]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/buffer.c
block: switch bios to blk_status_t
[mirror_ubuntu-artful-kernel.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4 21#include <linux/kernel.h>
f361bf4a 22#include <linux/sched/signal.h>
1da177e4
LT
23#include <linux/syscalls.h>
24#include <linux/fs.h>
ae259a9c 25#include <linux/iomap.h>
1da177e4
LT
26#include <linux/mm.h>
27#include <linux/percpu.h>
28#include <linux/slab.h>
16f7e0fe 29#include <linux/capability.h>
1da177e4
LT
30#include <linux/blkdev.h>
31#include <linux/file.h>
32#include <linux/quotaops.h>
33#include <linux/highmem.h>
630d9c47 34#include <linux/export.h>
bafc0dba 35#include <linux/backing-dev.h>
1da177e4
LT
36#include <linux/writeback.h>
37#include <linux/hash.h>
38#include <linux/suspend.h>
39#include <linux/buffer_head.h>
55e829af 40#include <linux/task_io_accounting_ops.h>
1da177e4
LT
41#include <linux/bio.h>
42#include <linux/notifier.h>
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
fb1c8f93 46#include <linux/bit_spinlock.h>
29f3ad7d 47#include <linux/pagevec.h>
5305cb83 48#include <trace/events/block.h>
1da177e4
LT
49
50static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
2a222ca9 51static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
b16b1deb 52 struct writeback_control *wbc);
1da177e4
LT
53
54#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
a3f3c29c 56void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
1da177e4
LT
57{
58 bh->b_end_io = handler;
59 bh->b_private = private;
60}
1fe72eaa 61EXPORT_SYMBOL(init_buffer);
1da177e4 62
f0059afd
TH
63inline void touch_buffer(struct buffer_head *bh)
64{
5305cb83 65 trace_block_touch_buffer(bh);
f0059afd
TH
66 mark_page_accessed(bh->b_page);
67}
68EXPORT_SYMBOL(touch_buffer);
69
fc9b52cd 70void __lock_buffer(struct buffer_head *bh)
1da177e4 71{
74316201 72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
73}
74EXPORT_SYMBOL(__lock_buffer);
75
fc9b52cd 76void unlock_buffer(struct buffer_head *bh)
1da177e4 77{
51b07fc3 78 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 79 smp_mb__after_atomic();
1da177e4
LT
80 wake_up_bit(&bh->b_state, BH_Lock);
81}
1fe72eaa 82EXPORT_SYMBOL(unlock_buffer);
1da177e4 83
b4597226
MG
84/*
85 * Returns if the page has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the PageDirty information is stale. If
87 * any of the pages are locked, it is assumed they are locked for IO.
88 */
89void buffer_check_dirty_writeback(struct page *page,
90 bool *dirty, bool *writeback)
91{
92 struct buffer_head *head, *bh;
93 *dirty = false;
94 *writeback = false;
95
96 BUG_ON(!PageLocked(page));
97
98 if (!page_has_buffers(page))
99 return;
100
101 if (PageWriteback(page))
102 *writeback = true;
103
104 head = page_buffers(page);
105 bh = head;
106 do {
107 if (buffer_locked(bh))
108 *writeback = true;
109
110 if (buffer_dirty(bh))
111 *dirty = true;
112
113 bh = bh->b_this_page;
114 } while (bh != head);
115}
116EXPORT_SYMBOL(buffer_check_dirty_writeback);
117
1da177e4
LT
118/*
119 * Block until a buffer comes unlocked. This doesn't stop it
120 * from becoming locked again - you have to lock it yourself
121 * if you want to preserve its state.
122 */
123void __wait_on_buffer(struct buffer_head * bh)
124{
74316201 125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 126}
1fe72eaa 127EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
128
129static void
130__clear_page_buffers(struct page *page)
131{
132 ClearPagePrivate(page);
4c21e2f2 133 set_page_private(page, 0);
09cbfeaf 134 put_page(page);
1da177e4
LT
135}
136
b744c2ac 137static void buffer_io_error(struct buffer_head *bh, char *msg)
1da177e4 138{
432f16e6
RE
139 if (!test_bit(BH_Quiet, &bh->b_state))
140 printk_ratelimited(KERN_ERR
a1c6f057
DM
141 "Buffer I/O error on dev %pg, logical block %llu%s\n",
142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
1da177e4
LT
143}
144
145/*
68671f35
DM
146 * End-of-IO handler helper function which does not touch the bh after
147 * unlocking it.
148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149 * a race there is benign: unlock_buffer() only use the bh's address for
150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
151 * itself.
1da177e4 152 */
68671f35 153static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
154{
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
70246286 158 /* This happens, due to failed read-ahead attempts. */
1da177e4
LT
159 clear_buffer_uptodate(bh);
160 }
161 unlock_buffer(bh);
68671f35
DM
162}
163
164/*
165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
166 * unlock the buffer. This is what ll_rw_block uses too.
167 */
168void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
169{
170 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
171 put_bh(bh);
172}
1fe72eaa 173EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
174
175void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
176{
1da177e4
LT
177 if (uptodate) {
178 set_buffer_uptodate(bh);
179 } else {
432f16e6 180 buffer_io_error(bh, ", lost sync page write");
1da177e4
LT
181 set_buffer_write_io_error(bh);
182 clear_buffer_uptodate(bh);
183 }
184 unlock_buffer(bh);
185 put_bh(bh);
186}
1fe72eaa 187EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 188
1da177e4
LT
189/*
190 * Various filesystems appear to want __find_get_block to be non-blocking.
191 * But it's the page lock which protects the buffers. To get around this,
192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
193 * private_lock.
194 *
195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196 * may be quite high. This code could TryLock the page, and if that
197 * succeeds, there is no need to take private_lock. (But if
198 * private_lock is contended then so is mapping->tree_lock).
199 */
200static struct buffer_head *
385fd4c5 201__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
202{
203 struct inode *bd_inode = bdev->bd_inode;
204 struct address_space *bd_mapping = bd_inode->i_mapping;
205 struct buffer_head *ret = NULL;
206 pgoff_t index;
207 struct buffer_head *bh;
208 struct buffer_head *head;
209 struct page *page;
210 int all_mapped = 1;
211
09cbfeaf 212 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
2457aec6 213 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
1da177e4
LT
214 if (!page)
215 goto out;
216
217 spin_lock(&bd_mapping->private_lock);
218 if (!page_has_buffers(page))
219 goto out_unlock;
220 head = page_buffers(page);
221 bh = head;
222 do {
97f76d3d
NK
223 if (!buffer_mapped(bh))
224 all_mapped = 0;
225 else if (bh->b_blocknr == block) {
1da177e4
LT
226 ret = bh;
227 get_bh(bh);
228 goto out_unlock;
229 }
1da177e4
LT
230 bh = bh->b_this_page;
231 } while (bh != head);
232
233 /* we might be here because some of the buffers on this page are
234 * not mapped. This is due to various races between
235 * file io on the block device and getblk. It gets dealt with
236 * elsewhere, don't buffer_error if we had some unmapped buffers
237 */
238 if (all_mapped) {
239 printk("__find_get_block_slow() failed. "
240 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
241 (unsigned long long)block,
242 (unsigned long long)bh->b_blocknr);
243 printk("b_state=0x%08lx, b_size=%zu\n",
244 bh->b_state, bh->b_size);
a1c6f057 245 printk("device %pg blocksize: %d\n", bdev,
72a2ebd8 246 1 << bd_inode->i_blkbits);
1da177e4
LT
247 }
248out_unlock:
249 spin_unlock(&bd_mapping->private_lock);
09cbfeaf 250 put_page(page);
1da177e4
LT
251out:
252 return ret;
253}
254
1da177e4 255/*
5b0830cb 256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
1da177e4
LT
257 */
258static void free_more_memory(void)
259{
c33d6c06 260 struct zoneref *z;
0e88460d 261 int nid;
1da177e4 262
0e175a18 263 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
1da177e4
LT
264 yield();
265
0e88460d 266 for_each_online_node(nid) {
c33d6c06
MG
267
268 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
269 gfp_zone(GFP_NOFS), NULL);
270 if (z->zone)
54a6eb5c 271 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
327c0e96 272 GFP_NOFS, NULL);
1da177e4
LT
273 }
274}
275
276/*
277 * I/O completion handler for block_read_full_page() - pages
278 * which come unlocked at the end of I/O.
279 */
280static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
281{
1da177e4 282 unsigned long flags;
a3972203 283 struct buffer_head *first;
1da177e4
LT
284 struct buffer_head *tmp;
285 struct page *page;
286 int page_uptodate = 1;
287
288 BUG_ON(!buffer_async_read(bh));
289
290 page = bh->b_page;
291 if (uptodate) {
292 set_buffer_uptodate(bh);
293 } else {
294 clear_buffer_uptodate(bh);
432f16e6 295 buffer_io_error(bh, ", async page read");
1da177e4
LT
296 SetPageError(page);
297 }
298
299 /*
300 * Be _very_ careful from here on. Bad things can happen if
301 * two buffer heads end IO at almost the same time and both
302 * decide that the page is now completely done.
303 */
a3972203
NP
304 first = page_buffers(page);
305 local_irq_save(flags);
306 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
307 clear_buffer_async_read(bh);
308 unlock_buffer(bh);
309 tmp = bh;
310 do {
311 if (!buffer_uptodate(tmp))
312 page_uptodate = 0;
313 if (buffer_async_read(tmp)) {
314 BUG_ON(!buffer_locked(tmp));
315 goto still_busy;
316 }
317 tmp = tmp->b_this_page;
318 } while (tmp != bh);
a3972203
NP
319 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
320 local_irq_restore(flags);
1da177e4
LT
321
322 /*
323 * If none of the buffers had errors and they are all
324 * uptodate then we can set the page uptodate.
325 */
326 if (page_uptodate && !PageError(page))
327 SetPageUptodate(page);
328 unlock_page(page);
329 return;
330
331still_busy:
a3972203
NP
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
1da177e4
LT
334 return;
335}
336
337/*
338 * Completion handler for block_write_full_page() - pages which are unlocked
339 * during I/O, and which have PageWriteback cleared upon I/O completion.
340 */
35c80d5f 341void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4 342{
1da177e4 343 unsigned long flags;
a3972203 344 struct buffer_head *first;
1da177e4
LT
345 struct buffer_head *tmp;
346 struct page *page;
347
348 BUG_ON(!buffer_async_write(bh));
349
350 page = bh->b_page;
351 if (uptodate) {
352 set_buffer_uptodate(bh);
353 } else {
432f16e6 354 buffer_io_error(bh, ", lost async page write");
5114a97a 355 mapping_set_error(page->mapping, -EIO);
58ff407b 356 set_buffer_write_io_error(bh);
1da177e4
LT
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
359 }
360
a3972203
NP
361 first = page_buffers(page);
362 local_irq_save(flags);
363 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
364
1da177e4
LT
365 clear_buffer_async_write(bh);
366 unlock_buffer(bh);
367 tmp = bh->b_this_page;
368 while (tmp != bh) {
369 if (buffer_async_write(tmp)) {
370 BUG_ON(!buffer_locked(tmp));
371 goto still_busy;
372 }
373 tmp = tmp->b_this_page;
374 }
a3972203
NP
375 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
376 local_irq_restore(flags);
1da177e4
LT
377 end_page_writeback(page);
378 return;
379
380still_busy:
a3972203
NP
381 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
382 local_irq_restore(flags);
1da177e4
LT
383 return;
384}
1fe72eaa 385EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
386
387/*
388 * If a page's buffers are under async readin (end_buffer_async_read
389 * completion) then there is a possibility that another thread of
390 * control could lock one of the buffers after it has completed
391 * but while some of the other buffers have not completed. This
392 * locked buffer would confuse end_buffer_async_read() into not unlocking
393 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
394 * that this buffer is not under async I/O.
395 *
396 * The page comes unlocked when it has no locked buffer_async buffers
397 * left.
398 *
399 * PageLocked prevents anyone starting new async I/O reads any of
400 * the buffers.
401 *
402 * PageWriteback is used to prevent simultaneous writeout of the same
403 * page.
404 *
405 * PageLocked prevents anyone from starting writeback of a page which is
406 * under read I/O (PageWriteback is only ever set against a locked page).
407 */
408static void mark_buffer_async_read(struct buffer_head *bh)
409{
410 bh->b_end_io = end_buffer_async_read;
411 set_buffer_async_read(bh);
412}
413
1fe72eaa
HS
414static void mark_buffer_async_write_endio(struct buffer_head *bh,
415 bh_end_io_t *handler)
1da177e4 416{
35c80d5f 417 bh->b_end_io = handler;
1da177e4
LT
418 set_buffer_async_write(bh);
419}
35c80d5f
CM
420
421void mark_buffer_async_write(struct buffer_head *bh)
422{
423 mark_buffer_async_write_endio(bh, end_buffer_async_write);
424}
1da177e4
LT
425EXPORT_SYMBOL(mark_buffer_async_write);
426
427
428/*
429 * fs/buffer.c contains helper functions for buffer-backed address space's
430 * fsync functions. A common requirement for buffer-based filesystems is
431 * that certain data from the backing blockdev needs to be written out for
432 * a successful fsync(). For example, ext2 indirect blocks need to be
433 * written back and waited upon before fsync() returns.
434 *
435 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
436 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
437 * management of a list of dependent buffers at ->i_mapping->private_list.
438 *
439 * Locking is a little subtle: try_to_free_buffers() will remove buffers
440 * from their controlling inode's queue when they are being freed. But
441 * try_to_free_buffers() will be operating against the *blockdev* mapping
442 * at the time, not against the S_ISREG file which depends on those buffers.
443 * So the locking for private_list is via the private_lock in the address_space
444 * which backs the buffers. Which is different from the address_space
445 * against which the buffers are listed. So for a particular address_space,
446 * mapping->private_lock does *not* protect mapping->private_list! In fact,
447 * mapping->private_list will always be protected by the backing blockdev's
448 * ->private_lock.
449 *
450 * Which introduces a requirement: all buffers on an address_space's
451 * ->private_list must be from the same address_space: the blockdev's.
452 *
453 * address_spaces which do not place buffers at ->private_list via these
454 * utility functions are free to use private_lock and private_list for
455 * whatever they want. The only requirement is that list_empty(private_list)
456 * be true at clear_inode() time.
457 *
458 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
459 * filesystems should do that. invalidate_inode_buffers() should just go
460 * BUG_ON(!list_empty).
461 *
462 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
463 * take an address_space, not an inode. And it should be called
464 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
465 * queued up.
466 *
467 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
468 * list if it is already on a list. Because if the buffer is on a list,
469 * it *must* already be on the right one. If not, the filesystem is being
470 * silly. This will save a ton of locking. But first we have to ensure
471 * that buffers are taken *off* the old inode's list when they are freed
472 * (presumably in truncate). That requires careful auditing of all
473 * filesystems (do it inside bforget()). It could also be done by bringing
474 * b_inode back.
