}
1fe72eaa 1207EXPORT_SYMBOL(__brelse);
1da177e4
LT
1208
1209/*
1210 * bforget() is like brelse(), except it discards any
1211 * potentially dirty data.
1212 */
1213void __bforget(struct buffer_head *bh)
1214{
1215 clear_buffer_dirty(bh);
535ee2fb 1216 if (bh->b_assoc_map) {
1da177e4
LT
1217 struct address_space *buffer_mapping = bh->b_page->mapping;
1218
1219 spin_lock(&buffer_mapping->private_lock);
1220 list_del_init(&bh->b_assoc_buffers);
58ff407b 1221 bh->b_assoc_map = NULL;
1da177e4
LT
1222 spin_unlock(&buffer_mapping->private_lock);
1223 }
1224 __brelse(bh);
1225}
1fe72eaa 1226EXPORT_SYMBOL(__bforget);
1da177e4
LT
1227
1228static struct buffer_head *__bread_slow(struct buffer_head *bh)
1229{
1230 lock_buffer(bh);
1231 if (buffer_uptodate(bh)) {
1232 unlock_buffer(bh);
1233 return bh;
1234 } else {
1235 get_bh(bh);
1236 bh->b_end_io = end_buffer_read_sync;
2a222ca9 1237 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
1238 wait_on_buffer(bh);
1239 if (buffer_uptodate(bh))
1240 return bh;
1241 }
1242 brelse(bh);
1243 return NULL;
1244}
1245
1246/*
1247 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1248 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1249 * refcount elevated by one when they're in an LRU. A buffer can only appear
1250 * once in a particular CPU's LRU. A single buffer can be present in multiple
1251 * CPU's LRUs at the same time.
1252 *
1253 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1254 * sb_find_get_block().
1255 *
1256 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1257 * a local interrupt disable for that.
1258 */
1259
86cf78d7 1260#define BH_LRU_SIZE 16
1da177e4
LT
1261
1262struct bh_lru {
1263 struct buffer_head *bhs[BH_LRU_SIZE];
1264};
1265
1266static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1267
1268#ifdef CONFIG_SMP
1269#define bh_lru_lock() local_irq_disable()
1270#define bh_lru_unlock() local_irq_enable()
1271#else
1272#define bh_lru_lock() preempt_disable()
1273#define bh_lru_unlock() preempt_enable()
1274#endif
1275
1276static inline void check_irqs_on(void)
1277{
1278#ifdef irqs_disabled
1279 BUG_ON(irqs_disabled());
1280#endif
1281}
1282
1283/*
241f01fb
EB
1284 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1285 * inserted at the front, and the buffer_head at the back if any is evicted.
1286 * Or, if already in the LRU it is moved to the front.
1da177e4
LT
1287 */
1288static void bh_lru_install(struct buffer_head *bh)
1289{
241f01fb
EB
1290 struct buffer_head *evictee = bh;
1291 struct bh_lru *b;
1292 int i;
1da177e4
LT
1293
1294 check_irqs_on();
1295 bh_lru_lock();
1da177e4 1296
241f01fb
EB
1297 b = this_cpu_ptr(&bh_lrus);
1298 for (i = 0; i < BH_LRU_SIZE; i++) {
1299 swap(evictee, b->bhs[i]);
1300 if (evictee == bh) {
1301 bh_lru_unlock();
1302 return;
1da177e4 1303 }
1da177e4 1304 }
1da177e4 1305
241f01fb
EB
1306 get_bh(bh);
1307 bh_lru_unlock();
1308 brelse(evictee);
1da177e4
LT
1309}
1310
1311/*
1312 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1313 */
858119e1 1314static struct buffer_head *
3991d3bd 1315lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1316{
1317 struct buffer_head *ret = NULL;
3991d3bd 1318 unsigned int i;
1da177e4
LT
1319
1320 check_irqs_on();
1321 bh_lru_lock();
1da177e4 1322 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1323 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4 1324
9470dd5d
ZB
1325 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1326 bh->b_size == size) {
1da177e4
LT
1327 if (i) {
1328 while (i) {
c7b92516
CL
1329 __this_cpu_write(bh_lrus.bhs[i],
1330 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1331 i--;
1332 }
c7b92516 1333 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1334 }
1335 get_bh(bh);
1336 ret = bh;
1337 break;
1338 }
1339 }
1340 bh_lru_unlock();
1341 return ret;
1342}
1343
1344/*
1345 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1346 * it in the LRU and mark it as accessed. If it is not present then return
1347 * NULL
1348 */
1349struct buffer_head *
3991d3bd 1350__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1351{
1352 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1353
1354 if (bh == NULL) {
2457aec6 1355 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1356 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1357 if (bh)
1358 bh_lru_install(bh);
2457aec6 1359 } else
1da177e4 1360 touch_buffer(bh);
2457aec6 1361
1da177e4
LT
1362 return bh;
1363}
1364EXPORT_SYMBOL(__find_get_block);
1365
1366/*
3b5e6454 1367 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1da177e4
LT
1368 * which corresponds to the passed block_device, block and size. The
1369 * returned buffer has its reference count incremented.
1370 *
3b5e6454
GK
1371 * __getblk_gfp() will lock up the machine if grow_dev_page's
1372 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1da177e4
LT
1373 */
1374struct buffer_head *
3b5e6454
GK
1375__getblk_gfp(struct block_device *bdev, sector_t block,
1376 unsigned size, gfp_t gfp)
1da177e4
LT
1377{
1378 struct buffer_head *bh = __find_get_block(bdev, block, size);
1379
1380 might_sleep();
1381 if (bh == NULL)
3b5e6454 1382 bh = __getblk_slow(bdev, block, size, gfp);
1da177e4
LT
1383 return bh;
1384}
3b5e6454 1385EXPORT_SYMBOL(__getblk_gfp);
1da177e4
LT
1386
1387/*
1388 * Do async read-ahead on a buffer..
1389 */
3991d3bd 1390void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1391{
1392 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5 1393 if (likely(bh)) {
70246286 1394 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
a3e713b5
AM
1395 brelse(bh);
1396 }
1da177e4
LT
1397}
1398EXPORT_SYMBOL(__breadahead);
1399
1400/**
3b5e6454 1401 * __bread_gfp() - reads a specified block and returns the bh
67be2dd1 1402 * @bdev: the block_device to read from
1da177e4
LT
1403 * @block: number of block
1404 * @size: size (in bytes) to read
3b5e6454
GK
1405 * @gfp: page allocation flag
1406 *
1da177e4 1407 * Reads a specified block, and returns buffer head that contains it.
3b5e6454
GK
1408 * The page cache can be allocated from non-movable area
1409 * not to prevent page migration if you set gfp to zero.
1da177e4
LT
1410 * It returns NULL if the block was unreadable.
1411 */
1412struct buffer_head *
3b5e6454
GK
1413__bread_gfp(struct block_device *bdev, sector_t block,
1414 unsigned size, gfp_t gfp)
1da177e4 1415{
3b5e6454 1416 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1da177e4 1417
a3e713b5 1418 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1419 bh = __bread_slow(bh);
1420 return bh;
1421}
3b5e6454 1422EXPORT_SYMBOL(__bread_gfp);
1da177e4
LT
1423
1424/*
1425 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1426 * This doesn't race because it runs in each cpu either in irq
1427 * or with preempt disabled.
1428 */
1429static void invalidate_bh_lru(void *arg)
1430{
1431 struct bh_lru *b = &get_cpu_var(bh_lrus);
1432 int i;
1433
1434 for (i = 0; i < BH_LRU_SIZE; i++) {
1435 brelse(b->bhs[i]);
1436 b->bhs[i] = NULL;
1437 }
1438 put_cpu_var(bh_lrus);
1439}
42be35d0
GBY
1440
1441static bool has_bh_in_lru(int cpu, void *dummy)
1442{
1443 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1444 int i;
1da177e4 1445
42be35d0
GBY
1446 for (i = 0; i < BH_LRU_SIZE; i++) {
1447 if (b->bhs[i])
1448 return 1;
1449 }
1450
1451 return 0;
1452}
1453
f9a14399 1454void invalidate_bh_lrus(void)
1da177e4 1455{
42be35d0 1456 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1da177e4 1457}
9db5579b 1458EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1459
1460void set_bh_page(struct buffer_head *bh,
1461 struct page *page, unsigned long offset)
1462{
1463 bh->b_page = page;
e827f923 1464 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1465 if (PageHighMem(page))
1466 /*
1467 * This catches illegal uses and preserves the offset:
1468 */
1469 bh->b_data = (char *)(0 + offset);
1470 else
1471 bh->b_data = page_address(page) + offset;
1472}
1473EXPORT_SYMBOL(set_bh_page);
1474
1475/*
1476 * Called when truncating a buffer on a page completely.
1477 */
e7470ee8
MG
1478
1479/* Bits that are cleared during an invalidate */
1480#define BUFFER_FLAGS_DISCARD \
1481 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1482 1 << BH_Delay | 1 << BH_Unwritten)
1483
858119e1 1484static void discard_buffer(struct buffer_head * bh)
1da177e4 1485{
e7470ee8
MG
1486 unsigned long b_state, b_state_old;
1487
1da177e4
LT
1488 lock_buffer(bh);
1489 clear_buffer_dirty(bh);
1490 bh->b_bdev = NULL;
e7470ee8
MG
1491 b_state = bh->b_state;
1492 for (;;) {
1493 b_state_old = cmpxchg(&bh->b_state, b_state,
1494 (b_state & ~BUFFER_FLAGS_DISCARD));
1495 if (b_state_old == b_state)
1496 break;
1497 b_state = b_state_old;
1498 }
1da177e4
LT
1499 unlock_buffer(bh);
1500}
1501
1da177e4 1502/**
814e1d25 1503 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1504 *
1505 * @page: the page which is affected
d47992f8
LC
1506 * @offset: start of the range to invalidate
1507 * @length: length of the range to invalidate
1da177e4
LT
1508 *
1509 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1510 * invalidated by a truncate operation.
1da177e4
LT
1511 *
1512 * block_invalidatepage() does not have to release all buffers, but it must
1513 * ensure that no dirty buffer is left outside @offset and that no I/O
1514 * is underway against any of the blocks which are outside the truncation
1515 * point. Because the caller is about to free (and possibly reuse) those
1516 * blocks on-disk.
