]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/direct-io.c
direct-io: rearrange fields in dio/dio_submit to avoid holes
[mirror_ubuntu-artful-kernel.git] / fs / direct-io.c
CommitLineData
1da177e4
LT
1/*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
e1f8e874 8 * 04Jul2002 Andrew Morton
1da177e4
LT
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
e1f8e874 12 * 29Oct2002 Andrew Morton
1da177e4
LT
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/fs.h>
26#include <linux/mm.h>
27#include <linux/slab.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
98c4d57d 30#include <linux/task_io_accounting_ops.h>
1da177e4
LT
31#include <linux/bio.h>
32#include <linux/wait.h>
33#include <linux/err.h>
34#include <linux/blkdev.h>
35#include <linux/buffer_head.h>
36#include <linux/rwsem.h>
37#include <linux/uio.h>
60063497 38#include <linux/atomic.h>
1da177e4
LT
39
40/*
41 * How many user pages to map in one call to get_user_pages(). This determines
cde1ecb3 42 * the size of a structure in the slab cache
1da177e4
LT
43 */
44#define DIO_PAGES 64
45
46/*
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
53 *
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
55 * blocksize.
1da177e4
LT
56 */
57
eb28be2b
AK
58/* dio_state only used in the submission path */
59
60struct dio_submit {
1da177e4 61 struct bio *bio; /* bio under assembly */
1da177e4
LT
62 unsigned blkbits; /* doesn't change */
63 unsigned blkfactor; /* When we're using an alignment which
64 is finer than the filesystem's soft
65 blocksize, this specifies how much
66 finer. blkfactor=2 means 1/4-block
67 alignment. Does not change */
68 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
69 been performed at the start of a
70 write */
71 int pages_in_io; /* approximate total IO pages */
72 size_t size; /* total request size (doesn't change)*/
73 sector_t block_in_file; /* Current offset into the underlying
74 file in dio_block units. */
75 unsigned blocks_available; /* At block_in_file. changes */
0dc2bc49 76 int reap_counter; /* rate limit reaping */
1da177e4
LT
77 sector_t final_block_in_request;/* doesn't change */
78 unsigned first_block_in_page; /* doesn't change, Used only once */
79 int boundary; /* prev block is at a boundary */
1d8fa7a2 80 get_block_t *get_block; /* block mapping function */
facd07b0 81 dio_submit_t *submit_io; /* IO submition function */
eb28be2b 82
facd07b0 83 loff_t logical_offset_in_bio; /* current first logical block in bio */
1da177e4
LT
84 sector_t final_block_in_bio; /* current final block in bio + 1 */
85 sector_t next_block_for_io; /* next block to be put under IO,
86 in dio_blocks units */
1da177e4
LT
87
88 /*
89 * Deferred addition of a page to the dio. These variables are
90 * private to dio_send_cur_page(), submit_page_section() and
91 * dio_bio_add_page().
92 */
93 struct page *cur_page; /* The page */
94 unsigned cur_page_offset; /* Offset into it, in bytes */
95 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
96 sector_t cur_page_block; /* Where it starts */
facd07b0 97 loff_t cur_page_fs_offset; /* Offset in file */
1da177e4
LT
98
99 /*
100 * Page fetching state. These variables belong to dio_refill_pages().
101 */
102 int curr_page; /* changes */
103 int total_pages; /* doesn't change */
104 unsigned long curr_user_address;/* changes */
105
106 /*
107 * Page queue. These variables belong to dio_refill_pages() and
108 * dio_get_page().
109 */
1da177e4
LT
110 unsigned head; /* next page to process */
111 unsigned tail; /* last valid page + 1 */
eb28be2b
AK
112};
113
114/* dio_state communicated between submission path and end_io */
115struct dio {
116 int flags; /* doesn't change */
eb28be2b 117 int rw;
0dc2bc49 118 struct inode *inode;
eb28be2b
AK
119 loff_t i_size; /* i_size when submitted */
120 dio_iodone_t *end_io; /* IO completion function */
eb28be2b
AK
121
122
123 /* BIO completion state */
124 spinlock_t bio_lock; /* protects BIO fields below */
0dc2bc49
AK
125 int page_errors; /* errno from get_user_pages() */
126 int is_async; /* is IO async ? */
127 int io_error; /* IO error in completion path */
eb28be2b
AK
128 unsigned long refcount; /* direct_io_worker() and bios */
129 struct bio *bio_list; /* singly linked via bi_private */
130 struct task_struct *waiter; /* waiting task (NULL if none) */
131
132 /* AIO related stuff */
133 struct kiocb *iocb; /* kiocb */
eb28be2b
AK
134 ssize_t result; /* IO result */
135
0dc2bc49 136 struct buffer_head map_bh; /* last get_block() result */
23aee091
JM
137 /*
138 * pages[] (and any fields placed after it) are not zeroed out at
139 * allocation time. Don't add new fields after pages[] unless you
140 * wish that they not be zeroed.
141 */
142 struct page *pages[DIO_PAGES]; /* page buffer */
1da177e4
LT
143};
144
bd5fe6c5
CH
145static void __inode_dio_wait(struct inode *inode)
146{
147 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
148 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
149
150 do {
151 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
152 if (atomic_read(&inode->i_dio_count))
153 schedule();
154 } while (atomic_read(&inode->i_dio_count));
155 finish_wait(wq, &q.wait);
156}
157
158/**
159 * inode_dio_wait - wait for outstanding DIO requests to finish
160 * @inode: inode to wait for
161 *
162 * Waits for all pending direct I/O requests to finish so that we can
163 * proceed with a truncate or equivalent operation.
164 *
165 * Must be called under a lock that serializes taking new references
166 * to i_dio_count, usually by inode->i_mutex.
167 */
168void inode_dio_wait(struct inode *inode)
169{
170 if (atomic_read(&inode->i_dio_count))
171 __inode_dio_wait(inode);
172}
173EXPORT_SYMBOL_GPL(inode_dio_wait);
174
175/*
176 * inode_dio_done - signal finish of a direct I/O requests
177 * @inode: inode the direct I/O happens on
178 *
179 * This is called once we've finished processing a direct I/O request,
180 * and is used to wake up callers waiting for direct I/O to be quiesced.
