]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/bitmap.c
lib: bitmap: add missing mask in bitmap_and
[mirror_ubuntu-artful-kernel.git] / lib / bitmap.c
CommitLineData
1da177e4
LT
1/*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8bc3bcc9
PG
8#include <linux/export.h>
9#include <linux/thread_info.h>
1da177e4
LT
10#include <linux/ctype.h>
11#include <linux/errno.h>
12#include <linux/bitmap.h>
13#include <linux/bitops.h>
50af5ead 14#include <linux/bug.h>
1da177e4
LT
15#include <asm/uaccess.h>
16
17/*
18 * bitmaps provide an array of bits, implemented using an an
19 * array of unsigned longs. The number of valid bits in a
20 * given bitmap does _not_ need to be an exact multiple of
21 * BITS_PER_LONG.
22 *
23 * The possible unused bits in the last, partially used word
24 * of a bitmap are 'don't care'. The implementation makes
25 * no particular effort to keep them zero. It ensures that
26 * their value will not affect the results of any operation.
27 * The bitmap operations that return Boolean (bitmap_empty,
28 * for example) or scalar (bitmap_weight, for example) results
29 * carefully filter out these unused bits from impacting their
30 * results.
31 *
32 * These operations actually hold to a slightly stronger rule:
33 * if you don't input any bitmaps to these ops that have some
34 * unused bits set, then they won't output any set unused bits
35 * in output bitmaps.
36 *
37 * The byte ordering of bitmaps is more natural on little
38 * endian architectures. See the big-endian headers
39 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
40 * for the best explanations of this ordering.
41 */
42
0679cc48 43int __bitmap_empty(const unsigned long *bitmap, unsigned int bits)
1da177e4 44{
0679cc48 45 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
46 for (k = 0; k < lim; ++k)
47 if (bitmap[k])
48 return 0;
49
50 if (bits % BITS_PER_LONG)
51 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
52 return 0;
53
54 return 1;
55}
56EXPORT_SYMBOL(__bitmap_empty);
57
8397927c 58int __bitmap_full(const unsigned long *bitmap, unsigned int bits)
1da177e4 59{
8397927c 60 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
61 for (k = 0; k < lim; ++k)
62 if (~bitmap[k])
63 return 0;
64
65 if (bits % BITS_PER_LONG)
66 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
67 return 0;
68
69 return 1;
70}
71EXPORT_SYMBOL(__bitmap_full);
72
73int __bitmap_equal(const unsigned long *bitmap1,
5e068069 74 const unsigned long *bitmap2, unsigned int bits)
1da177e4 75{
5e068069 76 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
77 for (k = 0; k < lim; ++k)
78 if (bitmap1[k] != bitmap2[k])
79 return 0;
80
81 if (bits % BITS_PER_LONG)
82 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
83 return 0;
84
85 return 1;
86}
87EXPORT_SYMBOL(__bitmap_equal);
88
3d6684f4 89void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
1da177e4 90{
3d6684f4 91 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
92 for (k = 0; k < lim; ++k)
93 dst[k] = ~src[k];
94
95 if (bits % BITS_PER_LONG)
65b4ee62 96 dst[k] = ~src[k];
1da177e4
LT
97}
98EXPORT_SYMBOL(__bitmap_complement);
99
72fd4a35 100/**
1da177e4 101 * __bitmap_shift_right - logical right shift of the bits in a bitmap
05fb6bf0
RD
102 * @dst : destination bitmap
103 * @src : source bitmap
104 * @shift : shift by this many bits
105 * @bits : bitmap size, in bits
1da177e4
LT
106 *
107 * Shifting right (dividing) means moving bits in the MS -> LS bit
108 * direction. Zeros are fed into the vacated MS positions and the
109 * LS bits shifted off the bottom are lost.
110 */
111void __bitmap_shift_right(unsigned long *dst,
112 const unsigned long *src, int shift, int bits)
113{
114 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
115 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
116 unsigned long mask = (1UL << left) - 1;
117 for (k = 0; off + k < lim; ++k) {
118 unsigned long upper, lower;
119
120 /*
121 * If shift is not word aligned, take lower rem bits of
122 * word above and make them the top rem bits of result.
123 */
124 if (!rem || off + k + 1 >= lim)
125 upper = 0;
126 else {
127 upper = src[off + k + 1];
128 if (off + k + 1 == lim - 1 && left)
129 upper &= mask;
130 }
131 lower = src[off + k];
132 if (left && off + k == lim - 1)
133 lower &= mask;
134 dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
135 if (left && k == lim - 1)
136 dst[k] &= mask;
137 }
138 if (off)
139 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
140}
141EXPORT_SYMBOL(__bitmap_shift_right);
142
143
72fd4a35 144/**
1da177e4 145 * __bitmap_shift_left - logical left shift of the bits in a bitmap
05fb6bf0
RD
146 * @dst : destination bitmap
147 * @src : source bitmap
148 * @shift : shift by this many bits
149 * @bits : bitmap size, in bits
1da177e4
LT
150 *
151 * Shifting left (multiplying) means moving bits in the LS -> MS
152 * direction. Zeros are fed into the vacated LS bit positions
153 * and those MS bits shifted off the top are lost.
154 */
155
156void __bitmap_shift_left(unsigned long *dst,
157 const unsigned long *src, int shift, int bits)
158{
159 int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
160 int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
161 for (k = lim - off - 1; k >= 0; --k) {
162 unsigned long upper, lower;
163
164 /*
165 * If shift is not word aligned, take upper rem bits of
166 * word below and make them the bottom rem bits of result.