1517 */
d47992f8
LC
1518void block_invalidatepage(struct page *page, unsigned int offset,
1519 unsigned int length)
1da177e4
LT
1520{
1521 struct buffer_head *head, *bh, *next;
1522 unsigned int curr_off = 0;
d47992f8 1523 unsigned int stop = length + offset;
1da177e4
LT
1524
1525 BUG_ON(!PageLocked(page));
1526 if (!page_has_buffers(page))
1527 goto out;
1528
d47992f8
LC
1529 /*
1530 * Check for overflow
1531 */
09cbfeaf 1532 BUG_ON(stop > PAGE_SIZE || stop < length);
d47992f8 1533
1da177e4
LT
1534 head = page_buffers(page);
1535 bh = head;
1536 do {
1537 unsigned int next_off = curr_off + bh->b_size;
1538 next = bh->b_this_page;
1539
d47992f8
LC
1540 /*
1541 * Are we still fully in range ?
1542 */
1543 if (next_off > stop)
1544 goto out;
1545
1da177e4
LT
1546 /*
1547 * is this block fully invalidated?
1548 */
1549 if (offset <= curr_off)
1550 discard_buffer(bh);
1551 curr_off = next_off;
1552 bh = next;
1553 } while (bh != head);
1554
1555 /*
1556 * We release buffers only if the entire page is being invalidated.
1557 * The get_block cached value has been unconditionally invalidated,
1558 * so real IO is not possible anymore.
1559 */
1560 if (offset == 0)
2ff28e22 1561 try_to_release_page(page, 0);
1da177e4 1562out:
2ff28e22 1563 return;
1da177e4
LT
1564}
1565EXPORT_SYMBOL(block_invalidatepage);
1566
d47992f8 1567
1da177e4
LT
1568/*
1569 * We attach and possibly dirty the buffers atomically wrt
1570 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1571 * is already excluded via the page lock.
1572 */
1573void create_empty_buffers(struct page *page,
1574 unsigned long blocksize, unsigned long b_state)
1575{
1576 struct buffer_head *bh, *head, *tail;
1577
1578 head = alloc_page_buffers(page, blocksize, 1);
1579 bh = head;
1580 do {
1581 bh->b_state |= b_state;
1582 tail = bh;
1583 bh = bh->b_this_page;
1584 } while (bh);
1585 tail->b_this_page = head;
1586
1587 spin_lock(&page->mapping->private_lock);
1588 if (PageUptodate(page) || PageDirty(page)) {
1589 bh = head;
1590 do {
1591 if (PageDirty(page))
1592 set_buffer_dirty(bh);
1593 if (PageUptodate(page))
1594 set_buffer_uptodate(bh);
1595 bh = bh->b_this_page;
1596 } while (bh != head);
1597 }
1598 attach_page_buffers(page, head);
1599 spin_unlock(&page->mapping->private_lock);
1600}
1601EXPORT_SYMBOL(create_empty_buffers);
1602
29f3ad7d
JK
1603/**
1604 * clean_bdev_aliases: clean a range of buffers in block device
1605 * @bdev: Block device to clean buffers in
1606 * @block: Start of a range of blocks to clean
1607 * @len: Number of blocks to clean
1da177e4 1608 *
29f3ad7d
JK
1609 * We are taking a range of blocks for data and we don't want writeback of any
1610 * buffer-cache aliases starting from return from this function and until the
1611 * moment when something will explicitly mark the buffer dirty (hopefully that
1612 * will not happen until we will free that block ;-) We don't even need to mark
1613 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1614 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1615 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1616 * would confuse anyone who might pick it with bread() afterwards...
1617 *
1618 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1619 * writeout I/O going on against recently-freed buffers. We don't wait on that
1620 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1621 * need to. That happens here.
1da177e4 1622 */
29f3ad7d 1623void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1da177e4 1624{
29f3ad7d
JK
1625 struct inode *bd_inode = bdev->bd_inode;
1626 struct address_space *bd_mapping = bd_inode->i_mapping;
1627 struct pagevec pvec;
1628 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1629 pgoff_t end;
1630 int i;
1631 struct buffer_head *bh;
1632 struct buffer_head *head;
1da177e4 1633
29f3ad7d
JK
1634 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1635 pagevec_init(&pvec, 0);
1636 while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1637 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1638 for (i = 0; i < pagevec_count(&pvec); i++) {
1639 struct page *page = pvec.pages[i];
1da177e4 1640
29f3ad7d
JK
1641 index = page->index;
1642 if (index > end)
1643 break;
1644 if (!page_has_buffers(page))
1645 continue;
1646 /*
1647 * We use page lock instead of bd_mapping->private_lock
1648 * to pin buffers here since we can afford to sleep and
1649 * it scales better than a global spinlock lock.
1650 */
1651 lock_page(page);
1652 /* Recheck when the page is locked which pins bhs */
1653 if (!page_has_buffers(page))
1654 goto unlock_page;
1655 head = page_buffers(page);
1656 bh = head;
1657 do {
6c006a9d 1658 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
29f3ad7d
JK
1659 goto next;
1660 if (bh->b_blocknr >= block + len)
1661 break;
1662 clear_buffer_dirty(bh);
1663 wait_on_buffer(bh);
1664 clear_buffer_req(bh);
1665next:
1666 bh = bh->b_this_page;
1667 } while (bh != head);
1668unlock_page:
1669 unlock_page(page);
1670 }
1671 pagevec_release(&pvec);
1672 cond_resched();
1673 index++;
1da177e4
LT
1674 }
1675}
29f3ad7d 1676EXPORT_SYMBOL(clean_bdev_aliases);
1da177e4 1677
45bce8f3
LT
1678/*
1679 * Size is a power-of-two in the range 512..PAGE_SIZE,
1680 * and the case we care about most is PAGE_SIZE.
1681 *
1682 * So this *could* possibly be written with those
1683 * constraints in mind (relevant mostly if some
1684 * architecture has a slow bit-scan instruction)
1685 */
1686static inline int block_size_bits(unsigned int blocksize)
1687{
1688 return ilog2(blocksize);
1689}
1690
1691static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1692{
1693 BUG_ON(!PageLocked(page));
1694
1695 if (!page_has_buffers(page))
1696 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1697 return page_buffers(page);
1698}
1699
1da177e4
LT
1700/*
1701 * NOTE! All mapped/uptodate combinations are valid:
1702 *
1703 * Mapped Uptodate Meaning
1704 *
1705 * No No "unknown" - must do get_block()
1706 * No Yes "hole" - zero-filled
1707 * Yes No "allocated" - allocated on disk, not read in
1708 * Yes Yes "valid" - allocated and up-to-date in memory.
1709 *
1710 * "Dirty" is valid only with the last case (mapped+uptodate).
1711 */
1712
1713/*
1714 * While block_write_full_page is writing back the dirty buffers under
1715 * the page lock, whoever dirtied the buffers may decide to clean them
1716 * again at any time. We handle that by only looking at the buffer
1717 * state inside lock_buffer().
1718 *
1719 * If block_write_full_page() is called for regular writeback
1720 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1721 * locked buffer. This only can happen if someone has written the buffer
1722 * directly, with submit_bh(). At the address_space level PageWriteback
1723 * prevents this contention from occurring.
6e34eedd
TT
1724 *
1725 * If block_write_full_page() is called with wbc->sync_mode ==
70fd7614 1726 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
721a9602 1727 * causes the writes to be flagged as synchronous writes.
1da177e4 1728 */
b4bba389 1729int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1730 get_block_t *get_block, struct writeback_control *wbc,
1731 bh_end_io_t *handler)
1da177e4
LT
1732{
1733 int err;
1734 sector_t block;
1735 sector_t last_block;
f0fbd5fc 1736 struct buffer_head *bh, *head;
45bce8f3 1737 unsigned int blocksize, bbits;
1da177e4 1738 int nr_underway = 0;
7637241e 1739 int write_flags = wbc_to_write_flags(wbc);
1da177e4 1740
45bce8f3 1741 head = create_page_buffers(page, inode,
1da177e4 1742 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1743
1744 /*
1745 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1746 * here, and the (potentially unmapped) buffers may become dirty at
1747 * any time. If a buffer becomes dirty here after we've inspected it
1748 * then we just miss that fact, and the page stays dirty.
1749 *
1750 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1751 * handle that here by just cleaning them.
1752 */
1753
1da177e4 1754 bh = head;
45bce8f3
LT
1755 blocksize = bh->b_size;
1756 bbits = block_size_bits(blocksize);
1757
09cbfeaf 1758 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 1759 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1760
1761 /*
1762 * Get all the dirty buffers mapped to disk addresses and
1763 * handle any aliases from the underlying blockdev's mapping.
1764 */
1765 do {
1766 if (block > last_block) {
1767 /*
1768 * mapped buffers outside i_size will occur, because
1769 * this page can be outside i_size when there is a
1770 * truncate in progress.
1771 */
1772 /*
1773 * The buffer was zeroed by block_write_full_page()
1774 */
1775 clear_buffer_dirty(bh);
1776 set_buffer_uptodate(bh);
29a814d2
AT
1777 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1778 buffer_dirty(bh)) {
b0cf2321 1779 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1780 err = get_block(inode, block, bh, 1);
1781 if (err)
1782 goto recover;
29a814d2 1783 clear_buffer_delay(bh);
1da177e4
LT
1784 if (buffer_new(bh)) {
1785 /* blockdev mappings never come here */
1786 clear_buffer_new(bh);
e64855c6 1787 clean_bdev_bh_alias(bh);
1da177e4
LT
1788 }
1789 }
1790 bh = bh->b_this_page;
1791 block++;
1792 } while (bh != head);
1793
1794 do {
1da177e4
LT
1795 if (!buffer_mapped(bh))
1796 continue;
1797 /*
1798 * If it's a fully non-blocking write attempt and we cannot
1799 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1800 * potentially cause a busy-wait loop from writeback threads
1801 * and kswapd activity, but those code paths have their own
1802 * higher-level throttling.
1da177e4 1803 */
1b430bee 1804 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1805 lock_buffer(bh);
ca5de404 1806 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1807 redirty_page_for_writepage(wbc, page);
1808 continue;
1809 }
1810 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1811 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1812 } else {
1813 unlock_buffer(bh);
1814 }
1815 } while ((bh = bh->b_this_page) != head);
1816
1817 /*
1818 * The page and its buffers are protected by PageWriteback(), so we can
1819 * drop the bh refcounts early.
1820 */
1821 BUG_ON(PageWriteback(page));
1822 set_page_writeback(page);
1da177e4
LT
1823
1824 do {
1825 struct buffer_head *next = bh->b_this_page;
1826 if (buffer_async_write(bh)) {
8e8f9298
JA
1827 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1828 inode->i_write_hint, wbc);
1da177e4
LT
1829 nr_underway++;
1830 }
1da177e4
LT
1831 bh = next;
1832 } while (bh != head);
05937baa 1833 unlock_page(page);
1da177e4
LT
1834
1835 err = 0;
1836done:
1837 if (nr_underway == 0) {
1838 /*
1839 * The page was marked dirty, but the buffers were
1840 * clean. Someone wrote them back by hand with
1841 * ll_rw_block/submit_bh. A rare case.