475 */
476
477/*
478 * The buffer's backing address_space's private_lock must be held
479 */
dbacefc9 480static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
481{
482 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
483 WARN_ON(!bh->b_assoc_map);
484 if (buffer_write_io_error(bh))
485 set_bit(AS_EIO, &bh->b_assoc_map->flags);
486 bh->b_assoc_map = NULL;
1da177e4
LT
487}
488
489int inode_has_buffers(struct inode *inode)
490{
491 return !list_empty(&inode->i_data.private_list);
492}
493
494/*
495 * osync is designed to support O_SYNC io. It waits synchronously for
496 * all already-submitted IO to complete, but does not queue any new
497 * writes to the disk.
498 *
499 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
500 * you dirty the buffers, and then use osync_inode_buffers to wait for
501 * completion. Any other dirty buffers which are not yet queued for
502 * write will not be flushed to disk by the osync.
503 */
504static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
505{
506 struct buffer_head *bh;
507 struct list_head *p;
508 int err = 0;
509
510 spin_lock(lock);
511repeat:
512 list_for_each_prev(p, list) {
513 bh = BH_ENTRY(p);
514 if (buffer_locked(bh)) {
515 get_bh(bh);
516 spin_unlock(lock);
517 wait_on_buffer(bh);
518 if (!buffer_uptodate(bh))
519 err = -EIO;
520 brelse(bh);
521 spin_lock(lock);
522 goto repeat;
523 }
524 }
525 spin_unlock(lock);
526 return err;
527}
528
01a05b33 529static void do_thaw_one(struct super_block *sb, void *unused)
c2d75438 530{
01a05b33 531 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
a1c6f057 532 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
01a05b33 533}
c2d75438 534
01a05b33
AV
535static void do_thaw_all(struct work_struct *work)
536{
537 iterate_supers(do_thaw_one, NULL);
053c525f 538 kfree(work);
c2d75438
ES
539 printk(KERN_WARNING "Emergency Thaw complete\n");
540}
541
542/**
543 * emergency_thaw_all -- forcibly thaw every frozen filesystem
544 *
545 * Used for emergency unfreeze of all filesystems via SysRq
546 */
547void emergency_thaw_all(void)
548{
053c525f
JA
549 struct work_struct *work;
550
551 work = kmalloc(sizeof(*work), GFP_ATOMIC);
552 if (work) {
553 INIT_WORK(work, do_thaw_all);
554 schedule_work(work);
555 }
c2d75438
ES
556}
557
1da177e4 558/**
78a4a50a 559 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 560 * @mapping: the mapping which wants those buffers written
1da177e4
LT
561 *
562 * Starts I/O against the buffers at mapping->private_list, and waits upon
563 * that I/O.
564 *
67be2dd1
MW
565 * Basically, this is a convenience function for fsync().
566 * @mapping is a file or directory which needs those buffers to be written for
567 * a successful fsync().
1da177e4
LT
568 */
569int sync_mapping_buffers(struct address_space *mapping)
570{
252aa6f5 571 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
572
573 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
574 return 0;
575
576 return fsync_buffers_list(&buffer_mapping->private_lock,
577 &mapping->private_list);
578}
579EXPORT_SYMBOL(sync_mapping_buffers);
580
581/*
582 * Called when we've recently written block `bblock', and it is known that
583 * `bblock' was for a buffer_boundary() buffer. This means that the block at
584 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
585 * dirty, schedule it for IO. So that indirects merge nicely with their data.
586 */
587void write_boundary_block(struct block_device *bdev,
588 sector_t bblock, unsigned blocksize)
589{
590 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
591 if (bh) {
592 if (buffer_dirty(bh))
dfec8a14 593 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
1da177e4
LT
594 put_bh(bh);
595 }
596}
597
598void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
599{
600 struct address_space *mapping = inode->i_mapping;
601 struct address_space *buffer_mapping = bh->b_page->mapping;
602
603 mark_buffer_dirty(bh);
252aa6f5
RA
604 if (!mapping->private_data) {
605 mapping->private_data = buffer_mapping;
1da177e4 606 } else {
252aa6f5 607 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 608 }
535ee2fb 609 if (!bh->b_assoc_map) {
1da177e4
LT
610 spin_lock(&buffer_mapping->private_lock);
611 list_move_tail(&bh->b_assoc_buffers,
612 &mapping->private_list);
58ff407b 613 bh->b_assoc_map = mapping;
1da177e4
LT
614 spin_unlock(&buffer_mapping->private_lock);
615 }
616}
617EXPORT_SYMBOL(mark_buffer_dirty_inode);
618
787d2214
NP
619/*
620 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
621 * dirty.
622 *
623 * If warn is true, then emit a warning if the page is not uptodate and has
624 * not been truncated.
c4843a75 625 *
81f8c3a4 626 * The caller must hold lock_page_memcg().
787d2214 627 */
c4843a75 628static void __set_page_dirty(struct page *page, struct address_space *mapping,
62cccb8c 629 int warn)
787d2214 630{
227d53b3
KM
631 unsigned long flags;
632
633 spin_lock_irqsave(&mapping->tree_lock, flags);
787d2214
NP
634 if (page->mapping) { /* Race with truncate? */
635 WARN_ON_ONCE(warn && !PageUptodate(page));
62cccb8c 636 account_page_dirtied(page, mapping);
787d2214
NP
637 radix_tree_tag_set(&mapping->page_tree,
638 page_index(page), PAGECACHE_TAG_DIRTY);
639 }
227d53b3 640 spin_unlock_irqrestore(&mapping->tree_lock, flags);
787d2214
NP
641}
642
1da177e4
LT
643/*
644 * Add a page to the dirty page list.
645 *
646 * It is a sad fact of life that this function is called from several places
647 * deeply under spinlocking. It may not sleep.
648 *
649 * If the page has buffers, the uptodate buffers are set dirty, to preserve
650 * dirty-state coherency between the page and the buffers. It the page does
651 * not have buffers then when they are later attached they will all be set
652 * dirty.
653 *
654 * The buffers are dirtied before the page is dirtied. There's a small race
655 * window in which a writepage caller may see the page cleanness but not the
656 * buffer dirtiness. That's fine. If this code were to set the page dirty
657 * before the buffers, a concurrent writepage caller could clear the page dirty
658 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
659 * page on the dirty page list.
660 *
661 * We use private_lock to lock against try_to_free_buffers while using the
662 * page's buffer list. Also use this to protect against clean buffers being
663 * added to the page after it was set dirty.
664 *
665 * FIXME: may need to call ->reservepage here as well. That's rather up to the
666 * address_space though.
667 */
668int __set_page_dirty_buffers(struct page *page)
669{
a8e7d49a 670 int newly_dirty;
787d2214 671 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
672
673 if (unlikely(!mapping))
674 return !TestSetPageDirty(page);
1da177e4
LT
675
676 spin_lock(&mapping->private_lock);
677 if (page_has_buffers(page)) {
678 struct buffer_head *head = page_buffers(page);
679 struct buffer_head *bh = head;
680
681 do {
682 set_buffer_dirty(bh);
683 bh = bh->b_this_page;
684 } while (bh != head);
685 }
c4843a75 686 /*
81f8c3a4
JW
687 * Lock out page->mem_cgroup migration to keep PageDirty
688 * synchronized with per-memcg dirty page counters.
c4843a75 689 */
62cccb8c 690 lock_page_memcg(page);
a8e7d49a 691 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
692 spin_unlock(&mapping->private_lock);
693
a8e7d49a 694 if (newly_dirty)
62cccb8c 695 __set_page_dirty(page, mapping, 1);
c4843a75 696
62cccb8c 697 unlock_page_memcg(page);
c4843a75
GT
698
699 if (newly_dirty)
700 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
701
a8e7d49a 702 return newly_dirty;
1da177e4
LT
703}
704EXPORT_SYMBOL(__set_page_dirty_buffers);
705
706/*
707 * Write out and wait upon a list of buffers.
708 *
709 * We have conflicting pressures: we want to make sure that all
710 * initially dirty buffers get waited on, but that any subsequently
711 * dirtied buffers don't. After all, we don't want fsync to last
712 * forever if somebody is actively writing to the file.
713 *
714 * Do this in two main stages: first we copy dirty buffers to a
715 * temporary inode list, queueing the writes as we go. Then we clean
716 * up, waiting for those writes to complete.
717 *
718 * During this second stage, any subsequent updates to the file may end
719 * up refiling the buffer on the original inode's dirty list again, so
720 * there is a chance we will end up with a buffer queued for write but
721 * not yet completed on that list. So, as a final cleanup we go through
722 * the osync code to catch these locked, dirty buffers without requeuing
723 * any newly dirty buffers for write.
724 */
725static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
726{
727 struct buffer_head *bh;
728 struct list_head tmp;
7eaceacc 729 struct address_space *mapping;
1da177e4 730 int err = 0, err2;
4ee2491e 731 struct blk_plug plug;
1da177e4
LT
732
733 INIT_LIST_HEAD(&tmp);
4ee2491e 734 blk_start_plug(&plug);
1da177e4
LT
735
736 spin_lock(lock);
737 while (!list_empty(list)) {
738 bh = BH_ENTRY(list->next);
535ee2fb 739 mapping = bh->b_assoc_map;
58ff407b 740 __remove_assoc_queue(bh);
535ee2fb
JK
741 /* Avoid race with mark_buffer_dirty_inode() which does
742 * a lockless check and we rely on seeing the dirty bit */
743 smp_mb();
1da177e4
LT
744 if (buffer_dirty(bh) || buffer_locked(bh)) {
745 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 746 bh->b_assoc_map = mapping;
1da177e4
LT
747 if (buffer_dirty(bh)) {
748 get_bh(bh);
749 spin_unlock(lock);
750 /*
751 * Ensure any pending I/O completes so that
9cb569d6
CH
752 * write_dirty_buffer() actually writes the
753 * current contents - it is a noop if I/O is
754 * still in flight on potentially older
755 * contents.
1da177e4 756 */
70fd7614 757 write_dirty_buffer(bh, REQ_SYNC);
9cf6b720
JA
758
759 /*
760 * Kick off IO for the previous mapping. Note
761 * that we will not run the very last mapping,
762 * wait_on_buffer() will do that for us
763 * through sync_buffer().
764 */
1da177e4
LT
765 brelse(bh);
766 spin_lock(lock);
767 }
768 }
769 }
770
4ee2491e
JA
771 spin_unlock(lock);
772 blk_finish_plug(&plug);
773 spin_lock(lock);
774
1da177e4
LT
775 while (!list_empty(&tmp)) {
776 bh = BH_ENTRY(tmp.prev);
1da177e4 777 get_bh(bh);
535ee2fb
JK
778 mapping = bh->b_assoc_map;
779 __remove_assoc_queue(bh);
780 /* Avoid race with mark_buffer_dirty_inode() which does
781 * a lockless check and we rely on seeing the dirty bit */
782 smp_mb();
783 if (buffer_dirty(bh)) {
784 list_add(&bh->b_assoc_buffers,
e3892296 785 &mapping->private_list);
535ee2fb
JK
786 bh->b_assoc_map = mapping;
787 }
1da177e4
LT
788 spin_unlock(lock);
789 wait_on_buffer(bh);
790 if (!buffer_uptodate(bh))
791 err = -EIO;
792 brelse(bh);
793 spin_lock(lock);
794 }
795
796 spin_unlock(lock);
797 err2 = osync_buffers_list(lock, list);
798 if (err)
799 return err;
800 else
801 return err2;
802}
803
804/*
805 * Invalidate any and all dirty buffers on a given inode. We are
806 * probably unmounting the fs, but that doesn't mean we have already
807 * done a sync(). Just drop the buffers from the inode list.
808 *
809 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
810 * assumes that all the buffers are against the blockdev. Not true
811 * for reiserfs.
812 */
813void invalidate_inode_buffers(struct inode *inode)
814{
815 if (inode_has_buffers(inode)) {
816 struct address_space *mapping = &inode->i_data;
817 struct list_head *list = &mapping->private_list;
252aa6f5 818 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
819
820 spin_lock(&buffer_mapping->private_lock);
821 while (!list_empty(list))
822 __remove_assoc_queue(BH_ENTRY(list->next));
823 spin_unlock(&buffer_mapping->private_lock);
824 }
825}
52b19ac9 826EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
827
828/*
829 * Remove any clean buffers from the inode's buffer list. This is called
830 * when we're trying to free the inode itself. Those buffers can pin it.
831 *
832 * Returns true if all buffers were removed.
833 */
834int remove_inode_buffers(struct inode *inode)
835{
836 int ret = 1;
837
838 if (inode_has_buffers(inode)) {
839 struct address_space *mapping = &inode->i_data;
840 struct list_head *list = &mapping->private_list;
252aa6f5 841 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
842
843 spin_lock(&buffer_mapping->private_lock);
844 while (!list_empty(list)) {
845 struct buffer_head *bh = BH_ENTRY(list->next);
846 if (buffer_dirty(bh)) {
847 ret = 0;
848 break;
849 }
850 __remove_assoc_queue(bh);
851 }
852 spin_unlock(&buffer_mapping->private_lock);
853 }
854 return ret;
855}
856
857/*
858 * Create the appropriate buffers when given a page for data area and
859 * the size of each buffer.. Use the bh->b_this_page linked list to
860 * follow the buffers created. Return NULL if unable to create more
861 * buffers.
862 *
863 * The retry flag is used to differentiate async IO (paging, swapping)
864 * which may not fail from ordinary buffer allocations.
865 */
866struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
867 int retry)
868{
869 struct buffer_head *bh, *head;
870 long offset;
871
872try_again:
873 head = NULL;
874 offset = PAGE_SIZE;
875 while ((offset -= size) >= 0) {
876 bh = alloc_buffer_head(GFP_NOFS);
877 if (!bh)
878 goto no_grow;
879
1da177e4
LT
880 bh->b_this_page = head;
881 bh->b_blocknr = -1;
882 head = bh;
883
1da177e4
LT
884 bh->b_size = size;
885
886 /* Link the buffer to its page */
887 set_bh_page(bh, page, offset);
1da177e4
LT
888 }
889 return head;
890/*
891 * In case anything failed, we just free everything we got.
892 */
893no_grow:
894 if (head) {
895 do {
896 bh = head;
897 head = head->b_this_page;
898 free_buffer_head(bh);
899 } while (head);
900 }
901
902 /*
903 * Return failure for non-async IO requests. Async IO requests
904 * are not allowed to fail, so we have to wait until buffer heads
905 * become available. But we don't want tasks sleeping with
906 * partially complete buffers, so all were released above.
907 */
908 if (!retry)
909 return NULL;
910
911 /* We're _really_ low on memory. Now we just
912 * wait for old buffer heads to become free due to
913 * finishing IO. Since this is an async request and
914 * the reserve list is empty, we're sure there are
915 * async buffer heads in use.