181 */
182void inode_dio_done(struct inode *inode)
183{
184 if (atomic_dec_and_test(&inode->i_dio_count))
185 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
186}
187EXPORT_SYMBOL_GPL(inode_dio_done);
188
1da177e4
LT
189/*
190 * How many pages are in the queue?
191 */
eb28be2b 192static inline unsigned dio_pages_present(struct dio_submit *sdio)
1da177e4 193{
eb28be2b 194 return sdio->tail - sdio->head;
1da177e4
LT
195}
196
197/*
198 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
199 */
eb28be2b 200static int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
1da177e4
LT
201{
202 int ret;
203 int nr_pages;
204
eb28be2b 205 nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES);
f5dd33c4 206 ret = get_user_pages_fast(
eb28be2b 207 sdio->curr_user_address, /* Where from? */
1da177e4
LT
208 nr_pages, /* How many pages? */
209 dio->rw == READ, /* Write to memory? */
f5dd33c4 210 &dio->pages[0]); /* Put results here */
1da177e4 211
eb28be2b 212 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
557ed1fa 213 struct page *page = ZERO_PAGE(0);
1da177e4
LT
214 /*
215 * A memory fault, but the filesystem has some outstanding
216 * mapped blocks. We need to use those blocks up to avoid
217 * leaking stale data in the file.
218 */
219 if (dio->page_errors == 0)
220 dio->page_errors = ret;
b5810039
NP
221 page_cache_get(page);
222 dio->pages[0] = page;
eb28be2b
AK
223 sdio->head = 0;
224 sdio->tail = 1;
1da177e4
LT
225 ret = 0;
226 goto out;
227 }
228
229 if (ret >= 0) {
eb28be2b
AK
230 sdio->curr_user_address += ret * PAGE_SIZE;
231 sdio->curr_page += ret;
232 sdio->head = 0;
233 sdio->tail = ret;
1da177e4
LT
234 ret = 0;
235 }
236out:
237 return ret;
238}
239
240/*
241 * Get another userspace page. Returns an ERR_PTR on error. Pages are
242 * buffered inside the dio so that we can call get_user_pages() against a
243 * decent number of pages, less frequently. To provide nicer use of the
244 * L1 cache.
245 */
eb28be2b 246static struct page *dio_get_page(struct dio *dio, struct dio_submit *sdio)
1da177e4 247{
eb28be2b 248 if (dio_pages_present(sdio) == 0) {
1da177e4
LT
249 int ret;
250
eb28be2b 251 ret = dio_refill_pages(dio, sdio);
1da177e4
LT
252 if (ret)
253 return ERR_PTR(ret);
eb28be2b 254 BUG_ON(dio_pages_present(sdio) == 0);
1da177e4 255 }
eb28be2b 256 return dio->pages[sdio->head++];
1da177e4
LT
257}
258
6d544bb4
ZB
259/**
260 * dio_complete() - called when all DIO BIO I/O has been completed
261 * @offset: the byte offset in the file of the completed operation
262 *
263 * This releases locks as dictated by the locking type, lets interested parties
264 * know that a DIO operation has completed, and calculates the resulting return
265 * code for the operation.
266 *
267 * It lets the filesystem know if it registered an interest earlier via
268 * get_block. Pass the private field of the map buffer_head so that
269 * filesystems can use it to hold additional state between get_block calls and
270 * dio_complete.
1da177e4 271 */
cd1c584f 272static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async)
1da177e4 273{
6d544bb4
ZB
274 ssize_t transferred = 0;
275
8459d86a
ZB
276 /*
277 * AIO submission can race with bio completion to get here while
278 * expecting to have the last io completed by bio completion.
279 * In that case -EIOCBQUEUED is in fact not an error we want
280 * to preserve through this call.
281 */
282 if (ret == -EIOCBQUEUED)
283 ret = 0;
284
6d544bb4
ZB
285 if (dio->result) {
286 transferred = dio->result;
287
288 /* Check for short read case */
289 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
290 transferred = dio->i_size - offset;
291 }
292
6d544bb4
ZB
293 if (ret == 0)
294 ret = dio->page_errors;
295 if (ret == 0)
296 ret = dio->io_error;
297 if (ret == 0)
298 ret = transferred;
299
40e2e973
CH
300 if (dio->end_io && dio->result) {
301 dio->end_io(dio->iocb, offset, transferred,
302 dio->map_bh.b_private, ret, is_async);
72c5052d
CH
303 } else {
304 if (is_async)
305 aio_complete(dio->iocb, ret, 0);
306 inode_dio_done(dio->inode);
40e2e973
CH
307 }
308
6d544bb4 309 return ret;
1da177e4
LT
310}
311
1da177e4
LT
312static int dio_bio_complete(struct dio *dio, struct bio *bio);
313/*
314 * Asynchronous IO callback.
315 */
6712ecf8 316static void dio_bio_end_aio(struct bio *bio, int error)
1da177e4
LT
317{
318 struct dio *dio = bio->bi_private;
5eb6c7a2
ZB
319 unsigned long remaining;
320 unsigned long flags;
1da177e4 321
1da177e4
LT
322 /* cleanup the bio */
323 dio_bio_complete(dio, bio);
0273201e 324
5eb6c7a2
ZB
325 spin_lock_irqsave(&dio->bio_lock, flags);
326 remaining = --dio->refcount;
327 if (remaining == 1 && dio->waiter)
20258b2b 328 wake_up_process(dio->waiter);
5eb6c7a2 329 spin_unlock_irqrestore(&dio->bio_lock, flags);
20258b2b 330
8459d86a 331 if (remaining == 0) {
40e2e973 332 dio_complete(dio, dio->iocb->ki_pos, 0, true);
8459d86a
ZB
333 kfree(dio);
334 }
1da177e4
LT
335}
336
337/*
338 * The BIO completion handler simply queues the BIO up for the process-context
339 * handler.
340 *
341 * During I/O bi_private points at the dio. After I/O, bi_private is used to
342 * implement a singly-linked list of completed BIOs, at dio->bio_list.