1842 */
1da177e4 1843 end_page_writeback(page);
3d67f2d7 1844
1da177e4
LT
1845 /*
1846 * The page and buffer_heads can be released at any time from
1847 * here on.
1848 */
1da177e4
LT
1849 }
1850 return err;
1851
1852recover:
1853 /*
1854 * ENOSPC, or some other error. We may already have added some
1855 * blocks to the file, so we need to write these out to avoid
1856 * exposing stale data.
1857 * The page is currently locked and not marked for writeback
1858 */
1859 bh = head;
1860 /* Recovery: lock and submit the mapped buffers */
1861 do {
29a814d2
AT
1862 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1863 !buffer_delay(bh)) {
1da177e4 1864 lock_buffer(bh);
35c80d5f 1865 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1866 } else {
1867 /*
1868 * The buffer may have been set dirty during
1869 * attachment to a dirty page.
1870 */
1871 clear_buffer_dirty(bh);
1872 }
1873 } while ((bh = bh->b_this_page) != head);
1874 SetPageError(page);
1875 BUG_ON(PageWriteback(page));
7e4c3690 1876 mapping_set_error(page->mapping, err);
1da177e4 1877 set_page_writeback(page);
1da177e4
LT
1878 do {
1879 struct buffer_head *next = bh->b_this_page;
1880 if (buffer_async_write(bh)) {
1881 clear_buffer_dirty(bh);
8e8f9298
JA
1882 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1883 inode->i_write_hint, wbc);
1da177e4
LT
1884 nr_underway++;
1885 }
1da177e4
LT
1886 bh = next;
1887 } while (bh != head);
ffda9d30 1888 unlock_page(page);
1da177e4
LT
1889 goto done;
1890}
b4bba389 1891EXPORT_SYMBOL(__block_write_full_page);
1da177e4 1892
afddba49
NP
1893/*
1894 * If a page has any new buffers, zero them out here, and mark them uptodate
1895 * and dirty so they'll be written out (in order to prevent uninitialised
1896 * block data from leaking). And clear the new bit.
1897 */
1898void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1899{
1900 unsigned int block_start, block_end;
1901 struct buffer_head *head, *bh;
1902
1903 BUG_ON(!PageLocked(page));
1904 if (!page_has_buffers(page))
1905 return;
1906
1907 bh = head = page_buffers(page);
1908 block_start = 0;
1909 do {
1910 block_end = block_start + bh->b_size;
1911
1912 if (buffer_new(bh)) {
1913 if (block_end > from && block_start < to) {
1914 if (!PageUptodate(page)) {
1915 unsigned start, size;
1916
1917 start = max(from, block_start);
1918 size = min(to, block_end) - start;
1919
eebd2aa3 1920 zero_user(page, start, size);
afddba49
NP
1921 set_buffer_uptodate(bh);
1922 }
1923
1924 clear_buffer_new(bh);
1925 mark_buffer_dirty(bh);
1926 }
1927 }
1928
1929 block_start = block_end;
1930 bh = bh->b_this_page;
1931 } while (bh != head);
1932}
1933EXPORT_SYMBOL(page_zero_new_buffers);
1934
ae259a9c
CH
1935static void
1936iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1937 struct iomap *iomap)
1938{
1939 loff_t offset = block << inode->i_blkbits;
1940
1941 bh->b_bdev = iomap->bdev;
1942
1943 /*
1944 * Block points to offset in file we need to map, iomap contains
1945 * the offset at which the map starts. If the map ends before the
1946 * current block, then do not map the buffer and let the caller
1947 * handle it.
1948 */
1949 BUG_ON(offset >= iomap->offset + iomap->length);
1950
1951 switch (iomap->type) {
1952 case IOMAP_HOLE:
1953 /*
1954 * If the buffer is not up to date or beyond the current EOF,
1955 * we need to mark it as new to ensure sub-block zeroing is
1956 * executed if necessary.
1957 */
1958 if (!buffer_uptodate(bh) ||
1959 (offset >= i_size_read(inode)))
1960 set_buffer_new(bh);
1961 break;
1962 case IOMAP_DELALLOC:
1963 if (!buffer_uptodate(bh) ||
1964 (offset >= i_size_read(inode)))
1965 set_buffer_new(bh);
1966 set_buffer_uptodate(bh);
1967 set_buffer_mapped(bh);
1968 set_buffer_delay(bh);
1969 break;
1970 case IOMAP_UNWRITTEN:
1971 /*
1972 * For unwritten regions, we always need to ensure that
1973 * sub-block writes cause the regions in the block we are not
1974 * writing to are zeroed. Set the buffer as new to ensure this.
1975 */
1976 set_buffer_new(bh);
1977 set_buffer_unwritten(bh);
1978 /* FALLTHRU */
1979 case IOMAP_MAPPED:
1980 if (offset >= i_size_read(inode))
1981 set_buffer_new(bh);
1982 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1983 ((offset - iomap->offset) >> inode->i_blkbits);
1984 set_buffer_mapped(bh);
1985 break;
1986 }
1987}
1988
1989int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1990 get_block_t *get_block, struct iomap *iomap)
1da177e4 1991{
09cbfeaf 1992 unsigned from = pos & (PAGE_SIZE - 1);
ebdec241 1993 unsigned to = from + len;
6e1db88d 1994 struct inode *inode = page->mapping->host;
1da177e4
LT
1995 unsigned block_start, block_end;
1996 sector_t block;
1997 int err = 0;
1998 unsigned blocksize, bbits;
1999 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2000
2001 BUG_ON(!PageLocked(page));
09cbfeaf
KS
2002 BUG_ON(from > PAGE_SIZE);
2003 BUG_ON(to > PAGE_SIZE);
1da177e4
LT
2004 BUG_ON(from > to);
2005
45bce8f3
LT
2006 head = create_page_buffers(page, inode, 0);
2007 blocksize = head->b_size;
2008 bbits = block_size_bits(blocksize);
1da177e4 2009
09cbfeaf 2010 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1da177e4
LT
2011
2012 for(bh = head, block_start = 0; bh != head || !block_start;
2013 block++, block_start=block_end, bh = bh->b_this_page) {
2014 block_end = block_start + blocksize;
2015 if (block_end <= from || block_start >= to) {
2016 if (PageUptodate(page)) {
2017 if (!buffer_uptodate(bh))
2018 set_buffer_uptodate(bh);
2019 }
2020 continue;
2021 }
2022 if (buffer_new(bh))
2023 clear_buffer_new(bh);
2024 if (!buffer_mapped(bh)) {
b0cf2321 2025 WARN_ON(bh->b_size != blocksize);
ae259a9c
CH
2026 if (get_block) {
2027 err = get_block(inode, block, bh, 1);
2028 if (err)
2029 break;
2030 } else {
2031 iomap_to_bh(inode, block, bh, iomap);
2032 }
2033
1da177e4 2034 if (buffer_new(bh)) {
e64855c6 2035 clean_bdev_bh_alias(bh);
1da177e4 2036 if (PageUptodate(page)) {
637aff46 2037 clear_buffer_new(bh);
1da177e4 2038 set_buffer_uptodate(bh);
637aff46 2039 mark_buffer_dirty(bh);
1da177e4
LT
2040 continue;
2041 }
eebd2aa3
CL
2042 if (block_end > to || block_start < from)
2043 zero_user_segments(page,
2044 to, block_end,
2045 block_start, from);
1da177e4
LT
2046 continue;
2047 }
2048 }
2049 if (PageUptodate(page)) {
2050 if (!buffer_uptodate(bh))
2051 set_buffer_uptodate(bh);
2052 continue;
2053 }
2054 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 2055 !buffer_unwritten(bh) &&
1da177e4 2056 (block_start < from || block_end > to)) {
dfec8a14 2057 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2058 *wait_bh++=bh;
2059 }
2060 }
2061 /*
2062 * If we issued read requests - let them complete.
2063 */
2064 while(wait_bh > wait) {
2065 wait_on_buffer(*--wait_bh);
2066 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 2067 err = -EIO;
1da177e4 2068 }
f9f07b6c 2069 if (unlikely(err))
afddba49 2070 page_zero_new_buffers(page, from, to);
1da177e4
LT
2071 return err;
2072}
ae259a9c
CH
2073
2074int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2075 get_block_t *get_block)
2076{
2077 return __block_write_begin_int(page, pos, len, get_block, NULL);
2078}
ebdec241 2079EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
2080
2081static int __block_commit_write(struct inode *inode, struct page *page,
2082 unsigned from, unsigned to)
2083{
2084 unsigned block_start, block_end;
2085 int partial = 0;
2086 unsigned blocksize;
2087 struct buffer_head *bh, *head;
2088
45bce8f3
LT
2089 bh = head = page_buffers(page);
2090 blocksize = bh->b_size;
1da177e4 2091
45bce8f3
LT
2092 block_start = 0;
2093 do {
1da177e4
LT
2094 block_end = block_start + blocksize;
2095 if (block_end <= from || block_start >= to) {
2096 if (!buffer_uptodate(bh))
2097 partial = 1;
2098 } else {
2099 set_buffer_uptodate(bh);
2100 mark_buffer_dirty(bh);
2101 }
afddba49 2102 clear_buffer_new(bh);
45bce8f3
LT
2103
2104 block_start = block_end;
2105 bh = bh->b_this_page;
2106 } while (bh != head);
1da177e4
LT
2107
2108 /*
2109 * If this is a partial write which happened to make all buffers
2110 * uptodate then we can optimize away a bogus readpage() for
2111 * the next read(). Here we 'discover' whether the page went
2112 * uptodate as a result of this (potentially partial) write.
2113 */
2114 if (!partial)
2115 SetPageUptodate(page);
2116 return 0;
2117}
2118
afddba49 2119/*
155130a4
CH
2120 * block_write_begin takes care of the basic task of block allocation and
2121 * bringing partial write blocks uptodate first.
