]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/userfaultfd.c
mm/cgroup: avoid panic when init with low memory
[mirror_ubuntu-artful-kernel.git] / fs / userfaultfd.c
CommitLineData
86039bd3
AA
1/*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
9cd75c3c 15#include <linux/list.h>
86039bd3 16#include <linux/hashtable.h>
174cd4b1 17#include <linux/sched/signal.h>
6e84f315 18#include <linux/sched/mm.h>
86039bd3
AA
19#include <linux/mm.h>
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
cab350af 31#include <linux/hugetlb.h>
86039bd3 32
3004ec9c
AA
33static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
86039bd3
AA
35enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38};
39
3004ec9c
AA
40/*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
86039bd3 44struct userfaultfd_ctx {
15b726ef
AA
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
86039bd3
AA
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
9cd75c3c
PE
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
2c5b7e1b
AA
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
3004ec9c
AA
55 /* pseudo fd refcounting */
56 atomic_t refcount;
86039bd3
AA
57 /* userfaultfd syscall flags */
58 unsigned int flags;
9cd75c3c
PE
59 /* features requested from the userspace */
60 unsigned int features;
86039bd3
AA
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67};
68
893e26e6
PE
69struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73};
74
897ab3e0
MR
75struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80};
81
86039bd3 82struct userfaultfd_wait_queue {
a9b85f94 83 struct uffd_msg msg;
86039bd3 84 wait_queue_t wq;
86039bd3 85 struct userfaultfd_ctx *ctx;
15a77c6f 86 bool waken;
86039bd3
AA
87};
88
89struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92};
93
94static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
95 int wake_flags, void *key)
96{
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
86039bd3
AA
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
a9b85f94
AA
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 109 goto out;
15a77c6f
AA
110 WRITE_ONCE(uwq->waken, true);
111 /*
112 * The implicit smp_mb__before_spinlock in try_to_wake_up()
113 * renders uwq->waken visible to other CPUs before the task is
114 * waken.
115 */
86039bd3
AA
116 ret = wake_up_state(wq->private, mode);
117 if (ret)
118 /*
119 * Wake only once, autoremove behavior.
120 *
121 * After the effect of list_del_init is visible to the
122 * other CPUs, the waitqueue may disappear from under
123 * us, see the !list_empty_careful() in
124 * handle_userfault(). try_to_wake_up() has an
125 * implicit smp_mb__before_spinlock, and the
126 * wq->private is read before calling the extern
127 * function "wake_up_state" (which in turns calls
128 * try_to_wake_up). While the spin_lock;spin_unlock;
129 * wouldn't be enough, the smp_mb__before_spinlock is
130 * enough to avoid an explicit smp_mb() here.
131 */
132 list_del_init(&wq->task_list);
133out:
134 return ret;
135}
136
137/**
138 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
139 * context.
140 * @ctx: [in] Pointer to the userfaultfd context.
141 *
142 * Returns: In case of success, returns not zero.
143 */
144static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
145{
146 if (!atomic_inc_not_zero(&ctx->refcount))
147 BUG();
148}
149
150/**
151 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
152 * context.
153 * @ctx: [in] Pointer to userfaultfd context.
154 *
155 * The userfaultfd context reference must have been previously acquired either
156 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
157 */
158static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
159{
160 if (atomic_dec_and_test(&ctx->refcount)) {
161 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
162 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
163 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
164 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
165 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
166 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
167 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
168 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 169 mmdrop(ctx->mm);
3004ec9c 170 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
171 }
172}
173
a9b85f94 174static inline void msg_init(struct uffd_msg *msg)
86039bd3 175{
a9b85f94
AA
176 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
177 /*
178 * Must use memset to zero out the paddings or kernel data is
179 * leaked to userland.
180 */
181 memset(msg, 0, sizeof(struct uffd_msg));
182}
183
184static inline struct uffd_msg userfault_msg(unsigned long address,
185 unsigned int flags,
186 unsigned long reason)
187{
188 struct uffd_msg msg;
189 msg_init(&msg);
190 msg.event = UFFD_EVENT_PAGEFAULT;
191 msg.arg.pagefault.address = address;
86039bd3
AA
192 if (flags & FAULT_FLAG_WRITE)
193 /*
a4605a61 194 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
a9b85f94
AA
195 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
196 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
197 * was a read fault, otherwise if set it means it's
198 * a write fault.
86039bd3 199 */
a9b85f94 200 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3
AA
201 if (reason & VM_UFFD_WP)
202 /*
a9b85f94
AA
203 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
204 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
205 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
206 * a missing fault, otherwise if set it means it's a
207 * write protect fault.
86039bd3 208 */
a9b85f94
AA
209 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
210 return msg;
86039bd3
AA
211}
212
369cd212
MK
213#ifdef CONFIG_HUGETLB_PAGE
214/*
215 * Same functionality as userfaultfd_must_wait below with modifications for
216 * hugepmd ranges.
217 */
218static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
219 unsigned long address,
220 unsigned long flags,
221 unsigned long reason)
222{
223 struct mm_struct *mm = ctx->mm;
224 pte_t *pte;
225 bool ret = true;
226
227 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
228
229 pte = huge_pte_offset(mm, address);
230 if (!pte)
231 goto out;
232
233 ret = false;
234
235 /*
236 * Lockless access: we're in a wait_event so it's ok if it
237 * changes under us.
238 */
239 if (huge_pte_none(*pte))
240 ret = true;
241 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
242 ret = true;
243out:
244 return ret;
245}
246#else
247static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
248 unsigned long address,
249 unsigned long flags,
250 unsigned long reason)
251{
252 return false; /* should never get here */
253}
254#endif /* CONFIG_HUGETLB_PAGE */
255
8d2afd96
AA
256/*
257 * Verify the pagetables are still not ok after having reigstered into
258 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259 * userfault that has already been resolved, if userfaultfd_read and
260 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
261 * threads.
262 */
263static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
264 unsigned long address,
265 unsigned long flags,
266 unsigned long reason)
267{
268 struct mm_struct *mm = ctx->mm;
269 pgd_t *pgd;
270 pud_t *pud;
271 pmd_t *pmd, _pmd;
272 pte_t *pte;
273 bool ret = true;
274
275 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
276
277 pgd = pgd_offset(mm, address);
278 if (!pgd_present(*pgd))
279 goto out;
280 pud = pud_offset(pgd, address);
281 if (!pud_present(*pud))
282 goto out;
283 pmd = pmd_offset(pud, address);
284 /*
285 * READ_ONCE must function as a barrier with narrower scope
286 * and it must be equivalent to:
287 * _pmd = *pmd; barrier();
288 *
289 * This is to deal with the instability (as in
290 * pmd_trans_unstable) of the pmd.
291 */
292 _pmd = READ_ONCE(*pmd);
293 if (!pmd_present(_pmd))
294 goto out;
295
296 ret = false;
297 if (pmd_trans_huge(_pmd))
298 goto out;
299
300 /*
301 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
302 * and use the standard pte_offset_map() instead of parsing _pmd.
303 */
304 pte = pte_offset_map(pmd, address);
305 /*
306 * Lockless access: we're in a wait_event so it's ok if it
307 * changes under us.