916 */
917 free_more_memory();
918 goto try_again;
919}
920EXPORT_SYMBOL_GPL(alloc_page_buffers);
921
922static inline void
923link_dev_buffers(struct page *page, struct buffer_head *head)
924{
925 struct buffer_head *bh, *tail;
926
927 bh = head;
928 do {
929 tail = bh;
930 bh = bh->b_this_page;
931 } while (bh);
932 tail->b_this_page = head;
933 attach_page_buffers(page, head);
934}
935
bbec0270
LT
936static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
937{
938 sector_t retval = ~((sector_t)0);
939 loff_t sz = i_size_read(bdev->bd_inode);
940
941 if (sz) {
942 unsigned int sizebits = blksize_bits(size);
943 retval = (sz >> sizebits);
944 }
945 return retval;
946}
947
1da177e4
LT
948/*
949 * Initialise the state of a blockdev page's buffers.
950 */
676ce6d5 951static sector_t
1da177e4
LT
952init_page_buffers(struct page *page, struct block_device *bdev,
953 sector_t block, int size)
954{
955 struct buffer_head *head = page_buffers(page);
956 struct buffer_head *bh = head;
957 int uptodate = PageUptodate(page);
bbec0270 958 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
1da177e4
LT
959
960 do {
961 if (!buffer_mapped(bh)) {
962 init_buffer(bh, NULL, NULL);
963 bh->b_bdev = bdev;
964 bh->b_blocknr = block;
965 if (uptodate)
966 set_buffer_uptodate(bh);
080399aa
JM
967 if (block < end_block)
968 set_buffer_mapped(bh);
1da177e4
LT
969 }
970 block++;
971 bh = bh->b_this_page;
972 } while (bh != head);
676ce6d5
HD
973
974 /*
975 * Caller needs to validate requested block against end of device.
976 */
977 return end_block;
1da177e4
LT
978}
979
980/*
981 * Create the page-cache page that contains the requested block.
982 *
676ce6d5 983 * This is used purely for blockdev mappings.
1da177e4 984 */
676ce6d5 985static int
1da177e4 986grow_dev_page(struct block_device *bdev, sector_t block,
3b5e6454 987 pgoff_t index, int size, int sizebits, gfp_t gfp)
1da177e4
LT
988{
989 struct inode *inode = bdev->bd_inode;
990 struct page *page;
991 struct buffer_head *bh;
676ce6d5
HD
992 sector_t end_block;
993 int ret = 0; /* Will call free_more_memory() */
84235de3 994 gfp_t gfp_mask;
1da177e4 995
c62d2555 996 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
3b5e6454 997
84235de3
JW
998 /*
999 * XXX: __getblk_slow() can not really deal with failure and
1000 * will endlessly loop on improvised global reclaim. Prefer
1001 * looping in the allocator rather than here, at least that
1002 * code knows what it's doing.
1003 */
1004 gfp_mask |= __GFP_NOFAIL;
1005
1006 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1da177e4 1007 if (!page)
676ce6d5 1008 return ret;
1da177e4 1009
e827f923 1010 BUG_ON(!PageLocked(page));
1da177e4
LT
1011
1012 if (page_has_buffers(page)) {
1013 bh = page_buffers(page);
1014 if (bh->b_size == size) {
676ce6d5 1015 end_block = init_page_buffers(page, bdev,
f2d5a944
AA
1016 (sector_t)index << sizebits,
1017 size);
676ce6d5 1018 goto done;
1da177e4
LT
1019 }
1020 if (!try_to_free_buffers(page))
1021 goto failed;
1022 }
1023
1024 /*
1025 * Allocate some buffers for this page
1026 */
1027 bh = alloc_page_buffers(page, size, 0);
1028 if (!bh)
1029 goto failed;
1030
1031 /*
1032 * Link the page to the buffers and initialise them. Take the
1033 * lock to be atomic wrt __find_get_block(), which does not
1034 * run under the page lock.
1035 */
1036 spin_lock(&inode->i_mapping->private_lock);
1037 link_dev_buffers(page, bh);
f2d5a944
AA
1038 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1039 size);
1da177e4 1040 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
1041done:
1042 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 1043failed:
1da177e4 1044 unlock_page(page);
09cbfeaf 1045 put_page(page);
676ce6d5 1046 return ret;
1da177e4
LT
1047}
1048
1049/*
1050 * Create buffers for the specified block device block's page. If
1051 * that page was dirty, the buffers are set dirty also.
1da177e4 1052 */
858119e1 1053static int
3b5e6454 1054grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1da177e4 1055{
1da177e4
LT
1056 pgoff_t index;
1057 int sizebits;
1058
1059 sizebits = -1;
1060 do {
1061 sizebits++;
1062 } while ((size << sizebits) < PAGE_SIZE);
1063
1064 index = block >> sizebits;
1da177e4 1065
e5657933
AM
1066 /*
1067 * Check for a block which wants to lie outside our maximum possible
1068 * pagecache index. (this comparison is done using sector_t types).
1069 */
1070 if (unlikely(index != block >> sizebits)) {
e5657933 1071 printk(KERN_ERR "%s: requested out-of-range block %llu for "
a1c6f057 1072 "device %pg\n",
8e24eea7 1073 __func__, (unsigned long long)block,
a1c6f057 1074 bdev);
e5657933
AM
1075 return -EIO;
1076 }
676ce6d5 1077
1da177e4 1078 /* Create a page with the proper size buffers.. */
3b5e6454 1079 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1da177e4
LT
1080}
1081
0026ba40 1082static struct buffer_head *
3b5e6454
GK
1083__getblk_slow(struct block_device *bdev, sector_t block,
1084 unsigned size, gfp_t gfp)
1da177e4
LT
1085{
1086 /* Size must be multiple of hard sectorsize */
e1defc4f 1087 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1088 (size < 512 || size > PAGE_SIZE))) {
1089 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090 size);
e1defc4f
MP
1091 printk(KERN_ERR "logical block size: %d\n",
1092 bdev_logical_block_size(bdev));
1da177e4
LT
1093
1094 dump_stack();
1095 return NULL;
1096 }
1097
676ce6d5
HD
1098 for (;;) {
1099 struct buffer_head *bh;
1100 int ret;
1da177e4
LT
1101
1102 bh = __find_get_block(bdev, block, size);
1103 if (bh)
1104 return bh;
676ce6d5 1105
3b5e6454 1106 ret = grow_buffers(bdev, block, size, gfp);
676ce6d5
HD
1107 if (ret < 0)
1108 return NULL;
1109 if (ret == 0)
1110 free_more_memory();
1da177e4
LT
1111 }
1112}
1113
1114/*
1115 * The relationship between dirty buffers and dirty pages:
1116 *
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1119 *
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page. If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1123 *
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1126 *
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1128 * buffers are not.
1129 *
1130 * Also. When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate. But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate. A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1135 */
1136
1137/**
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1139 * @bh: the buffer_head to mark dirty
1da177e4
LT
1140 *
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1144 * inode list.
1145 *
1146 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
250df6ed 1147 * mapping->tree_lock and mapping->host->i_lock.
1da177e4 1148 */
fc9b52cd 1149void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1150{
787d2214 1151 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1152
5305cb83
TH
1153 trace_block_dirty_buffer(bh);
1154
1be62dc1
LT
1155 /*
1156 * Very *carefully* optimize the it-is-already-dirty case.
1157 *
1158 * Don't let the final "is it dirty" escape to before we
1159 * perhaps modified the buffer.
1160 */
1161 if (buffer_dirty(bh)) {
1162 smp_mb();
1163 if (buffer_dirty(bh))
1164 return;
1165 }
1166
a8e7d49a
LT
1167 if (!test_set_buffer_dirty(bh)) {
1168 struct page *page = bh->b_page;
c4843a75 1169 struct address_space *mapping = NULL;
c4843a75 1170
62cccb8c 1171 lock_page_memcg(page);
8e9d78ed 1172 if (!TestSetPageDirty(page)) {
c4843a75 1173 mapping = page_mapping(page);
8e9d78ed 1174 if (mapping)
62cccb8c 1175 __set_page_dirty(page, mapping, 0);
8e9d78ed 1176 }
62cccb8c 1177 unlock_page_memcg(page);
c4843a75
GT
1178 if (mapping)
1179 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
a8e7d49a 1180 }
1da177e4 1181}
1fe72eaa 1182EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4
LT
1183
1184/*
1185 * Decrement a buffer_head's reference count. If all buffers against a page
1186 * have zero reference count, are clean and unlocked, and if the page is clean
1187 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189 * a page but it ends up not being freed, and buffers may later be reattached).
1190 */
1191void __brelse(struct buffer_head * buf)
1192{
1193 if (atomic_read(&buf->b_count)) {
1194 put_bh(buf);
1195 return;
1196 }
5c752ad9 1197 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1198}
1fe72eaa 1199EXPORT_SYMBOL(__brelse);
1da177e4
LT
1200
1201/*
1202 * bforget() is like brelse(), except it discards any
1203 * potentially dirty data.
1204 */
1205void __bforget(struct buffer_head *bh)
1206{
1207 clear_buffer_dirty(bh);
535ee2fb 1208 if (bh->b_assoc_map) {
1da177e4
LT
1209 struct address_space *buffer_mapping = bh->b_page->mapping;
1210
1211 spin_lock(&buffer_mapping->private_lock);
1212 list_del_init(&bh->b_assoc_buffers);
58ff407b 1213 bh->b_assoc_map = NULL;
1da177e4
LT
1214 spin_unlock(&buffer_mapping->private_lock);
1215 }
1216 __brelse(bh);
1217}
1fe72eaa 1218EXPORT_SYMBOL(__bforget);
1da177e4
LT
1219
1220static struct buffer_head *__bread_slow(struct buffer_head *bh)
1221{
1222 lock_buffer(bh);
1223 if (buffer_uptodate(bh)) {
1224 unlock_buffer(bh);
1225 return bh;
1226 } else {
1227 get_bh(bh);
1228 bh->b_end_io = end_buffer_read_sync;
2a222ca9 1229 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
1230 wait_on_buffer(bh);
1231 if (buffer_uptodate(bh))
1232 return bh;
1233 }
1234 brelse(bh);
1235 return NULL;
1236}
1237
1238/*
1239 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1240 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1241 * refcount elevated by one when they're in an LRU. A buffer can only appear
1242 * once in a particular CPU's LRU. A single buffer can be present in multiple
1243 * CPU's LRUs at the same time.
1244 *
1245 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246 * sb_find_get_block().
1247 *
1248 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1249 * a local interrupt disable for that.
1250 */
1251
86cf78d7 1252#define BH_LRU_SIZE 16
1da177e4
LT
1253
1254struct bh_lru {
1255 struct buffer_head *bhs[BH_LRU_SIZE];
1256};
1257
1258static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1259
1260#ifdef CONFIG_SMP
1261#define bh_lru_lock() local_irq_disable()
1262#define bh_lru_unlock() local_irq_enable()
1263#else
1264#define bh_lru_lock() preempt_disable()
1265#define bh_lru_unlock() preempt_enable()
1266#endif
1267
1268static inline void check_irqs_on(void)
1269{
1270#ifdef irqs_disabled
1271 BUG_ON(irqs_disabled());
1272#endif
1273}
1274
1275/*
1276 * The LRU management algorithm is dopey-but-simple. Sorry.
1277 */
1278static void bh_lru_install(struct buffer_head *bh)
1279{
1280 struct buffer_head *evictee = NULL;
1da177e4
LT
1281
1282 check_irqs_on();
1283 bh_lru_lock();
c7b92516 1284 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1da177e4
LT
1285 struct buffer_head *bhs[BH_LRU_SIZE];
1286 int in;
1287 int out = 0;
1288
1289 get_bh(bh);
1290 bhs[out++] = bh;
1291 for (in = 0; in < BH_LRU_SIZE; in++) {
c7b92516
CL
1292 struct buffer_head *bh2 =
1293 __this_cpu_read(bh_lrus.bhs[in]);
1da177e4
LT
1294
1295 if (bh2 == bh) {
1296 __brelse(bh2);
1297 } else {
1298 if (out >= BH_LRU_SIZE) {
1299 BUG_ON(evictee != NULL);
1300 evictee = bh2;
1301 } else {
1302 bhs[out++] = bh2;
1303 }
1304 }
1305 }
1306 while (out < BH_LRU_SIZE)
1307 bhs[out++] = NULL;
ca6673b0 1308 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1da177e4
LT
1309 }
1310 bh_lru_unlock();
1311
1312 if (evictee)
1313 __brelse(evictee);
1314}
1315
1316/*
1317 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1318 */
858119e1 1319static struct buffer_head *
3991d3bd 1320lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1321{
1322 struct buffer_head *ret = NULL;
3991d3bd 1323 unsigned int i;
1da177e4
LT
1324
1325 check_irqs_on();
1326 bh_lru_lock();
1da177e4 1327 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1328 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4 1329
9470dd5d
ZB
1330 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1331 bh->b_size == size) {
1da177e4
LT
1332 if (i) {
1333 while (i) {
c7b92516
CL
1334 __this_cpu_write(bh_lrus.bhs[i],
1335 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1336 i--;
1337 }
c7b92516 1338 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1339 }
1340 get_bh(bh);
1341 ret = bh;
1342 break;
1343 }
1344 }
1345 bh_lru_unlock();
1346 return ret;
1347}
1348
1349/*
1350 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1351 * it in the LRU and mark it as accessed. If it is not present then return
1352 * NULL
1353 */
1354struct buffer_head *
3991d3bd 1355__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1356{
1357 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1358
1359 if (bh == NULL) {
2457aec6 1360 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1361 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1362 if (bh)
1363 bh_lru_install(bh);
2457aec6 1364 } else
1da177e4 1365 touch_buffer(bh);
2457aec6 1366
1da177e4
LT
1367 return bh;
1368}
1369EXPORT_SYMBOL(__find_get_block);
1370
1371/*
3b5e6454 1372 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1da177e4
LT
1373 * which corresponds to the passed block_device, block and size. The
1374 * returned buffer has its reference count incremented.
1375 *
3b5e6454
GK
1376 * __getblk_gfp() will lock up the machine if grow_dev_page's
1377 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1da177e4
LT
1378 */
1379struct buffer_head *
3b5e6454
GK
1380__getblk_gfp(struct block_device *bdev, sector_t block,
1381 unsigned size, gfp_t gfp)
1da177e4
LT
1382{
1383 struct buffer_head *bh = __find_get_block(bdev, block, size);
1384
1385 might_sleep();
1386 if (bh == NULL)
3b5e6454 1387 bh = __getblk_slow(bdev, block, size, gfp);
1da177e4
LT
1388 return bh;
1389}
3b5e6454 1390EXPORT_SYMBOL(__getblk_gfp);
1da177e4
LT
1391
1392/*
1393 * Do async read-ahead on a buffer..