167 */
168 if (rem && k > 0)
169 lower = src[k - 1];
170 else
171 lower = 0;
172 upper = src[k];
173 if (left && k == lim - 1)
174 upper &= (1UL << left) - 1;
175 dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem;
176 if (left && k + off == lim - 1)
177 dst[k + off] &= (1UL << left) - 1;
178 }
179 if (off)
180 memset(dst, 0, off*sizeof(unsigned long));
181}
182EXPORT_SYMBOL(__bitmap_shift_left);
183
f4b0373b 184int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 185 const unsigned long *bitmap2, unsigned int bits)
1da177e4 186{
2f9305eb 187 unsigned int k;
7e5f97d1 188 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 189 unsigned long result = 0;
1da177e4 190
7e5f97d1 191 for (k = 0; k < lim; k++)
f4b0373b 192 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
7e5f97d1
RV
193 if (bits % BITS_PER_LONG)
194 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
195 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 196 return result != 0;
1da177e4
LT
197}
198EXPORT_SYMBOL(__bitmap_and);
199
200void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 201 const unsigned long *bitmap2, unsigned int bits)
1da177e4 202{
2f9305eb
RV
203 unsigned int k;
204 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
205
206 for (k = 0; k < nr; k++)
207 dst[k] = bitmap1[k] | bitmap2[k];
208}
209EXPORT_SYMBOL(__bitmap_or);
210
211void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 212 const unsigned long *bitmap2, unsigned int bits)
1da177e4 213{
2f9305eb
RV
214 unsigned int k;
215 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
216
217 for (k = 0; k < nr; k++)
218 dst[k] = bitmap1[k] ^ bitmap2[k];
219}
220EXPORT_SYMBOL(__bitmap_xor);
221
f4b0373b 222int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 223 const unsigned long *bitmap2, unsigned int bits)
1da177e4 224{
2f9305eb
RV
225 unsigned int k;
226 unsigned int nr = BITS_TO_LONGS(bits);
f4b0373b 227 unsigned long result = 0;
1da177e4
LT
228
229 for (k = 0; k < nr; k++)
f4b0373b
LT
230 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
231 return result != 0;
1da177e4
LT
232}
233EXPORT_SYMBOL(__bitmap_andnot);
234
235int __bitmap_intersects(const unsigned long *bitmap1,
6dfe9799 236 const unsigned long *bitmap2, unsigned int bits)
1da177e4 237{
6dfe9799 238 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
239 for (k = 0; k < lim; ++k)
240 if (bitmap1[k] & bitmap2[k])
241 return 1;
242
243 if (bits % BITS_PER_LONG)
244 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
245 return 1;
246 return 0;
247}
248EXPORT_SYMBOL(__bitmap_intersects);
249
250int __bitmap_subset(const unsigned long *bitmap1,
5be20213 251 const unsigned long *bitmap2, unsigned int bits)
1da177e4 252{
5be20213 253 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
254 for (k = 0; k < lim; ++k)
255 if (bitmap1[k] & ~bitmap2[k])
256 return 0;
257
258 if (bits % BITS_PER_LONG)
259 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
260 return 0;
261 return 1;
262}
263EXPORT_SYMBOL(__bitmap_subset);
264
877d9f3b 265int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
1da177e4 266{
877d9f3b
RV
267 unsigned int k, lim = bits/BITS_PER_LONG;
268 int w = 0;
1da177e4
LT
269
270 for (k = 0; k < lim; k++)
37d54111 271 w += hweight_long(bitmap[k]);
1da177e4
LT
272
273 if (bits % BITS_PER_LONG)
37d54111 274 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
1da177e4
LT
275
276 return w;
277}
1da177e4
LT
278EXPORT_SYMBOL(__bitmap_weight);
279
fb5ac542 280void bitmap_set(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
281{
282 unsigned long *p = map + BIT_WORD(start);
fb5ac542 283 const unsigned int size = start + len;
c1a2a962
AM
284 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
285 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
286
fb5ac542 287 while (len - bits_to_set >= 0) {
c1a2a962 288 *p |= mask_to_set;
fb5ac542 289 len -= bits_to_set;
c1a2a962
AM
290 bits_to_set = BITS_PER_LONG;
291 mask_to_set = ~0UL;
292 p++;
293 }
fb5ac542 294 if (len) {
c1a2a962
AM
295 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
296 *p |= mask_to_set;
297 }
298}
299EXPORT_SYMBOL(bitmap_set);
300
154f5e38 301void bitmap_clear(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
302{
303 unsigned long *p = map + BIT_WORD(start);
154f5e38 304 const unsigned int size = start + len;
c1a2a962
AM
305 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
306 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
307
154f5e38 308 while (len - bits_to_clear >= 0) {
c1a2a962 309 *p &= ~mask_to_clear;
154f5e38 310 len -= bits_to_clear;
c1a2a962
AM
311 bits_to_clear = BITS_PER_LONG;
312 mask_to_clear = ~0UL;
313 p++;
314 }
154f5e38 315 if (len) {
c1a2a962
AM
316 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
317 *p &= ~mask_to_clear;
318 }
319}
320EXPORT_SYMBOL(bitmap_clear);
321
322/*
323 * bitmap_find_next_zero_area - find a contiguous aligned zero area
324 * @map: The address to base the search on
325 * @size: The bitmap size in bits
326 * @start: The bitnumber to start searching at
327 * @nr: The number of zeroed bits we're looking for
328 * @align_mask: Alignment mask for zero area
329 *
330 * The @align_mask should be one less than a power of 2; the effect is that
331 * the bit offset of all zero areas this function finds is multiples of that
332 * power of 2. A @align_mask of 0 means no alignment is required.