308 */
309 if (pte_none(*pte))
310 ret = true;
311 pte_unmap(pte);
312
313out:
314 return ret;
315}
316
86039bd3
AA
317/*
318 * The locking rules involved in returning VM_FAULT_RETRY depending on
319 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
320 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
321 * recommendation in __lock_page_or_retry is not an understatement.
322 *
323 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
324 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
325 * not set.
326 *
327 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
328 * set, VM_FAULT_RETRY can still be returned if and only if there are
329 * fatal_signal_pending()s, and the mmap_sem must be released before
330 * returning it.
331 */
82b0f8c3 332int handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 333{
82b0f8c3 334 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
335 struct userfaultfd_ctx *ctx;
336 struct userfaultfd_wait_queue uwq;
ba85c702 337 int ret;
dfa37dc3 338 bool must_wait, return_to_userland;
15a77c6f 339 long blocking_state;
86039bd3
AA
340
341 BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
342
ba85c702 343 ret = VM_FAULT_SIGBUS;
82b0f8c3 344 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 345 if (!ctx)
ba85c702 346 goto out;
86039bd3
AA
347
348 BUG_ON(ctx->mm != mm);
349
350 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
351 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
352
353 /*
354 * If it's already released don't get it. This avoids to loop
355 * in __get_user_pages if userfaultfd_release waits on the
356 * caller of handle_userfault to release the mmap_sem.
357 */
358 if (unlikely(ACCESS_ONCE(ctx->released)))
ba85c702 359 goto out;
86039bd3 360
39680f50
LT
361 /*
362 * We don't do userfault handling for the final child pid update.
363 */
364 if (current->flags & PF_EXITING)
365 goto out;
366
86039bd3
AA
367 /*
368 * Check that we can return VM_FAULT_RETRY.
369 *
370 * NOTE: it should become possible to return VM_FAULT_RETRY
371 * even if FAULT_FLAG_TRIED is set without leading to gup()
372 * -EBUSY failures, if the userfaultfd is to be extended for
373 * VM_UFFD_WP tracking and we intend to arm the userfault
374 * without first stopping userland access to the memory. For
375 * VM_UFFD_MISSING userfaults this is enough for now.
376 */
82b0f8c3 377 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
378 /*
379 * Validate the invariant that nowait must allow retry
380 * to be sure not to return SIGBUS erroneously on
381 * nowait invocations.
382 */
82b0f8c3 383 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
384#ifdef CONFIG_DEBUG_VM
385 if (printk_ratelimit()) {
386 printk(KERN_WARNING
82b0f8c3
JK
387 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
388 vmf->flags);
86039bd3
AA
389 dump_stack();
390 }
391#endif
ba85c702 392 goto out;
86039bd3
AA
393 }
394
395 /*
396 * Handle nowait, not much to do other than tell it to retry
397 * and wait.
398 */
ba85c702 399 ret = VM_FAULT_RETRY;
82b0f8c3 400 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 401 goto out;
86039bd3
AA
402
403 /* take the reference before dropping the mmap_sem */
404 userfaultfd_ctx_get(ctx);
405
86039bd3
AA
406 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
407 uwq.wq.private = current;
82b0f8c3 408 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
86039bd3 409 uwq.ctx = ctx;
15a77c6f 410 uwq.waken = false;
86039bd3 411
bae473a4 412 return_to_userland =
82b0f8c3 413 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
dfa37dc3 414 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
15a77c6f
AA
415 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
416 TASK_KILLABLE;
dfa37dc3 417
15b726ef 418 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
419 /*
420 * After the __add_wait_queue the uwq is visible to userland
421 * through poll/read().
422 */
15b726ef
AA
423 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
424 /*
425 * The smp_mb() after __set_current_state prevents the reads
426 * following the spin_unlock to happen before the list_add in
427 * __add_wait_queue.
428 */
15a77c6f 429 set_current_state(blocking_state);
15b726ef 430 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 431
369cd212
MK
432 if (!is_vm_hugetlb_page(vmf->vma))
433 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
434 reason);
435 else
436 must_wait = userfaultfd_huge_must_wait(ctx, vmf->address,
437 vmf->flags, reason);
8d2afd96
AA
438 up_read(&mm->mmap_sem);
439
440 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
dfa37dc3
AA
441 (return_to_userland ? !signal_pending(current) :
442 !fatal_signal_pending(current)))) {
86039bd3
AA
443 wake_up_poll(&ctx->fd_wqh, POLLIN);
444 schedule();
ba85c702 445 ret |= VM_FAULT_MAJOR;
15a77c6f
AA
446
447 /*
448 * False wakeups can orginate even from rwsem before
449 * up_read() however userfaults will wait either for a
450 * targeted wakeup on the specific uwq waitqueue from
451 * wake_userfault() or for signals or for uffd
452 * release.
453 */
454 while (!READ_ONCE(uwq.waken)) {
455 /*
456 * This needs the full smp_store_mb()
457 * guarantee as the state write must be
458 * visible to other CPUs before reading
459 * uwq.waken from other CPUs.
460 */
461 set_current_state(blocking_state);
462 if (READ_ONCE(uwq.waken) ||
463 READ_ONCE(ctx->released) ||
464 (return_to_userland ? signal_pending(current) :
465 fatal_signal_pending(current)))
466 break;
467 schedule();
468 }
ba85c702 469 }
86039bd3 470
ba85c702 471 __set_current_state(TASK_RUNNING);
15b726ef 472
dfa37dc3
AA
473 if (return_to_userland) {
474 if (signal_pending(current) &&
475 !fatal_signal_pending(current)) {
476 /*
477 * If we got a SIGSTOP or SIGCONT and this is
478 * a normal userland page fault, just let
479 * userland return so the signal will be
480 * handled and gdb debugging works. The page
481 * fault code immediately after we return from
482 * this function is going to release the
483 * mmap_sem and it's not depending on it
484 * (unlike gup would if we were not to return
485 * VM_FAULT_RETRY).
486 *
487 * If a fatal signal is pending we still take
488 * the streamlined VM_FAULT_RETRY failure path
489 * and there's no need to retake the mmap_sem
490 * in such case.
491 */
492 down_read(&mm->mmap_sem);
6bbc4a41 493 ret = VM_FAULT_NOPAGE;
dfa37dc3
AA
494 }
495 }
496
15b726ef
AA
497 /*
498 * Here we race with the list_del; list_add in
499 * userfaultfd_ctx_read(), however because we don't ever run
500 * list_del_init() to refile across the two lists, the prev
501 * and next pointers will never point to self. list_add also
502 * would never let any of the two pointers to point to
503 * self. So list_empty_careful won't risk to see both pointers
504 * pointing to self at any time during the list refile. The
505 * only case where list_del_init() is called is the full
506 * removal in the wake function and there we don't re-list_add
507 * and it's fine not to block on the spinlock. The uwq on this
508 * kernel stack can be released after the list_del_init.
509 */
ba85c702 510 if (!list_empty_careful(&uwq.wq.task_list)) {
15b726ef
AA
511 spin_lock(&ctx->fault_pending_wqh.lock);
512 /*
513 * No need of list_del_init(), the uwq on the stack
514 * will be freed shortly anyway.