1394 */
3991d3bd 1395void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1396{
1397 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5 1398 if (likely(bh)) {
70246286 1399 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
a3e713b5
AM
1400 brelse(bh);
1401 }
1da177e4
LT
1402}
1403EXPORT_SYMBOL(__breadahead);
1404
1405/**
3b5e6454 1406 * __bread_gfp() - reads a specified block and returns the bh
67be2dd1 1407 * @bdev: the block_device to read from
1da177e4
LT
1408 * @block: number of block
1409 * @size: size (in bytes) to read
3b5e6454
GK
1410 * @gfp: page allocation flag
1411 *
1da177e4 1412 * Reads a specified block, and returns buffer head that contains it.
3b5e6454
GK
1413 * The page cache can be allocated from non-movable area
1414 * not to prevent page migration if you set gfp to zero.
1da177e4
LT
1415 * It returns NULL if the block was unreadable.
1416 */
1417struct buffer_head *
3b5e6454
GK
1418__bread_gfp(struct block_device *bdev, sector_t block,
1419 unsigned size, gfp_t gfp)
1da177e4 1420{
3b5e6454 1421 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1da177e4 1422
a3e713b5 1423 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1424 bh = __bread_slow(bh);
1425 return bh;
1426}
3b5e6454 1427EXPORT_SYMBOL(__bread_gfp);
1da177e4
LT
1428
1429/*
1430 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431 * This doesn't race because it runs in each cpu either in irq
1432 * or with preempt disabled.
1433 */
1434static void invalidate_bh_lru(void *arg)
1435{
1436 struct bh_lru *b = &get_cpu_var(bh_lrus);
1437 int i;
1438
1439 for (i = 0; i < BH_LRU_SIZE; i++) {
1440 brelse(b->bhs[i]);
1441 b->bhs[i] = NULL;
1442 }
1443 put_cpu_var(bh_lrus);
1444}
42be35d0
GBY
1445
1446static bool has_bh_in_lru(int cpu, void *dummy)
1447{
1448 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1449 int i;
1da177e4 1450
42be35d0
GBY
1451 for (i = 0; i < BH_LRU_SIZE; i++) {
1452 if (b->bhs[i])
1453 return 1;
1454 }
1455
1456 return 0;
1457}
1458
f9a14399 1459void invalidate_bh_lrus(void)
1da177e4 1460{
42be35d0 1461 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1da177e4 1462}
9db5579b 1463EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1464
1465void set_bh_page(struct buffer_head *bh,
1466 struct page *page, unsigned long offset)
1467{
1468 bh->b_page = page;
e827f923 1469 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1470 if (PageHighMem(page))
1471 /*
1472 * This catches illegal uses and preserves the offset:
1473 */
1474 bh->b_data = (char *)(0 + offset);
1475 else
1476 bh->b_data = page_address(page) + offset;
1477}
1478EXPORT_SYMBOL(set_bh_page);
1479
1480/*
1481 * Called when truncating a buffer on a page completely.
1482 */
e7470ee8
MG
1483
1484/* Bits that are cleared during an invalidate */
1485#define BUFFER_FLAGS_DISCARD \
1486 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1487 1 << BH_Delay | 1 << BH_Unwritten)
1488
858119e1 1489static void discard_buffer(struct buffer_head * bh)
1da177e4 1490{
e7470ee8
MG
1491 unsigned long b_state, b_state_old;
1492
1da177e4
LT
1493 lock_buffer(bh);
1494 clear_buffer_dirty(bh);
1495 bh->b_bdev = NULL;
e7470ee8
MG
1496 b_state = bh->b_state;
1497 for (;;) {
1498 b_state_old = cmpxchg(&bh->b_state, b_state,
1499 (b_state & ~BUFFER_FLAGS_DISCARD));
1500 if (b_state_old == b_state)
1501 break;
1502 b_state = b_state_old;
1503 }
1da177e4
LT
1504 unlock_buffer(bh);
1505}
1506
1da177e4 1507/**
814e1d25 1508 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1509 *
1510 * @page: the page which is affected
d47992f8
LC
1511 * @offset: start of the range to invalidate
1512 * @length: length of the range to invalidate
1da177e4
LT
1513 *
1514 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1515 * invalidated by a truncate operation.
1da177e4
LT
1516 *
1517 * block_invalidatepage() does not have to release all buffers, but it must
1518 * ensure that no dirty buffer is left outside @offset and that no I/O
1519 * is underway against any of the blocks which are outside the truncation
1520 * point. Because the caller is about to free (and possibly reuse) those
1521 * blocks on-disk.
1522 */
d47992f8
LC
1523void block_invalidatepage(struct page *page, unsigned int offset,
1524 unsigned int length)
1da177e4
LT
1525{
1526 struct buffer_head *head, *bh, *next;
1527 unsigned int curr_off = 0;
d47992f8 1528 unsigned int stop = length + offset;
1da177e4
LT
1529
1530 BUG_ON(!PageLocked(page));
1531 if (!page_has_buffers(page))
1532 goto out;
1533
d47992f8
LC
1534 /*
1535 * Check for overflow
1536 */
09cbfeaf 1537 BUG_ON(stop > PAGE_SIZE || stop < length);
d47992f8 1538
1da177e4
LT
1539 head = page_buffers(page);
1540 bh = head;
1541 do {
1542 unsigned int next_off = curr_off + bh->b_size;
1543 next = bh->b_this_page;
1544
d47992f8
LC
1545 /*
1546 * Are we still fully in range ?
1547 */
1548 if (next_off > stop)
1549 goto out;
1550
1da177e4
LT
1551 /*
1552 * is this block fully invalidated?
1553 */
1554 if (offset <= curr_off)
1555 discard_buffer(bh);
1556 curr_off = next_off;
1557 bh = next;
1558 } while (bh != head);
1559
1560 /*
1561 * We release buffers only if the entire page is being invalidated.
1562 * The get_block cached value has been unconditionally invalidated,
1563 * so real IO is not possible anymore.
1564 */
1565 if (offset == 0)
2ff28e22 1566 try_to_release_page(page, 0);
1da177e4 1567out:
2ff28e22 1568 return;
1da177e4
LT
1569}
1570EXPORT_SYMBOL(block_invalidatepage);
1571
d47992f8 1572
1da177e4
LT
1573/*
1574 * We attach and possibly dirty the buffers atomically wrt
1575 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1576 * is already excluded via the page lock.
1577 */
1578void create_empty_buffers(struct page *page,
1579 unsigned long blocksize, unsigned long b_state)
1580{
1581 struct buffer_head *bh, *head, *tail;
1582
1583 head = alloc_page_buffers(page, blocksize, 1);
1584 bh = head;
1585 do {
1586 bh->b_state |= b_state;
1587 tail = bh;
1588 bh = bh->b_this_page;
1589 } while (bh);
1590 tail->b_this_page = head;
1591
1592 spin_lock(&page->mapping->private_lock);
1593 if (PageUptodate(page) || PageDirty(page)) {
1594 bh = head;
1595 do {
1596 if (PageDirty(page))
1597 set_buffer_dirty(bh);
1598 if (PageUptodate(page))
1599 set_buffer_uptodate(bh);
1600 bh = bh->b_this_page;
1601 } while (bh != head);
1602 }
1603 attach_page_buffers(page, head);
1604 spin_unlock(&page->mapping->private_lock);
1605}
1606EXPORT_SYMBOL(create_empty_buffers);
1607
29f3ad7d
JK
1608/**
1609 * clean_bdev_aliases: clean a range of buffers in block device
1610 * @bdev: Block device to clean buffers in
1611 * @block: Start of a range of blocks to clean
1612 * @len: Number of blocks to clean
1da177e4 1613 *
29f3ad7d
JK
1614 * We are taking a range of blocks for data and we don't want writeback of any
1615 * buffer-cache aliases starting from return from this function and until the
1616 * moment when something will explicitly mark the buffer dirty (hopefully that
1617 * will not happen until we will free that block ;-) We don't even need to mark
1618 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1619 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1620 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1621 * would confuse anyone who might pick it with bread() afterwards...
1622 *
1623 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1624 * writeout I/O going on against recently-freed buffers. We don't wait on that
1625 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1626 * need to. That happens here.
1da177e4 1627 */
29f3ad7d 1628void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1da177e4 1629{
29f3ad7d
JK
1630 struct inode *bd_inode = bdev->bd_inode;
1631 struct address_space *bd_mapping = bd_inode->i_mapping;
1632 struct pagevec pvec;
1633 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1634 pgoff_t end;
1635 int i;
1636 struct buffer_head *bh;
1637 struct buffer_head *head;
1da177e4 1638
29f3ad7d
JK
1639 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1640 pagevec_init(&pvec, 0);
1641 while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1642 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1643 for (i = 0; i < pagevec_count(&pvec); i++) {
1644 struct page *page = pvec.pages[i];
1da177e4 1645
29f3ad7d
JK
1646 index = page->index;
1647 if (index > end)
1648 break;
1649 if (!page_has_buffers(page))
1650 continue;
1651 /*
1652 * We use page lock instead of bd_mapping->private_lock
1653 * to pin buffers here since we can afford to sleep and
1654 * it scales better than a global spinlock lock.
1655 */
1656 lock_page(page);
1657 /* Recheck when the page is locked which pins bhs */
1658 if (!page_has_buffers(page))
1659 goto unlock_page;
1660 head = page_buffers(page);
1661 bh = head;
1662 do {
6c006a9d 1663 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
29f3ad7d
JK
1664 goto next;
1665 if (bh->b_blocknr >= block + len)
1666 break;
1667 clear_buffer_dirty(bh);
1668 wait_on_buffer(bh);
1669 clear_buffer_req(bh);
1670next:
1671 bh = bh->b_this_page;
1672 } while (bh != head);
1673unlock_page:
1674 unlock_page(page);
1675 }
1676 pagevec_release(&pvec);
1677 cond_resched();
1678 index++;
1da177e4
LT
1679 }
1680}
29f3ad7d 1681EXPORT_SYMBOL(clean_bdev_aliases);
1da177e4 1682
45bce8f3
LT
1683/*
1684 * Size is a power-of-two in the range 512..PAGE_SIZE,
1685 * and the case we care about most is PAGE_SIZE.
1686 *
1687 * So this *could* possibly be written with those
1688 * constraints in mind (relevant mostly if some
1689 * architecture has a slow bit-scan instruction)
1690 */
1691static inline int block_size_bits(unsigned int blocksize)
1692{
1693 return ilog2(blocksize);
1694}
1695
1696static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1697{
1698 BUG_ON(!PageLocked(page));
1699
1700 if (!page_has_buffers(page))
1701 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1702 return page_buffers(page);
1703}
1704
1da177e4
LT
1705/*
1706 * NOTE! All mapped/uptodate combinations are valid:
1707 *
1708 * Mapped Uptodate Meaning
1709 *
1710 * No No "unknown" - must do get_block()
1711 * No Yes "hole" - zero-filled
1712 * Yes No "allocated" - allocated on disk, not read in
1713 * Yes Yes "valid" - allocated and up-to-date in memory.
1714 *
1715 * "Dirty" is valid only with the last case (mapped+uptodate).
1716 */
1717
1718/*
1719 * While block_write_full_page is writing back the dirty buffers under
1720 * the page lock, whoever dirtied the buffers may decide to clean them
1721 * again at any time. We handle that by only looking at the buffer
1722 * state inside lock_buffer().
1723 *
1724 * If block_write_full_page() is called for regular writeback
1725 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1726 * locked buffer. This only can happen if someone has written the buffer
1727 * directly, with submit_bh(). At the address_space level PageWriteback
1728 * prevents this contention from occurring.
6e34eedd
TT
1729 *
1730 * If block_write_full_page() is called with wbc->sync_mode ==
70fd7614 1731 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
721a9602 1732 * causes the writes to be flagged as synchronous writes.
1da177e4 1733 */
b4bba389 1734int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1735 get_block_t *get_block, struct writeback_control *wbc,
1736 bh_end_io_t *handler)
1da177e4
LT
1737{
1738 int err;
1739 sector_t block;
1740 sector_t last_block;
f0fbd5fc 1741 struct buffer_head *bh, *head;
45bce8f3 1742 unsigned int blocksize, bbits;
1da177e4 1743 int nr_underway = 0;
7637241e 1744 int write_flags = wbc_to_write_flags(wbc);
1da177e4 1745
45bce8f3 1746 head = create_page_buffers(page, inode,
1da177e4 1747 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1748
1749 /*
1750 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1751 * here, and the (potentially unmapped) buffers may become dirty at
1752 * any time. If a buffer becomes dirty here after we've inspected it
1753 * then we just miss that fact, and the page stays dirty.
1754 *
1755 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1756 * handle that here by just cleaning them.
1757 */
1758
1da177e4 1759 bh = head;
45bce8f3
LT
1760 blocksize = bh->b_size;
1761 bbits = block_size_bits(blocksize);
1762
09cbfeaf 1763 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 1764 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1765
1766 /*
1767 * Get all the dirty buffers mapped to disk addresses and
1768 * handle any aliases from the underlying blockdev's mapping.
1769 */
1770 do {
1771 if (block > last_block) {
1772 /*
1773 * mapped buffers outside i_size will occur, because
1774 * this page can be outside i_size when there is a
1775 * truncate in progress.
1776 */
1777 /*
1778 * The buffer was zeroed by block_write_full_page()
1779 */
1780 clear_buffer_dirty(bh);
1781 set_buffer_uptodate(bh);
29a814d2
AT
1782 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1783 buffer_dirty(bh)) {
b0cf2321 1784 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1785 err = get_block(inode, block, bh, 1);
1786 if (err)
1787 goto recover;
29a814d2 1788 clear_buffer_delay(bh);
1da177e4
LT
1789 if (buffer_new(bh)) {
1790 /* blockdev mappings never come here */
1791 clear_buffer_new(bh);
e64855c6 1792 clean_bdev_bh_alias(bh);
1da177e4
LT
1793 }
1794 }
1795 bh = bh->b_this_page;
1796 block++;
1797 } while (bh != head);
1798
1799 do {
1da177e4
LT
1800 if (!buffer_mapped(bh))
1801 continue;
1802 /*
1803 * If it's a fully non-blocking write attempt and we cannot
1804 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1805 * potentially cause a busy-wait loop from writeback threads
1806 * and kswapd activity, but those code paths have their own
1807 * higher-level throttling.
1da177e4 1808 */
1b430bee 1809 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1810 lock_buffer(bh);
ca5de404 1811 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1812 redirty_page_for_writepage(wbc, page);
1813 continue;
1814 }
1815 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1816 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1817 } else {
1818 unlock_buffer(bh);
1819 }
1820 } while ((bh = bh->b_this_page) != head);
1821
1822 /*
1823 * The page and its buffers are protected by PageWriteback(), so we can
1824 * drop the bh refcounts early.
1825 */
1826 BUG_ON(PageWriteback(page));
1827 set_page_writeback(page);
1da177e4
LT
1828
1829 do {
1830 struct buffer_head *next = bh->b_this_page;
1831 if (buffer_async_write(bh)) {
020c2833 1832 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, wbc);
1da177e4
LT
1833 nr_underway++;
1834 }
1da177e4
LT
1835 bh = next;
1836 } while (bh != head);
05937baa 1837 unlock_page(page);
1da177e4
LT
1838
1839 err = 0;
1840done:
1841 if (nr_underway == 0) {
1842 /*
1843 * The page was marked dirty, but the buffers were
1844 * clean. Someone wrote them back by hand with
1845 * ll_rw_block/submit_bh. A rare case.
