]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/swiotlb.c
swiotlb: Add swiotlb=noforce debug option
[mirror_ubuntu-artful-kernel.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
20#include <linux/cache.h>
17e5ad6c 21#include <linux/dma-mapping.h>
1da177e4 22#include <linux/mm.h>
8bc3bcc9 23#include <linux/export.h>
1da177e4
LT
24#include <linux/spinlock.h>
25#include <linux/string.h>
0016fdee 26#include <linux/swiotlb.h>
fb05a379 27#include <linux/pfn.h>
1da177e4
LT
28#include <linux/types.h>
29#include <linux/ctype.h>
ef9b1893 30#include <linux/highmem.h>
5a0e3ad6 31#include <linux/gfp.h>
84be456f 32#include <linux/scatterlist.h>
1da177e4
LT
33
34#include <asm/io.h>
1da177e4
LT
35#include <asm/dma.h>
36
37#include <linux/init.h>
38#include <linux/bootmem.h>
a8522509 39#include <linux/iommu-helper.h>
1da177e4 40
ce5be5a1 41#define CREATE_TRACE_POINTS
2b2b614d
ZK
42#include <trace/events/swiotlb.h>
43
1da177e4
LT
44#define OFFSET(val,align) ((unsigned long) \
45 ( (val) & ( (align) - 1)))
46
0b9afede
AW
47#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
48
49/*
50 * Minimum IO TLB size to bother booting with. Systems with mainly
51 * 64bit capable cards will only lightly use the swiotlb. If we can't
52 * allocate a contiguous 1MB, we're probably in trouble anyway.
53 */
54#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
55
ae7871be 56enum swiotlb_force swiotlb_force;
1da177e4
LT
57
58/*
bfc5501f
KRW
59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
61 * API.
62 */
ff7204a7 63static phys_addr_t io_tlb_start, io_tlb_end;
1da177e4
LT
64
65/*
b595076a 66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
1da177e4
LT
67 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
68 */
69static unsigned long io_tlb_nslabs;
70
71/*
72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
73 */
74static unsigned long io_tlb_overflow = 32*1024;
75
ee3f6ba8 76static phys_addr_t io_tlb_overflow_buffer;
1da177e4
LT
77
78/*
79 * This is a free list describing the number of free entries available from
80 * each index
81 */
82static unsigned int *io_tlb_list;
83static unsigned int io_tlb_index;
84
85/*
86 * We need to save away the original address corresponding to a mapped entry
87 * for the sync operations.
88 */
8e0629c1 89#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
bc40ac66 90static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
91
92/*
93 * Protect the above data structures in the map and unmap calls
94 */
95static DEFINE_SPINLOCK(io_tlb_lock);
96
5740afdb
FT
97static int late_alloc;
98
1da177e4
LT
99static int __init
100setup_io_tlb_npages(char *str)
101{
102 if (isdigit(*str)) {
e8579e72 103 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
104 /* avoid tail segment of size < IO_TLB_SEGSIZE */
105 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
106 }
107 if (*str == ',')
108 ++str;
fff5d992 109 if (!strcmp(str, "force")) {
ae7871be 110 swiotlb_force = SWIOTLB_FORCE;
fff5d992
GU
111 } else if (!strcmp(str, "noforce")) {
112 swiotlb_force = SWIOTLB_NO_FORCE;
113 io_tlb_nslabs = 1;
114 }
b18485e7 115
c729de8f 116 return 0;
1da177e4 117}
c729de8f 118early_param("swiotlb", setup_io_tlb_npages);
1da177e4
LT
119/* make io_tlb_overflow tunable too? */
120
f21ffe9f 121unsigned long swiotlb_nr_tbl(void)
5f98ecdb
FT
122{
123 return io_tlb_nslabs;
124}
f21ffe9f 125EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
c729de8f
YL
126
127/* default to 64MB */
128#define IO_TLB_DEFAULT_SIZE (64UL<<20)
129unsigned long swiotlb_size_or_default(void)
130{
131 unsigned long size;
132
133 size = io_tlb_nslabs << IO_TLB_SHIFT;
134
135 return size ? size : (IO_TLB_DEFAULT_SIZE);
136}
137
02ca646e 138/* Note that this doesn't work with highmem page */
70a7d3cc
JF
139static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
140 volatile void *address)
e08e1f7a 141{
862d196b 142 return phys_to_dma(hwdev, virt_to_phys(address));
e08e1f7a
IC
143}
144
ac2cbab2
YL
145static bool no_iotlb_memory;
146
ad32e8cb 147void swiotlb_print_info(void)
2e5b2b86 148{
ad32e8cb 149 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
ff7204a7 150 unsigned char *vstart, *vend;
2e5b2b86 151
ac2cbab2
YL
152 if (no_iotlb_memory) {
153 pr_warn("software IO TLB: No low mem\n");
154 return;
155 }
156
ff7204a7 157 vstart = phys_to_virt(io_tlb_start);
c40dba06 158 vend = phys_to_virt(io_tlb_end);
2e5b2b86 159
3af684c7 160 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
ff7204a7 161 (unsigned long long)io_tlb_start,
c40dba06 162 (unsigned long long)io_tlb_end,
ff7204a7 163 bytes >> 20, vstart, vend - 1);
2e5b2b86
IC
164}
165
ac2cbab2 166int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
1da177e4 167{
ee3f6ba8 168 void *v_overflow_buffer;
563aaf06 169 unsigned long i, bytes;
1da177e4 170