515 */
516 list_del(&uwq.wq.task_list);
517 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 518 }
86039bd3
AA
519
520 /*
521 * ctx may go away after this if the userfault pseudo fd is
522 * already released.
523 */
524 userfaultfd_ctx_put(ctx);
525
ba85c702
AA
526out:
527 return ret;
86039bd3
AA
528}
529
8c9e7bb7
AA
530static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
531 struct userfaultfd_wait_queue *ewq)
9cd75c3c 532{
9a69a829
AA
533 if (WARN_ON_ONCE(current->flags & PF_EXITING))
534 goto out;
9cd75c3c
PE
535
536 ewq->ctx = ctx;
537 init_waitqueue_entry(&ewq->wq, current);
538
539 spin_lock(&ctx->event_wqh.lock);
540 /*
541 * After the __add_wait_queue the uwq is visible to userland
542 * through poll/read().
543 */
544 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
545 for (;;) {
546 set_current_state(TASK_KILLABLE);
547 if (ewq->msg.event == 0)
548 break;
549 if (ACCESS_ONCE(ctx->released) ||
550 fatal_signal_pending(current)) {
9cd75c3c
PE
551 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
552 break;
553 }
554
555 spin_unlock(&ctx->event_wqh.lock);
556
557 wake_up_poll(&ctx->fd_wqh, POLLIN);
558 schedule();
559
560 spin_lock(&ctx->event_wqh.lock);
561 }
562 __set_current_state(TASK_RUNNING);
563 spin_unlock(&ctx->event_wqh.lock);
564
565 /*
566 * ctx may go away after this if the userfault pseudo fd is
567 * already released.
568 */
9a69a829 569out:
9cd75c3c 570 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
571}
572
573static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
574 struct userfaultfd_wait_queue *ewq)
575{
576 ewq->msg.event = 0;
577 wake_up_locked(&ctx->event_wqh);
578 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
579}
580
893e26e6
PE
581int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
582{
583 struct userfaultfd_ctx *ctx = NULL, *octx;
584 struct userfaultfd_fork_ctx *fctx;
585
586 octx = vma->vm_userfaultfd_ctx.ctx;
587 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
588 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
589 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
590 return 0;
591 }
592
593 list_for_each_entry(fctx, fcs, list)
594 if (fctx->orig == octx) {
595 ctx = fctx->new;
596 break;
597 }
598
599 if (!ctx) {
600 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
601 if (!fctx)
602 return -ENOMEM;
603
604 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
605 if (!ctx) {
606 kfree(fctx);
607 return -ENOMEM;
608 }
609
610 atomic_set(&ctx->refcount, 1);
611 ctx->flags = octx->flags;
612 ctx->state = UFFD_STATE_RUNNING;
613 ctx->features = octx->features;
614 ctx->released = false;
615 ctx->mm = vma->vm_mm;
d3aadc8e 616 atomic_inc(&ctx->mm->mm_count);
893e26e6
PE
617
618 userfaultfd_ctx_get(octx);
619 fctx->orig = octx;
620 fctx->new = ctx;
621 list_add_tail(&fctx->list, fcs);
622 }
623
624 vma->vm_userfaultfd_ctx.ctx = ctx;
625 return 0;
626}
627
8c9e7bb7 628static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
629{
630 struct userfaultfd_ctx *ctx = fctx->orig;
631 struct userfaultfd_wait_queue ewq;
632
633 msg_init(&ewq.msg);
634
635 ewq.msg.event = UFFD_EVENT_FORK;
636 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
637
8c9e7bb7 638 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
639}
640
641void dup_userfaultfd_complete(struct list_head *fcs)
642{
893e26e6
PE
643 struct userfaultfd_fork_ctx *fctx, *n;
644
645 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 646 dup_fctx(fctx);
893e26e6
PE
647 list_del(&fctx->list);
648 kfree(fctx);
649 }
650}
651
72f87654
PE
652void mremap_userfaultfd_prep(struct vm_area_struct *vma,
653 struct vm_userfaultfd_ctx *vm_ctx)
654{
655 struct userfaultfd_ctx *ctx;
656
657 ctx = vma->vm_userfaultfd_ctx.ctx;
658 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
659 vm_ctx->ctx = ctx;
660 userfaultfd_ctx_get(ctx);
661 }
662}
663
90794bf1 664void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
665 unsigned long from, unsigned long to,
666 unsigned long len)
667{
90794bf1 668 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
669 struct userfaultfd_wait_queue ewq;
670
671 if (!ctx)
672 return;
673
674 if (to & ~PAGE_MASK) {
675 userfaultfd_ctx_put(ctx);
676 return;
677 }
678
679 msg_init(&ewq.msg);
680
681 ewq.msg.event = UFFD_EVENT_REMAP;
682 ewq.msg.arg.remap.from = from;
683 ewq.msg.arg.remap.to = to;
684 ewq.msg.arg.remap.len = len;
685
686 userfaultfd_event_wait_completion(ctx, &ewq);
687}
688
d811914d
MR
689void userfaultfd_remove(struct vm_area_struct *vma,
690 struct vm_area_struct **prev,
691 unsigned long start, unsigned long end)
05ce7724
PE
692{
693 struct mm_struct *mm = vma->vm_mm;
694 struct userfaultfd_ctx *ctx;
695 struct userfaultfd_wait_queue ewq;
696
697 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 698 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
05ce7724
PE
699 return;
700
701 userfaultfd_ctx_get(ctx);
702 up_read(&mm->mmap_sem);
703
704 *prev = NULL; /* We wait for ACK w/o the mmap semaphore */
705
706 msg_init(&ewq.msg);
707
d811914d
MR
708 ewq.msg.event = UFFD_EVENT_REMOVE;
709 ewq.msg.arg.remove.start = start;
710 ewq.msg.arg.remove.end = end;
05ce7724
PE
711
712 userfaultfd_event_wait_completion(ctx, &ewq);
713
714 down_read(&mm->mmap_sem);
715}
716
897ab3e0
MR
717static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
718 unsigned long start, unsigned long end)
719{
720 struct userfaultfd_unmap_ctx *unmap_ctx;
721
722 list_for_each_entry(unmap_ctx, unmaps, list)
723 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
724 unmap_ctx->end == end)
725 return true;
726
727 return false;
728}
729
730int userfaultfd_unmap_prep(struct vm_area_struct *vma,
731 unsigned long start, unsigned long end,
732 struct list_head *unmaps)
733{
734 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
735 struct userfaultfd_unmap_ctx *unmap_ctx;
736 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
737
738 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
739 has_unmap_ctx(ctx, unmaps, start, end))
740 continue;
741
742 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
743 if (!unmap_ctx)
744 return -ENOMEM;
745
746 userfaultfd_ctx_get(ctx);
747 unmap_ctx->ctx = ctx;
748 unmap_ctx->start = start;
749 unmap_ctx->end = end;
750 list_add_tail(&unmap_ctx->list, unmaps);
751 }
752
753 return 0;
754}
755
756void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
757{
758 struct userfaultfd_unmap_ctx *ctx, *n;
759 struct userfaultfd_wait_queue ewq;
760
761 list_for_each_entry_safe(ctx, n, uf, list) {
762 msg_init(&ewq.msg);
763
764 ewq.msg.event = UFFD_EVENT_UNMAP;
765 ewq.msg.arg.remove.start = ctx->start;
766 ewq.msg.arg.remove.end = ctx->end;
767
768 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
769
770 list_del(&ctx->list);
771 kfree(ctx);
772 }
773}
774
86039bd3
AA
775static int userfaultfd_release(struct inode *inode, struct file *file)
776{
777 struct userfaultfd_ctx *ctx = file->private_data;
778 struct mm_struct *mm = ctx->mm;
779 struct vm_area_struct *vma, *prev;
780 /* len == 0 means wake all */
781 struct userfaultfd_wake_range range = { .len = 0, };
782 unsigned long new_flags;
783
784 ACCESS_ONCE(ctx->released) = true;
785
d2005e3f
ON
786 if (!mmget_not_zero(mm))
787 goto wakeup;
788
86039bd3
AA
789 /*
790 * Flush page faults out of all CPUs. NOTE: all page faults
791 * must be retried without returning VM_FAULT_SIGBUS if
792 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
793 * changes while handle_userfault released the mmap_sem. So
794 * it's critical that released is set to true (above), before
795 * taking the mmap_sem for writing.