343 */
6712ecf8 344static void dio_bio_end_io(struct bio *bio, int error)
1da177e4
LT
345{
346 struct dio *dio = bio->bi_private;
347 unsigned long flags;
348
1da177e4
LT
349 spin_lock_irqsave(&dio->bio_lock, flags);
350 bio->bi_private = dio->bio_list;
351 dio->bio_list = bio;
5eb6c7a2 352 if (--dio->refcount == 1 && dio->waiter)
1da177e4
LT
353 wake_up_process(dio->waiter);
354 spin_unlock_irqrestore(&dio->bio_lock, flags);
1da177e4
LT
355}
356
facd07b0
JB
357/**
358 * dio_end_io - handle the end io action for the given bio
359 * @bio: The direct io bio thats being completed
360 * @error: Error if there was one
361 *
362 * This is meant to be called by any filesystem that uses their own dio_submit_t
363 * so that the DIO specific endio actions are dealt with after the filesystem
364 * has done it's completion work.
365 */
366void dio_end_io(struct bio *bio, int error)
367{
368 struct dio *dio = bio->bi_private;
369
370 if (dio->is_async)
371 dio_bio_end_aio(bio, error);
372 else
373 dio_bio_end_io(bio, error);
374}
375EXPORT_SYMBOL_GPL(dio_end_io);
376
20d9600c 377static void
eb28be2b
AK
378dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
379 struct block_device *bdev,
380 sector_t first_sector, int nr_vecs)
1da177e4
LT
381{
382 struct bio *bio;
383
20d9600c
DD
384 /*
385 * bio_alloc() is guaranteed to return a bio when called with
386 * __GFP_WAIT and we request a valid number of vectors.
387 */
1da177e4 388 bio = bio_alloc(GFP_KERNEL, nr_vecs);
1da177e4
LT
389
390 bio->bi_bdev = bdev;
391 bio->bi_sector = first_sector;
392 if (dio->is_async)
393 bio->bi_end_io = dio_bio_end_aio;
394 else
395 bio->bi_end_io = dio_bio_end_io;
396
eb28be2b
AK
397 sdio->bio = bio;
398 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
1da177e4
LT
399}
400
401/*
402 * In the AIO read case we speculatively dirty the pages before starting IO.
403 * During IO completion, any of these pages which happen to have been written
404 * back will be redirtied by bio_check_pages_dirty().
0273201e
ZB
405 *
406 * bios hold a dio reference between submit_bio and ->end_io.
1da177e4 407 */
eb28be2b 408static void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
1da177e4 409{
eb28be2b 410 struct bio *bio = sdio->bio;
5eb6c7a2 411 unsigned long flags;
1da177e4
LT
412
413 bio->bi_private = dio;
5eb6c7a2
ZB
414
415 spin_lock_irqsave(&dio->bio_lock, flags);
416 dio->refcount++;
417 spin_unlock_irqrestore(&dio->bio_lock, flags);
418
1da177e4
LT
419 if (dio->is_async && dio->rw == READ)
420 bio_set_pages_dirty(bio);
5eb6c7a2 421
eb28be2b
AK
422 if (sdio->submit_io)
423 sdio->submit_io(dio->rw, bio, dio->inode,
424 sdio->logical_offset_in_bio);
facd07b0
JB
425 else
426 submit_bio(dio->rw, bio);
1da177e4 427
eb28be2b
AK
428 sdio->bio = NULL;
429 sdio->boundary = 0;
430 sdio->logical_offset_in_bio = 0;
1da177e4
LT
431}
432
433/*
434 * Release any resources in case of a failure
435 */
eb28be2b 436static void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
1da177e4 437{
eb28be2b
AK
438 while (dio_pages_present(sdio))
439 page_cache_release(dio_get_page(dio, sdio));
1da177e4
LT
440}
441
442/*
0273201e
ZB
443 * Wait for the next BIO to complete. Remove it and return it. NULL is
444 * returned once all BIOs have been completed. This must only be called once
445 * all bios have been issued so that dio->refcount can only decrease. This
446 * requires that that the caller hold a reference on the dio.
1da177e4
LT
447 */
448static struct bio *dio_await_one(struct dio *dio)
449{
450 unsigned long flags;
0273201e 451 struct bio *bio = NULL;
1da177e4
LT
452
453 spin_lock_irqsave(&dio->bio_lock, flags);
5eb6c7a2
ZB
454
455 /*
456 * Wait as long as the list is empty and there are bios in flight. bio
457 * completion drops the count, maybe adds to the list, and wakes while
458 * holding the bio_lock so we don't need set_current_state()'s barrier
459 * and can call it after testing our condition.
460 */
461 while (dio->refcount > 1 && dio->bio_list == NULL) {
462 __set_current_state(TASK_UNINTERRUPTIBLE);
463 dio->waiter = current;
464 spin_unlock_irqrestore(&dio->bio_lock, flags);
465 io_schedule();
466 /* wake up sets us TASK_RUNNING */
467 spin_lock_irqsave(&dio->bio_lock, flags);
468 dio->waiter = NULL;
1da177e4 469 }
0273201e
ZB
470 if (dio->bio_list) {
471 bio = dio->bio_list;
472 dio->bio_list = bio->bi_private;
473 }
1da177e4
LT
474 spin_unlock_irqrestore(&dio->bio_lock, flags);
475 return bio;
476}
477
478/*
479 * Process one completed BIO. No locks are held.
480 */
481static int dio_bio_complete(struct dio *dio, struct bio *bio)
482{
483 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
484 struct bio_vec *bvec = bio->bi_io_vec;
485 int page_no;
486
487 if (!uptodate)
174e27c6 488 dio->io_error = -EIO;
1da177e4
LT
489
490 if (dio->is_async && dio->rw == READ) {
491 bio_check_pages_dirty(bio); /* transfers ownership */
492 } else {
493 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
494 struct page *page = bvec[page_no].bv_page;
495
496 if (dio->rw == READ && !PageCompound(page))
497 set_page_dirty_lock(page);
498 page_cache_release(page);
499 }
500 bio_put(bio);
501 }
1da177e4
LT
502 return uptodate ? 0 : -EIO;
503}
504
505/*
0273201e
ZB
506 * Wait on and process all in-flight BIOs. This must only be called once
507 * all bios have been issued so that the refcount can only decrease.
508 * This just waits for all bios to make it through dio_bio_complete. IO
beb7dd86 509 * errors are propagated through dio->io_error and should be propagated via
0273201e 510 * dio_complete().