abbceff7 171 bytes = nslabs << IO_TLB_SHIFT;
1da177e4 172
abbceff7 173 io_tlb_nslabs = nslabs;
ff7204a7
AD
174 io_tlb_start = __pa(tlb);
175 io_tlb_end = io_tlb_start + bytes;
1da177e4 176
ee3f6ba8
AD
177 /*
178 * Get the overflow emergency buffer
179 */
ad6492b8 180 v_overflow_buffer = memblock_virt_alloc_low_nopanic(
457ff1de
SS
181 PAGE_ALIGN(io_tlb_overflow),
182 PAGE_SIZE);
ee3f6ba8 183 if (!v_overflow_buffer)
ac2cbab2 184 return -ENOMEM;
ee3f6ba8
AD
185
186 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
187
1da177e4
LT
188 /*
189 * Allocate and initialize the free list array. This array is used
190 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
191 * between io_tlb_start and io_tlb_end.
192 */
457ff1de
SS
193 io_tlb_list = memblock_virt_alloc(
194 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
195 PAGE_SIZE);
457ff1de
SS
196 io_tlb_orig_addr = memblock_virt_alloc(
197 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
198 PAGE_SIZE);
8e0629c1
JB
199 for (i = 0; i < io_tlb_nslabs; i++) {
200 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
201 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
202 }
203 io_tlb_index = 0;
1da177e4 204
ad32e8cb
FT
205 if (verbose)
206 swiotlb_print_info();
ac2cbab2
YL
207
208 return 0;
1da177e4
LT
209}
210
abbceff7
FT
211/*
212 * Statically reserve bounce buffer space and initialize bounce buffer data
213 * structures for the software IO TLB used to implement the DMA API.
214 */
ac2cbab2
YL
215void __init
216swiotlb_init(int verbose)
abbceff7 217{
c729de8f 218 size_t default_size = IO_TLB_DEFAULT_SIZE;
ff7204a7 219 unsigned char *vstart;
abbceff7
FT
220 unsigned long bytes;
221
222 if (!io_tlb_nslabs) {
223 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
224 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
225 }
226
227 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
228
ac2cbab2 229 /* Get IO TLB memory from the low pages */
ad6492b8 230 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
ac2cbab2
YL
231 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
232 return;
abbceff7 233
ac2cbab2 234 if (io_tlb_start)
457ff1de
SS
235 memblock_free_early(io_tlb_start,
236 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
ac2cbab2
YL
237 pr_warn("Cannot allocate SWIOTLB buffer");
238 no_iotlb_memory = true;
1da177e4
LT
239}
240
0b9afede
AW
241/*
242 * Systems with larger DMA zones (those that don't support ISA) can
243 * initialize the swiotlb later using the slab allocator if needed.
244 * This should be just like above, but with some error catching.
245 */
246int
563aaf06 247swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 248{
74838b75 249 unsigned long bytes, req_nslabs = io_tlb_nslabs;
ff7204a7 250 unsigned char *vstart = NULL;
0b9afede 251 unsigned int order;
74838b75 252 int rc = 0;
0b9afede
AW
253
254 if (!io_tlb_nslabs) {
255 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
256 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
257 }
258
259 /*
260 * Get IO TLB memory from the low pages
261 */
563aaf06 262 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 263 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 264 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
265
266 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
ff7204a7
AD
267 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
268 order);
269 if (vstart)
0b9afede
AW
270 break;
271 order--;
272 }
273
ff7204a7 274 if (!vstart) {
74838b75
KRW
275 io_tlb_nslabs = req_nslabs;
276 return -ENOMEM;
277 }
563aaf06 278 if (order != get_order(bytes)) {
0b9afede
AW
279 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
280 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
281 io_tlb_nslabs = SLABS_PER_PAGE << order;
282 }
ff7204a7 283 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
74838b75 284 if (rc)
ff7204a7 285 free_pages((unsigned long)vstart, order);
74838b75
KRW
286 return rc;
287}
288
289int
290swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
291{
292 unsigned long i, bytes;
ee3f6ba8 293 unsigned char *v_overflow_buffer;
74838b75
KRW
294
295 bytes = nslabs << IO_TLB_SHIFT;
296
297 io_tlb_nslabs = nslabs;
ff7204a7
AD
298 io_tlb_start = virt_to_phys(tlb);
299 io_tlb_end = io_tlb_start + bytes;
74838b75 300
ff7204a7 301 memset(tlb, 0, bytes);
0b9afede 302
ee3f6ba8
AD
303 /*
304 * Get the overflow emergency buffer
305 */
306 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
307 get_order(io_tlb_overflow));
308 if (!v_overflow_buffer)
309 goto cleanup2;
310
311 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
312
0b9afede
AW
313 /*
314 * Allocate and initialize the free list array. This array is used
315 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
316 * between io_tlb_start and io_tlb_end.