333 */
334unsigned long bitmap_find_next_zero_area(unsigned long *map,
335 unsigned long size,
336 unsigned long start,
337 unsigned int nr,
338 unsigned long align_mask)
339{
340 unsigned long index, end, i;
341again:
342 index = find_next_zero_bit(map, size, start);
343
344 /* Align allocation */
345 index = __ALIGN_MASK(index, align_mask);
346
347 end = index + nr;
348 if (end > size)
349 return end;
350 i = find_next_bit(map, end, index);
351 if (i < end) {
352 start = i + 1;
353 goto again;
354 }
355 return index;
356}
357EXPORT_SYMBOL(bitmap_find_next_zero_area);
358
1da177e4 359/*
6d49e352 360 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
1da177e4
LT
361 * second version by Paul Jackson, third by Joe Korty.
362 */
363
364#define CHUNKSZ 32
365#define nbits_to_hold_value(val) fls(val)
1da177e4
LT
366#define BASEDEC 10 /* fancier cpuset lists input in decimal */
367
368/**
369 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
370 * @buf: byte buffer into which string is placed
371 * @buflen: reserved size of @buf, in bytes
372 * @maskp: pointer to bitmap to convert
373 * @nmaskbits: size of bitmap, in bits
374 *
375 * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
05a6c8a9
AM
376 * comma-separated sets of eight digits per set. Returns the number of
377 * characters which were written to *buf, excluding the trailing \0.
1da177e4
LT
378 */
379int bitmap_scnprintf(char *buf, unsigned int buflen,
380 const unsigned long *maskp, int nmaskbits)
381{
382 int i, word, bit, len = 0;
383 unsigned long val;
384 const char *sep = "";
385 int chunksz;
386 u32 chunkmask;
387
388 chunksz = nmaskbits & (CHUNKSZ - 1);
389 if (chunksz == 0)
390 chunksz = CHUNKSZ;
391
8c0e33c1 392 i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
1da177e4
LT
393 for (; i >= 0; i -= CHUNKSZ) {
394 chunkmask = ((1ULL << chunksz) - 1);
395 word = i / BITS_PER_LONG;
396 bit = i % BITS_PER_LONG;
397 val = (maskp[word] >> bit) & chunkmask;
398 len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
399 (chunksz+3)/4, val);
400 chunksz = CHUNKSZ;
401 sep = ",";
402 }
403 return len;
404}
405EXPORT_SYMBOL(bitmap_scnprintf);
406
407/**
01a3ee2b
RC
408 * __bitmap_parse - convert an ASCII hex string into a bitmap.
409 * @buf: pointer to buffer containing string.
410 * @buflen: buffer size in bytes. If string is smaller than this
1da177e4 411 * then it must be terminated with a \0.
01a3ee2b 412 * @is_user: location of buffer, 0 indicates kernel space
1da177e4
LT
413 * @maskp: pointer to bitmap array that will contain result.
414 * @nmaskbits: size of bitmap, in bits.
415 *
416 * Commas group hex digits into chunks. Each chunk defines exactly 32
417 * bits of the resultant bitmask. No chunk may specify a value larger
6e1907ff
RD
418 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
419 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
1da177e4
LT
420 * characters and for grouping errors such as "1,,5", ",44", "," and "".
421 * Leading and trailing whitespace accepted, but not embedded whitespace.
422 */
01a3ee2b
RC
423int __bitmap_parse(const char *buf, unsigned int buflen,
424 int is_user, unsigned long *maskp,
425 int nmaskbits)
1da177e4
LT
426{
427 int c, old_c, totaldigits, ndigits, nchunks, nbits;
428 u32 chunk;
b9c321fd 429 const char __user __force *ubuf = (const char __user __force *)buf;
1da177e4
LT
430
431 bitmap_zero(maskp, nmaskbits);
432
433 nchunks = nbits = totaldigits = c = 0;
434 do {
435 chunk = ndigits = 0;
436
437 /* Get the next chunk of the bitmap */
01a3ee2b 438 while (buflen) {
1da177e4 439 old_c = c;
01a3ee2b
RC
440 if (is_user) {
441 if (__get_user(c, ubuf++))
442 return -EFAULT;
443 }
444 else
445 c = *buf++;
446 buflen--;
1da177e4
LT
447 if (isspace(c))
448 continue;
449
450 /*
451 * If the last character was a space and the current
452 * character isn't '\0', we've got embedded whitespace.
453 * This is a no-no, so throw an error.
454 */
455 if (totaldigits && c && isspace(old_c))
456 return -EINVAL;
457
458 /* A '\0' or a ',' signal the end of the chunk */
459 if (c == '\0' || c == ',')
460 break;
461
462 if (!isxdigit(c))
463 return -EINVAL;
464
465 /*
466 * Make sure there are at least 4 free bits in 'chunk'.
467 * If not, this hexdigit will overflow 'chunk', so
468 * throw an error.