2122 *
7bb46a67 2123 * The filesystem needs to handle block truncation upon failure.
afddba49 2124 */
155130a4
CH
2125int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2126 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 2127{
09cbfeaf 2128 pgoff_t index = pos >> PAGE_SHIFT;
afddba49 2129 struct page *page;
6e1db88d 2130 int status;
afddba49 2131
6e1db88d
CH
2132 page = grab_cache_page_write_begin(mapping, index, flags);
2133 if (!page)
2134 return -ENOMEM;
afddba49 2135
6e1db88d 2136 status = __block_write_begin(page, pos, len, get_block);
afddba49 2137 if (unlikely(status)) {
6e1db88d 2138 unlock_page(page);
09cbfeaf 2139 put_page(page);
6e1db88d 2140 page = NULL;
afddba49
NP
2141 }
2142
6e1db88d 2143 *pagep = page;
afddba49
NP
2144 return status;
2145}
2146EXPORT_SYMBOL(block_write_begin);
2147
2148int block_write_end(struct file *file, struct address_space *mapping,
2149 loff_t pos, unsigned len, unsigned copied,
2150 struct page *page, void *fsdata)
2151{
2152 struct inode *inode = mapping->host;
2153 unsigned start;
2154
09cbfeaf 2155 start = pos & (PAGE_SIZE - 1);
afddba49
NP
2156
2157 if (unlikely(copied < len)) {
2158 /*
2159 * The buffers that were written will now be uptodate, so we
2160 * don't have to worry about a readpage reading them and
2161 * overwriting a partial write. However if we have encountered
2162 * a short write and only partially written into a buffer, it
2163 * will not be marked uptodate, so a readpage might come in and
2164 * destroy our partial write.
2165 *
2166 * Do the simplest thing, and just treat any short write to a
2167 * non uptodate page as a zero-length write, and force the
2168 * caller to redo the whole thing.
2169 */
2170 if (!PageUptodate(page))
2171 copied = 0;
2172
2173 page_zero_new_buffers(page, start+copied, start+len);
2174 }
2175 flush_dcache_page(page);
2176
2177 /* This could be a short (even 0-length) commit */
2178 __block_commit_write(inode, page, start, start+copied);
2179
2180 return copied;
2181}
2182EXPORT_SYMBOL(block_write_end);
2183
2184int generic_write_end(struct file *file, struct address_space *mapping,
2185 loff_t pos, unsigned len, unsigned copied,
2186 struct page *page, void *fsdata)
2187{
2188 struct inode *inode = mapping->host;
90a80202 2189 loff_t old_size = inode->i_size;
c7d206b3 2190 int i_size_changed = 0;
afddba49
NP
2191
2192 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2193
2194 /*
2195 * No need to use i_size_read() here, the i_size
2196 * cannot change under us because we hold i_mutex.
2197 *
2198 * But it's important to update i_size while still holding page lock:
2199 * page writeout could otherwise come in and zero beyond i_size.
2200 */
2201 if (pos+copied > inode->i_size) {
2202 i_size_write(inode, pos+copied);
c7d206b3 2203 i_size_changed = 1;
afddba49
NP
2204 }
2205
2206 unlock_page(page);
09cbfeaf 2207 put_page(page);
afddba49 2208
90a80202
JK
2209 if (old_size < pos)
2210 pagecache_isize_extended(inode, old_size, pos);
c7d206b3
JK
2211 /*
2212 * Don't mark the inode dirty under page lock. First, it unnecessarily
2213 * makes the holding time of page lock longer. Second, it forces lock
2214 * ordering of page lock and transaction start for journaling
2215 * filesystems.
2216 */
2217 if (i_size_changed)
2218 mark_inode_dirty(inode);
2219
afddba49
NP
2220 return copied;
2221}
2222EXPORT_SYMBOL(generic_write_end);
2223
8ab22b9a
HH
2224/*
2225 * block_is_partially_uptodate checks whether buffers within a page are
2226 * uptodate or not.
2227 *
2228 * Returns true if all buffers which correspond to a file portion
2229 * we want to read are uptodate.
2230 */
c186afb4
AV
2231int block_is_partially_uptodate(struct page *page, unsigned long from,
2232 unsigned long count)
8ab22b9a 2233{
8ab22b9a
HH
2234 unsigned block_start, block_end, blocksize;
2235 unsigned to;
2236 struct buffer_head *bh, *head;
2237 int ret = 1;
2238
2239 if (!page_has_buffers(page))
2240 return 0;
2241
45bce8f3
LT
2242 head = page_buffers(page);
2243 blocksize = head->b_size;
09cbfeaf 2244 to = min_t(unsigned, PAGE_SIZE - from, count);
8ab22b9a 2245 to = from + to;
09cbfeaf 2246 if (from < blocksize && to > PAGE_SIZE - blocksize)
8ab22b9a
HH
2247 return 0;
2248
8ab22b9a
HH
2249 bh = head;
2250 block_start = 0;
2251 do {
2252 block_end = block_start + blocksize;
2253 if (block_end > from && block_start < to) {
2254 if (!buffer_uptodate(bh)) {
2255 ret = 0;
2256 break;
2257 }
2258 if (block_end >= to)
2259 break;
2260 }
2261 block_start = block_end;
2262 bh = bh->b_this_page;
2263 } while (bh != head);
2264
2265 return ret;
2266}
2267EXPORT_SYMBOL(block_is_partially_uptodate);
2268
1da177e4
LT
2269/*
2270 * Generic "read page" function for block devices that have the normal
2271 * get_block functionality. This is most of the block device filesystems.
2272 * Reads the page asynchronously --- the unlock_buffer() and
2273 * set/clear_buffer_uptodate() functions propagate buffer state into the
2274 * page struct once IO has completed.
2275 */
2276int block_read_full_page(struct page *page, get_block_t *get_block)
2277{
2278 struct inode *inode = page->mapping->host;
2279 sector_t iblock, lblock;
2280 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2281 unsigned int blocksize, bbits;
1da177e4
LT
2282 int nr, i;
2283 int fully_mapped = 1;
2284
45bce8f3
LT
2285 head = create_page_buffers(page, inode, 0);
2286 blocksize = head->b_size;
2287 bbits = block_size_bits(blocksize);
1da177e4 2288
09cbfeaf 2289 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 2290 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2291 bh = head;
2292 nr = 0;
2293 i = 0;
2294
2295 do {
2296 if (buffer_uptodate(bh))
2297 continue;
2298
2299 if (!buffer_mapped(bh)) {
c64610ba
AM
2300 int err = 0;
2301
1da177e4
LT
2302 fully_mapped = 0;
2303 if (iblock < lblock) {
b0cf2321 2304 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2305 err = get_block(inode, iblock, bh, 0);
2306 if (err)
1da177e4
LT
2307 SetPageError(page);
2308 }
2309 if (!buffer_mapped(bh)) {
eebd2aa3 2310 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2311 if (!err)
2312 set_buffer_uptodate(bh);
1da177e4
LT
2313 continue;
2314 }
2315 /*
2316 * get_block() might have updated the buffer
2317 * synchronously
2318 */
2319 if (buffer_uptodate(bh))
2320 continue;
2321 }
2322 arr[nr++] = bh;
2323 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2324
2325 if (fully_mapped)
2326 SetPageMappedToDisk(page);
2327
2328 if (!nr) {
2329 /*
2330 * All buffers are uptodate - we can set the page uptodate
2331 * as well. But not if get_block() returned an error.
2332 */
2333 if (!PageError(page))
2334 SetPageUptodate(page);
2335 unlock_page(page);
2336 return 0;
2337 }
2338
2339 /* Stage two: lock the buffers */
2340 for (i = 0; i < nr; i++) {
2341 bh = arr[i];
2342 lock_buffer(bh);
2343 mark_buffer_async_read(bh);
2344 }
2345
2346 /*
2347 * Stage 3: start the IO. Check for uptodateness
2348 * inside the buffer lock in case another process reading
2349 * the underlying blockdev brought it uptodate (the sct fix).
2350 */
2351 for (i = 0; i < nr; i++) {
2352 bh = arr[i];
2353 if (buffer_uptodate(bh))
2354 end_buffer_async_read(bh, 1);
2355 else
2a222ca9 2356 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
2357 }
2358 return 0;
2359}
1fe72eaa 2360EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2361
2362/* utility function for filesystems that need to do work on expanding
89e10787 2363 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2364 * deal with the hole.
2365 */
89e10787 2366int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2367{
2368 struct address_space *mapping = inode->i_mapping;
2369 struct page *page;
89e10787 2370 void *fsdata;
1da177e4
LT
2371 int err;
2372
c08d3b0e 2373 err = inode_newsize_ok(inode, size);
2374 if (err)
1da177e4
LT
2375 goto out;
2376
89e10787 2377 err = pagecache_write_begin(NULL, mapping, size, 0,
c718a975 2378 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
89e10787 2379 if (err)
05eb0b51 2380 goto out;
05eb0b51 2381
89e10787
NP
2382 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2383 BUG_ON(err > 0);
05eb0b51 2384
1da177e4
LT
2385out:
2386 return err;
2387}
1fe72eaa 2388EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2389
f1e3af72
AB
2390static int cont_expand_zero(struct file *file, struct address_space *mapping,
2391 loff_t pos, loff_t *bytes)
1da177e4 2392{
1da177e4 2393 struct inode *inode = mapping->host;
93407472 2394 unsigned int blocksize = i_blocksize(inode);
89e10787
NP
2395 struct page *page;
2396 void *fsdata;
2397 pgoff_t index, curidx;
2398 loff_t curpos;
2399 unsigned zerofrom, offset, len;
2400 int err = 0;
1da177e4 2401
09cbfeaf
KS
2402 index = pos >> PAGE_SHIFT;
2403 offset = pos & ~PAGE_MASK;
89e10787 2404
09cbfeaf
KS
2405 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2406 zerofrom = curpos & ~PAGE_MASK;
1da177e4
LT
2407 if (zerofrom & (blocksize-1)) {
2408 *bytes |= (blocksize-1);
2409 (*bytes)++;
2410 }
09cbfeaf 2411 len = PAGE_SIZE - zerofrom;
1da177e4 2412
c718a975
TH
2413 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2414 &page, &fsdata);
89e10787
NP
2415 if (err)
2416 goto out;
eebd2aa3 2417 zero_user(page, zerofrom, len);
89e10787
NP
2418 err = pagecache_write_end(file, mapping, curpos, len, len,
2419 page, fsdata);
2420 if (err < 0)
2421 goto out;
2422 BUG_ON(err != len);
2423 err = 0;
061e9746
OH
2424
2425 balance_dirty_pages_ratelimited(mapping);
c2ca0fcd
MP
2426
2427 if (unlikely(fatal_signal_pending(current))) {
2428 err = -EINTR;
2429 goto out;
2430 }
89e10787 2431 }
1da177e4 2432
89e10787
NP
2433 /* page covers the boundary, find the boundary offset */
2434 if (index == curidx) {
09cbfeaf 2435 zerofrom = curpos & ~PAGE_MASK;
1da177e4 2436 /* if we will expand the thing last block will be filled */
89e10787
NP
2437 if (offset <= zerofrom) {
2438 goto out;
2439 }
2440 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2441 *bytes |= (blocksize-1);
2442 (*bytes)++;
2443 }
89e10787 2444 len = offset - zerofrom;
1da177e4 2445
c718a975
TH
2446 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2447 &page, &fsdata);
89e10787
NP
2448 if (err)
2449 goto out;
eebd2aa3 2450 zero_user(page, zerofrom, len);
89e10787
NP
2451 err = pagecache_write_end(file, mapping, curpos, len, len,
2452 page, fsdata);
2453 if (err < 0)
2454 goto out;
2455 BUG_ON(err != len);
2456 err = 0;
1da177e4 2457 }
89e10787
NP
2458out:
2459 return err;
2460}
2461
2462/*
2463 * For moronic filesystems that do not allow holes in file.