1da177e4 511 */
6d544bb4 512static void dio_await_completion(struct dio *dio)
1da177e4 513{
0273201e
ZB
514 struct bio *bio;
515 do {
516 bio = dio_await_one(dio);
517 if (bio)
518 dio_bio_complete(dio, bio);
519 } while (bio);
1da177e4
LT
520}
521
522/*
523 * A really large O_DIRECT read or write can generate a lot of BIOs. So
524 * to keep the memory consumption sane we periodically reap any completed BIOs
525 * during the BIO generation phase.
526 *
527 * This also helps to limit the peak amount of pinned userspace memory.
528 */
eb28be2b 529static int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
1da177e4
LT
530{
531 int ret = 0;
532
eb28be2b 533 if (sdio->reap_counter++ >= 64) {
1da177e4
LT
534 while (dio->bio_list) {
535 unsigned long flags;
536 struct bio *bio;
537 int ret2;
538
539 spin_lock_irqsave(&dio->bio_lock, flags);
540 bio = dio->bio_list;
541 dio->bio_list = bio->bi_private;
542 spin_unlock_irqrestore(&dio->bio_lock, flags);
543 ret2 = dio_bio_complete(dio, bio);
544 if (ret == 0)
545 ret = ret2;
546 }
eb28be2b 547 sdio->reap_counter = 0;
1da177e4
LT
548 }
549 return ret;
550}
551
552/*
553 * Call into the fs to map some more disk blocks. We record the current number
eb28be2b 554 * of available blocks at sdio->blocks_available. These are in units of the
1da177e4
LT
555 * fs blocksize, (1 << inode->i_blkbits).
556 *
557 * The fs is allowed to map lots of blocks at once. If it wants to do that,
558 * it uses the passed inode-relative block number as the file offset, as usual.
559 *
1d8fa7a2 560 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
1da177e4
LT
561 * has remaining to do. The fs should not map more than this number of blocks.
562 *
563 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
564 * indicate how much contiguous disk space has been made available at
565 * bh->b_blocknr.
566 *
567 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
568 * This isn't very efficient...
569 *
570 * In the case of filesystem holes: the fs may return an arbitrarily-large
571 * hole by returning an appropriate value in b_size and by clearing
572 * buffer_mapped(). However the direct-io code will only process holes one
1d8fa7a2 573 * block at a time - it will repeatedly call get_block() as it walks the hole.
1da177e4 574 */
eb28be2b 575static int get_more_blocks(struct dio *dio, struct dio_submit *sdio)
1da177e4
LT
576{
577 int ret;
578 struct buffer_head *map_bh = &dio->map_bh;
579 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
580 unsigned long fs_count; /* Number of filesystem-sized blocks */
581 unsigned long dio_count;/* Number of dio_block-sized blocks */
582 unsigned long blkmask;
583 int create;
584
585 /*
586 * If there was a memory error and we've overwritten all the
587 * mapped blocks then we can now return that memory error
588 */
589 ret = dio->page_errors;
590 if (ret == 0) {
eb28be2b
AK
591 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
592 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
593 dio_count = sdio->final_block_in_request - sdio->block_in_file;
594 fs_count = dio_count >> sdio->blkfactor;
595 blkmask = (1 << sdio->blkfactor) - 1;
1da177e4
LT
596 if (dio_count & blkmask)
597 fs_count++;
598
3c674e74
NS
599 map_bh->b_state = 0;
600 map_bh->b_size = fs_count << dio->inode->i_blkbits;
601
5fe878ae
CH
602 /*
603 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
604 * forbid block creations: only overwrites are permitted.
605 * We will return early to the caller once we see an
606 * unmapped buffer head returned, and the caller will fall
607 * back to buffered I/O.
608 *
609 * Otherwise the decision is left to the get_blocks method,
610 * which may decide to handle it or also return an unmapped
611 * buffer head.
612 */
b31dc66a 613 create = dio->rw & WRITE;
5fe878ae 614 if (dio->flags & DIO_SKIP_HOLES) {
eb28be2b
AK
615 if (sdio->block_in_file < (i_size_read(dio->inode) >>
616 sdio->blkbits))
1da177e4 617 create = 0;
1da177e4 618 }
3c674e74 619
eb28be2b 620 ret = (*sdio->get_block)(dio->inode, fs_startblk,
1da177e4
LT
621 map_bh, create);
622 }
623 return ret;
624}
625
626/*
627 * There is no bio. Make one now.
628 */
eb28be2b
AK
629static int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
630 sector_t start_sector)
1da177e4
LT
631{
632 sector_t sector;
633 int ret, nr_pages;
634
eb28be2b 635 ret = dio_bio_reap(dio, sdio);
1da177e4
LT
636 if (ret)
637 goto out;
eb28be2b
AK
638 sector = start_sector << (sdio->blkbits - 9);
639 nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
20d9600c 640 nr_pages = min(nr_pages, BIO_MAX_PAGES);
1da177e4 641 BUG_ON(nr_pages <= 0);
eb28be2b
AK
642 dio_bio_alloc(dio, sdio, dio->map_bh.b_bdev, sector, nr_pages);
643 sdio->boundary = 0;
1da177e4
LT
644out:
645 return ret;
646}
647
648/*
649 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
650 * that was successful then update final_block_in_bio and take a ref against
651 * the just-added page.
652 *
653 * Return zero on success. Non-zero means the caller needs to start a new BIO.
654 */
eb28be2b 655static int dio_bio_add_page(struct dio_submit *sdio)
1da177e4
LT
656{
657 int ret;
658
eb28be2b
AK
659 ret = bio_add_page(sdio->bio, sdio->cur_page,
660 sdio->cur_page_len, sdio->cur_page_offset);
661 if (ret == sdio->cur_page_len) {
1da177e4
LT
662 /*
663 * Decrement count only, if we are done with this page
664 */
eb28be2b
AK
665 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
666 sdio->pages_in_io--;
667 page_cache_get(sdio->cur_page);
668 sdio->final_block_in_bio = sdio->cur_page_block +
669 (sdio->cur_page_len >> sdio->blkbits);
1da177e4
LT
670 ret = 0;
671 } else {
672 ret = 1;
673 }
674 return ret;
675}
676
677/*
678 * Put cur_page under IO. The section of cur_page which is described by
679 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
680 * starts on-disk at cur_page_block.
681 *
682 * We take a ref against the page here (on behalf of its presence in the bio).
683 *
684 * The caller of this function is responsible for removing cur_page from the
685 * dio, and for dropping the refcount which came from that presence.