469 */
470 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
471 return -EOVERFLOW;
472
66f1991b 473 chunk = (chunk << 4) | hex_to_bin(c);
1da177e4
LT
474 ndigits++; totaldigits++;
475 }
476 if (ndigits == 0)
477 return -EINVAL;
478 if (nchunks == 0 && chunk == 0)
479 continue;
480
481 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
482 *maskp |= chunk;
483 nchunks++;
484 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
485 if (nbits > nmaskbits)
486 return -EOVERFLOW;
01a3ee2b 487 } while (buflen && c == ',');
1da177e4
LT
488
489 return 0;
490}
01a3ee2b
RC
491EXPORT_SYMBOL(__bitmap_parse);
492
493/**
9a86e2ba 494 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
01a3ee2b
RC
495 *
496 * @ubuf: pointer to user buffer containing string.
497 * @ulen: buffer size in bytes. If string is smaller than this
498 * then it must be terminated with a \0.
499 * @maskp: pointer to bitmap array that will contain result.
500 * @nmaskbits: size of bitmap, in bits.
501 *
502 * Wrapper for __bitmap_parse(), providing it with user buffer.
503 *
504 * We cannot have this as an inline function in bitmap.h because it needs
505 * linux/uaccess.h to get the access_ok() declaration and this causes
506 * cyclic dependencies.
507 */
508int bitmap_parse_user(const char __user *ubuf,
509 unsigned int ulen, unsigned long *maskp,
510 int nmaskbits)
511{
512 if (!access_ok(VERIFY_READ, ubuf, ulen))
513 return -EFAULT;
b9c321fd
HS
514 return __bitmap_parse((const char __force *)ubuf,
515 ulen, 1, maskp, nmaskbits);
516
01a3ee2b
RC
517}
518EXPORT_SYMBOL(bitmap_parse_user);
1da177e4
LT
519
520/*
521 * bscnl_emit(buf, buflen, rbot, rtop, bp)
522 *
523 * Helper routine for bitmap_scnlistprintf(). Write decimal number
524 * or range to buf, suppressing output past buf+buflen, with optional
05a6c8a9
AM
525 * comma-prefix. Return len of what was written to *buf, excluding the
526 * trailing \0.
1da177e4
LT
527 */
528static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
529{
530 if (len > 0)
531 len += scnprintf(buf + len, buflen - len, ",");
532 if (rbot == rtop)
533 len += scnprintf(buf + len, buflen - len, "%d", rbot);
534 else
535 len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
536 return len;
537}
538
539/**
540 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
541 * @buf: byte buffer into which string is placed
542 * @buflen: reserved size of @buf, in bytes
543 * @maskp: pointer to bitmap to convert
544 * @nmaskbits: size of bitmap, in bits
545 *
546 * Output format is a comma-separated list of decimal numbers and
547 * ranges. Consecutively set bits are shown as two hyphen-separated
548 * decimal numbers, the smallest and largest bit numbers set in
549 * the range. Output format is compatible with the format
550 * accepted as input by bitmap_parselist().
551 *
05a6c8a9
AM
552 * The return value is the number of characters which were written to *buf
553 * excluding the trailing '\0', as per ISO C99's scnprintf.
1da177e4
LT
554 */
555int bitmap_scnlistprintf(char *buf, unsigned int buflen,
556 const unsigned long *maskp, int nmaskbits)
557{
558 int len = 0;
559 /* current bit is 'cur', most recently seen range is [rbot, rtop] */
560 int cur, rbot, rtop;
561
0b030c2c
AK
562 if (buflen == 0)
563 return 0;
564 buf[0] = 0;
565
1da177e4
LT
566 rbot = cur = find_first_bit(maskp, nmaskbits);
567 while (cur < nmaskbits) {
568 rtop = cur;
569 cur = find_next_bit(maskp, nmaskbits, cur+1);
570 if (cur >= nmaskbits || cur > rtop + 1) {
571 len = bscnl_emit(buf, buflen, rbot, rtop, len);
572 rbot = cur;
573 }
574 }
575 return len;
576}
577EXPORT_SYMBOL(bitmap_scnlistprintf);
578
579/**
4b060420 580 * __bitmap_parselist - convert list format ASCII string to bitmap
b0825ee3 581 * @buf: read nul-terminated user string from this buffer
4b060420
MT
582 * @buflen: buffer size in bytes. If string is smaller than this
583 * then it must be terminated with a \0.
584 * @is_user: location of buffer, 0 indicates kernel space
6e1907ff 585 * @maskp: write resulting mask here
1da177e4
LT
586 * @nmaskbits: number of bits in mask to be written
587 *
588 * Input format is a comma-separated list of decimal numbers and
589 * ranges. Consecutively set bits are shown as two hyphen-separated
590 * decimal numbers, the smallest and largest bit numbers set in
591 * the range.
592 *
6e1907ff
RD
593 * Returns 0 on success, -errno on invalid input strings.
594 * Error values:
595 * %-EINVAL: second number in range smaller than first
596 * %-EINVAL: invalid character in string
597 * %-ERANGE: bit number specified too large for mask
1da177e4 598 */
4b060420
MT
599static int __bitmap_parselist(const char *buf, unsigned int buflen,
600 int is_user, unsigned long *maskp,
601 int nmaskbits)
1da177e4
LT
602{
603 unsigned a, b;
4b060420 604 int c, old_c, totaldigits;
b9c321fd 605 const char __user __force *ubuf = (const char __user __force *)buf;
4b060420 606 int exp_digit, in_range;
1da177e4 607
4b060420 608 totaldigits = c = 0;
1da177e4
LT
609 bitmap_zero(maskp, nmaskbits);
610 do {
4b060420
MT
611 exp_digit = 1;
612 in_range = 0;
613 a = b = 0;
614
615 /* Get the next cpu# or a range of cpu#'s */
616 while (buflen) {
617 old_c = c;
618 if (is_user) {
619 if (__get_user(c, ubuf++))
620 return -EFAULT;
621 } else
622 c = *buf++;
623 buflen--;
624 if (isspace(c))
625 continue;
626
627 /*
628 * If the last character was a space and the current
629 * character isn't '\0', we've got embedded whitespace.