1846 */
1da177e4 1847 end_page_writeback(page);
3d67f2d7 1848
1da177e4
LT
1849 /*
1850 * The page and buffer_heads can be released at any time from
1851 * here on.
1852 */
1da177e4
LT
1853 }
1854 return err;
1855
1856recover:
1857 /*
1858 * ENOSPC, or some other error. We may already have added some
1859 * blocks to the file, so we need to write these out to avoid
1860 * exposing stale data.
1861 * The page is currently locked and not marked for writeback
1862 */
1863 bh = head;
1864 /* Recovery: lock and submit the mapped buffers */
1865 do {
29a814d2
AT
1866 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1867 !buffer_delay(bh)) {
1da177e4 1868 lock_buffer(bh);
35c80d5f 1869 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1870 } else {
1871 /*
1872 * The buffer may have been set dirty during
1873 * attachment to a dirty page.
1874 */
1875 clear_buffer_dirty(bh);
1876 }
1877 } while ((bh = bh->b_this_page) != head);
1878 SetPageError(page);
1879 BUG_ON(PageWriteback(page));
7e4c3690 1880 mapping_set_error(page->mapping, err);
1da177e4 1881 set_page_writeback(page);
1da177e4
LT
1882 do {
1883 struct buffer_head *next = bh->b_this_page;
1884 if (buffer_async_write(bh)) {
1885 clear_buffer_dirty(bh);
020c2833 1886 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, wbc);
1da177e4
LT
1887 nr_underway++;
1888 }
1da177e4
LT
1889 bh = next;
1890 } while (bh != head);
ffda9d30 1891 unlock_page(page);
1da177e4
LT
1892 goto done;
1893}
b4bba389 1894EXPORT_SYMBOL(__block_write_full_page);
1da177e4 1895
afddba49
NP
1896/*
1897 * If a page has any new buffers, zero them out here, and mark them uptodate
1898 * and dirty so they'll be written out (in order to prevent uninitialised
1899 * block data from leaking). And clear the new bit.
1900 */
1901void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1902{
1903 unsigned int block_start, block_end;
1904 struct buffer_head *head, *bh;
1905
1906 BUG_ON(!PageLocked(page));
1907 if (!page_has_buffers(page))
1908 return;
1909
1910 bh = head = page_buffers(page);
1911 block_start = 0;
1912 do {
1913 block_end = block_start + bh->b_size;
1914
1915 if (buffer_new(bh)) {
1916 if (block_end > from && block_start < to) {
1917 if (!PageUptodate(page)) {
1918 unsigned start, size;
1919
1920 start = max(from, block_start);
1921 size = min(to, block_end) - start;
1922
eebd2aa3 1923 zero_user(page, start, size);
afddba49
NP
1924 set_buffer_uptodate(bh);
1925 }
1926
1927 clear_buffer_new(bh);
1928 mark_buffer_dirty(bh);
1929 }
1930 }
1931
1932 block_start = block_end;
1933 bh = bh->b_this_page;
1934 } while (bh != head);
1935}
1936EXPORT_SYMBOL(page_zero_new_buffers);
1937
ae259a9c
CH
1938static void
1939iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1940 struct iomap *iomap)
1941{
1942 loff_t offset = block << inode->i_blkbits;
1943
1944 bh->b_bdev = iomap->bdev;
1945
1946 /*
1947 * Block points to offset in file we need to map, iomap contains
1948 * the offset at which the map starts. If the map ends before the
1949 * current block, then do not map the buffer and let the caller
1950 * handle it.
1951 */
1952 BUG_ON(offset >= iomap->offset + iomap->length);
1953
1954 switch (iomap->type) {
1955 case IOMAP_HOLE:
1956 /*
1957 * If the buffer is not up to date or beyond the current EOF,
1958 * we need to mark it as new to ensure sub-block zeroing is
1959 * executed if necessary.
1960 */
1961 if (!buffer_uptodate(bh) ||
1962 (offset >= i_size_read(inode)))
1963 set_buffer_new(bh);
1964 break;
1965 case IOMAP_DELALLOC:
1966 if (!buffer_uptodate(bh) ||
1967 (offset >= i_size_read(inode)))
1968 set_buffer_new(bh);
1969 set_buffer_uptodate(bh);
1970 set_buffer_mapped(bh);
1971 set_buffer_delay(bh);
1972 break;
1973 case IOMAP_UNWRITTEN:
1974 /*
1975 * For unwritten regions, we always need to ensure that
1976 * sub-block writes cause the regions in the block we are not
1977 * writing to are zeroed. Set the buffer as new to ensure this.
1978 */
1979 set_buffer_new(bh);
1980 set_buffer_unwritten(bh);
1981 /* FALLTHRU */
1982 case IOMAP_MAPPED:
1983 if (offset >= i_size_read(inode))
1984 set_buffer_new(bh);
1985 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1986 ((offset - iomap->offset) >> inode->i_blkbits);
1987 set_buffer_mapped(bh);
1988 break;
1989 }
1990}
1991
1992int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1993 get_block_t *get_block, struct iomap *iomap)
1da177e4 1994{
09cbfeaf 1995 unsigned from = pos & (PAGE_SIZE - 1);
ebdec241 1996 unsigned to = from + len;
6e1db88d 1997 struct inode *inode = page->mapping->host;
1da177e4
LT
1998 unsigned block_start, block_end;
1999 sector_t block;
2000 int err = 0;
2001 unsigned blocksize, bbits;
2002 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2003
2004 BUG_ON(!PageLocked(page));
09cbfeaf
KS
2005 BUG_ON(from > PAGE_SIZE);
2006 BUG_ON(to > PAGE_SIZE);
1da177e4
LT
2007 BUG_ON(from > to);
2008
45bce8f3
LT
2009 head = create_page_buffers(page, inode, 0);
2010 blocksize = head->b_size;
2011 bbits = block_size_bits(blocksize);
1da177e4 2012
09cbfeaf 2013 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1da177e4
LT
2014
2015 for(bh = head, block_start = 0; bh != head || !block_start;
2016 block++, block_start=block_end, bh = bh->b_this_page) {
2017 block_end = block_start + blocksize;
2018 if (block_end <= from || block_start >= to) {
2019 if (PageUptodate(page)) {
2020 if (!buffer_uptodate(bh))
2021 set_buffer_uptodate(bh);
2022 }
2023 continue;
2024 }
2025 if (buffer_new(bh))
2026 clear_buffer_new(bh);
2027 if (!buffer_mapped(bh)) {
b0cf2321 2028 WARN_ON(bh->b_size != blocksize);
ae259a9c
CH
2029 if (get_block) {
2030 err = get_block(inode, block, bh, 1);
2031 if (err)
2032 break;
2033 } else {
2034 iomap_to_bh(inode, block, bh, iomap);
2035 }
2036
1da177e4 2037 if (buffer_new(bh)) {
e64855c6 2038 clean_bdev_bh_alias(bh);
1da177e4 2039 if (PageUptodate(page)) {
637aff46 2040 clear_buffer_new(bh);
1da177e4 2041 set_buffer_uptodate(bh);
637aff46 2042 mark_buffer_dirty(bh);
1da177e4
LT
2043 continue;
2044 }
eebd2aa3
CL
2045 if (block_end > to || block_start < from)
2046 zero_user_segments(page,
2047 to, block_end,
2048 block_start, from);
1da177e4
LT
2049 continue;
2050 }
2051 }
2052 if (PageUptodate(page)) {
2053 if (!buffer_uptodate(bh))
2054 set_buffer_uptodate(bh);
2055 continue;
2056 }
2057 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 2058 !buffer_unwritten(bh) &&
1da177e4 2059 (block_start < from || block_end > to)) {
dfec8a14 2060 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2061 *wait_bh++=bh;
2062 }
2063 }
2064 /*
2065 * If we issued read requests - let them complete.
2066 */
2067 while(wait_bh > wait) {
2068 wait_on_buffer(*--wait_bh);
2069 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 2070 err = -EIO;
1da177e4 2071 }
f9f07b6c 2072 if (unlikely(err))
afddba49 2073 page_zero_new_buffers(page, from, to);
1da177e4
LT
2074 return err;
2075}
ae259a9c
CH
2076
2077int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2078 get_block_t *get_block)
2079{
2080 return __block_write_begin_int(page, pos, len, get_block, NULL);
2081}
ebdec241 2082EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
2083
2084static int __block_commit_write(struct inode *inode, struct page *page,
2085 unsigned from, unsigned to)
2086{
2087 unsigned block_start, block_end;
2088 int partial = 0;
2089 unsigned blocksize;
2090 struct buffer_head *bh, *head;
2091
45bce8f3
LT
2092 bh = head = page_buffers(page);
2093 blocksize = bh->b_size;
1da177e4 2094
45bce8f3
LT
2095 block_start = 0;
2096 do {
1da177e4
LT
2097 block_end = block_start + blocksize;
2098 if (block_end <= from || block_start >= to) {
2099 if (!buffer_uptodate(bh))
2100 partial = 1;
2101 } else {
2102 set_buffer_uptodate(bh);
2103 mark_buffer_dirty(bh);
2104 }
afddba49 2105 clear_buffer_new(bh);
45bce8f3
LT
2106
2107 block_start = block_end;
2108 bh = bh->b_this_page;
2109 } while (bh != head);
1da177e4
LT
2110
2111 /*
2112 * If this is a partial write which happened to make all buffers
2113 * uptodate then we can optimize away a bogus readpage() for
2114 * the next read(). Here we 'discover' whether the page went
2115 * uptodate as a result of this (potentially partial) write.
2116 */
2117 if (!partial)
2118 SetPageUptodate(page);
2119 return 0;
2120}
2121
afddba49 2122/*
155130a4
CH
2123 * block_write_begin takes care of the basic task of block allocation and
2124 * bringing partial write blocks uptodate first.
2125 *
7bb46a67 2126 * The filesystem needs to handle block truncation upon failure.
afddba49 2127 */
155130a4
CH
2128int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2129 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 2130{
09cbfeaf 2131 pgoff_t index = pos >> PAGE_SHIFT;
afddba49 2132 struct page *page;
6e1db88d 2133 int status;
afddba49 2134
6e1db88d
CH
2135 page = grab_cache_page_write_begin(mapping, index, flags);
2136 if (!page)
2137 return -ENOMEM;
afddba49 2138
6e1db88d 2139 status = __block_write_begin(page, pos, len, get_block);
afddba49 2140 if (unlikely(status)) {
6e1db88d 2141 unlock_page(page);
09cbfeaf 2142 put_page(page);
6e1db88d 2143 page = NULL;
afddba49
NP
2144 }
2145
6e1db88d 2146 *pagep = page;
afddba49
NP
2147 return status;
2148}
2149EXPORT_SYMBOL(block_write_begin);
2150
2151int block_write_end(struct file *file, struct address_space *mapping,
2152 loff_t pos, unsigned len, unsigned copied,
2153 struct page *page, void *fsdata)
2154{
2155 struct inode *inode = mapping->host;
2156 unsigned start;
2157
09cbfeaf 2158 start = pos & (PAGE_SIZE - 1);
afddba49
NP
2159
2160 if (unlikely(copied < len)) {
2161 /*
2162 * The buffers that were written will now be uptodate, so we
2163 * don't have to worry about a readpage reading them and
2164 * overwriting a partial write. However if we have encountered
2165 * a short write and only partially written into a buffer, it
2166 * will not be marked uptodate, so a readpage might come in and
2167 * destroy our partial write.
2168 *
2169 * Do the simplest thing, and just treat any short write to a
2170 * non uptodate page as a zero-length write, and force the
2171 * caller to redo the whole thing.
2172 */
2173 if (!PageUptodate(page))
2174 copied = 0;
2175
2176 page_zero_new_buffers(page, start+copied, start+len);
2177 }
2178 flush_dcache_page(page);
2179
2180 /* This could be a short (even 0-length) commit */
2181 __block_commit_write(inode, page, start, start+copied);
2182
2183 return copied;
2184}
2185EXPORT_SYMBOL(block_write_end);
2186
2187int generic_write_end(struct file *file, struct address_space *mapping,
2188 loff_t pos, unsigned len, unsigned copied,
2189 struct page *page, void *fsdata)
2190{
2191 struct inode *inode = mapping->host;
90a80202 2192 loff_t old_size = inode->i_size;
c7d206b3 2193 int i_size_changed = 0;
afddba49
NP
2194
2195 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2196
2197 /*
2198 * No need to use i_size_read() here, the i_size
2199 * cannot change under us because we hold i_mutex.
2200 *
2201 * But it's important to update i_size while still holding page lock:
2202 * page writeout could otherwise come in and zero beyond i_size.
2203 */
2204 if (pos+copied > inode->i_size) {
2205 i_size_write(inode, pos+copied);
c7d206b3 2206 i_size_changed = 1;
afddba49
NP
2207 }
2208
2209 unlock_page(page);
09cbfeaf 2210 put_page(page);
afddba49 2211
90a80202
JK
2212 if (old_size < pos)
2213 pagecache_isize_extended(inode, old_size, pos);
c7d206b3
JK
2214 /*
2215 * Don't mark the inode dirty under page lock. First, it unnecessarily
2216 * makes the holding time of page lock longer. Second, it forces lock
2217 * ordering of page lock and transaction start for journaling
2218 * filesystems.
2219 */
2220 if (i_size_changed)
2221 mark_inode_dirty(inode);
2222
afddba49
NP
2223 return copied;
2224}
2225EXPORT_SYMBOL(generic_write_end);
2226
8ab22b9a
HH
2227/*
2228 * block_is_partially_uptodate checks whether buffers within a page are
2229 * uptodate or not.
2230 *
2231 * Returns true if all buffers which correspond to a file portion
2232 * we want to read are uptodate.
2233 */
c186afb4
AV
2234int block_is_partially_uptodate(struct page *page, unsigned long from,
2235 unsigned long count)
8ab22b9a 2236{
8ab22b9a
HH
2237 unsigned block_start, block_end, blocksize;
2238 unsigned to;
2239 struct buffer_head *bh, *head;
2240 int ret = 1;
2241
2242 if (!page_has_buffers(page))
2243 return 0;
2244
45bce8f3
LT
2245 head = page_buffers(page);
2246 blocksize = head->b_size;
09cbfeaf 2247 to = min_t(unsigned, PAGE_SIZE - from, count);
8ab22b9a 2248 to = from + to;
09cbfeaf 2249 if (from < blocksize && to > PAGE_SIZE - blocksize)
8ab22b9a
HH
2250 return 0;
2251
8ab22b9a
HH
2252 bh = head;
2253 block_start = 0;
2254 do {
2255 block_end = block_start + blocksize;
2256 if (block_end > from && block_start < to) {
2257 if (!buffer_uptodate(bh)) {
2258 ret = 0;
2259 break;
2260 }
2261 if (block_end >= to)
2262 break;
2263 }
2264 block_start = block_end;
2265 bh = bh->b_this_page;
2266 } while (bh != head);
2267
2268 return ret;
2269}
2270EXPORT_SYMBOL(block_is_partially_uptodate);
2271
1da177e4
LT
2272/*
2273 * Generic "read page" function for block devices that have the normal
2274 * get_block functionality. This is most of the block device filesystems.