796 */
797 down_write(&mm->mmap_sem);
798 prev = NULL;
799 for (vma = mm->mmap; vma; vma = vma->vm_next) {
800 cond_resched();
801 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
802 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
803 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
804 prev = vma;
805 continue;
806 }
807 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
808 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
809 new_flags, vma->anon_vma,
810 vma->vm_file, vma->vm_pgoff,
811 vma_policy(vma),
812 NULL_VM_UFFD_CTX);
813 if (prev)
814 vma = prev;
815 else
816 prev = vma;
817 vma->vm_flags = new_flags;
818 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
819 }
820 up_write(&mm->mmap_sem);
d2005e3f
ON
821 mmput(mm);
822wakeup:
86039bd3 823 /*
15b726ef 824 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 825 * the last page faults that may have been already waiting on
15b726ef 826 * the fault_*wqh.
86039bd3 827 */
15b726ef 828 spin_lock(&ctx->fault_pending_wqh.lock);
ac5be6b4
AA
829 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
830 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
15b726ef 831 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
832
833 wake_up_poll(&ctx->fd_wqh, POLLHUP);
834 userfaultfd_ctx_put(ctx);
835 return 0;
836}
837
15b726ef 838/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
839static inline struct userfaultfd_wait_queue *find_userfault_in(
840 wait_queue_head_t *wqh)
86039bd3
AA
841{
842 wait_queue_t *wq;
15b726ef 843 struct userfaultfd_wait_queue *uwq;
86039bd3 844
6dcc27fd 845 VM_BUG_ON(!spin_is_locked(&wqh->lock));
86039bd3 846
15b726ef 847 uwq = NULL;
6dcc27fd 848 if (!waitqueue_active(wqh))
15b726ef
AA
849 goto out;
850 /* walk in reverse to provide FIFO behavior to read userfaults */
6dcc27fd 851 wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list);
15b726ef
AA
852 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
853out:
854 return uwq;
86039bd3 855}
6dcc27fd
PE
856
857static inline struct userfaultfd_wait_queue *find_userfault(
858 struct userfaultfd_ctx *ctx)
859{
860 return find_userfault_in(&ctx->fault_pending_wqh);
861}
86039bd3 862
9cd75c3c
PE
863static inline struct userfaultfd_wait_queue *find_userfault_evt(
864 struct userfaultfd_ctx *ctx)
865{
866 return find_userfault_in(&ctx->event_wqh);
867}
868
86039bd3
AA
869static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
870{
871 struct userfaultfd_ctx *ctx = file->private_data;
872 unsigned int ret;
873
874 poll_wait(file, &ctx->fd_wqh, wait);
875
876 switch (ctx->state) {
877 case UFFD_STATE_WAIT_API:
878 return POLLERR;
879 case UFFD_STATE_RUNNING:
ba85c702
AA
880 /*
881 * poll() never guarantees that read won't block.
882 * userfaults can be waken before they're read().
883 */
884 if (unlikely(!(file->f_flags & O_NONBLOCK)))
885 return POLLERR;
15b726ef
AA
886 /*
887 * lockless access to see if there are pending faults
888 * __pollwait last action is the add_wait_queue but
889 * the spin_unlock would allow the waitqueue_active to
890 * pass above the actual list_add inside
891 * add_wait_queue critical section. So use a full
892 * memory barrier to serialize the list_add write of
893 * add_wait_queue() with the waitqueue_active read
894 * below.
895 */
896 ret = 0;
897 smp_mb();
898 if (waitqueue_active(&ctx->fault_pending_wqh))
899 ret = POLLIN;
9cd75c3c
PE
900 else if (waitqueue_active(&ctx->event_wqh))
901 ret = POLLIN;
902
86039bd3
AA
903 return ret;
904 default:
8474901a
AA
905 WARN_ON_ONCE(1);
906 return POLLERR;
86039bd3
AA
907 }
908}
909
893e26e6
PE
910static const struct file_operations userfaultfd_fops;
911
912static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
913 struct userfaultfd_ctx *new,
914 struct uffd_msg *msg)
915{
916 int fd;
917 struct file *file;
918 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
919
920 fd = get_unused_fd_flags(flags);
921 if (fd < 0)
922 return fd;
923
924 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
925 O_RDWR | flags);
926 if (IS_ERR(file)) {
927 put_unused_fd(fd);
928 return PTR_ERR(file);
929 }
930
931 fd_install(fd, file);
932 msg->arg.reserved.reserved1 = 0;
933 msg->arg.fork.ufd = fd;
934
935 return 0;
936}
937
86039bd3 938static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
a9b85f94 939 struct uffd_msg *msg)
86039bd3
AA
940{
941 ssize_t ret;
942 DECLARE_WAITQUEUE(wait, current);
15b726ef 943 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
944 /*
945 * Handling fork event requires sleeping operations, so
946 * we drop the event_wqh lock, then do these ops, then
947 * lock it back and wake up the waiter. While the lock is
948 * dropped the ewq may go away so we keep track of it
949 * carefully.
950 */
951 LIST_HEAD(fork_event);
952 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 953
15b726ef 954 /* always take the fd_wqh lock before the fault_pending_wqh lock */
86039bd3
AA
955 spin_lock(&ctx->fd_wqh.lock);
956 __add_wait_queue(&ctx->fd_wqh, &wait);
957 for (;;) {
958 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
959 spin_lock(&ctx->fault_pending_wqh.lock);
960 uwq = find_userfault(ctx);
961 if (uwq) {
2c5b7e1b
AA
962 /*
963 * Use a seqcount to repeat the lockless check
964 * in wake_userfault() to avoid missing
965 * wakeups because during the refile both
966 * waitqueue could become empty if this is the
967 * only userfault.