686 */
eb28be2b 687static int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio)
1da177e4
LT
688{
689 int ret = 0;
690
eb28be2b
AK
691 if (sdio->bio) {
692 loff_t cur_offset = sdio->cur_page_fs_offset;
693 loff_t bio_next_offset = sdio->logical_offset_in_bio +
694 sdio->bio->bi_size;
c2c6ca41 695
1da177e4 696 /*
c2c6ca41
JB
697 * See whether this new request is contiguous with the old.
698 *
f0940cee
NK
699 * Btrfs cannot handle having logically non-contiguous requests
700 * submitted. For example if you have
c2c6ca41
JB
701 *
702 * Logical: [0-4095][HOLE][8192-12287]
f0940cee 703 * Physical: [0-4095] [4096-8191]
c2c6ca41
JB
704 *
705 * We cannot submit those pages together as one BIO. So if our
706 * current logical offset in the file does not equal what would
707 * be the next logical offset in the bio, submit the bio we
708 * have.
1da177e4 709 */
eb28be2b 710 if (sdio->final_block_in_bio != sdio->cur_page_block ||
c2c6ca41 711 cur_offset != bio_next_offset)
eb28be2b 712 dio_bio_submit(dio, sdio);
1da177e4
LT
713 /*
714 * Submit now if the underlying fs is about to perform a
715 * metadata read
716 */
eb28be2b
AK
717 else if (sdio->boundary)
718 dio_bio_submit(dio, sdio);
1da177e4
LT
719 }
720
eb28be2b
AK
721 if (sdio->bio == NULL) {
722 ret = dio_new_bio(dio, sdio, sdio->cur_page_block);
1da177e4
LT
723 if (ret)
724 goto out;
725 }
726
eb28be2b
AK
727 if (dio_bio_add_page(sdio) != 0) {
728 dio_bio_submit(dio, sdio);
729 ret = dio_new_bio(dio, sdio, sdio->cur_page_block);
1da177e4 730 if (ret == 0) {
eb28be2b 731 ret = dio_bio_add_page(sdio);
1da177e4
LT
732 BUG_ON(ret != 0);
733 }
734 }
735out:
736 return ret;
737}
738
739/*
740 * An autonomous function to put a chunk of a page under deferred IO.
741 *
742 * The caller doesn't actually know (or care) whether this piece of page is in
743 * a BIO, or is under IO or whatever. We just take care of all possible
744 * situations here. The separation between the logic of do_direct_IO() and
745 * that of submit_page_section() is important for clarity. Please don't break.
746 *
747 * The chunk of page starts on-disk at blocknr.
748 *
749 * We perform deferred IO, by recording the last-submitted page inside our
750 * private part of the dio structure. If possible, we just expand the IO
751 * across that page here.
752 *
753 * If that doesn't work out then we put the old page into the bio and add this
754 * page to the dio instead.
755 */
756static int
eb28be2b 757submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
1da177e4
LT
758 unsigned offset, unsigned len, sector_t blocknr)
759{
760 int ret = 0;
761
98c4d57d
AM
762 if (dio->rw & WRITE) {
763 /*
764 * Read accounting is performed in submit_bio()
765 */
766 task_io_account_write(len);
767 }
768
1da177e4
LT
769 /*
770 * Can we just grow the current page's presence in the dio?
771 */
eb28be2b
AK
772 if (sdio->cur_page == page &&
773 sdio->cur_page_offset + sdio->cur_page_len == offset &&
774 sdio->cur_page_block +
775 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
776 sdio->cur_page_len += len;
1da177e4
LT
777
778 /*
eb28be2b 779 * If sdio->boundary then we want to schedule the IO now to
1da177e4
LT
780 * avoid metadata seeks.
781 */
eb28be2b
AK
782 if (sdio->boundary) {
783 ret = dio_send_cur_page(dio, sdio);
784 page_cache_release(sdio->cur_page);
785 sdio->cur_page = NULL;
1da177e4
LT
786 }
787 goto out;
788 }
789
790 /*
791 * If there's a deferred page already there then send it.
792 */
eb28be2b
AK
793 if (sdio->cur_page) {
794 ret = dio_send_cur_page(dio, sdio);
795 page_cache_release(sdio->cur_page);
796 sdio->cur_page = NULL;
1da177e4
LT
797 if (ret)
798 goto out;
799 }
800
801 page_cache_get(page); /* It is in dio */
eb28be2b
AK
802 sdio->cur_page = page;
803 sdio->cur_page_offset = offset;
804 sdio->cur_page_len = len;
805 sdio->cur_page_block = blocknr;
806 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
1da177e4
LT
807out:
808 return ret;
809}
810
811/*
812 * Clean any dirty buffers in the blockdev mapping which alias newly-created
813 * file blocks. Only called for S_ISREG files - blockdevs do not set
814 * buffer_new
815 */
816static void clean_blockdev_aliases(struct dio *dio)
817{
818 unsigned i;
819 unsigned nblocks;
820
821 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
822
823 for (i = 0; i < nblocks; i++) {
824 unmap_underlying_metadata(dio->map_bh.b_bdev,
825 dio->map_bh.b_blocknr + i);
826 }
827}
828
829/*
830 * If we are not writing the entire block and get_block() allocated
831 * the block for us, we need to fill-in the unused portion of the
832 * block with zeros. This happens only if user-buffer, fileoffset or
833 * io length is not filesystem block-size multiple.
834 *
835 * `end' is zero if we're doing the start of the IO, 1 at the end of the
836 * IO.
837 */
eb28be2b 838static void dio_zero_block(struct dio *dio, struct dio_submit *sdio, int end)
1da177e4
LT
839{
840 unsigned dio_blocks_per_fs_block;
841 unsigned this_chunk_blocks; /* In dio_blocks */
842 unsigned this_chunk_bytes;
843 struct page *page;
844
eb28be2b
AK
845 sdio->start_zero_done = 1;
846 if (!sdio->blkfactor || !buffer_new(&dio->map_bh))
1da177e4
LT
847 return;
848
eb28be2b
AK
849 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
850 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
1da177e4
LT
851
852 if (!this_chunk_blocks)
853 return;
854
855 /*
856 * We need to zero out part of an fs block. It is either at the
857 * beginning or the end of the fs block.