2275 * Reads the page asynchronously --- the unlock_buffer() and
2276 * set/clear_buffer_uptodate() functions propagate buffer state into the
2277 * page struct once IO has completed.
2278 */
2279int block_read_full_page(struct page *page, get_block_t *get_block)
2280{
2281 struct inode *inode = page->mapping->host;
2282 sector_t iblock, lblock;
2283 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2284 unsigned int blocksize, bbits;
1da177e4
LT
2285 int nr, i;
2286 int fully_mapped = 1;
2287
45bce8f3
LT
2288 head = create_page_buffers(page, inode, 0);
2289 blocksize = head->b_size;
2290 bbits = block_size_bits(blocksize);
1da177e4 2291
09cbfeaf 2292 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 2293 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2294 bh = head;
2295 nr = 0;
2296 i = 0;
2297
2298 do {
2299 if (buffer_uptodate(bh))
2300 continue;
2301
2302 if (!buffer_mapped(bh)) {
c64610ba
AM
2303 int err = 0;
2304
1da177e4
LT
2305 fully_mapped = 0;
2306 if (iblock < lblock) {
b0cf2321 2307 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2308 err = get_block(inode, iblock, bh, 0);
2309 if (err)
1da177e4
LT
2310 SetPageError(page);
2311 }
2312 if (!buffer_mapped(bh)) {
eebd2aa3 2313 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2314 if (!err)
2315 set_buffer_uptodate(bh);
1da177e4
LT
2316 continue;
2317 }
2318 /*
2319 * get_block() might have updated the buffer
2320 * synchronously
2321 */
2322 if (buffer_uptodate(bh))
2323 continue;
2324 }
2325 arr[nr++] = bh;
2326 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2327
2328 if (fully_mapped)
2329 SetPageMappedToDisk(page);
2330
2331 if (!nr) {
2332 /*
2333 * All buffers are uptodate - we can set the page uptodate
2334 * as well. But not if get_block() returned an error.
2335 */
2336 if (!PageError(page))
2337 SetPageUptodate(page);
2338 unlock_page(page);
2339 return 0;
2340 }
2341
2342 /* Stage two: lock the buffers */
2343 for (i = 0; i < nr; i++) {
2344 bh = arr[i];
2345 lock_buffer(bh);
2346 mark_buffer_async_read(bh);
2347 }
2348
2349 /*
2350 * Stage 3: start the IO. Check for uptodateness
2351 * inside the buffer lock in case another process reading
2352 * the underlying blockdev brought it uptodate (the sct fix).
2353 */
2354 for (i = 0; i < nr; i++) {
2355 bh = arr[i];
2356 if (buffer_uptodate(bh))
2357 end_buffer_async_read(bh, 1);
2358 else
2a222ca9 2359 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
2360 }
2361 return 0;
2362}
1fe72eaa 2363EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2364
2365/* utility function for filesystems that need to do work on expanding
89e10787 2366 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2367 * deal with the hole.
2368 */
89e10787 2369int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2370{
2371 struct address_space *mapping = inode->i_mapping;
2372 struct page *page;
89e10787 2373 void *fsdata;
1da177e4
LT
2374 int err;
2375
c08d3b0e 2376 err = inode_newsize_ok(inode, size);
2377 if (err)
1da177e4
LT
2378 goto out;
2379
89e10787 2380 err = pagecache_write_begin(NULL, mapping, size, 0,
c718a975 2381 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
89e10787 2382 if (err)
05eb0b51 2383 goto out;
05eb0b51 2384
89e10787
NP
2385 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2386 BUG_ON(err > 0);
05eb0b51 2387
1da177e4
LT
2388out:
2389 return err;
2390}
1fe72eaa 2391EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2392
f1e3af72
AB
2393static int cont_expand_zero(struct file *file, struct address_space *mapping,
2394 loff_t pos, loff_t *bytes)
1da177e4 2395{
1da177e4 2396 struct inode *inode = mapping->host;
93407472 2397 unsigned int blocksize = i_blocksize(inode);
89e10787
NP
2398 struct page *page;
2399 void *fsdata;
2400 pgoff_t index, curidx;
2401 loff_t curpos;
2402 unsigned zerofrom, offset, len;
2403 int err = 0;
1da177e4 2404
09cbfeaf
KS
2405 index = pos >> PAGE_SHIFT;
2406 offset = pos & ~PAGE_MASK;
89e10787 2407
09cbfeaf
KS
2408 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2409 zerofrom = curpos & ~PAGE_MASK;
1da177e4
LT
2410 if (zerofrom & (blocksize-1)) {
2411 *bytes |= (blocksize-1);
2412 (*bytes)++;
2413 }
09cbfeaf 2414 len = PAGE_SIZE - zerofrom;
1da177e4 2415
c718a975
TH
2416 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2417 &page, &fsdata);
89e10787
NP
2418 if (err)
2419 goto out;
eebd2aa3 2420 zero_user(page, zerofrom, len);
89e10787
NP
2421 err = pagecache_write_end(file, mapping, curpos, len, len,
2422 page, fsdata);
2423 if (err < 0)
2424 goto out;
2425 BUG_ON(err != len);
2426 err = 0;
061e9746
OH
2427
2428 balance_dirty_pages_ratelimited(mapping);
c2ca0fcd
MP
2429
2430 if (unlikely(fatal_signal_pending(current))) {
2431 err = -EINTR;
2432 goto out;
2433 }
89e10787 2434 }
1da177e4 2435
89e10787
NP
2436 /* page covers the boundary, find the boundary offset */
2437 if (index == curidx) {
09cbfeaf 2438 zerofrom = curpos & ~PAGE_MASK;
1da177e4 2439 /* if we will expand the thing last block will be filled */
89e10787
NP
2440 if (offset <= zerofrom) {
2441 goto out;
2442 }
2443 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2444 *bytes |= (blocksize-1);
2445 (*bytes)++;
2446 }
89e10787 2447 len = offset - zerofrom;
1da177e4 2448
c718a975
TH
2449 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2450 &page, &fsdata);
89e10787
NP
2451 if (err)
2452 goto out;
eebd2aa3 2453 zero_user(page, zerofrom, len);
89e10787
NP
2454 err = pagecache_write_end(file, mapping, curpos, len, len,
2455 page, fsdata);
2456 if (err < 0)
2457 goto out;
2458 BUG_ON(err != len);
2459 err = 0;
1da177e4 2460 }
89e10787
NP
2461out:
2462 return err;
2463}
2464
2465/*
2466 * For moronic filesystems that do not allow holes in file.
2467 * We may have to extend the file.
2468 */
282dc178 2469int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2470 loff_t pos, unsigned len, unsigned flags,
2471 struct page **pagep, void **fsdata,
2472 get_block_t *get_block, loff_t *bytes)
2473{
2474 struct inode *inode = mapping->host;
93407472
FF
2475 unsigned int blocksize = i_blocksize(inode);
2476 unsigned int zerofrom;
89e10787
NP
2477 int err;
2478
2479 err = cont_expand_zero(file, mapping, pos, bytes);
2480 if (err)
155130a4 2481 return err;
89e10787 2482
09cbfeaf 2483 zerofrom = *bytes & ~PAGE_MASK;
89e10787
NP
2484 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2485 *bytes |= (blocksize-1);
2486 (*bytes)++;
1da177e4 2487 }
1da177e4 2488
155130a4 2489 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2490}
1fe72eaa 2491EXPORT_SYMBOL(cont_write_begin);
1da177e4 2492
1da177e4
LT
2493int block_commit_write(struct page *page, unsigned from, unsigned to)
2494{
2495 struct inode *inode = page->mapping->host;
2496 __block_commit_write(inode,page,from,to);
2497 return 0;
2498}
1fe72eaa 2499EXPORT_SYMBOL(block_commit_write);
1da177e4 2500
54171690
DC
2501/*
2502 * block_page_mkwrite() is not allowed to change the file size as it gets
2503 * called from a page fault handler when a page is first dirtied. Hence we must
2504 * be careful to check for EOF conditions here. We set the page up correctly
2505 * for a written page which means we get ENOSPC checking when writing into
2506 * holes and correct delalloc and unwritten extent mapping on filesystems that
2507 * support these features.
2508 *
2509 * We are not allowed to take the i_mutex here so we have to play games to
2510 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2511 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2512 * page lock we can determine safely if the page is beyond EOF. If it is not
2513 * beyond EOF, then the page is guaranteed safe against truncation until we
2514 * unlock the page.
ea13a864 2515 *
14da9200 2516 * Direct callers of this function should protect against filesystem freezing
5c500029 2517 * using sb_start_pagefault() - sb_end_pagefault() functions.
54171690 2518 */
5c500029 2519int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
24da4fab 2520 get_block_t get_block)
54171690 2521{
c2ec175c 2522 struct page *page = vmf->page;
496ad9aa 2523 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2524 unsigned long end;
2525 loff_t size;
24da4fab 2526 int ret;
54171690
DC
2527
2528 lock_page(page);
2529 size = i_size_read(inode);
2530 if ((page->mapping != inode->i_mapping) ||
18336338 2531 (page_offset(page) > size)) {
24da4fab
JK
2532 /* We overload EFAULT to mean page got truncated */
2533 ret = -EFAULT;
2534 goto out_unlock;
54171690
DC
2535 }
2536
2537 /* page is wholly or partially inside EOF */
09cbfeaf
KS
2538 if (((page->index + 1) << PAGE_SHIFT) > size)
2539 end = size & ~PAGE_MASK;
54171690 2540 else
09cbfeaf 2541 end = PAGE_SIZE;
54171690 2542
ebdec241 2543 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2544 if (!ret)
2545 ret = block_commit_write(page, 0, end);
2546
24da4fab
JK
2547 if (unlikely(ret < 0))
2548 goto out_unlock;
ea13a864 2549 set_page_dirty(page);
1d1d1a76 2550 wait_for_stable_page(page);
24da4fab
JK
2551 return 0;
2552out_unlock:
2553 unlock_page(page);
54171690 2554 return ret;
24da4fab 2555}
1fe72eaa 2556EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2557
2558/*
03158cd7 2559 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2560 * immediately, while under the page lock. So it needs a special end_io
2561 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2562 */
2563static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2564{
68671f35 2565 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2566}
2567
03158cd7
NP
2568/*
2569 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2570 * the page (converting it to circular linked list and taking care of page
2571 * dirty races).
2572 */
2573static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2574{
2575 struct buffer_head *bh;
2576
2577 BUG_ON(!PageLocked(page));
2578
2579 spin_lock(&page->mapping->private_lock);
2580 bh = head;
2581 do {
2582 if (PageDirty(page))
2583 set_buffer_dirty(bh);
2584 if (!bh->b_this_page)
2585 bh->b_this_page = head;
2586 bh = bh->b_this_page;
2587 } while (bh != head);
2588 attach_page_buffers(page, head);
2589 spin_unlock(&page->mapping->private_lock);
2590}
2591
1da177e4 2592/*
ea0f04e5
CH
2593 * On entry, the page is fully not uptodate.
2594 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2595 * The filesystem needs to handle block truncation upon failure.
1da177e4 2596 */
ea0f04e5 2597int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2598 loff_t pos, unsigned len, unsigned flags,
2599 struct page **pagep, void **fsdata,
1da177e4
LT
2600 get_block_t *get_block)
2601{
03158cd7 2602 struct inode *inode = mapping->host;
1da177e4
LT
2603 const unsigned blkbits = inode->i_blkbits;
2604 const unsigned blocksize = 1 << blkbits;
a4b0672d 2605 struct buffer_head *head, *bh;
03158cd7
NP
2606 struct page *page;
2607 pgoff_t index;
2608 unsigned from, to;
1da177e4 2609 unsigned block_in_page;
a4b0672d 2610 unsigned block_start, block_end;
1da177e4 2611 sector_t block_in_file;
1da177e4 2612 int nr_reads = 0;
1da177e4
LT
2613 int ret = 0;
2614 int is_mapped_to_disk = 1;
1da177e4 2615
09cbfeaf
KS
2616 index = pos >> PAGE_SHIFT;
2617 from = pos & (PAGE_SIZE - 1);
03158cd7
NP
2618 to = from + len;
2619
54566b2c 2620 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2621 if (!page)
2622 return -ENOMEM;
2623 *pagep = page;
2624 *fsdata = NULL;
2625
2626 if (page_has_buffers(page)) {
309f77ad
NK
2627 ret = __block_write_begin(page, pos, len, get_block);
2628 if (unlikely(ret))
2629 goto out_release;
2630 return ret;
03158cd7 2631 }
a4b0672d 2632
1da177e4
LT
2633 if (PageMappedToDisk(page))
2634 return 0;
2635
a4b0672d
NP
2636 /*
2637 * Allocate buffers so that we can keep track of state, and potentially
2638 * attach them to the page if an error occurs. In the common case of
2639 * no error, they will just be freed again without ever being attached
2640 * to the page (which is all OK, because we're under the page lock).
2641 *
2642 * Be careful: the buffer linked list is a NULL terminated one, rather
2643 * than the circular one we're used to.
2644 */
2645 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2646 if (!head) {
2647 ret = -ENOMEM;
2648 goto out_release;
2649 }
a4b0672d 2650
09cbfeaf 2651 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
1da177e4
LT
2652
2653 /*
2654 * We loop across all blocks in the page, whether or not they are
2655 * part of the affected region. This is so we can discover if the
2656 * page is fully mapped-to-disk.
2657 */
a4b0672d 2658 for (block_start = 0, block_in_page = 0, bh = head;
09cbfeaf 2659 block_start < PAGE_SIZE;
a4b0672d 2660 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2661 int create;
2662
a4b0672d
NP
2663 block_end = block_start + blocksize;
2664 bh->b_state = 0;
1da177e4
LT
2665 create = 1;
2666 if (block_start >= to)
2667 create = 0;
2668 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2669 bh, create);
1da177e4
LT
2670 if (ret)
2671 goto failed;
a4b0672d 2672 if (!buffer_mapped(bh))
1da177e4 2673 is_mapped_to_disk = 0;
a4b0672d 2674 if (buffer_new(bh))
e64855c6 2675 clean_bdev_bh_alias(bh);
a4b0672d
NP
2676 if (PageUptodate(page)) {
2677 set_buffer_uptodate(bh);
1da177e4 2678 continue;
a4b0672d
NP
2679 }
2680 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2681 zero_user_segments(page, block_start, from,
2682 to, block_end);
1da177e4
LT
2683 continue;
2684 }
a4b0672d 2685 if (buffer_uptodate(bh))
1da177e4
LT
2686 continue; /* reiserfs does this */
2687 if (block_start < from || block_end > to) {
a4b0672d
NP
2688 lock_buffer(bh);
2689 bh->b_end_io = end_buffer_read_nobh;
2a222ca9 2690 submit_bh(REQ_OP_READ, 0, bh);
a4b0672d 2691 nr_reads++;
1da177e4
LT
2692 }
2693 }
2694
2695 if (nr_reads) {
1da177e4
LT
2696 /*
2697 * The page is locked, so these buffers are protected from
2698 * any VM or truncate activity. Hence we don't need to care
2699 * for the buffer_head refcounts.