968 */
969 write_seqcount_begin(&ctx->refile_seq);
970
86039bd3 971 /*
15b726ef
AA
972 * The fault_pending_wqh.lock prevents the uwq
973 * to disappear from under us.
974 *
975 * Refile this userfault from
976 * fault_pending_wqh to fault_wqh, it's not
977 * pending anymore after we read it.
978 *
979 * Use list_del() by hand (as
980 * userfaultfd_wake_function also uses
981 * list_del_init() by hand) to be sure nobody
982 * changes __remove_wait_queue() to use
983 * list_del_init() in turn breaking the
984 * !list_empty_careful() check in
985 * handle_userfault(). The uwq->wq.task_list
986 * must never be empty at any time during the
987 * refile, or the waitqueue could disappear
988 * from under us. The "wait_queue_head_t"
989 * parameter of __remove_wait_queue() is unused
990 * anyway.
86039bd3 991 */
15b726ef
AA
992 list_del(&uwq->wq.task_list);
993 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
994
2c5b7e1b
AA
995 write_seqcount_end(&ctx->refile_seq);
996
a9b85f94
AA
997 /* careful to always initialize msg if ret == 0 */
998 *msg = uwq->msg;
15b726ef 999 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1000 ret = 0;
1001 break;
1002 }
15b726ef 1003 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1004
1005 spin_lock(&ctx->event_wqh.lock);
1006 uwq = find_userfault_evt(ctx);
1007 if (uwq) {
1008 *msg = uwq->msg;
1009
893e26e6
PE
1010 if (uwq->msg.event == UFFD_EVENT_FORK) {
1011 fork_nctx = (struct userfaultfd_ctx *)
1012 (unsigned long)
1013 uwq->msg.arg.reserved.reserved1;
1014 list_move(&uwq->wq.task_list, &fork_event);
1015 spin_unlock(&ctx->event_wqh.lock);
1016 ret = 0;
1017 break;
1018 }
1019
9cd75c3c
PE
1020 userfaultfd_event_complete(ctx, uwq);
1021 spin_unlock(&ctx->event_wqh.lock);
1022 ret = 0;
1023 break;
1024 }
1025 spin_unlock(&ctx->event_wqh.lock);
1026
86039bd3
AA
1027 if (signal_pending(current)) {
1028 ret = -ERESTARTSYS;
1029 break;
1030 }
1031 if (no_wait) {
1032 ret = -EAGAIN;
1033 break;
1034 }
1035 spin_unlock(&ctx->fd_wqh.lock);
1036 schedule();
1037 spin_lock(&ctx->fd_wqh.lock);
1038 }
1039 __remove_wait_queue(&ctx->fd_wqh, &wait);
1040 __set_current_state(TASK_RUNNING);
1041 spin_unlock(&ctx->fd_wqh.lock);
1042
893e26e6
PE
1043 if (!ret && msg->event == UFFD_EVENT_FORK) {
1044 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1045
1046 if (!ret) {
1047 spin_lock(&ctx->event_wqh.lock);
1048 if (!list_empty(&fork_event)) {
1049 uwq = list_first_entry(&fork_event,
1050 typeof(*uwq),
1051 wq.task_list);
1052 list_del(&uwq->wq.task_list);
1053 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1054 userfaultfd_event_complete(ctx, uwq);
1055 }
1056 spin_unlock(&ctx->event_wqh.lock);
1057 }
1058 }
1059
86039bd3
AA
1060 return ret;
1061}
1062
1063static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1064 size_t count, loff_t *ppos)
1065{
1066 struct userfaultfd_ctx *ctx = file->private_data;
1067 ssize_t _ret, ret = 0;
a9b85f94 1068 struct uffd_msg msg;
86039bd3
AA
1069 int no_wait = file->f_flags & O_NONBLOCK;
1070
1071 if (ctx->state == UFFD_STATE_WAIT_API)
1072 return -EINVAL;
86039bd3
AA
1073
1074 for (;;) {
a9b85f94 1075 if (count < sizeof(msg))
86039bd3 1076 return ret ? ret : -EINVAL;
a9b85f94 1077 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
86039bd3
AA
1078 if (_ret < 0)
1079 return ret ? ret : _ret;
a9b85f94 1080 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1081 return ret ? ret : -EFAULT;
a9b85f94
AA
1082 ret += sizeof(msg);
1083 buf += sizeof(msg);
1084 count -= sizeof(msg);
86039bd3
AA
1085 /*
1086 * Allow to read more than one fault at time but only
1087 * block if waiting for the very first one.
1088 */
1089 no_wait = O_NONBLOCK;
1090 }
1091}
1092
1093static void __wake_userfault(struct userfaultfd_ctx *ctx,
1094 struct userfaultfd_wake_range *range)
1095{
1096 unsigned long start, end;
1097
1098 start = range->start;
1099 end = range->start + range->len;
1100
15b726ef 1101 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3 1102 /* wake all in the range and autoremove */
15b726ef 1103 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1104 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1105 range);
1106 if (waitqueue_active(&ctx->fault_wqh))
ac5be6b4 1107 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
15b726ef 1108 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1109}
1110
1111static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1112 struct userfaultfd_wake_range *range)
1113{
2c5b7e1b
AA
1114 unsigned seq;
1115 bool need_wakeup;
1116
86039bd3
AA
1117 /*
1118 * To be sure waitqueue_active() is not reordered by the CPU
1119 * before the pagetable update, use an explicit SMP memory
1120 * barrier here. PT lock release or up_read(mmap_sem) still
1121 * have release semantics that can allow the
1122 * waitqueue_active() to be reordered before the pte update.
1123 */
1124 smp_mb();
1125
1126 /*
1127 * Use waitqueue_active because it's very frequent to
1128 * change the address space atomically even if there are no
1129 * userfaults yet. So we take the spinlock only when we're
1130 * sure we've userfaults to wake.
1131 */
2c5b7e1b
AA
1132 do {
1133 seq = read_seqcount_begin(&ctx->refile_seq);
1134 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1135 waitqueue_active(&ctx->fault_wqh);
1136 cond_resched();
1137 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1138 if (need_wakeup)
86039bd3
AA
1139 __wake_userfault(ctx, range);
1140}
1141
1142static __always_inline int validate_range(struct mm_struct *mm,
1143 __u64 start, __u64 len)
1144{
1145 __u64 task_size = mm->task_size;
1146
1147 if (start & ~PAGE_MASK)
1148 return -EINVAL;
1149 if (len & ~PAGE_MASK)
1150 return -EINVAL;
1151 if (!len)
1152 return -EINVAL;
1153 if (start < mmap_min_addr)
1154 return -EINVAL;
1155 if (start >= task_size)
1156 return -EINVAL;
1157 if (len > task_size - start)
1158 return -EINVAL;
1159 return 0;
1160}
1161
ba6907db
MR
1162static inline bool vma_can_userfault(struct vm_area_struct *vma)
1163{
cac67329
MR
1164 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1165 vma_is_shmem(vma);
ba6907db
MR
1166}
1167
86039bd3
AA
1168static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1169 unsigned long arg)
1170{
1171 struct mm_struct *mm = ctx->mm;
1172 struct vm_area_struct *vma, *prev, *cur;
1173 int ret;
1174 struct uffdio_register uffdio_register;
1175 struct uffdio_register __user *user_uffdio_register;
1176 unsigned long vm_flags, new_flags;
1177 bool found;
cac67329 1178 bool non_anon_pages;
86039bd3
AA
1179 unsigned long start, end, vma_end;
1180
1181 user_uffdio_register = (struct uffdio_register __user *) arg;
1182
1183 ret = -EFAULT;
1184 if (copy_from_user(&uffdio_register, user_uffdio_register,
1185 sizeof(uffdio_register)-sizeof(__u64)))
1186 goto out;
1187
1188 ret = -EINVAL;
1189 if (!uffdio_register.mode)
1190 goto out;
1191 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1192 UFFDIO_REGISTER_MODE_WP))
1193 goto out;
1194 vm_flags = 0;
1195 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1196 vm_flags |= VM_UFFD_MISSING;
1197 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1198 vm_flags |= VM_UFFD_WP;
1199 /*
1200 * FIXME: remove the below error constraint by
1201 * implementing the wprotect tracking mode.