2464 * We may have to extend the file.
2465 */
282dc178 2466int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2467 loff_t pos, unsigned len, unsigned flags,
2468 struct page **pagep, void **fsdata,
2469 get_block_t *get_block, loff_t *bytes)
2470{
2471 struct inode *inode = mapping->host;
93407472
FF
2472 unsigned int blocksize = i_blocksize(inode);
2473 unsigned int zerofrom;
89e10787
NP
2474 int err;
2475
2476 err = cont_expand_zero(file, mapping, pos, bytes);
2477 if (err)
155130a4 2478 return err;
89e10787 2479
09cbfeaf 2480 zerofrom = *bytes & ~PAGE_MASK;
89e10787
NP
2481 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2482 *bytes |= (blocksize-1);
2483 (*bytes)++;
1da177e4 2484 }
1da177e4 2485
155130a4 2486 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2487}
1fe72eaa 2488EXPORT_SYMBOL(cont_write_begin);
1da177e4 2489
1da177e4
LT
2490int block_commit_write(struct page *page, unsigned from, unsigned to)
2491{
2492 struct inode *inode = page->mapping->host;
2493 __block_commit_write(inode,page,from,to);
2494 return 0;
2495}
1fe72eaa 2496EXPORT_SYMBOL(block_commit_write);
1da177e4 2497
54171690
DC
2498/*
2499 * block_page_mkwrite() is not allowed to change the file size as it gets
2500 * called from a page fault handler when a page is first dirtied. Hence we must
2501 * be careful to check for EOF conditions here. We set the page up correctly
2502 * for a written page which means we get ENOSPC checking when writing into
2503 * holes and correct delalloc and unwritten extent mapping on filesystems that
2504 * support these features.
2505 *
2506 * We are not allowed to take the i_mutex here so we have to play games to
2507 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2508 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2509 * page lock we can determine safely if the page is beyond EOF. If it is not
2510 * beyond EOF, then the page is guaranteed safe against truncation until we
2511 * unlock the page.
ea13a864 2512 *
14da9200 2513 * Direct callers of this function should protect against filesystem freezing
5c500029 2514 * using sb_start_pagefault() - sb_end_pagefault() functions.
54171690 2515 */
5c500029 2516int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
24da4fab 2517 get_block_t get_block)
54171690 2518{
c2ec175c 2519 struct page *page = vmf->page;
496ad9aa 2520 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2521 unsigned long end;
2522 loff_t size;
24da4fab 2523 int ret;
54171690
DC
2524
2525 lock_page(page);
2526 size = i_size_read(inode);
2527 if ((page->mapping != inode->i_mapping) ||
18336338 2528 (page_offset(page) > size)) {
24da4fab
JK
2529 /* We overload EFAULT to mean page got truncated */
2530 ret = -EFAULT;
2531 goto out_unlock;
54171690
DC
2532 }
2533
2534 /* page is wholly or partially inside EOF */
09cbfeaf
KS
2535 if (((page->index + 1) << PAGE_SHIFT) > size)
2536 end = size & ~PAGE_MASK;
54171690 2537 else
09cbfeaf 2538 end = PAGE_SIZE;
54171690 2539
ebdec241 2540 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2541 if (!ret)
2542 ret = block_commit_write(page, 0, end);
2543
24da4fab
JK
2544 if (unlikely(ret < 0))
2545 goto out_unlock;
ea13a864 2546 set_page_dirty(page);
1d1d1a76 2547 wait_for_stable_page(page);
24da4fab
JK
2548 return 0;
2549out_unlock:
2550 unlock_page(page);
54171690 2551 return ret;
24da4fab 2552}
1fe72eaa 2553EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2554
2555/*
03158cd7 2556 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2557 * immediately, while under the page lock. So it needs a special end_io
2558 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2559 */
2560static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2561{
68671f35 2562 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2563}
2564
03158cd7
NP
2565/*
2566 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2567 * the page (converting it to circular linked list and taking care of page
2568 * dirty races).
2569 */
2570static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2571{
2572 struct buffer_head *bh;
2573
2574 BUG_ON(!PageLocked(page));
2575
2576 spin_lock(&page->mapping->private_lock);
2577 bh = head;
2578 do {
2579 if (PageDirty(page))
2580 set_buffer_dirty(bh);
2581 if (!bh->b_this_page)
2582 bh->b_this_page = head;
2583 bh = bh->b_this_page;
2584 } while (bh != head);
2585 attach_page_buffers(page, head);
2586 spin_unlock(&page->mapping->private_lock);
2587}
2588
1da177e4 2589/*
ea0f04e5
CH
2590 * On entry, the page is fully not uptodate.
2591 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2592 * The filesystem needs to handle block truncation upon failure.
1da177e4 2593 */
ea0f04e5 2594int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2595 loff_t pos, unsigned len, unsigned flags,
2596 struct page **pagep, void **fsdata,
1da177e4
LT
2597 get_block_t *get_block)
2598{
03158cd7 2599 struct inode *inode = mapping->host;
1da177e4
LT
2600 const unsigned blkbits = inode->i_blkbits;
2601 const unsigned blocksize = 1 << blkbits;
a4b0672d 2602 struct buffer_head *head, *bh;
03158cd7
NP
2603 struct page *page;
2604 pgoff_t index;
2605 unsigned from, to;
1da177e4 2606 unsigned block_in_page;
a4b0672d 2607 unsigned block_start, block_end;
1da177e4 2608 sector_t block_in_file;
1da177e4 2609 int nr_reads = 0;
1da177e4
LT
2610 int ret = 0;
2611 int is_mapped_to_disk = 1;
1da177e4 2612
09cbfeaf
KS
2613 index = pos >> PAGE_SHIFT;
2614 from = pos & (PAGE_SIZE - 1);
03158cd7
NP
2615 to = from + len;
2616
54566b2c 2617 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2618 if (!page)
2619 return -ENOMEM;
2620 *pagep = page;
2621 *fsdata = NULL;
2622
2623 if (page_has_buffers(page)) {
309f77ad
NK
2624 ret = __block_write_begin(page, pos, len, get_block);
2625 if (unlikely(ret))
2626 goto out_release;
2627 return ret;
03158cd7 2628 }
a4b0672d 2629
1da177e4
LT
2630 if (PageMappedToDisk(page))
2631 return 0;
2632
a4b0672d
NP
2633 /*
2634 * Allocate buffers so that we can keep track of state, and potentially
2635 * attach them to the page if an error occurs. In the common case of
2636 * no error, they will just be freed again without ever being attached
2637 * to the page (which is all OK, because we're under the page lock).
2638 *
2639 * Be careful: the buffer linked list is a NULL terminated one, rather
2640 * than the circular one we're used to.
2641 */
2642 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2643 if (!head) {
2644 ret = -ENOMEM;
2645 goto out_release;
2646 }
a4b0672d 2647
09cbfeaf 2648 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
1da177e4
LT
2649
2650 /*
2651 * We loop across all blocks in the page, whether or not they are
2652 * part of the affected region. This is so we can discover if the
2653 * page is fully mapped-to-disk.
2654 */
a4b0672d 2655 for (block_start = 0, block_in_page = 0, bh = head;
09cbfeaf 2656 block_start < PAGE_SIZE;
a4b0672d 2657 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2658 int create;
2659
a4b0672d
NP
2660 block_end = block_start + blocksize;
2661 bh->b_state = 0;
1da177e4
LT
2662 create = 1;
2663 if (block_start >= to)
2664 create = 0;
2665 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2666 bh, create);
1da177e4
LT
2667 if (ret)
2668 goto failed;
a4b0672d 2669 if (!buffer_mapped(bh))
1da177e4 2670 is_mapped_to_disk = 0;
a4b0672d 2671 if (buffer_new(bh))
e64855c6 2672 clean_bdev_bh_alias(bh);
a4b0672d
NP
2673 if (PageUptodate(page)) {
2674 set_buffer_uptodate(bh);
1da177e4 2675 continue;
a4b0672d
NP
2676 }
2677 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2678 zero_user_segments(page, block_start, from,
2679 to, block_end);
1da177e4
LT
2680 continue;
2681 }
a4b0672d 2682 if (buffer_uptodate(bh))
1da177e4
LT
2683 continue; /* reiserfs does this */
2684 if (block_start < from || block_end > to) {
a4b0672d
NP
2685 lock_buffer(bh);
2686 bh->b_end_io = end_buffer_read_nobh;
2a222ca9 2687 submit_bh(REQ_OP_READ, 0, bh);
a4b0672d 2688 nr_reads++;
1da177e4
LT
2689 }
2690 }
2691
2692 if (nr_reads) {
1da177e4
LT
2693 /*
2694 * The page is locked, so these buffers are protected from
2695 * any VM or truncate activity. Hence we don't need to care
2696 * for the buffer_head refcounts.
2697 */
a4b0672d 2698 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2699 wait_on_buffer(bh);
2700 if (!buffer_uptodate(bh))
2701 ret = -EIO;
1da177e4
LT
2702 }
2703 if (ret)
2704 goto failed;
2705 }
2706
2707 if (is_mapped_to_disk)
2708 SetPageMappedToDisk(page);
1da177e4 2709
03158cd7 2710 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2711
1da177e4
LT
2712 return 0;
2713
2714failed:
03158cd7 2715 BUG_ON(!ret);
1da177e4 2716 /*
a4b0672d
NP
2717 * Error recovery is a bit difficult. We need to zero out blocks that
2718 * were newly allocated, and dirty them to ensure they get written out.