858 */
859 if (end)
860 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
861
eb28be2b 862 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
1da177e4 863
557ed1fa 864 page = ZERO_PAGE(0);
eb28be2b
AK
865 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
866 sdio->next_block_for_io))
1da177e4
LT
867 return;
868
eb28be2b 869 sdio->next_block_for_io += this_chunk_blocks;
1da177e4
LT
870}
871
872/*
873 * Walk the user pages, and the file, mapping blocks to disk and generating
874 * a sequence of (page,offset,len,block) mappings. These mappings are injected
875 * into submit_page_section(), which takes care of the next stage of submission
876 *
877 * Direct IO against a blockdev is different from a file. Because we can
878 * happily perform page-sized but 512-byte aligned IOs. It is important that
879 * blockdev IO be able to have fine alignment and large sizes.
880 *
1d8fa7a2 881 * So what we do is to permit the ->get_block function to populate bh.b_size
1da177e4
LT
882 * with the size of IO which is permitted at this offset and this i_blkbits.
883 *
884 * For best results, the blockdev should be set up with 512-byte i_blkbits and
1d8fa7a2 885 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
1da177e4
LT
886 * fine alignment but still allows this function to work in PAGE_SIZE units.
887 */
eb28be2b 888static int do_direct_IO(struct dio *dio, struct dio_submit *sdio)
1da177e4 889{
eb28be2b 890 const unsigned blkbits = sdio->blkbits;
1da177e4
LT
891 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
892 struct page *page;
893 unsigned block_in_page;
894 struct buffer_head *map_bh = &dio->map_bh;
895 int ret = 0;
896
897 /* The I/O can start at any block offset within the first page */
eb28be2b 898 block_in_page = sdio->first_block_in_page;
1da177e4 899
eb28be2b
AK
900 while (sdio->block_in_file < sdio->final_block_in_request) {
901 page = dio_get_page(dio, sdio);
1da177e4
LT
902 if (IS_ERR(page)) {
903 ret = PTR_ERR(page);
904 goto out;
905 }
906
907 while (block_in_page < blocks_per_page) {
908 unsigned offset_in_page = block_in_page << blkbits;
909 unsigned this_chunk_bytes; /* # of bytes mapped */
910 unsigned this_chunk_blocks; /* # of blocks */
911 unsigned u;
912
eb28be2b 913 if (sdio->blocks_available == 0) {
1da177e4
LT
914 /*
915 * Need to go and map some more disk
916 */
917 unsigned long blkmask;
918 unsigned long dio_remainder;
919
eb28be2b 920 ret = get_more_blocks(dio, sdio);
1da177e4
LT
921 if (ret) {
922 page_cache_release(page);
923 goto out;
924 }
925 if (!buffer_mapped(map_bh))
926 goto do_holes;
927
eb28be2b
AK
928 sdio->blocks_available =
929 map_bh->b_size >> sdio->blkbits;
930 sdio->next_block_for_io =
931 map_bh->b_blocknr << sdio->blkfactor;
1da177e4
LT
932 if (buffer_new(map_bh))
933 clean_blockdev_aliases(dio);
934
eb28be2b 935 if (!sdio->blkfactor)
1da177e4
LT
936 goto do_holes;
937
eb28be2b
AK
938 blkmask = (1 << sdio->blkfactor) - 1;
939 dio_remainder = (sdio->block_in_file & blkmask);
1da177e4
LT
940
941 /*
942 * If we are at the start of IO and that IO
943 * starts partway into a fs-block,
944 * dio_remainder will be non-zero. If the IO
945 * is a read then we can simply advance the IO
946 * cursor to the first block which is to be
947 * read. But if the IO is a write and the
948 * block was newly allocated we cannot do that;
949 * the start of the fs block must be zeroed out
950 * on-disk
951 */
952 if (!buffer_new(map_bh))
eb28be2b
AK
953 sdio->next_block_for_io += dio_remainder;
954 sdio->blocks_available -= dio_remainder;
1da177e4
LT
955 }
956do_holes:
957 /* Handle holes */
958 if (!buffer_mapped(map_bh)) {
35dc8161 959 loff_t i_size_aligned;
1da177e4
LT
960
961 /* AKPM: eargh, -ENOTBLK is a hack */
b31dc66a 962 if (dio->rw & WRITE) {
1da177e4
LT
963 page_cache_release(page);
964 return -ENOTBLK;
965 }
966
35dc8161
JM
967 /*
968 * Be sure to account for a partial block as the
969 * last block in the file
970 */
971 i_size_aligned = ALIGN(i_size_read(dio->inode),
972 1 << blkbits);
eb28be2b 973 if (sdio->block_in_file >=
35dc8161 974 i_size_aligned >> blkbits) {
1da177e4
LT
975 /* We hit eof */
976 page_cache_release(page);
977 goto out;
978 }
eebd2aa3
CL
979 zero_user(page, block_in_page << blkbits,
980 1 << blkbits);
eb28be2b 981 sdio->block_in_file++;
1da177e4
LT
982 block_in_page++;
983 goto next_block;
984 }
985
986 /*
987 * If we're performing IO which has an alignment which
988 * is finer than the underlying fs, go check to see if
989 * we must zero out the start of this block.