630 * This is a no-no, so throw an error.
631 */
632 if (totaldigits && c && isspace(old_c))
633 return -EINVAL;
634
635 /* A '\0' or a ',' signal the end of a cpu# or range */
636 if (c == '\0' || c == ',')
637 break;
638
639 if (c == '-') {
640 if (exp_digit || in_range)
641 return -EINVAL;
642 b = 0;
643 in_range = 1;
644 exp_digit = 1;
645 continue;
646 }
647
648 if (!isdigit(c))
1da177e4 649 return -EINVAL;
4b060420
MT
650
651 b = b * 10 + (c - '0');
652 if (!in_range)
653 a = b;
654 exp_digit = 0;
655 totaldigits++;
1da177e4
LT
656 }
657 if (!(a <= b))
658 return -EINVAL;
659 if (b >= nmaskbits)
660 return -ERANGE;
661 while (a <= b) {
662 set_bit(a, maskp);
663 a++;
664 }
4b060420 665 } while (buflen && c == ',');
1da177e4
LT
666 return 0;
667}
4b060420
MT
668
669int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
670{
bc5be182
RV
671 char *nl = strchrnul(bp, '\n');
672 int len = nl - bp;
4b060420
MT
673
674 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
675}
1da177e4
LT
676EXPORT_SYMBOL(bitmap_parselist);
677
4b060420
MT
678
679/**
680 * bitmap_parselist_user()
681 *
682 * @ubuf: pointer to user buffer containing string.
683 * @ulen: buffer size in bytes. If string is smaller than this
684 * then it must be terminated with a \0.
685 * @maskp: pointer to bitmap array that will contain result.
686 * @nmaskbits: size of bitmap, in bits.
687 *
688 * Wrapper for bitmap_parselist(), providing it with user buffer.
689 *
690 * We cannot have this as an inline function in bitmap.h because it needs
691 * linux/uaccess.h to get the access_ok() declaration and this causes
692 * cyclic dependencies.
693 */
694int bitmap_parselist_user(const char __user *ubuf,
695 unsigned int ulen, unsigned long *maskp,
696 int nmaskbits)
697{
698 if (!access_ok(VERIFY_READ, ubuf, ulen))
699 return -EFAULT;
b9c321fd 700 return __bitmap_parselist((const char __force *)ubuf,
4b060420
MT
701 ulen, 1, maskp, nmaskbits);
702}
703EXPORT_SYMBOL(bitmap_parselist_user);
704
705
72fd4a35 706/**
9a86e2ba 707 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
fb5eeeee
PJ
708 * @buf: pointer to a bitmap
709 * @pos: a bit position in @buf (0 <= @pos < @bits)
710 * @bits: number of valid bit positions in @buf
711 *
712 * Map the bit at position @pos in @buf (of length @bits) to the
713 * ordinal of which set bit it is. If it is not set or if @pos
96b7f341 714 * is not a valid bit position, map to -1.
fb5eeeee
PJ
715 *
716 * If for example, just bits 4 through 7 are set in @buf, then @pos
717 * values 4 through 7 will get mapped to 0 through 3, respectively,
a8551748 718 * and other @pos values will get mapped to -1. When @pos value 7
fb5eeeee
PJ
719 * gets mapped to (returns) @ord value 3 in this example, that means
720 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
721 *
722 * The bit positions 0 through @bits are valid positions in @buf.
723 */
724static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
725{
96b7f341 726 int i, ord;
fb5eeeee 727
96b7f341
PJ
728 if (pos < 0 || pos >= bits || !test_bit(pos, buf))
729 return -1;
fb5eeeee 730
96b7f341
PJ
731 i = find_first_bit(buf, bits);
732 ord = 0;
733 while (i < pos) {
734 i = find_next_bit(buf, bits, i + 1);
735 ord++;
fb5eeeee 736 }
96b7f341
PJ
737 BUG_ON(i != pos);
738
fb5eeeee
PJ
739 return ord;
740}
741
742/**
9a86e2ba 743 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
fb5eeeee
PJ
744 * @buf: pointer to bitmap
745 * @ord: ordinal bit position (n-th set bit, n >= 0)
746 * @bits: number of valid bit positions in @buf
747 *
748 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
96b7f341
PJ
749 * Value of @ord should be in range 0 <= @ord < weight(buf), else
750 * results are undefined.
fb5eeeee
PJ
751 *
752 * If for example, just bits 4 through 7 are set in @buf, then @ord
753 * values 0 through 3 will get mapped to 4 through 7, respectively,
96b7f341 754 * and all other @ord values return undefined values. When @ord value 3
fb5eeeee
PJ
755 * gets mapped to (returns) @pos value 7 in this example, that means
756 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
757 *
758 * The bit positions 0 through @bits are valid positions in @buf.