2719 * Buffers need to be attached to the page at this point, otherwise
2720 * the handling of potential IO errors during writeout would be hard
2721 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2722 */
03158cd7
NP
2723 attach_nobh_buffers(page, head);
2724 page_zero_new_buffers(page, from, to);
a4b0672d 2725
03158cd7
NP
2726out_release:
2727 unlock_page(page);
09cbfeaf 2728 put_page(page);
03158cd7 2729 *pagep = NULL;
a4b0672d 2730
7bb46a67 2731 return ret;
2732}
03158cd7 2733EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2734
03158cd7
NP
2735int nobh_write_end(struct file *file, struct address_space *mapping,
2736 loff_t pos, unsigned len, unsigned copied,
2737 struct page *page, void *fsdata)
1da177e4
LT
2738{
2739 struct inode *inode = page->mapping->host;
efdc3131 2740 struct buffer_head *head = fsdata;
03158cd7 2741 struct buffer_head *bh;
5b41e74a 2742 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2743
d4cf109f 2744 if (unlikely(copied < len) && head)
5b41e74a
DM
2745 attach_nobh_buffers(page, head);
2746 if (page_has_buffers(page))
2747 return generic_write_end(file, mapping, pos, len,
2748 copied, page, fsdata);
a4b0672d 2749
22c8ca78 2750 SetPageUptodate(page);
1da177e4 2751 set_page_dirty(page);
03158cd7
NP
2752 if (pos+copied > inode->i_size) {
2753 i_size_write(inode, pos+copied);
1da177e4
LT
2754 mark_inode_dirty(inode);
2755 }
03158cd7
NP
2756
2757 unlock_page(page);
09cbfeaf 2758 put_page(page);
03158cd7 2759
03158cd7
NP
2760 while (head) {
2761 bh = head;
2762 head = head->b_this_page;
2763 free_buffer_head(bh);
2764 }
2765
2766 return copied;
1da177e4 2767}
03158cd7 2768EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2769
2770/*
2771 * nobh_writepage() - based on block_full_write_page() except
2772 * that it tries to operate without attaching bufferheads to
2773 * the page.
2774 */
2775int nobh_writepage(struct page *page, get_block_t *get_block,
2776 struct writeback_control *wbc)
2777{
2778 struct inode * const inode = page->mapping->host;
2779 loff_t i_size = i_size_read(inode);
09cbfeaf 2780 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2781 unsigned offset;
1da177e4
LT
2782 int ret;
2783
2784 /* Is the page fully inside i_size? */
2785 if (page->index < end_index)
2786 goto out;
2787
2788 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2789 offset = i_size & (PAGE_SIZE-1);
1da177e4
LT
2790 if (page->index >= end_index+1 || !offset) {
2791 /*
2792 * The page may have dirty, unmapped buffers. For example,
2793 * they may have been added in ext3_writepage(). Make them
2794 * freeable here, so the page does not leak.
2795 */
2796#if 0
2797 /* Not really sure about this - do we need this ? */
2798 if (page->mapping->a_ops->invalidatepage)
2799 page->mapping->a_ops->invalidatepage(page, offset);
2800#endif
2801 unlock_page(page);
2802 return 0; /* don't care */
2803 }
2804
2805 /*
2806 * The page straddles i_size. It must be zeroed out on each and every
2807 * writepage invocation because it may be mmapped. "A file is mapped
2808 * in multiples of the page size. For a file that is not a multiple of
2809 * the page size, the remaining memory is zeroed when mapped, and
2810 * writes to that region are not written out to the file."
2811 */
09cbfeaf 2812 zero_user_segment(page, offset, PAGE_SIZE);
1da177e4
LT
2813out:
2814 ret = mpage_writepage(page, get_block, wbc);
2815 if (ret == -EAGAIN)
35c80d5f
CM
2816 ret = __block_write_full_page(inode, page, get_block, wbc,
2817 end_buffer_async_write);
1da177e4
LT
2818 return ret;
2819}
2820EXPORT_SYMBOL(nobh_writepage);
2821
03158cd7
NP
2822int nobh_truncate_page(struct address_space *mapping,
2823 loff_t from, get_block_t *get_block)
1da177e4 2824{
09cbfeaf
KS
2825 pgoff_t index = from >> PAGE_SHIFT;
2826 unsigned offset = from & (PAGE_SIZE-1);
03158cd7
NP
2827 unsigned blocksize;
2828 sector_t iblock;
2829 unsigned length, pos;
2830 struct inode *inode = mapping->host;
1da177e4 2831 struct page *page;
03158cd7
NP
2832 struct buffer_head map_bh;
2833 int err;
1da177e4 2834
93407472 2835 blocksize = i_blocksize(inode);
03158cd7
NP
2836 length = offset & (blocksize - 1);
2837
2838 /* Block boundary? Nothing to do */
2839 if (!length)
2840 return 0;
2841
2842 length = blocksize - length;
09cbfeaf 2843 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4 2844
1da177e4 2845 page = grab_cache_page(mapping, index);
03158cd7 2846 err = -ENOMEM;
1da177e4
LT
2847 if (!page)
2848 goto out;
2849
03158cd7
NP
2850 if (page_has_buffers(page)) {
2851has_buffers:
2852 unlock_page(page);
09cbfeaf 2853 put_page(page);
03158cd7
NP
2854 return block_truncate_page(mapping, from, get_block);
2855 }
2856
2857 /* Find the buffer that contains "offset" */
2858 pos = blocksize;
2859 while (offset >= pos) {
2860 iblock++;
2861 pos += blocksize;
2862 }
2863
460bcf57
TT
2864 map_bh.b_size = blocksize;
2865 map_bh.b_state = 0;
03158cd7
NP
2866 err = get_block(inode, iblock, &map_bh, 0);
2867 if (err)
2868 goto unlock;
2869 /* unmapped? It's a hole - nothing to do */
2870 if (!buffer_mapped(&map_bh))
2871 goto unlock;
2872
2873 /* Ok, it's mapped. Make sure it's up-to-date */
2874 if (!PageUptodate(page)) {
2875 err = mapping->a_ops->readpage(NULL, page);
2876 if (err) {
09cbfeaf 2877 put_page(page);
03158cd7
NP
2878 goto out;
2879 }
2880 lock_page(page);
2881 if (!PageUptodate(page)) {
2882 err = -EIO;
2883 goto unlock;
2884 }
2885 if (page_has_buffers(page))
2886 goto has_buffers;
1da177e4 2887 }
eebd2aa3 2888 zero_user(page, offset, length);
03158cd7
NP
2889 set_page_dirty(page);
2890 err = 0;
2891
2892unlock:
1da177e4 2893 unlock_page(page);
09cbfeaf 2894 put_page(page);
1da177e4 2895out:
03158cd7 2896 return err;
1da177e4
LT
2897}
2898EXPORT_SYMBOL(nobh_truncate_page);
2899
2900int block_truncate_page(struct address_space *mapping,
2901 loff_t from, get_block_t *get_block)
2902{
09cbfeaf
KS
2903 pgoff_t index = from >> PAGE_SHIFT;
2904 unsigned offset = from & (PAGE_SIZE-1);
1da177e4 2905 unsigned blocksize;
54b21a79 2906 sector_t iblock;
1da177e4
LT
2907 unsigned length, pos;
2908 struct inode *inode = mapping->host;
2909 struct page *page;
2910 struct buffer_head *bh;
1da177e4
LT
2911 int err;
2912
93407472 2913 blocksize = i_blocksize(inode);
1da177e4
LT
2914 length = offset & (blocksize - 1);
2915
2916 /* Block boundary? Nothing to do */
2917 if (!length)
2918 return 0;
2919
2920 length = blocksize - length;
09cbfeaf 2921 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4
LT
2922
2923 page = grab_cache_page(mapping, index);
2924 err = -ENOMEM;
2925 if (!page)
2926 goto out;
2927
2928 if (!page_has_buffers(page))
2929 create_empty_buffers(page, blocksize, 0);
2930
2931 /* Find the buffer that contains "offset" */
2932 bh = page_buffers(page);
2933 pos = blocksize;
2934 while (offset >= pos) {
2935 bh = bh->b_this_page;
2936 iblock++;
2937 pos += blocksize;
2938 }
2939
2940 err = 0;
2941 if (!buffer_mapped(bh)) {
b0cf2321 2942 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2943 err = get_block(inode, iblock, bh, 0);
2944 if (err)
2945 goto unlock;
2946 /* unmapped? It's a hole - nothing to do */
2947 if (!buffer_mapped(bh))
2948 goto unlock;
2949 }
2950
2951 /* Ok, it's mapped. Make sure it's up-to-date */
2952 if (PageUptodate(page))
2953 set_buffer_uptodate(bh);
2954
33a266dd 2955 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4 2956 err = -EIO;
dfec8a14 2957 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2958 wait_on_buffer(bh);
2959 /* Uhhuh. Read error. Complain and punt. */
2960 if (!buffer_uptodate(bh))
2961 goto unlock;
2962 }
2963
eebd2aa3 2964 zero_user(page, offset, length);
1da177e4
LT
2965 mark_buffer_dirty(bh);
2966 err = 0;
2967
2968unlock:
2969 unlock_page(page);
09cbfeaf 2970 put_page(page);
1da177e4
LT
2971out:
2972 return err;
2973}
1fe72eaa 2974EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2975
2976/*
2977 * The generic ->writepage function for buffer-backed address_spaces
2978 */
1b938c08
MW
2979int block_write_full_page(struct page *page, get_block_t *get_block,
2980 struct writeback_control *wbc)
1da177e4
LT
2981{
2982 struct inode * const inode = page->mapping->host;
2983 loff_t i_size = i_size_read(inode);
09cbfeaf 2984 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2985 unsigned offset;
1da177e4
LT
2986
2987 /* Is the page fully inside i_size? */
2988 if (page->index < end_index)
35c80d5f 2989 return __block_write_full_page(inode, page, get_block, wbc,
1b938c08 2990 end_buffer_async_write);
1da177e4
LT
2991
2992 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2993 offset = i_size & (PAGE_SIZE-1);
1da177e4
LT
2994 if (page->index >= end_index+1 || !offset) {
2995 /*
2996 * The page may have dirty, unmapped buffers. For example,
2997 * they may have been added in ext3_writepage(). Make them
2998 * freeable here, so the page does not leak.
2999 */
09cbfeaf 3000 do_invalidatepage(page, 0, PAGE_SIZE);
1da177e4
LT
3001 unlock_page(page);
3002 return 0; /* don't care */
3003 }
3004
3005 /*
3006 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 3007 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
3008 * in multiples of the page size. For a file that is not a multiple of
3009 * the page size, the remaining memory is zeroed when mapped, and
3010 * writes to that region are not written out to the file."