2700 */
a4b0672d 2701 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2702 wait_on_buffer(bh);
2703 if (!buffer_uptodate(bh))
2704 ret = -EIO;
1da177e4
LT
2705 }
2706 if (ret)
2707 goto failed;
2708 }
2709
2710 if (is_mapped_to_disk)
2711 SetPageMappedToDisk(page);
1da177e4 2712
03158cd7 2713 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2714
1da177e4
LT
2715 return 0;
2716
2717failed:
03158cd7 2718 BUG_ON(!ret);
1da177e4 2719 /*
a4b0672d
NP
2720 * Error recovery is a bit difficult. We need to zero out blocks that
2721 * were newly allocated, and dirty them to ensure they get written out.
2722 * Buffers need to be attached to the page at this point, otherwise
2723 * the handling of potential IO errors during writeout would be hard
2724 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2725 */
03158cd7
NP
2726 attach_nobh_buffers(page, head);
2727 page_zero_new_buffers(page, from, to);
a4b0672d 2728
03158cd7
NP
2729out_release:
2730 unlock_page(page);
09cbfeaf 2731 put_page(page);
03158cd7 2732 *pagep = NULL;
a4b0672d 2733
7bb46a67 2734 return ret;
2735}
03158cd7 2736EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2737
03158cd7
NP
2738int nobh_write_end(struct file *file, struct address_space *mapping,
2739 loff_t pos, unsigned len, unsigned copied,
2740 struct page *page, void *fsdata)
1da177e4
LT
2741{
2742 struct inode *inode = page->mapping->host;
efdc3131 2743 struct buffer_head *head = fsdata;
03158cd7 2744 struct buffer_head *bh;
5b41e74a 2745 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2746
d4cf109f 2747 if (unlikely(copied < len) && head)
5b41e74a
DM
2748 attach_nobh_buffers(page, head);
2749 if (page_has_buffers(page))
2750 return generic_write_end(file, mapping, pos, len,
2751 copied, page, fsdata);
a4b0672d 2752
22c8ca78 2753 SetPageUptodate(page);
1da177e4 2754 set_page_dirty(page);
03158cd7
NP
2755 if (pos+copied > inode->i_size) {
2756 i_size_write(inode, pos+copied);
1da177e4
LT
2757 mark_inode_dirty(inode);
2758 }
03158cd7
NP
2759
2760 unlock_page(page);
09cbfeaf 2761 put_page(page);
03158cd7 2762
03158cd7
NP
2763 while (head) {
2764 bh = head;
2765 head = head->b_this_page;
2766 free_buffer_head(bh);
2767 }
2768
2769 return copied;
1da177e4 2770}
03158cd7 2771EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2772
2773/*
2774 * nobh_writepage() - based on block_full_write_page() except
2775 * that it tries to operate without attaching bufferheads to
2776 * the page.
2777 */
2778int nobh_writepage(struct page *page, get_block_t *get_block,
2779 struct writeback_control *wbc)
2780{
2781 struct inode * const inode = page->mapping->host;
2782 loff_t i_size = i_size_read(inode);
09cbfeaf 2783 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2784 unsigned offset;
1da177e4
LT
2785 int ret;
2786
2787 /* Is the page fully inside i_size? */
2788 if (page->index < end_index)
2789 goto out;
2790
2791 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2792 offset = i_size & (PAGE_SIZE-1);
1da177e4
LT
2793 if (page->index >= end_index+1 || !offset) {
2794 /*
2795 * The page may have dirty, unmapped buffers. For example,
2796 * they may have been added in ext3_writepage(). Make them
2797 * freeable here, so the page does not leak.
2798 */
2799#if 0
2800 /* Not really sure about this - do we need this ? */
2801 if (page->mapping->a_ops->invalidatepage)
2802 page->mapping->a_ops->invalidatepage(page, offset);
2803#endif
2804 unlock_page(page);
2805 return 0; /* don't care */
2806 }
2807
2808 /*
2809 * The page straddles i_size. It must be zeroed out on each and every
2810 * writepage invocation because it may be mmapped. "A file is mapped
2811 * in multiples of the page size. For a file that is not a multiple of
2812 * the page size, the remaining memory is zeroed when mapped, and
2813 * writes to that region are not written out to the file."
2814 */
09cbfeaf 2815 zero_user_segment(page, offset, PAGE_SIZE);
1da177e4
LT
2816out:
2817 ret = mpage_writepage(page, get_block, wbc);
2818 if (ret == -EAGAIN)
35c80d5f
CM
2819 ret = __block_write_full_page(inode, page, get_block, wbc,
2820 end_buffer_async_write);
1da177e4
LT
2821 return ret;
2822}
2823EXPORT_SYMBOL(nobh_writepage);
2824
03158cd7
NP
2825int nobh_truncate_page(struct address_space *mapping,
2826 loff_t from, get_block_t *get_block)
1da177e4 2827{
09cbfeaf
KS
2828 pgoff_t index = from >> PAGE_SHIFT;
2829 unsigned offset = from & (PAGE_SIZE-1);
03158cd7
NP
2830 unsigned blocksize;
2831 sector_t iblock;
2832 unsigned length, pos;
2833 struct inode *inode = mapping->host;
1da177e4 2834 struct page *page;
03158cd7
NP
2835 struct buffer_head map_bh;
2836 int err;
1da177e4 2837
93407472 2838 blocksize = i_blocksize(inode);
03158cd7
NP
2839 length = offset & (blocksize - 1);
2840
2841 /* Block boundary? Nothing to do */
2842 if (!length)
2843 return 0;
2844
2845 length = blocksize - length;
09cbfeaf 2846 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4 2847
1da177e4 2848 page = grab_cache_page(mapping, index);
03158cd7 2849 err = -ENOMEM;
1da177e4
LT
2850 if (!page)
2851 goto out;
2852
03158cd7
NP
2853 if (page_has_buffers(page)) {
2854has_buffers:
2855 unlock_page(page);
09cbfeaf 2856 put_page(page);
03158cd7
NP
2857 return block_truncate_page(mapping, from, get_block);
2858 }
2859
2860 /* Find the buffer that contains "offset" */
2861 pos = blocksize;
2862 while (offset >= pos) {
2863 iblock++;
2864 pos += blocksize;
2865 }
2866
460bcf57
TT
2867 map_bh.b_size = blocksize;
2868 map_bh.b_state = 0;
03158cd7
NP
2869 err = get_block(inode, iblock, &map_bh, 0);
2870 if (err)
2871 goto unlock;
2872 /* unmapped? It's a hole - nothing to do */
2873 if (!buffer_mapped(&map_bh))
2874 goto unlock;
2875
2876 /* Ok, it's mapped. Make sure it's up-to-date */
2877 if (!PageUptodate(page)) {
2878 err = mapping->a_ops->readpage(NULL, page);
2879 if (err) {
09cbfeaf 2880 put_page(page);
03158cd7
NP
2881 goto out;
2882 }
2883 lock_page(page);
2884 if (!PageUptodate(page)) {
2885 err = -EIO;
2886 goto unlock;
2887 }
2888 if (page_has_buffers(page))
2889 goto has_buffers;
1da177e4 2890 }
eebd2aa3 2891 zero_user(page, offset, length);
03158cd7
NP
2892 set_page_dirty(page);
2893 err = 0;
2894
2895unlock:
1da177e4 2896 unlock_page(page);
09cbfeaf 2897 put_page(page);
1da177e4 2898out:
03158cd7 2899 return err;
1da177e4
LT
2900}
2901EXPORT_SYMBOL(nobh_truncate_page);
2902
2903int block_truncate_page(struct address_space *mapping,
2904 loff_t from, get_block_t *get_block)
2905{
09cbfeaf
KS
2906 pgoff_t index = from >> PAGE_SHIFT;
2907 unsigned offset = from & (PAGE_SIZE-1);
1da177e4 2908 unsigned blocksize;
54b21a79 2909 sector_t iblock;
1da177e4
LT
2910 unsigned length, pos;
2911 struct inode *inode = mapping->host;
2912 struct page *page;
2913 struct buffer_head *bh;
1da177e4
LT
2914 int err;
2915
93407472 2916 blocksize = i_blocksize(inode);
1da177e4
LT
2917 length = offset & (blocksize - 1);
2918
2919 /* Block boundary? Nothing to do */
2920 if (!length)
2921 return 0;
2922
2923 length = blocksize - length;
09cbfeaf 2924 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4
LT
2925
2926 page = grab_cache_page(mapping, index);
2927 err = -ENOMEM;
2928 if (!page)
2929 goto out;
2930
2931 if (!page_has_buffers(page))
2932 create_empty_buffers(page, blocksize, 0);
2933
2934 /* Find the buffer that contains "offset" */
2935 bh = page_buffers(page);
2936 pos = blocksize;
2937 while (offset >= pos) {
2938 bh = bh->b_this_page;
2939 iblock++;
2940 pos += blocksize;
2941 }
2942
2943 err = 0;
2944 if (!buffer_mapped(bh)) {
b0cf2321 2945 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2946 err = get_block(inode, iblock, bh, 0);
2947 if (err)
2948 goto unlock;
2949 /* unmapped? It's a hole - nothing to do */
2950 if (!buffer_mapped(bh))
2951 goto unlock;
2952 }
2953
2954 /* Ok, it's mapped. Make sure it's up-to-date */
2955 if (PageUptodate(page))
2956 set_buffer_uptodate(bh);
2957
33a266dd 2958 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4 2959 err = -EIO;
dfec8a14 2960 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2961 wait_on_buffer(bh);
2962 /* Uhhuh. Read error. Complain and punt. */
2963 if (!buffer_uptodate(bh))
2964 goto unlock;
2965 }
2966
eebd2aa3 2967 zero_user(page, offset, length);
1da177e4
LT
2968 mark_buffer_dirty(bh);
2969 err = 0;
2970
2971unlock:
2972 unlock_page(page);
09cbfeaf 2973 put_page(page);
1da177e4
LT
2974out:
2975 return err;
2976}
1fe72eaa 2977EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2978
2979/*
2980 * The generic ->writepage function for buffer-backed address_spaces
2981 */
1b938c08
MW
2982int block_write_full_page(struct page *page, get_block_t *get_block,
2983 struct writeback_control *wbc)
1da177e4
LT
2984{
2985 struct inode * const inode = page->mapping->host;
2986 loff_t i_size = i_size_read(inode);
09cbfeaf 2987 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2988 unsigned offset;
1da177e4
LT
2989
2990 /* Is the page fully inside i_size? */
2991 if (page->index < end_index)
35c80d5f 2992 return __block_write_full_page(inode, page, get_block, wbc,
1b938c08 2993 end_buffer_async_write);
1da177e4
LT
2994
2995 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2996 offset = i_size & (PAGE_SIZE-1);
1da177e4
LT
2997 if (page->index >= end_index+1 || !offset) {
2998 /*
2999 * The page may have dirty, unmapped buffers. For example,
3000 * they may have been added in ext3_writepage(). Make them
3001 * freeable here, so the page does not leak.
3002 */
09cbfeaf 3003 do_invalidatepage(page, 0, PAGE_SIZE);
1da177e4
LT
3004 unlock_page(page);
3005 return 0; /* don't care */
3006 }
3007
3008 /*
3009 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 3010 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
3011 * in multiples of the page size. For a file that is not a multiple of
3012 * the page size, the remaining memory is zeroed when mapped, and
3013 * writes to that region are not written out to the file."
3014 */
09cbfeaf 3015 zero_user_segment(page, offset, PAGE_SIZE);
1b938c08
MW
3016 return __block_write_full_page(inode, page, get_block, wbc,
3017 end_buffer_async_write);
35c80d5f 3018}
1fe72eaa 3019EXPORT_SYMBOL(block_write_full_page);
35c80d5f 3020
1da177e4
LT
3021sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3022 get_block_t *get_block)
3023{
3024 struct buffer_head tmp;
3025 struct inode *inode = mapping->host;
3026 tmp.b_state = 0;
3027 tmp.b_blocknr = 0;
93407472 3028 tmp.b_size = i_blocksize(inode);
1da177e4
LT
3029 get_block(inode, block, &tmp, 0);
3030 return tmp.b_blocknr;
3031}
1fe72eaa 3032EXPORT_SYMBOL(generic_block_bmap);
1da177e4 3033
4246a0b6 3034static void end_bio_bh_io_sync(struct bio *bio)
1da177e4
LT
3035{
3036 struct buffer_head *bh = bio->bi_private;
3037
b7c44ed9 3038 if (unlikely(bio_flagged(bio, BIO_QUIET)))
08bafc03
KM
3039 set_bit(BH_Quiet, &bh->b_state);
3040
4e4cbee9 3041 bh->b_end_io(bh, !bio->bi_status);
1da177e4 3042 bio_put(bio);
1da177e4
LT
3043}
3044
57302e0d
LT
3045/*
3046 * This allows us to do IO even on the odd last sectors
59d43914 3047 * of a device, even if the block size is some multiple
57302e0d
LT
3048 * of the physical sector size.
3049 *
3050 * We'll just truncate the bio to the size of the device,
3051 * and clear the end of the buffer head manually.
3052 *
3053 * Truly out-of-range accesses will turn into actual IO
3054 * errors, this only handles the "we need to be able to
3055 * do IO at the final sector" case.
3056 */
2a222ca9 3057void guard_bio_eod(int op, struct bio *bio)
57302e0d
LT
3058{
3059 sector_t maxsector;
59d43914
AM
3060 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3061 unsigned truncated_bytes;
57302e0d
LT
3062
3063 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3064 if (!maxsector)
3065 return;
3066
3067 /*
3068 * If the *whole* IO is past the end of the device,
3069 * let it through, and the IO layer will turn it into
3070 * an EIO.