759 */
778d3b0f 760int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
fb5eeeee
PJ
761{
762 int pos = 0;
763
764 if (ord >= 0 && ord < bits) {
765 int i;
766
767 for (i = find_first_bit(buf, bits);
768 i < bits && ord > 0;
769 i = find_next_bit(buf, bits, i + 1))
770 ord--;
771 if (i < bits && ord == 0)
772 pos = i;
773 }
774
775 return pos;
776}
777
778/**
779 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
fb5eeeee 780 * @dst: remapped result
96b7f341 781 * @src: subset to be remapped
fb5eeeee
PJ
782 * @old: defines domain of map
783 * @new: defines range of map
784 * @bits: number of bits in each of these bitmaps
785 *
786 * Let @old and @new define a mapping of bit positions, such that
787 * whatever position is held by the n-th set bit in @old is mapped
788 * to the n-th set bit in @new. In the more general case, allowing
789 * for the possibility that the weight 'w' of @new is less than the
790 * weight of @old, map the position of the n-th set bit in @old to
791 * the position of the m-th set bit in @new, where m == n % w.
792 *
96b7f341
PJ
793 * If either of the @old and @new bitmaps are empty, or if @src and
794 * @dst point to the same location, then this routine copies @src
795 * to @dst.
fb5eeeee 796 *
96b7f341
PJ
797 * The positions of unset bits in @old are mapped to themselves
798 * (the identify map).
fb5eeeee
PJ
799 *
800 * Apply the above specified mapping to @src, placing the result in
801 * @dst, clearing any bits previously set in @dst.
802 *
fb5eeeee
PJ
803 * For example, lets say that @old has bits 4 through 7 set, and
804 * @new has bits 12 through 15 set. This defines the mapping of bit
805 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
806 * bit positions unchanged. So if say @src comes into this routine
807 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
808 * 13 and 15 set.
fb5eeeee
PJ
809 */
810void bitmap_remap(unsigned long *dst, const unsigned long *src,
811 const unsigned long *old, const unsigned long *new,
812 int bits)
813{
96b7f341 814 int oldbit, w;
fb5eeeee 815
fb5eeeee
PJ
816 if (dst == src) /* following doesn't handle inplace remaps */
817 return;
fb5eeeee 818 bitmap_zero(dst, bits);
96b7f341
PJ
819
820 w = bitmap_weight(new, bits);
08564fb7 821 for_each_set_bit(oldbit, src, bits) {
96b7f341 822 int n = bitmap_pos_to_ord(old, oldbit, bits);
08564fb7 823
96b7f341
PJ
824 if (n < 0 || w == 0)
825 set_bit(oldbit, dst); /* identity map */
826 else
827 set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
fb5eeeee
PJ
828 }
829}
830EXPORT_SYMBOL(bitmap_remap);
831
832/**
833 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
6e1907ff
RD
834 * @oldbit: bit position to be mapped
835 * @old: defines domain of map
836 * @new: defines range of map
837 * @bits: number of bits in each of these bitmaps
fb5eeeee
PJ
838 *
839 * Let @old and @new define a mapping of bit positions, such that
840 * whatever position is held by the n-th set bit in @old is mapped
841 * to the n-th set bit in @new. In the more general case, allowing
842 * for the possibility that the weight 'w' of @new is less than the
843 * weight of @old, map the position of the n-th set bit in @old to
844 * the position of the m-th set bit in @new, where m == n % w.
845 *
96b7f341
PJ
846 * The positions of unset bits in @old are mapped to themselves
847 * (the identify map).
fb5eeeee
PJ
848 *
849 * Apply the above specified mapping to bit position @oldbit, returning
850 * the new bit position.
851 *
852 * For example, lets say that @old has bits 4 through 7 set, and
853 * @new has bits 12 through 15 set. This defines the mapping of bit
854 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
855 * bit positions unchanged. So if say @oldbit is 5, then this routine
856 * returns 13.
fb5eeeee
PJ
857 */
858int bitmap_bitremap(int oldbit, const unsigned long *old,
859 const unsigned long *new, int bits)
860{
96b7f341
PJ
861 int w = bitmap_weight(new, bits);
862 int n = bitmap_pos_to_ord(old, oldbit, bits);
863 if (n < 0 || w == 0)
864 return oldbit;
865 else
866 return bitmap_ord_to_pos(new, n % w, bits);
fb5eeeee
PJ
867}
868EXPORT_SYMBOL(bitmap_bitremap);
869
7ea931c9
PJ
870/**
871 * bitmap_onto - translate one bitmap relative to another
872 * @dst: resulting translated bitmap
873 * @orig: original untranslated bitmap
874 * @relmap: bitmap relative to which translated
875 * @bits: number of bits in each of these bitmaps
876 *
877 * Set the n-th bit of @dst iff there exists some m such that the
878 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
879 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
880 * (If you understood the previous sentence the first time your
881 * read it, you're overqualified for your current job.)
882 *
883 * In other words, @orig is mapped onto (surjectively) @dst,
884 * using the the map { <n, m> | the n-th bit of @relmap is the
885 * m-th set bit of @relmap }.
886 *
887 * Any set bits in @orig above bit number W, where W is the
888 * weight of (number of set bits in) @relmap are mapped nowhere.
889 * In particular, if for all bits m set in @orig, m >= W, then
890 * @dst will end up empty. In situations where the possibility
891 * of such an empty result is not desired, one way to avoid it is
892 * to use the bitmap_fold() operator, below, to first fold the
893 * @orig bitmap over itself so that all its set bits x are in the
894 * range 0 <= x < W. The bitmap_fold() operator does this by
895 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
896 *
897 * Example [1] for bitmap_onto():
898 * Let's say @relmap has bits 30-39 set, and @orig has bits
899 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
900 * @dst will have bits 31, 33, 35, 37 and 39 set.