3011 */
09cbfeaf 3012 zero_user_segment(page, offset, PAGE_SIZE);
1b938c08
MW
3013 return __block_write_full_page(inode, page, get_block, wbc,
3014 end_buffer_async_write);
35c80d5f 3015}
1fe72eaa 3016EXPORT_SYMBOL(block_write_full_page);
35c80d5f 3017
1da177e4
LT
3018sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3019 get_block_t *get_block)
3020{
1da177e4 3021 struct inode *inode = mapping->host;
2a527d68
AP
3022 struct buffer_head tmp = {
3023 .b_size = i_blocksize(inode),
3024 };
3025
1da177e4
LT
3026 get_block(inode, block, &tmp, 0);
3027 return tmp.b_blocknr;
3028}
1fe72eaa 3029EXPORT_SYMBOL(generic_block_bmap);
1da177e4 3030
4246a0b6 3031static void end_bio_bh_io_sync(struct bio *bio)
1da177e4
LT
3032{
3033 struct buffer_head *bh = bio->bi_private;
3034
b7c44ed9 3035 if (unlikely(bio_flagged(bio, BIO_QUIET)))
08bafc03
KM
3036 set_bit(BH_Quiet, &bh->b_state);
3037
4e4cbee9 3038 bh->b_end_io(bh, !bio->bi_status);
1da177e4 3039 bio_put(bio);
1da177e4
LT
3040}
3041
57302e0d
LT
3042/*
3043 * This allows us to do IO even on the odd last sectors
59d43914 3044 * of a device, even if the block size is some multiple
57302e0d
LT
3045 * of the physical sector size.
3046 *
3047 * We'll just truncate the bio to the size of the device,
3048 * and clear the end of the buffer head manually.
3049 *
3050 * Truly out-of-range accesses will turn into actual IO
3051 * errors, this only handles the "we need to be able to
3052 * do IO at the final sector" case.
3053 */
2a222ca9 3054void guard_bio_eod(int op, struct bio *bio)
57302e0d
LT
3055{
3056 sector_t maxsector;
59d43914
AM
3057 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3058 unsigned truncated_bytes;
57302e0d
LT
3059
3060 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3061 if (!maxsector)
3062 return;
3063
3064 /*
3065 * If the *whole* IO is past the end of the device,
3066 * let it through, and the IO layer will turn it into
3067 * an EIO.
3068 */
4f024f37 3069 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
57302e0d
LT
3070 return;
3071
4f024f37 3072 maxsector -= bio->bi_iter.bi_sector;
59d43914 3073 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
57302e0d
LT
3074 return;
3075
59d43914
AM
3076 /* Uhhuh. We've got a bio that straddles the device size! */
3077 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
57302e0d
LT
3078
3079 /* Truncate the bio.. */
59d43914
AM
3080 bio->bi_iter.bi_size -= truncated_bytes;
3081 bvec->bv_len -= truncated_bytes;
57302e0d
LT
3082
3083 /* ..and clear the end of the buffer for reads */
2a222ca9 3084 if (op == REQ_OP_READ) {
59d43914
AM
3085 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3086 truncated_bytes);
57302e0d
LT
3087 }
3088}
3089
2a222ca9 3090static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
8e8f9298 3091 enum rw_hint write_hint, struct writeback_control *wbc)
1da177e4
LT
3092{
3093 struct bio *bio;
1da177e4
LT
3094
3095 BUG_ON(!buffer_locked(bh));
3096 BUG_ON(!buffer_mapped(bh));
3097 BUG_ON(!bh->b_end_io);
8fb0e342
AK
3098 BUG_ON(buffer_delay(bh));
3099 BUG_ON(buffer_unwritten(bh));
1da177e4 3100
1da177e4 3101 /*
48fd4f93 3102 * Only clear out a write error when rewriting
1da177e4 3103 */
2a222ca9 3104 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
1da177e4
LT
3105 clear_buffer_write_io_error(bh);
3106
3107 /*
3108 * from here on down, it's all bio -- do the initial mapping,
3109 * submit_bio -> generic_make_request may further map this bio around
3110 */
3111 bio = bio_alloc(GFP_NOIO, 1);
3112
2a814908 3113 if (wbc) {
b16b1deb 3114 wbc_init_bio(wbc, bio);
2a814908
TH
3115 wbc_account_io(wbc, bh->b_page, bh->b_size);
3116 }
bafc0dba 3117
4f024f37 3118 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
1da177e4 3119 bio->bi_bdev = bh->b_bdev;
8e8f9298 3120 bio->bi_write_hint = write_hint;
1da177e4 3121
6cf66b4c
KO
3122 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3123 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
1da177e4
LT
3124
3125 bio->bi_end_io = end_bio_bh_io_sync;
3126 bio->bi_private = bh;
3127
57302e0d 3128 /* Take care of bh's that straddle the end of the device */
2a222ca9 3129 guard_bio_eod(op, bio);
57302e0d 3130
877f962c 3131 if (buffer_meta(bh))
2a222ca9 3132 op_flags |= REQ_META;
877f962c 3133 if (buffer_prio(bh))
2a222ca9
MC
3134 op_flags |= REQ_PRIO;
3135 bio_set_op_attrs(bio, op, op_flags);
877f962c 3136
4e49ea4a 3137 submit_bio(bio);
f6454b04 3138 return 0;
1da177e4 3139}
bafc0dba 3140
020c2833 3141int submit_bh(int op, int op_flags, struct buffer_head *bh)
bafc0dba 3142{
8e8f9298 3143 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
71368511 3144}
1fe72eaa 3145EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3146
3147/**
3148 * ll_rw_block: low-level access to block devices (DEPRECATED)
dfec8a14 3149 * @op: whether to %READ or %WRITE
ef295ecf 3150 * @op_flags: req_flag_bits
1da177e4
LT
3151 * @nr: number of &struct buffer_heads in the array
3152 * @bhs: array of pointers to &struct buffer_head
3153 *
a7662236 3154 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
70246286
CH
3155 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3156 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3157 * %REQ_RAHEAD.
1da177e4
LT
3158 *
3159 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
3160 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3161 * request, and any buffer that appears to be up-to-date when doing read
3162 * request. Further it marks as clean buffers that are processed for
3163 * writing (the buffer cache won't assume that they are actually clean
3164 * until the buffer gets unlocked).
1da177e4
LT
3165 *
3166 * ll_rw_block sets b_end_io to simple completion handler that marks
e227867f 3167 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
1da177e4
LT
3168 * any waiters.
3169 *
3170 * All of the buffers must be for the same device, and must also be a
3171 * multiple of the current approved size for the device.
3172 */
dfec8a14 3173void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
1da177e4
LT
3174{
3175 int i;
3176
3177 for (i = 0; i < nr; i++) {
3178 struct buffer_head *bh = bhs[i];
3179
9cb569d6 3180 if (!trylock_buffer(bh))
1da177e4 3181 continue;
dfec8a14 3182 if (op == WRITE) {
1da177e4 3183 if (test_clear_buffer_dirty(bh)) {
76c3073a 3184 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3185 get_bh(bh);
dfec8a14 3186 submit_bh(op, op_flags, bh);
1da177e4
LT
3187 continue;
3188 }
3189 } else {
1da177e4 3190 if (!buffer_uptodate(bh)) {
76c3073a 3191 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3192 get_bh(bh);
dfec8a14 3193 submit_bh(op, op_flags, bh);
1da177e4
LT
3194 continue;
3195 }
3196 }
3197 unlock_buffer(bh);
1da177e4
LT
3198 }
3199}
1fe72eaa 3200EXPORT_SYMBOL(ll_rw_block);
1da177e4 3201
2a222ca9 3202void write_dirty_buffer(struct buffer_head *bh, int op_flags)
9cb569d6
CH
3203{
3204 lock_buffer(bh);
3205 if (!test_clear_buffer_dirty(bh)) {
3206 unlock_buffer(bh);
3207 return;
3208 }
3209 bh->b_end_io = end_buffer_write_sync;
3210 get_bh(bh);
2a222ca9 3211 submit_bh(REQ_OP_WRITE, op_flags, bh);
9cb569d6
CH
3212}
3213EXPORT_SYMBOL(write_dirty_buffer);
3214
1da177e4
LT
3215/*
3216 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3217 * and then start new I/O and then wait upon it. The caller must have a ref on
3218 * the buffer_head.
3219 */
2a222ca9 3220int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
1da177e4
LT
3221{
3222 int ret = 0;
3223
3224 WARN_ON(atomic_read(&bh->b_count) < 1);
3225 lock_buffer(bh);
3226 if (test_clear_buffer_dirty(bh)) {
3227 get_bh(bh);
3228 bh->b_end_io = end_buffer_write_sync;
2a222ca9 3229 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
1da177e4 3230 wait_on_buffer(bh);
1da177e4
LT
3231 if (!ret && !buffer_uptodate(bh))
3232 ret = -EIO;
3233 } else {
3234 unlock_buffer(bh);
3235 }
3236 return ret;
3237}
87e99511
CH
3238EXPORT_SYMBOL(__sync_dirty_buffer);
3239
3240int sync_dirty_buffer(struct buffer_head *bh)
3241{
70fd7614 3242 return __sync_dirty_buffer(bh, REQ_SYNC);
87e99511 3243}
1fe72eaa 3244EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3245
3246/*
3247 * try_to_free_buffers() checks if all the buffers on this particular page
3248 * are unused, and releases them if so.
3249 *
3250 * Exclusion against try_to_free_buffers may be obtained by either
3251 * locking the page or by holding its mapping's private_lock.
3252 *
3253 * If the page is dirty but all the buffers are clean then we need to
3254 * be sure to mark the page clean as well. This is because the page
3255 * may be against a block device, and a later reattachment of buffers
3256 * to a dirty page will set *all* buffers dirty. Which would corrupt
3257 * filesystem data on the same device.
3258 *
3259 * The same applies to regular filesystem pages: if all the buffers are
3260 * clean then we set the page clean and proceed. To do that, we require
3261 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3262 * private_lock.
3263 *
3264 * try_to_free_buffers() is non-blocking.
3265 */
3266static inline int buffer_busy(struct buffer_head *bh)
3267{
3268 return atomic_read(&bh->b_count) |
3269 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3270}
3271
3272static int
3273drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3274{
3275 struct buffer_head *head = page_buffers(page);
3276 struct buffer_head *bh;
3277
3278 bh = head;
3279 do {
1da177e4
LT
3280 if (buffer_busy(bh))
3281 goto failed;
3282 bh = bh->b_this_page;
3283 } while (bh != head);
3284
3285 do {
3286 struct buffer_head *next = bh->b_this_page;
3287
535ee2fb 3288 if (bh->b_assoc_map)
1da177e4
LT
3289 __remove_assoc_queue(bh);
3290 bh = next;
3291 } while (bh != head);
3292 *buffers_to_free = head;
3293 __clear_page_buffers(page);
3294 return 1;
3295failed:
3296 return 0;
3297}
3298
3299int try_to_free_buffers(struct page *page)
3300{
3301 struct address_space * const mapping = page->mapping;
3302 struct buffer_head *buffers_to_free = NULL;
3303 int ret = 0;
3304
3305 BUG_ON(!PageLocked(page));
ecdfc978 3306 if (PageWriteback(page))
1da177e4
LT
3307 return 0;
3308
3309 if (mapping == NULL) { /* can this still happen? */
3310 ret = drop_buffers(page, &buffers_to_free);
3311 goto out;
3312 }
3313
3314 spin_lock(&mapping->private_lock);
3315 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3316
3317 /*
3318 * If the filesystem writes its buffers by hand (eg ext3)
3319 * then we can have clean buffers against a dirty page. We
3320 * clean the page here; otherwise the VM will never notice
3321 * that the filesystem did any IO at all.