990 */
eb28be2b
AK
991 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
992 dio_zero_block(dio, sdio, 0);
1da177e4
LT
993
994 /*
995 * Work out, in this_chunk_blocks, how much disk we
996 * can add to this page
997 */
eb28be2b 998 this_chunk_blocks = sdio->blocks_available;
1da177e4
LT
999 u = (PAGE_SIZE - offset_in_page) >> blkbits;
1000 if (this_chunk_blocks > u)
1001 this_chunk_blocks = u;
eb28be2b 1002 u = sdio->final_block_in_request - sdio->block_in_file;
1da177e4
LT
1003 if (this_chunk_blocks > u)
1004 this_chunk_blocks = u;
1005 this_chunk_bytes = this_chunk_blocks << blkbits;
1006 BUG_ON(this_chunk_bytes == 0);
1007
eb28be2b
AK
1008 sdio->boundary = buffer_boundary(map_bh);
1009 ret = submit_page_section(dio, sdio, page,
1010 offset_in_page,
1011 this_chunk_bytes,
1012 sdio->next_block_for_io);
1da177e4
LT
1013 if (ret) {
1014 page_cache_release(page);
1015 goto out;
1016 }
eb28be2b 1017 sdio->next_block_for_io += this_chunk_blocks;
1da177e4 1018
eb28be2b 1019 sdio->block_in_file += this_chunk_blocks;
1da177e4 1020 block_in_page += this_chunk_blocks;
eb28be2b 1021 sdio->blocks_available -= this_chunk_blocks;
1da177e4 1022next_block:
eb28be2b
AK
1023 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1024 if (sdio->block_in_file == sdio->final_block_in_request)
1da177e4
LT
1025 break;
1026 }
1027
1028 /* Drop the ref which was taken in get_user_pages() */
1029 page_cache_release(page);
1030 block_in_page = 0;
1031 }
1032out:
1033 return ret;
1034}
1035
1da177e4
LT
1036static ssize_t
1037direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
1038 const struct iovec *iov, loff_t offset, unsigned long nr_segs,
1d8fa7a2 1039 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
eb28be2b 1040 dio_submit_t submit_io, struct dio *dio, struct dio_submit *sdio)
1da177e4
LT
1041{
1042 unsigned long user_addr;
5eb6c7a2 1043 unsigned long flags;
1da177e4
LT
1044 int seg;
1045 ssize_t ret = 0;
1046 ssize_t ret2;
1047 size_t bytes;
1048
1da177e4
LT
1049 dio->inode = inode;
1050 dio->rw = rw;
eb28be2b
AK
1051 sdio->blkbits = blkbits;
1052 sdio->blkfactor = inode->i_blkbits - blkbits;
1053 sdio->block_in_file = offset >> blkbits;
1da177e4 1054
eb28be2b 1055 sdio->get_block = get_block;
1da177e4 1056 dio->end_io = end_io;
eb28be2b
AK
1057 sdio->submit_io = submit_io;
1058 sdio->final_block_in_bio = -1;
1059 sdio->next_block_for_io = -1;
1da177e4 1060
1da177e4 1061 dio->iocb = iocb;
29504ff3 1062 dio->i_size = i_size_read(inode);
1da177e4 1063
1da177e4 1064 spin_lock_init(&dio->bio_lock);
5eb6c7a2 1065 dio->refcount = 1;
1da177e4
LT
1066
1067 /*
1068 * In case of non-aligned buffers, we may need 2 more
1069 * pages since we need to zero out first and last block.
1070 */
eb28be2b
AK
1071 if (unlikely(sdio->blkfactor))
1072 sdio->pages_in_io = 2;
1da177e4
LT
1073
1074 for (seg = 0; seg < nr_segs; seg++) {
1075 user_addr = (unsigned long)iov[seg].iov_base;
eb28be2b 1076 sdio->pages_in_io +=
1da177e4
LT
1077 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
1078 - user_addr/PAGE_SIZE);
1079 }
1080
1081 for (seg = 0; seg < nr_segs; seg++) {
1082 user_addr = (unsigned long)iov[seg].iov_base;
eb28be2b 1083 sdio->size += bytes = iov[seg].iov_len;
1da177e4
LT
1084
1085 /* Index into the first page of the first block */
eb28be2b
AK
1086 sdio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1087 sdio->final_block_in_request = sdio->block_in_file +
1da177e4
LT
1088 (bytes >> blkbits);
1089 /* Page fetching state */
eb28be2b
AK
1090 sdio->head = 0;
1091 sdio->tail = 0;
1092 sdio->curr_page = 0;
1da177e4 1093
eb28be2b 1094 sdio->total_pages = 0;
1da177e4 1095 if (user_addr & (PAGE_SIZE-1)) {
eb28be2b 1096 sdio->total_pages++;
1da177e4
LT
1097 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1098 }
eb28be2b
AK
1099 sdio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1100 sdio->curr_user_address = user_addr;
1da177e4 1101
eb28be2b 1102 ret = do_direct_IO(dio, sdio);
1da177e4
LT
1103
1104 dio->result += iov[seg].iov_len -
eb28be2b 1105 ((sdio->final_block_in_request - sdio->block_in_file) <<
1da177e4
LT
1106 blkbits);
1107
1108 if (ret) {
eb28be2b 1109 dio_cleanup(dio, sdio);
1da177e4
LT
1110 break;
1111 }
1112 } /* end iovec loop */
1113
facd07b0 1114 if (ret == -ENOTBLK) {
1da177e4
LT
1115 /*
1116 * The remaining part of the request will be
1117 * be handled by buffered I/O when we return
1118 */
1119 ret = 0;
1120 }
1121 /*
1122 * There may be some unwritten disk at the end of a part-written
1123 * fs-block-sized block. Go zero that now.
1124 */
eb28be2b 1125 dio_zero_block(dio, sdio, 1);
1da177e4 1126
eb28be2b
AK
1127 if (sdio->cur_page) {
1128 ret2 = dio_send_cur_page(dio, sdio);
1da177e4
LT
1129 if (ret == 0)
1130 ret = ret2;
eb28be2b
AK
1131 page_cache_release(sdio->cur_page);
1132 sdio->cur_page = NULL;
1da177e4 1133 }
eb28be2b
AK
1134 if (sdio->bio)
1135 dio_bio_submit(dio, sdio);
1da177e4
LT
1136
1137 /*
1138 * It is possible that, we return short IO due to end of file.
1139 * In that case, we need to release all the pages we got hold on.
1140 */
eb28be2b 1141 dio_cleanup(dio, sdio);
1da177e4
LT
1142
1143 /*
1144 * All block lookups have been performed. For READ requests
1b1dcc1b 1145 * we can let i_mutex go now that its achieved its purpose
1da177e4
LT
1146 * of protecting us from looking up uninitialized blocks.
1147 */
5fe878ae 1148 if (rw == READ && (dio->flags & DIO_LOCKING))
1b1dcc1b 1149 mutex_unlock(&dio->inode->i_mutex);
1da177e4
LT
1150
1151 /*
8459d86a
ZB
1152 * The only time we want to leave bios in flight is when a successful
1153 * partial aio read or full aio write have been setup. In that case
1154 * bio completion will call aio_complete. The only time it's safe to
1155 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1156 * This had *better* be the only place that raises -EIOCBQUEUED.