901 *
902 * When bit 0 is set in @orig, it means turn on the bit in
903 * @dst corresponding to whatever is the first bit (if any)
904 * that is turned on in @relmap. Since bit 0 was off in the
905 * above example, we leave off that bit (bit 30) in @dst.
906 *
907 * When bit 1 is set in @orig (as in the above example), it
908 * means turn on the bit in @dst corresponding to whatever
909 * is the second bit that is turned on in @relmap. The second
910 * bit in @relmap that was turned on in the above example was
911 * bit 31, so we turned on bit 31 in @dst.
912 *
913 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
914 * because they were the 4th, 6th, 8th and 10th set bits
915 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
916 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
917 *
918 * When bit 11 is set in @orig, it means turn on the bit in
25985edc 919 * @dst corresponding to whatever is the twelfth bit that is
7ea931c9
PJ
920 * turned on in @relmap. In the above example, there were
921 * only ten bits turned on in @relmap (30..39), so that bit
922 * 11 was set in @orig had no affect on @dst.
923 *
924 * Example [2] for bitmap_fold() + bitmap_onto():
925 * Let's say @relmap has these ten bits set:
926 * 40 41 42 43 45 48 53 61 74 95
927 * (for the curious, that's 40 plus the first ten terms of the
928 * Fibonacci sequence.)
929 *
930 * Further lets say we use the following code, invoking
931 * bitmap_fold() then bitmap_onto, as suggested above to
932 * avoid the possitility of an empty @dst result:
933 *
934 * unsigned long *tmp; // a temporary bitmap's bits
935 *
936 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
937 * bitmap_onto(dst, tmp, relmap, bits);
938 *
939 * Then this table shows what various values of @dst would be, for
940 * various @orig's. I list the zero-based positions of each set bit.
941 * The tmp column shows the intermediate result, as computed by
942 * using bitmap_fold() to fold the @orig bitmap modulo ten
943 * (the weight of @relmap).
944 *
945 * @orig tmp @dst
946 * 0 0 40
947 * 1 1 41
948 * 9 9 95
949 * 10 0 40 (*)
950 * 1 3 5 7 1 3 5 7 41 43 48 61
951 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
952 * 0 9 18 27 0 9 8 7 40 61 74 95
953 * 0 10 20 30 0 40
954 * 0 11 22 33 0 1 2 3 40 41 42 43
955 * 0 12 24 36 0 2 4 6 40 42 45 53
956 * 78 102 211 1 2 8 41 42 74 (*)
957 *
958 * (*) For these marked lines, if we hadn't first done bitmap_fold()
959 * into tmp, then the @dst result would have been empty.
960 *
961 * If either of @orig or @relmap is empty (no set bits), then @dst
962 * will be returned empty.
963 *
964 * If (as explained above) the only set bits in @orig are in positions
965 * m where m >= W, (where W is the weight of @relmap) then @dst will
966 * once again be returned empty.
967 *
968 * All bits in @dst not set by the above rule are cleared.
969 */
970void bitmap_onto(unsigned long *dst, const unsigned long *orig,
971 const unsigned long *relmap, int bits)
972{
973 int n, m; /* same meaning as in above comment */
974
975 if (dst == orig) /* following doesn't handle inplace mappings */
976 return;
977 bitmap_zero(dst, bits);
978
979 /*
980 * The following code is a more efficient, but less
981 * obvious, equivalent to the loop:
982 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
983 * n = bitmap_ord_to_pos(orig, m, bits);
984 * if (test_bit(m, orig))
985 * set_bit(n, dst);
986 * }
987 */
988
989 m = 0;
08564fb7 990 for_each_set_bit(n, relmap, bits) {
7ea931c9
PJ
991 /* m == bitmap_pos_to_ord(relmap, n, bits) */
992 if (test_bit(m, orig))
993 set_bit(n, dst);
994 m++;
995 }
996}
997EXPORT_SYMBOL(bitmap_onto);
998
999/**
1000 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1001 * @dst: resulting smaller bitmap
1002 * @orig: original larger bitmap
1003 * @sz: specified size
1004 * @bits: number of bits in each of these bitmaps
1005 *
1006 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1007 * Clear all other bits in @dst. See further the comment and
1008 * Example [2] for bitmap_onto() for why and how to use this.
1009 */
1010void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1011 int sz, int bits)
1012{
1013 int oldbit;
1014
1015 if (dst == orig) /* following doesn't handle inplace mappings */
1016 return;
1017 bitmap_zero(dst, bits);
1018
08564fb7 1019 for_each_set_bit(oldbit, orig, bits)
7ea931c9
PJ
1020 set_bit(oldbit % sz, dst);
1021}
1022EXPORT_SYMBOL(bitmap_fold);
1023
3cf64b93
PJ
1024/*
1025 * Common code for bitmap_*_region() routines.
1026 * bitmap: array of unsigned longs corresponding to the bitmap
1027 * pos: the beginning of the region
1028 * order: region size (log base 2 of number of bits)
1029 * reg_op: operation(s) to perform on that region of bitmap
1da177e4 1030 *
3cf64b93
PJ
1031 * Can set, verify and/or release a region of bits in a bitmap,
1032 * depending on which combination of REG_OP_* flag bits is set.
1da177e4 1033 *
3cf64b93
PJ
1034 * A region of a bitmap is a sequence of bits in the bitmap, of
1035 * some size '1 << order' (a power of two), aligned to that same
1036 * '1 << order' power of two.
1037 *
1038 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1039 * Returns 0 in all other cases and reg_ops.