3322 *
3323 * Also, during truncate, discard_buffer will have marked all
3324 * the page's buffers clean. We discover that here and clean
3325 * the page also.
87df7241
NP
3326 *
3327 * private_lock must be held over this entire operation in order
3328 * to synchronise against __set_page_dirty_buffers and prevent the
3329 * dirty bit from being lost.
ecdfc978 3330 */
11f81bec
TH
3331 if (ret)
3332 cancel_dirty_page(page);
87df7241 3333 spin_unlock(&mapping->private_lock);
1da177e4
LT
3334out:
3335 if (buffers_to_free) {
3336 struct buffer_head *bh = buffers_to_free;
3337
3338 do {
3339 struct buffer_head *next = bh->b_this_page;
3340 free_buffer_head(bh);
3341 bh = next;
3342 } while (bh != buffers_to_free);
3343 }
3344 return ret;
3345}
3346EXPORT_SYMBOL(try_to_free_buffers);
3347
1da177e4
LT
3348/*
3349 * There are no bdflush tunables left. But distributions are
3350 * still running obsolete flush daemons, so we terminate them here.
3351 *
3352 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3353 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3354 */
bdc480e3 3355SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3356{
3357 static int msg_count;
3358
3359 if (!capable(CAP_SYS_ADMIN))
3360 return -EPERM;
3361
3362 if (msg_count < 5) {
3363 msg_count++;
3364 printk(KERN_INFO
3365 "warning: process `%s' used the obsolete bdflush"
3366 " system call\n", current->comm);
3367 printk(KERN_INFO "Fix your initscripts?\n");
3368 }
3369
3370 if (func == 1)
3371 do_exit(0);
3372 return 0;
3373}
3374
3375/*
3376 * Buffer-head allocation
3377 */
a0a9b043 3378static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3379
3380/*
3381 * Once the number of bh's in the machine exceeds this level, we start
3382 * stripping them in writeback.
3383 */
43be594a 3384static unsigned long max_buffer_heads;
1da177e4
LT
3385
3386int buffer_heads_over_limit;
3387
3388struct bh_accounting {
3389 int nr; /* Number of live bh's */
3390 int ratelimit; /* Limit cacheline bouncing */
3391};
3392
3393static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3394
3395static void recalc_bh_state(void)
3396{
3397 int i;
3398 int tot = 0;
3399
ee1be862 3400 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3401 return;
c7b92516 3402 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3403 for_each_online_cpu(i)
1da177e4
LT
3404 tot += per_cpu(bh_accounting, i).nr;
3405 buffer_heads_over_limit = (tot > max_buffer_heads);
3406}
c7b92516 3407
dd0fc66f 3408struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3409{
019b4d12 3410 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3411 if (ret) {
a35afb83 3412 INIT_LIST_HEAD(&ret->b_assoc_buffers);
c7b92516
CL
3413 preempt_disable();
3414 __this_cpu_inc(bh_accounting.nr);
1da177e4 3415 recalc_bh_state();
c7b92516 3416 preempt_enable();
1da177e4
LT
3417 }
3418 return ret;
3419}
3420EXPORT_SYMBOL(alloc_buffer_head);
3421
3422void free_buffer_head(struct buffer_head *bh)
3423{
3424 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3425 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3426 preempt_disable();
3427 __this_cpu_dec(bh_accounting.nr);
1da177e4 3428 recalc_bh_state();
c7b92516 3429 preempt_enable();
1da177e4
LT
3430}
3431EXPORT_SYMBOL(free_buffer_head);
3432
fc4d24c9 3433static int buffer_exit_cpu_dead(unsigned int cpu)
1da177e4
LT
3434{
3435 int i;
3436 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3437
3438 for (i = 0; i < BH_LRU_SIZE; i++) {
3439 brelse(b->bhs[i]);
3440 b->bhs[i] = NULL;
3441 }
c7b92516 3442 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3443 per_cpu(bh_accounting, cpu).nr = 0;
fc4d24c9 3444 return 0;
1da177e4 3445}
1da177e4 3446
389d1b08 3447/**
a6b91919 3448 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3449 * @bh: struct buffer_head
3450 *
3451 * Return true if the buffer is up-to-date and false,
3452 * with the buffer locked, if not.
3453 */
3454int bh_uptodate_or_lock(struct buffer_head *bh)
3455{
3456 if (!buffer_uptodate(bh)) {
3457 lock_buffer(bh);
3458 if (!buffer_uptodate(bh))
3459 return 0;
3460 unlock_buffer(bh);
3461 }
3462 return 1;
3463}
3464EXPORT_SYMBOL(bh_uptodate_or_lock);
3465
3466/**
a6b91919 3467 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3468 * @bh: struct buffer_head
3469 *
3470 * Returns zero on success and -EIO on error.
3471 */
3472int bh_submit_read(struct buffer_head *bh)
3473{
3474 BUG_ON(!buffer_locked(bh));
3475
3476 if (buffer_uptodate(bh)) {
3477 unlock_buffer(bh);
3478 return 0;
3479 }
3480
3481 get_bh(bh);
3482 bh->b_end_io = end_buffer_read_sync;
2a222ca9 3483 submit_bh(REQ_OP_READ, 0, bh);
389d1b08
AK
3484 wait_on_buffer(bh);
3485 if (buffer_uptodate(bh))
3486 return 0;
3487 return -EIO;
3488}
3489EXPORT_SYMBOL(bh_submit_read);
3490
334fd34d
AG
3491/*
3492 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3493 *
3494 * Returns the offset within the file on success, and -ENOENT otherwise.
3495 */
3496static loff_t
3497page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3498{
3499 loff_t offset = page_offset(page);
3500 struct buffer_head *bh, *head;
3501 bool seek_data = whence == SEEK_DATA;
3502
3503 if (lastoff < offset)
3504 lastoff = offset;
3505
3506 bh = head = page_buffers(page);
3507 do {
3508 offset += bh->b_size;
3509 if (lastoff >= offset)
3510 continue;
3511
3512 /*
3513 * Unwritten extents that have data in the page cache covering
3514 * them can be identified by the BH_Unwritten state flag.
3515 * Pages with multiple buffers might have a mix of holes, data
3516 * and unwritten extents - any buffer with valid data in it
3517 * should have BH_Uptodate flag set on it.
3518 */
3519
3520 if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3521 return lastoff;
3522
3523 lastoff = offset;
3524 } while ((bh = bh->b_this_page) != head);
3525 return -ENOENT;
3526}
3527
3528/*
3529 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3530 *
3531 * Within unwritten extents, the page cache determines which parts are holes
3532 * and which are data: unwritten and uptodate buffer heads count as data;
3533 * everything else counts as a hole.
3534 *
3535 * Returns the resulting offset on successs, and -ENOENT otherwise.
3536 */
3537loff_t
3538page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3539 int whence)
3540{
3541 pgoff_t index = offset >> PAGE_SHIFT;
3542 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3543 loff_t lastoff = offset;
3544 struct pagevec pvec;
3545
3546 if (length <= 0)
3547 return -ENOENT;
3548
3549 pagevec_init(&pvec, 0);
3550
3551 do {
3552 unsigned want, nr_pages, i;
3553
3554 want = min_t(unsigned, end - index, PAGEVEC_SIZE);
3555 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index, want);
3556 if (nr_pages == 0)
3557 break;
3558
3559 for (i = 0; i < nr_pages; i++) {
3560 struct page *page = pvec.pages[i];
3561
3562 /*
3563 * At this point, the page may be truncated or
3564 * invalidated (changing page->mapping to NULL), or
3565 * even swizzled back from swapper_space to tmpfs file
3566 * mapping. However, page->index will not change
3567 * because we have a reference on the page.
3568 *
3569 * If current page offset is beyond where we've ended,
3570 * we've found a hole.
3571 */
3572 if (whence == SEEK_HOLE &&
3573 lastoff < page_offset(page))
3574 goto check_range;
3575
3576 /* Searching done if the page index is out of range. */
3577 if (page->index >= end)
3578 goto not_found;
3579
3580 lock_page(page);
3581 if (likely(page->mapping == inode->i_mapping) &&
3582 page_has_buffers(page)) {
3583 lastoff = page_seek_hole_data(page, lastoff, whence);
3584 if (lastoff >= 0) {
3585 unlock_page(page);
3586 goto check_range;
3587 }
3588 }
3589 unlock_page(page);
3590 lastoff = page_offset(page) + PAGE_SIZE;
3591 }
3592
3593 /* Searching done if fewer pages returned than wanted. */
3594 if (nr_pages < want)
3595 break;
3596
3597 index = pvec.pages[i - 1]->index + 1;
3598 pagevec_release(&pvec);
3599 } while (index < end);
3600
3601 /* When no page at lastoff and we are not done, we found a hole. */
3602 if (whence != SEEK_HOLE)
3603 goto not_found;
3604
3605check_range:
3606 if (lastoff < offset + length)
3607 goto out;
3608not_found:
3609 lastoff = -ENOENT;
3610out:
3611 pagevec_release(&pvec);
3612 return lastoff;
3613}
3614
1da177e4
LT
3615void __init buffer_init(void)
3616{
43be594a 3617 unsigned long nrpages;
fc4d24c9 3618 int ret;
1da177e4 3619
b98938c3
CL
3620 bh_cachep = kmem_cache_create("buffer_head",
3621 sizeof(struct buffer_head), 0,
3622 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3623 SLAB_MEM_SPREAD),
019b4d12 3624 NULL);
1da177e4
LT
3625
3626 /*
3627 * Limit the bh occupancy to 10% of ZONE_NORMAL
3628 */
3629 nrpages = (nr_free_buffer_pages() * 10) / 100;
3630 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
fc4d24c9
SAS
3631 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3632 NULL, buffer_exit_cpu_dead);
3633 WARN_ON(ret < 0);
1da177e4 3634}