1202 */
1203 ret = -EINVAL;
1204 goto out;
1205 }
1206
1207 ret = validate_range(mm, uffdio_register.range.start,
1208 uffdio_register.range.len);
1209 if (ret)
1210 goto out;
1211
1212 start = uffdio_register.range.start;
1213 end = start + uffdio_register.range.len;
1214
d2005e3f
ON
1215 ret = -ENOMEM;
1216 if (!mmget_not_zero(mm))
1217 goto out;
1218
86039bd3
AA
1219 down_write(&mm->mmap_sem);
1220 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1221 if (!vma)
1222 goto out_unlock;
1223
1224 /* check that there's at least one vma in the range */
1225 ret = -EINVAL;
1226 if (vma->vm_start >= end)
1227 goto out_unlock;
1228
cab350af
MK
1229 /*
1230 * If the first vma contains huge pages, make sure start address
1231 * is aligned to huge page size.
1232 */
1233 if (is_vm_hugetlb_page(vma)) {
1234 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1235
1236 if (start & (vma_hpagesize - 1))
1237 goto out_unlock;
1238 }
1239
86039bd3
AA
1240 /*
1241 * Search for not compatible vmas.
86039bd3
AA
1242 */
1243 found = false;
cac67329 1244 non_anon_pages = false;
86039bd3
AA
1245 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1246 cond_resched();
1247
1248 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1249 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1250
1251 /* check not compatible vmas */
1252 ret = -EINVAL;
ba6907db 1253 if (!vma_can_userfault(cur))
86039bd3 1254 goto out_unlock;
cab350af
MK
1255 /*
1256 * If this vma contains ending address, and huge pages
1257 * check alignment.
1258 */
1259 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1260 end > cur->vm_start) {
1261 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1262
1263 ret = -EINVAL;
1264
1265 if (end & (vma_hpagesize - 1))
1266 goto out_unlock;
1267 }
86039bd3
AA
1268
1269 /*
1270 * Check that this vma isn't already owned by a
1271 * different userfaultfd. We can't allow more than one
1272 * userfaultfd to own a single vma simultaneously or we
1273 * wouldn't know which one to deliver the userfaults to.
1274 */
1275 ret = -EBUSY;
1276 if (cur->vm_userfaultfd_ctx.ctx &&
1277 cur->vm_userfaultfd_ctx.ctx != ctx)
1278 goto out_unlock;
1279
cab350af
MK
1280 /*
1281 * Note vmas containing huge pages
1282 */
cac67329
MR
1283 if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur))
1284 non_anon_pages = true;
cab350af 1285
86039bd3
AA
1286 found = true;
1287 }
1288 BUG_ON(!found);
1289
1290 if (vma->vm_start < start)
1291 prev = vma;
1292
1293 ret = 0;
1294 do {
1295 cond_resched();
1296
ba6907db 1297 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1298 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1299 vma->vm_userfaultfd_ctx.ctx != ctx);
1300
1301 /*
1302 * Nothing to do: this vma is already registered into this
1303 * userfaultfd and with the right tracking mode too.
1304 */
1305 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1306 (vma->vm_flags & vm_flags) == vm_flags)
1307 goto skip;
1308
1309 if (vma->vm_start > start)
1310 start = vma->vm_start;
1311 vma_end = min(end, vma->vm_end);
1312
1313 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1314 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1315 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1316 vma_policy(vma),
1317 ((struct vm_userfaultfd_ctx){ ctx }));
1318 if (prev) {
1319 vma = prev;
1320 goto next;
1321 }
1322 if (vma->vm_start < start) {
1323 ret = split_vma(mm, vma, start, 1);
1324 if (ret)
1325 break;
1326 }
1327 if (vma->vm_end > end) {
1328 ret = split_vma(mm, vma, end, 0);
1329 if (ret)
1330 break;
1331 }
1332 next:
1333 /*
1334 * In the vma_merge() successful mprotect-like case 8:
1335 * the next vma was merged into the current one and
1336 * the current one has not been updated yet.
1337 */
1338 vma->vm_flags = new_flags;
1339 vma->vm_userfaultfd_ctx.ctx = ctx;
1340
1341 skip:
1342 prev = vma;
1343 start = vma->vm_end;
1344 vma = vma->vm_next;
1345 } while (vma && vma->vm_start < end);
1346out_unlock:
1347 up_write(&mm->mmap_sem);
d2005e3f 1348 mmput(mm);
86039bd3
AA
1349 if (!ret) {
1350 /*
1351 * Now that we scanned all vmas we can already tell
1352 * userland which ioctls methods are guaranteed to
1353 * succeed on this range.
1354 */
cac67329 1355 if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC :
cab350af 1356 UFFD_API_RANGE_IOCTLS,
86039bd3
AA
1357 &user_uffdio_register->ioctls))
1358 ret = -EFAULT;
1359 }
1360out:
1361 return ret;
1362}
1363
1364static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1365 unsigned long arg)
1366{
1367 struct mm_struct *mm = ctx->mm;
1368 struct vm_area_struct *vma, *prev, *cur;
1369 int ret;
1370 struct uffdio_range uffdio_unregister;
1371 unsigned long new_flags;
1372 bool found;
1373 unsigned long start, end, vma_end;
1374 const void __user *buf = (void __user *)arg;
1375
1376 ret = -EFAULT;
1377 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1378 goto out;
1379
1380 ret = validate_range(mm, uffdio_unregister.start,
1381 uffdio_unregister.len);
1382 if (ret)
1383 goto out;
1384
1385 start = uffdio_unregister.start;
1386 end = start + uffdio_unregister.len;
1387
d2005e3f
ON
1388 ret = -ENOMEM;
1389 if (!mmget_not_zero(mm))
1390 goto out;
1391
86039bd3
AA
1392 down_write(&mm->mmap_sem);
1393 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1394 if (!vma)
1395 goto out_unlock;
1396
1397 /* check that there's at least one vma in the range */
1398 ret = -EINVAL;
1399 if (vma->vm_start >= end)
1400 goto out_unlock;
1401
cab350af
MK
1402 /*
1403 * If the first vma contains huge pages, make sure start address
1404 * is aligned to huge page size.