1da177e4 1157 */
8459d86a
ZB
1158 BUG_ON(ret == -EIOCBQUEUED);
1159 if (dio->is_async && ret == 0 && dio->result &&
eb28be2b 1160 ((rw & READ) || (dio->result == sdio->size)))
8459d86a 1161 ret = -EIOCBQUEUED;
0273201e 1162
7eaceacc 1163 if (ret != -EIOCBQUEUED)
6d544bb4 1164 dio_await_completion(dio);
1da177e4 1165
8459d86a
ZB
1166 /*
1167 * Sync will always be dropping the final ref and completing the
5eb6c7a2
ZB
1168 * operation. AIO can if it was a broken operation described above or
1169 * in fact if all the bios race to complete before we get here. In
1170 * that case dio_complete() translates the EIOCBQUEUED into the proper
1171 * return code that the caller will hand to aio_complete().
1172 *
1173 * This is managed by the bio_lock instead of being an atomic_t so that
1174 * completion paths can drop their ref and use the remaining count to
1175 * decide to wake the submission path atomically.
8459d86a 1176 */
5eb6c7a2
ZB
1177 spin_lock_irqsave(&dio->bio_lock, flags);
1178 ret2 = --dio->refcount;
1179 spin_unlock_irqrestore(&dio->bio_lock, flags);
fcb82f88 1180
5eb6c7a2 1181 if (ret2 == 0) {
40e2e973 1182 ret = dio_complete(dio, offset, ret, false);
8459d86a
ZB
1183 kfree(dio);
1184 } else
1185 BUG_ON(ret != -EIOCBQUEUED);
1da177e4 1186
1da177e4
LT
1187 return ret;
1188}
1189
eafdc7d1
CH
1190/*
1191 * This is a library function for use by filesystem drivers.
1192 *
1193 * The locking rules are governed by the flags parameter:
1194 * - if the flags value contains DIO_LOCKING we use a fancy locking
1195 * scheme for dumb filesystems.
1196 * For writes this function is called under i_mutex and returns with
1197 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1198 * taken and dropped again before returning.
eafdc7d1
CH
1199 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1200 * internal locking but rather rely on the filesystem to synchronize
1201 * direct I/O reads/writes versus each other and truncate.
df2d6f26
CH
1202 *
1203 * To help with locking against truncate we incremented the i_dio_count
1204 * counter before starting direct I/O, and decrement it once we are done.
1205 * Truncate can wait for it to reach zero to provide exclusion. It is
1206 * expected that filesystem provide exclusion between new direct I/O
1207 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1208 * but other filesystems need to take care of this on their own.
eafdc7d1 1209 */
1da177e4 1210ssize_t
eafdc7d1 1211__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1da177e4 1212 struct block_device *bdev, const struct iovec *iov, loff_t offset,
1d8fa7a2 1213 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
facd07b0 1214 dio_submit_t submit_io, int flags)
1da177e4
LT
1215{
1216 int seg;
1217 size_t size;
1218 unsigned long addr;
1219 unsigned blkbits = inode->i_blkbits;
1220 unsigned bdev_blkbits = 0;
1221 unsigned blocksize_mask = (1 << blkbits) - 1;
1222 ssize_t retval = -EINVAL;
1223 loff_t end = offset;
1224 struct dio *dio;
eb28be2b 1225 struct dio_submit sdio = { 0, };
1da177e4
LT
1226
1227 if (rw & WRITE)
721a9602 1228 rw = WRITE_ODIRECT;
1da177e4
LT
1229
1230 if (bdev)
e1defc4f 1231 bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev));
1da177e4
LT
1232
1233 if (offset & blocksize_mask) {
1234 if (bdev)
1235 blkbits = bdev_blkbits;
1236 blocksize_mask = (1 << blkbits) - 1;
1237 if (offset & blocksize_mask)
1238 goto out;
1239 }
1240
1241 /* Check the memory alignment. Blocks cannot straddle pages */
1242 for (seg = 0; seg < nr_segs; seg++) {
1243 addr = (unsigned long)iov[seg].iov_base;
1244 size = iov[seg].iov_len;
1245 end += size;
1246 if ((addr & blocksize_mask) || (size & blocksize_mask)) {
1247 if (bdev)
1248 blkbits = bdev_blkbits;
1249 blocksize_mask = (1 << blkbits) - 1;
1250 if ((addr & blocksize_mask) || (size & blocksize_mask))
1251 goto out;
1252 }
1253 }
1254
f9b5570d
CH
1255 /* watch out for a 0 len io from a tricksy fs */
1256 if (rw == READ && end == offset)
1257 return 0;
1258
23aee091 1259 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1da177e4
LT
1260 retval = -ENOMEM;
1261 if (!dio)
1262 goto out;
23aee091
JM
1263 /*
1264 * Believe it or not, zeroing out the page array caused a .5%
1265 * performance regression in a database benchmark. So, we take
1266 * care to only zero out what's needed.
1267 */
1268 memset(dio, 0, offsetof(struct dio, pages));
1da177e4 1269
5fe878ae
CH
1270 dio->flags = flags;
1271 if (dio->flags & DIO_LOCKING) {
f9b5570d 1272 if (rw == READ) {
5fe878ae
CH
1273 struct address_space *mapping =
1274 iocb->ki_filp->f_mapping;
1da177e4 1275
5fe878ae
CH
1276 /* will be released by direct_io_worker */
1277 mutex_lock(&inode->i_mutex);
1da177e4
LT
1278
1279 retval = filemap_write_and_wait_range(mapping, offset,
1280 end - 1);
1281 if (retval) {
5fe878ae 1282 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1283 kfree(dio);
1284 goto out;
1285 }
1da177e4 1286 }
1da177e4
LT
1287 }
1288
df2d6f26
CH
1289 /*
1290 * Will be decremented at I/O completion time.
1291 */
1292 atomic_inc(&inode->i_dio_count);
1293
1da177e4
LT
1294 /*
1295 * For file extending writes updating i_size before data
1296 * writeouts complete can expose uninitialized blocks. So
1297 * even for AIO, we need to wait for i/o to complete before
1298 * returning in this case.
1299 */
b31dc66a 1300 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1da177e4
LT
1301 (end > i_size_read(inode)));
1302
1303 retval = direct_io_worker(rw, iocb, inode, iov, offset,
facd07b0 1304 nr_segs, blkbits, get_block, end_io,
eb28be2b 1305 submit_io, dio, &sdio);
1da177e4 1306
7bb46a67 1307out:
1308 return retval;
1309}
1da177e4 1310EXPORT_SYMBOL(__blockdev_direct_IO);