3071 */
4f024f37 3072 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
57302e0d
LT
3073 return;
3074
4f024f37 3075 maxsector -= bio->bi_iter.bi_sector;
59d43914 3076 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
57302e0d
LT
3077 return;
3078
59d43914
AM
3079 /* Uhhuh. We've got a bio that straddles the device size! */
3080 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
57302e0d
LT
3081
3082 /* Truncate the bio.. */
59d43914
AM
3083 bio->bi_iter.bi_size -= truncated_bytes;
3084 bvec->bv_len -= truncated_bytes;
57302e0d
LT
3085
3086 /* ..and clear the end of the buffer for reads */
2a222ca9 3087 if (op == REQ_OP_READ) {
59d43914
AM
3088 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3089 truncated_bytes);
57302e0d
LT
3090 }
3091}
3092
2a222ca9 3093static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
020c2833 3094 struct writeback_control *wbc)
1da177e4
LT
3095{
3096 struct bio *bio;
1da177e4
LT
3097
3098 BUG_ON(!buffer_locked(bh));
3099 BUG_ON(!buffer_mapped(bh));
3100 BUG_ON(!bh->b_end_io);
8fb0e342
AK
3101 BUG_ON(buffer_delay(bh));
3102 BUG_ON(buffer_unwritten(bh));
1da177e4 3103
1da177e4 3104 /*
48fd4f93 3105 * Only clear out a write error when rewriting
1da177e4 3106 */
2a222ca9 3107 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
1da177e4
LT
3108 clear_buffer_write_io_error(bh);
3109
3110 /*
3111 * from here on down, it's all bio -- do the initial mapping,
3112 * submit_bio -> generic_make_request may further map this bio around
3113 */
3114 bio = bio_alloc(GFP_NOIO, 1);
3115
2a814908 3116 if (wbc) {
b16b1deb 3117 wbc_init_bio(wbc, bio);
2a814908
TH
3118 wbc_account_io(wbc, bh->b_page, bh->b_size);
3119 }
bafc0dba 3120
4f024f37 3121 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
1da177e4 3122 bio->bi_bdev = bh->b_bdev;
1da177e4 3123
6cf66b4c
KO
3124 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3125 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
1da177e4
LT
3126
3127 bio->bi_end_io = end_bio_bh_io_sync;
3128 bio->bi_private = bh;
3129
57302e0d 3130 /* Take care of bh's that straddle the end of the device */
2a222ca9 3131 guard_bio_eod(op, bio);
57302e0d 3132
877f962c 3133 if (buffer_meta(bh))
2a222ca9 3134 op_flags |= REQ_META;
877f962c 3135 if (buffer_prio(bh))
2a222ca9
MC
3136 op_flags |= REQ_PRIO;
3137 bio_set_op_attrs(bio, op, op_flags);
877f962c 3138
4e49ea4a 3139 submit_bio(bio);
f6454b04 3140 return 0;
1da177e4 3141}
bafc0dba 3142
020c2833 3143int submit_bh(int op, int op_flags, struct buffer_head *bh)
bafc0dba 3144{
020c2833 3145 return submit_bh_wbc(op, op_flags, bh, NULL);
71368511 3146}
1fe72eaa 3147EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3148
3149/**
3150 * ll_rw_block: low-level access to block devices (DEPRECATED)
dfec8a14 3151 * @op: whether to %READ or %WRITE
ef295ecf 3152 * @op_flags: req_flag_bits
1da177e4
LT
3153 * @nr: number of &struct buffer_heads in the array
3154 * @bhs: array of pointers to &struct buffer_head
3155 *
a7662236 3156 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
70246286
CH
3157 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3158 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3159 * %REQ_RAHEAD.
1da177e4
LT
3160 *
3161 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
3162 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3163 * request, and any buffer that appears to be up-to-date when doing read
3164 * request. Further it marks as clean buffers that are processed for
3165 * writing (the buffer cache won't assume that they are actually clean
3166 * until the buffer gets unlocked).
1da177e4
LT
3167 *
3168 * ll_rw_block sets b_end_io to simple completion handler that marks
e227867f 3169 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
1da177e4
LT
3170 * any waiters.
3171 *
3172 * All of the buffers must be for the same device, and must also be a
3173 * multiple of the current approved size for the device.
3174 */
dfec8a14 3175void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
1da177e4
LT
3176{
3177 int i;
3178
3179 for (i = 0; i < nr; i++) {
3180 struct buffer_head *bh = bhs[i];
3181
9cb569d6 3182 if (!trylock_buffer(bh))
1da177e4 3183 continue;
dfec8a14 3184 if (op == WRITE) {
1da177e4 3185 if (test_clear_buffer_dirty(bh)) {
76c3073a 3186 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3187 get_bh(bh);
dfec8a14 3188 submit_bh(op, op_flags, bh);
1da177e4
LT
3189 continue;
3190 }
3191 } else {
1da177e4 3192 if (!buffer_uptodate(bh)) {
76c3073a 3193 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3194 get_bh(bh);
dfec8a14 3195 submit_bh(op, op_flags, bh);
1da177e4
LT
3196 continue;
3197 }
3198 }
3199 unlock_buffer(bh);
1da177e4
LT
3200 }
3201}
1fe72eaa 3202EXPORT_SYMBOL(ll_rw_block);
1da177e4 3203
2a222ca9 3204void write_dirty_buffer(struct buffer_head *bh, int op_flags)
9cb569d6
CH
3205{
3206 lock_buffer(bh);
3207 if (!test_clear_buffer_dirty(bh)) {
3208 unlock_buffer(bh);
3209 return;
3210 }
3211 bh->b_end_io = end_buffer_write_sync;
3212 get_bh(bh);
2a222ca9 3213 submit_bh(REQ_OP_WRITE, op_flags, bh);
9cb569d6
CH
3214}
3215EXPORT_SYMBOL(write_dirty_buffer);
3216
1da177e4
LT
3217/*
3218 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3219 * and then start new I/O and then wait upon it. The caller must have a ref on
3220 * the buffer_head.
3221 */
2a222ca9 3222int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
1da177e4
LT
3223{
3224 int ret = 0;
3225
3226 WARN_ON(atomic_read(&bh->b_count) < 1);
3227 lock_buffer(bh);
3228 if (test_clear_buffer_dirty(bh)) {
3229 get_bh(bh);
3230 bh->b_end_io = end_buffer_write_sync;
2a222ca9 3231 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
1da177e4 3232 wait_on_buffer(bh);
1da177e4
LT
3233 if (!ret && !buffer_uptodate(bh))
3234 ret = -EIO;
3235 } else {
3236 unlock_buffer(bh);
3237 }
3238 return ret;
3239}
87e99511
CH
3240EXPORT_SYMBOL(__sync_dirty_buffer);
3241
3242int sync_dirty_buffer(struct buffer_head *bh)
3243{
70fd7614 3244 return __sync_dirty_buffer(bh, REQ_SYNC);
87e99511 3245}
1fe72eaa 3246EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3247
3248/*
3249 * try_to_free_buffers() checks if all the buffers on this particular page
3250 * are unused, and releases them if so.
3251 *
3252 * Exclusion against try_to_free_buffers may be obtained by either
3253 * locking the page or by holding its mapping's private_lock.
3254 *
3255 * If the page is dirty but all the buffers are clean then we need to
3256 * be sure to mark the page clean as well. This is because the page
3257 * may be against a block device, and a later reattachment of buffers
3258 * to a dirty page will set *all* buffers dirty. Which would corrupt
3259 * filesystem data on the same device.
3260 *
3261 * The same applies to regular filesystem pages: if all the buffers are
3262 * clean then we set the page clean and proceed. To do that, we require
3263 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3264 * private_lock.
3265 *
3266 * try_to_free_buffers() is non-blocking.
3267 */
3268static inline int buffer_busy(struct buffer_head *bh)
3269{
3270 return atomic_read(&bh->b_count) |
3271 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3272}
3273
3274static int
3275drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3276{
3277 struct buffer_head *head = page_buffers(page);
3278 struct buffer_head *bh;
3279
3280 bh = head;
3281 do {
de7d5a3b 3282 if (buffer_write_io_error(bh) && page->mapping)
5114a97a 3283 mapping_set_error(page->mapping, -EIO);
1da177e4
LT
3284 if (buffer_busy(bh))
3285 goto failed;
3286 bh = bh->b_this_page;
3287 } while (bh != head);
3288
3289 do {
3290 struct buffer_head *next = bh->b_this_page;
3291
535ee2fb 3292 if (bh->b_assoc_map)
1da177e4
LT
3293 __remove_assoc_queue(bh);
3294 bh = next;
3295 } while (bh != head);
3296 *buffers_to_free = head;
3297 __clear_page_buffers(page);
3298 return 1;
3299failed:
3300 return 0;
3301}
3302
3303int try_to_free_buffers(struct page *page)
3304{
3305 struct address_space * const mapping = page->mapping;
3306 struct buffer_head *buffers_to_free = NULL;
3307 int ret = 0;
3308
3309 BUG_ON(!PageLocked(page));
ecdfc978 3310 if (PageWriteback(page))
1da177e4
LT
3311 return 0;
3312
3313 if (mapping == NULL) { /* can this still happen? */
3314 ret = drop_buffers(page, &buffers_to_free);
3315 goto out;
3316 }
3317
3318 spin_lock(&mapping->private_lock);
3319 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3320
3321 /*
3322 * If the filesystem writes its buffers by hand (eg ext3)
3323 * then we can have clean buffers against a dirty page. We
3324 * clean the page here; otherwise the VM will never notice
3325 * that the filesystem did any IO at all.
3326 *
3327 * Also, during truncate, discard_buffer will have marked all
3328 * the page's buffers clean. We discover that here and clean
3329 * the page also.
87df7241
NP
3330 *
3331 * private_lock must be held over this entire operation in order
3332 * to synchronise against __set_page_dirty_buffers and prevent the
3333 * dirty bit from being lost.
ecdfc978 3334 */
11f81bec
TH
3335 if (ret)
3336 cancel_dirty_page(page);
87df7241 3337 spin_unlock(&mapping->private_lock);
1da177e4
LT
3338out:
3339 if (buffers_to_free) {
3340 struct buffer_head *bh = buffers_to_free;
3341
3342 do {
3343 struct buffer_head *next = bh->b_this_page;
3344 free_buffer_head(bh);
3345 bh = next;
3346 } while (bh != buffers_to_free);
3347 }
3348 return ret;
3349}
3350EXPORT_SYMBOL(try_to_free_buffers);
3351
1da177e4
LT
3352/*
3353 * There are no bdflush tunables left. But distributions are
3354 * still running obsolete flush daemons, so we terminate them here.
3355 *
3356 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3357 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3358 */
bdc480e3 3359SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3360{
3361 static int msg_count;
3362
3363 if (!capable(CAP_SYS_ADMIN))
3364 return -EPERM;
3365
3366 if (msg_count < 5) {
3367 msg_count++;
3368 printk(KERN_INFO
3369 "warning: process `%s' used the obsolete bdflush"
3370 " system call\n", current->comm);
3371 printk(KERN_INFO "Fix your initscripts?\n");
3372 }
3373
3374 if (func == 1)
3375 do_exit(0);
3376 return 0;
3377}
3378
3379/*
3380 * Buffer-head allocation
3381 */
a0a9b043 3382static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3383
3384/*
3385 * Once the number of bh's in the machine exceeds this level, we start
3386 * stripping them in writeback.
3387 */
43be594a 3388static unsigned long max_buffer_heads;
1da177e4
LT
3389
3390int buffer_heads_over_limit;
3391
3392struct bh_accounting {
3393 int nr; /* Number of live bh's */
3394 int ratelimit; /* Limit cacheline bouncing */
3395};
3396
3397static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3398
3399static void recalc_bh_state(void)
3400{
3401 int i;
3402 int tot = 0;
3403
ee1be862 3404 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3405 return;
c7b92516 3406 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3407 for_each_online_cpu(i)
1da177e4
LT
3408 tot += per_cpu(bh_accounting, i).nr;
3409 buffer_heads_over_limit = (tot > max_buffer_heads);
3410}
c7b92516 3411
dd0fc66f 3412struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3413{
019b4d12 3414 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3415 if (ret) {
a35afb83 3416 INIT_LIST_HEAD(&ret->b_assoc_buffers);
c7b92516
CL
3417 preempt_disable();
3418 __this_cpu_inc(bh_accounting.nr);
1da177e4 3419 recalc_bh_state();
c7b92516 3420 preempt_enable();
1da177e4
LT
3421 }
3422 return ret;
3423}
3424EXPORT_SYMBOL(alloc_buffer_head);
3425
3426void free_buffer_head(struct buffer_head *bh)
3427{
3428 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3429 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3430 preempt_disable();
3431 __this_cpu_dec(bh_accounting.nr);
1da177e4 3432 recalc_bh_state();
c7b92516 3433 preempt_enable();
1da177e4
LT
3434}
3435EXPORT_SYMBOL(free_buffer_head);
3436
fc4d24c9 3437static int buffer_exit_cpu_dead(unsigned int cpu)
1da177e4
LT
3438{
3439 int i;
3440 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3441
3442 for (i = 0; i < BH_LRU_SIZE; i++) {
3443 brelse(b->bhs[i]);
3444 b->bhs[i] = NULL;
3445 }
c7b92516 3446 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3447 per_cpu(bh_accounting, cpu).nr = 0;
fc4d24c9 3448 return 0;
1da177e4 3449}
1da177e4 3450
389d1b08 3451/**
a6b91919 3452 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3453 * @bh: struct buffer_head
3454 *
3455 * Return true if the buffer is up-to-date and false,
3456 * with the buffer locked, if not.
3457 */
3458int bh_uptodate_or_lock(struct buffer_head *bh)
3459{
3460 if (!buffer_uptodate(bh)) {
3461 lock_buffer(bh);
3462 if (!buffer_uptodate(bh))
3463 return 0;
3464 unlock_buffer(bh);
3465 }
3466 return 1;
3467}
3468EXPORT_SYMBOL(bh_uptodate_or_lock);
3469
3470/**
a6b91919 3471 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3472 * @bh: struct buffer_head
3473 *
3474 * Returns zero on success and -EIO on error.
3475 */
3476int bh_submit_read(struct buffer_head *bh)
3477{
3478 BUG_ON(!buffer_locked(bh));
3479
3480 if (buffer_uptodate(bh)) {
3481 unlock_buffer(bh);
3482 return 0;
3483 }
3484
3485 get_bh(bh);
3486 bh->b_end_io = end_buffer_read_sync;
2a222ca9 3487 submit_bh(REQ_OP_READ, 0, bh);
389d1b08
AK
3488 wait_on_buffer(bh);
3489 if (buffer_uptodate(bh))
3490 return 0;
3491 return -EIO;
3492}
3493EXPORT_SYMBOL(bh_submit_read);
3494
1da177e4
LT
3495void __init buffer_init(void)
3496{
43be594a 3497 unsigned long nrpages;
fc4d24c9 3498 int ret;
1da177e4 3499
b98938c3
CL
3500 bh_cachep = kmem_cache_create("buffer_head",
3501 sizeof(struct buffer_head), 0,
3502 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3503 SLAB_MEM_SPREAD),
019b4d12 3504 NULL);
1da177e4
LT
3505
3506 /*
3507 * Limit the bh occupancy to 10% of ZONE_NORMAL
3508 */
3509 nrpages = (nr_free_buffer_pages() * 10) / 100;
3510 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
fc4d24c9
SAS
3511 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3512 NULL, buffer_exit_cpu_dead);
3513 WARN_ON(ret < 0);
1da177e4 3514}