1da177e4 1040 */
3cf64b93
PJ
1041
1042enum {
1043 REG_OP_ISFREE, /* true if region is all zero bits */
1044 REG_OP_ALLOC, /* set all bits in region */
1045 REG_OP_RELEASE, /* clear all bits in region */
1046};
1047
9279d328 1048static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1da177e4 1049{
3cf64b93
PJ
1050 int nbits_reg; /* number of bits in region */
1051 int index; /* index first long of region in bitmap */
1052 int offset; /* bit offset region in bitmap[index] */
1053 int nlongs_reg; /* num longs spanned by region in bitmap */
74373c6a 1054 int nbitsinlong; /* num bits of region in each spanned long */
3cf64b93 1055 unsigned long mask; /* bitmask for one long of region */
74373c6a 1056 int i; /* scans bitmap by longs */
3cf64b93 1057 int ret = 0; /* return value */
74373c6a 1058
3cf64b93
PJ
1059 /*
1060 * Either nlongs_reg == 1 (for small orders that fit in one long)
1061 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1062 */
1063 nbits_reg = 1 << order;
1064 index = pos / BITS_PER_LONG;
1065 offset = pos - (index * BITS_PER_LONG);
1066 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1067 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1da177e4 1068
3cf64b93
PJ
1069 /*
1070 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1071 * overflows if nbitsinlong == BITS_PER_LONG.
1072 */
74373c6a 1073 mask = (1UL << (nbitsinlong - 1));
1da177e4 1074 mask += mask - 1;
3cf64b93 1075 mask <<= offset;
1da177e4 1076
3cf64b93
PJ
1077 switch (reg_op) {
1078 case REG_OP_ISFREE:
1079 for (i = 0; i < nlongs_reg; i++) {
1080 if (bitmap[index + i] & mask)
1081 goto done;
1082 }
1083 ret = 1; /* all bits in region free (zero) */
1084 break;
1085
1086 case REG_OP_ALLOC:
1087 for (i = 0; i < nlongs_reg; i++)
1088 bitmap[index + i] |= mask;
1089 break;
1090
1091 case REG_OP_RELEASE:
1092 for (i = 0; i < nlongs_reg; i++)
1093 bitmap[index + i] &= ~mask;
1094 break;
1da177e4 1095 }
3cf64b93
PJ
1096done:
1097 return ret;
1098}
1099
1100/**
1101 * bitmap_find_free_region - find a contiguous aligned mem region
1102 * @bitmap: array of unsigned longs corresponding to the bitmap
1103 * @bits: number of bits in the bitmap
1104 * @order: region size (log base 2 of number of bits) to find
1105 *
1106 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1107 * allocate them (set them to one). Only consider regions of length
1108 * a power (@order) of two, aligned to that power of two, which
1109 * makes the search algorithm much faster.
1110 *
1111 * Return the bit offset in bitmap of the allocated region,
1112 * or -errno on failure.
1113 */
9279d328 1114int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
3cf64b93 1115{
9279d328 1116 unsigned int pos, end; /* scans bitmap by regions of size order */
aa8e4fc6 1117
9279d328 1118 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
aa8e4fc6
LT
1119 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1120 continue;
1121 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1122 return pos;
1123 }
1124 return -ENOMEM;
1da177e4
LT
1125}
1126EXPORT_SYMBOL(bitmap_find_free_region);
1127
1128/**
87e24802 1129 * bitmap_release_region - release allocated bitmap region
3cf64b93
PJ
1130 * @bitmap: array of unsigned longs corresponding to the bitmap
1131 * @pos: beginning of bit region to release
1132 * @order: region size (log base 2 of number of bits) to release
1da177e4 1133 *
72fd4a35 1134 * This is the complement to __bitmap_find_free_region() and releases
1da177e4 1135 * the found region (by clearing it in the bitmap).
3cf64b93
PJ
1136 *
1137 * No return value.
1da177e4 1138 */
9279d328 1139void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1140{
3cf64b93 1141 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1da177e4
LT
1142}
1143EXPORT_SYMBOL(bitmap_release_region);
1144
87e24802
PJ
1145/**
1146 * bitmap_allocate_region - allocate bitmap region
3cf64b93
PJ
1147 * @bitmap: array of unsigned longs corresponding to the bitmap
1148 * @pos: beginning of bit region to allocate
1149 * @order: region size (log base 2 of number of bits) to allocate
87e24802
PJ
1150 *
1151 * Allocate (set bits in) a specified region of a bitmap.
3cf64b93 1152 *
6e1907ff 1153 * Return 0 on success, or %-EBUSY if specified region wasn't
87e24802
PJ
1154 * free (not all bits were zero).
1155 */
9279d328 1156int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1157{
3cf64b93
PJ
1158 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1159 return -EBUSY;
2ac521d3 1160 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1da177e4
LT
1161}
1162EXPORT_SYMBOL(bitmap_allocate_region);
ccbe329b
DV
1163
1164/**
1165 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1166 * @dst: destination buffer
1167 * @src: bitmap to copy
1168 * @nbits: number of bits in the bitmap
1169 *
1170 * Require nbits % BITS_PER_LONG == 0.
1171 */
1172void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1173{
1174 unsigned long *d = dst;
1175 int i;
1176
1177 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1178 if (BITS_PER_LONG == 64)
1179 d[i] = cpu_to_le64(src[i]);
1180 else
1181 d[i] = cpu_to_le32(src[i]);
1182 }
1183}
1184EXPORT_SYMBOL(bitmap_copy_le);