1405 */
1406 if (is_vm_hugetlb_page(vma)) {
1407 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1408
1409 if (start & (vma_hpagesize - 1))
1410 goto out_unlock;
1411 }
1412
86039bd3
AA
1413 /*
1414 * Search for not compatible vmas.
86039bd3
AA
1415 */
1416 found = false;
1417 ret = -EINVAL;
1418 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1419 cond_resched();
1420
1421 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1422 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1423
1424 /*
1425 * Check not compatible vmas, not strictly required
1426 * here as not compatible vmas cannot have an
1427 * userfaultfd_ctx registered on them, but this
1428 * provides for more strict behavior to notice
1429 * unregistration errors.
1430 */
ba6907db 1431 if (!vma_can_userfault(cur))
86039bd3
AA
1432 goto out_unlock;
1433
1434 found = true;
1435 }
1436 BUG_ON(!found);
1437
1438 if (vma->vm_start < start)
1439 prev = vma;
1440
1441 ret = 0;
1442 do {
1443 cond_resched();
1444
ba6907db 1445 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1446
1447 /*
1448 * Nothing to do: this vma is already registered into this
1449 * userfaultfd and with the right tracking mode too.
1450 */
1451 if (!vma->vm_userfaultfd_ctx.ctx)
1452 goto skip;
1453
1454 if (vma->vm_start > start)
1455 start = vma->vm_start;
1456 vma_end = min(end, vma->vm_end);
1457
09fa5296
AA
1458 if (userfaultfd_missing(vma)) {
1459 /*
1460 * Wake any concurrent pending userfault while
1461 * we unregister, so they will not hang
1462 * permanently and it avoids userland to call
1463 * UFFDIO_WAKE explicitly.
1464 */
1465 struct userfaultfd_wake_range range;
1466 range.start = start;
1467 range.len = vma_end - start;
1468 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1469 }
1470
86039bd3
AA
1471 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1472 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1473 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1474 vma_policy(vma),
1475 NULL_VM_UFFD_CTX);
1476 if (prev) {
1477 vma = prev;
1478 goto next;
1479 }
1480 if (vma->vm_start < start) {
1481 ret = split_vma(mm, vma, start, 1);
1482 if (ret)
1483 break;
1484 }
1485 if (vma->vm_end > end) {
1486 ret = split_vma(mm, vma, end, 0);
1487 if (ret)
1488 break;
1489 }
1490 next:
1491 /*
1492 * In the vma_merge() successful mprotect-like case 8:
1493 * the next vma was merged into the current one and
1494 * the current one has not been updated yet.
1495 */
1496 vma->vm_flags = new_flags;
1497 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1498
1499 skip:
1500 prev = vma;
1501 start = vma->vm_end;
1502 vma = vma->vm_next;
1503 } while (vma && vma->vm_start < end);
1504out_unlock:
1505 up_write(&mm->mmap_sem);
d2005e3f 1506 mmput(mm);
86039bd3
AA
1507out:
1508 return ret;
1509}
1510
1511/*
ba85c702
AA
1512 * userfaultfd_wake may be used in combination with the
1513 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1514 */
1515static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1516 unsigned long arg)
1517{
1518 int ret;
1519 struct uffdio_range uffdio_wake;
1520 struct userfaultfd_wake_range range;
1521 const void __user *buf = (void __user *)arg;
1522
1523 ret = -EFAULT;
1524 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1525 goto out;
1526
1527 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1528 if (ret)
1529 goto out;
1530
1531 range.start = uffdio_wake.start;
1532 range.len = uffdio_wake.len;
1533
1534 /*
1535 * len == 0 means wake all and we don't want to wake all here,
1536 * so check it again to be sure.
1537 */
1538 VM_BUG_ON(!range.len);
1539
1540 wake_userfault(ctx, &range);
1541 ret = 0;
1542
1543out:
1544 return ret;
1545}
1546
ad465cae
AA
1547static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1548 unsigned long arg)
1549{
1550 __s64 ret;
1551 struct uffdio_copy uffdio_copy;
1552 struct uffdio_copy __user *user_uffdio_copy;
1553 struct userfaultfd_wake_range range;
1554
1555 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1556
1557 ret = -EFAULT;
1558 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1559 /* don't copy "copy" last field */
1560 sizeof(uffdio_copy)-sizeof(__s64)))
1561 goto out;
1562
1563 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1564 if (ret)
1565 goto out;
1566 /*
1567 * double check for wraparound just in case. copy_from_user()
1568 * will later check uffdio_copy.src + uffdio_copy.len to fit
1569 * in the userland range.
1570 */
1571 ret = -EINVAL;
1572 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1573 goto out;
1574 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1575 goto out;
d2005e3f
ON
1576 if (mmget_not_zero(ctx->mm)) {
1577 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1578 uffdio_copy.len);
1579 mmput(ctx->mm);
96333187
MR
1580 } else {
1581 return -ENOSPC;
d2005e3f 1582 }
ad465cae
AA
1583 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1584 return -EFAULT;
1585 if (ret < 0)
1586 goto out;
1587 BUG_ON(!ret);
1588 /* len == 0 would wake all */
1589 range.len = ret;
1590 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1591 range.start = uffdio_copy.dst;
1592 wake_userfault(ctx, &range);
1593 }
1594 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1595out:
1596 return ret;
1597}
1598
1599static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1600 unsigned long arg)
1601{
1602 __s64 ret;
1603 struct uffdio_zeropage uffdio_zeropage;
1604 struct uffdio_zeropage __user *user_uffdio_zeropage;
1605 struct userfaultfd_wake_range range;
1606
1607 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1608
1609 ret = -EFAULT;
1610 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1611 /* don't copy "zeropage" last field */
1612 sizeof(uffdio_zeropage)-sizeof(__s64)))
1613 goto out;
1614
1615 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1616 uffdio_zeropage.range.len);
1617 if (ret)
1618 goto out;
1619 ret = -EINVAL;
1620 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1621 goto out;
1622
d2005e3f
ON
1623 if (mmget_not_zero(ctx->mm)) {
1624 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1625 uffdio_zeropage.range.len);
1626 mmput(ctx->mm);
1627 }
ad465cae
AA
1628 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1629 return -EFAULT;
1630 if (ret < 0)
1631 goto out;
1632 /* len == 0 would wake all */
1633 BUG_ON(!ret);
1634 range.len = ret;
1635 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1636 range.start = uffdio_zeropage.range.start;
1637 wake_userfault(ctx, &range);
1638 }
1639 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1640out:
1641 return ret;
1642}
1643
9cd75c3c
PE
1644static inline unsigned int uffd_ctx_features(__u64 user_features)
1645{
1646 /*
1647 * For the current set of features the bits just coincide
1648 */
1649 return (unsigned int)user_features;
1650}
1651
86039bd3
AA
1652/*
1653 * userland asks for a certain API version and we return which bits
1654 * and ioctl commands are implemented in this kernel for such API
1655 * version or -EINVAL if unknown.
1656 */
1657static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1658 unsigned long arg)
1659{
1660 struct uffdio_api uffdio_api;
1661 void __user *buf = (void __user *)arg;
1662 int ret;
65603144 1663 __u64 features;
86039bd3
AA
1664
1665 ret = -EINVAL;
1666 if (ctx->state != UFFD_STATE_WAIT_API)
1667 goto out;
1668 ret = -EFAULT;
a9b85f94 1669 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1670 goto out;
65603144
AA
1671 features = uffdio_api.features;
1672 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
86039bd3
AA
1673 memset(&uffdio_api, 0, sizeof(uffdio_api));
1674 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1675 goto out;
1676 ret = -EINVAL;
1677 goto out;
1678 }
65603144
AA
1679 /* report all available features and ioctls to userland */
1680 uffdio_api.features = UFFD_API_FEATURES;
86039bd3
AA
1681 uffdio_api.ioctls = UFFD_API_IOCTLS;
1682 ret = -EFAULT;
1683 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1684 goto out;
1685 ctx->state = UFFD_STATE_RUNNING;
65603144
AA
1686 /* only enable the requested features for this uffd context */
1687 ctx->features = uffd_ctx_features(features);
86039bd3
AA
1688 ret = 0;
1689out:
1690 return ret;
1691}
1692
1693static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1694 unsigned long arg)
1695{
1696 int ret = -EINVAL;
1697 struct userfaultfd_ctx *ctx = file->private_data;
1698
e6485a47
AA
1699 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1700 return -EINVAL;
1701
86039bd3
AA
1702 switch(cmd) {
1703 case UFFDIO_API:
1704 ret = userfaultfd_api(ctx, arg);
1705 break;
1706 case UFFDIO_REGISTER:
1707 ret = userfaultfd_register(ctx, arg);
1708 break;
1709 case UFFDIO_UNREGISTER:
1710 ret = userfaultfd_unregister(ctx, arg);
1711 break;
1712 case UFFDIO_WAKE:
1713 ret = userfaultfd_wake(ctx, arg);
1714 break;
ad465cae
AA
1715 case UFFDIO_COPY:
1716 ret = userfaultfd_copy(ctx, arg);
1717 break;
1718 case UFFDIO_ZEROPAGE:
1719 ret = userfaultfd_zeropage(ctx, arg);
1720 break;
86039bd3
AA
1721 }
1722 return ret;
1723}
1724
1725#ifdef CONFIG_PROC_FS
1726static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1727{
1728 struct userfaultfd_ctx *ctx = f->private_data;
1729 wait_queue_t *wq;
1730 struct userfaultfd_wait_queue *uwq;
1731 unsigned long pending = 0, total = 0;
1732
15b726ef
AA
1733 spin_lock(&ctx->fault_pending_wqh.lock);
1734 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1735 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1736 pending++;
1737 total++;
1738 }
86039bd3
AA
1739 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1740 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
86039bd3
AA
1741 total++;
1742 }
15b726ef 1743 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1744
1745 /*
1746 * If more protocols will be added, there will be all shown
1747 * separated by a space. Like this:
1748 * protocols: aa:... bb:...
1749 */
1750 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
3f602d27 1751 pending, total, UFFD_API, UFFD_API_FEATURES,
86039bd3
AA
1752 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1753}
1754#endif
1755
1756static const struct file_operations userfaultfd_fops = {
1757#ifdef CONFIG_PROC_FS
1758 .show_fdinfo = userfaultfd_show_fdinfo,
1759#endif
1760 .release = userfaultfd_release,
1761 .poll = userfaultfd_poll,
1762 .read = userfaultfd_read,
1763 .unlocked_ioctl = userfaultfd_ioctl,
1764 .compat_ioctl = userfaultfd_ioctl,
1765 .llseek = noop_llseek,
1766};
1767
3004ec9c
AA
1768static void init_once_userfaultfd_ctx(void *mem)
1769{
1770 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1771
1772 init_waitqueue_head(&ctx->fault_pending_wqh);
1773 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 1774 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 1775 init_waitqueue_head(&ctx->fd_wqh);
2c5b7e1b 1776 seqcount_init(&ctx->refile_seq);
3004ec9c
AA
1777}
1778
86039bd3 1779/**
9332ef9d 1780 * userfaultfd_file_create - Creates a userfaultfd file pointer.
86039bd3
AA
1781 * @flags: Flags for the userfaultfd file.
1782 *
9332ef9d 1783 * This function creates a userfaultfd file pointer, w/out installing
86039bd3
AA
1784 * it into the fd table. This is useful when the userfaultfd file is
1785 * used during the initialization of data structures that require
1786 * extra setup after the userfaultfd creation. So the userfaultfd
1787 * creation is split into the file pointer creation phase, and the
1788 * file descriptor installation phase. In this way races with
1789 * userspace closing the newly installed file descriptor can be
9332ef9d 1790 * avoided. Returns a userfaultfd file pointer, or a proper error
86039bd3
AA
1791 * pointer.
1792 */
1793static struct file *userfaultfd_file_create(int flags)
1794{
1795 struct file *file;
1796 struct userfaultfd_ctx *ctx;
1797
1798 BUG_ON(!current->mm);
1799
1800 /* Check the UFFD_* constants for consistency. */
1801 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1802 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1803
1804 file = ERR_PTR(-EINVAL);
1805 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1806 goto out;
1807
1808 file = ERR_PTR(-ENOMEM);
3004ec9c 1809 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3
AA
1810 if (!ctx)
1811 goto out;
1812
1813 atomic_set(&ctx->refcount, 1);
86039bd3 1814 ctx->flags = flags;
9cd75c3c 1815 ctx->features = 0;
86039bd3
AA
1816 ctx->state = UFFD_STATE_WAIT_API;
1817 ctx->released = false;
1818 ctx->mm = current->mm;
1819 /* prevent the mm struct to be freed */
f1f10076 1820 mmgrab(ctx->mm);
86039bd3
AA
1821
1822 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1823 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
c03e946f 1824 if (IS_ERR(file)) {
d2005e3f 1825 mmdrop(ctx->mm);
3004ec9c 1826 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 1827 }
86039bd3
AA
1828out:
1829 return file;
1830}
1831
1832SYSCALL_DEFINE1(userfaultfd, int, flags)
1833{
1834 int fd, error;
1835 struct file *file;
1836
1837 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1838 if (error < 0)
1839 return error;
1840 fd = error;
1841
1842 file = userfaultfd_file_create(flags);
1843 if (IS_ERR(file)) {
1844 error = PTR_ERR(file);
1845 goto err_put_unused_fd;
1846 }
1847 fd_install(fd, file);
1848
1849 return fd;
1850
1851err_put_unused_fd:
1852 put_unused_fd(fd);
1853
1854 return error;
1855}
3004ec9c
AA
1856
1857static int __init userfaultfd_init(void)
1858{
1859 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1860 sizeof(struct userfaultfd_ctx),
1861 0,
1862 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1863 init_once_userfaultfd_ctx);
1864 return 0;
1865}
1866__initcall(userfaultfd_init);