317 */
318 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
319 get_order(io_tlb_nslabs * sizeof(int)));
320 if (!io_tlb_list)
ee3f6ba8 321 goto cleanup3;
0b9afede 322
bc40ac66
BB
323 io_tlb_orig_addr = (phys_addr_t *)
324 __get_free_pages(GFP_KERNEL,
325 get_order(io_tlb_nslabs *
326 sizeof(phys_addr_t)));
0b9afede 327 if (!io_tlb_orig_addr)
ee3f6ba8 328 goto cleanup4;
0b9afede 329
8e0629c1
JB
330 for (i = 0; i < io_tlb_nslabs; i++) {
331 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
332 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
333 }
334 io_tlb_index = 0;
0b9afede 335
ad32e8cb 336 swiotlb_print_info();
0b9afede 337
5740afdb
FT
338 late_alloc = 1;
339
0b9afede
AW
340 return 0;
341
342cleanup4:
25667d67
TL
343 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
344 sizeof(int)));
0b9afede 345 io_tlb_list = NULL;
ee3f6ba8
AD
346cleanup3:
347 free_pages((unsigned long)v_overflow_buffer,
348 get_order(io_tlb_overflow));
349 io_tlb_overflow_buffer = 0;
0b9afede 350cleanup2:
c40dba06 351 io_tlb_end = 0;
ff7204a7 352 io_tlb_start = 0;
74838b75 353 io_tlb_nslabs = 0;
0b9afede
AW
354 return -ENOMEM;
355}
356
5740afdb
FT
357void __init swiotlb_free(void)
358{
ee3f6ba8 359 if (!io_tlb_orig_addr)
5740afdb
FT
360 return;
361
362 if (late_alloc) {
ee3f6ba8 363 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
5740afdb
FT
364 get_order(io_tlb_overflow));
365 free_pages((unsigned long)io_tlb_orig_addr,
366 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
367 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
368 sizeof(int)));
ff7204a7 369 free_pages((unsigned long)phys_to_virt(io_tlb_start),
5740afdb
FT
370 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
371 } else {
457ff1de
SS
372 memblock_free_late(io_tlb_overflow_buffer,
373 PAGE_ALIGN(io_tlb_overflow));
374 memblock_free_late(__pa(io_tlb_orig_addr),
375 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
376 memblock_free_late(__pa(io_tlb_list),
377 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
378 memblock_free_late(io_tlb_start,
379 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
5740afdb 380 }
f21ffe9f 381 io_tlb_nslabs = 0;
5740afdb
FT
382}
383
9c5a3621 384int is_swiotlb_buffer(phys_addr_t paddr)
640aebfe 385{
ff7204a7 386 return paddr >= io_tlb_start && paddr < io_tlb_end;
640aebfe
FT
387}
388
fb05a379
BB
389/*
390 * Bounce: copy the swiotlb buffer back to the original dma location
391 */
af51a9f1
AD
392static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
393 size_t size, enum dma_data_direction dir)
fb05a379 394{
af51a9f1
AD
395 unsigned long pfn = PFN_DOWN(orig_addr);
396 unsigned char *vaddr = phys_to_virt(tlb_addr);
fb05a379
BB
397
398 if (PageHighMem(pfn_to_page(pfn))) {
399 /* The buffer does not have a mapping. Map it in and copy */
af51a9f1 400 unsigned int offset = orig_addr & ~PAGE_MASK;
fb05a379
BB
401 char *buffer;
402 unsigned int sz = 0;
403 unsigned long flags;
404
405 while (size) {
67131ad0 406 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
407
408 local_irq_save(flags);
c3eede8e 409 buffer = kmap_atomic(pfn_to_page(pfn));
fb05a379 410 if (dir == DMA_TO_DEVICE)
af51a9f1 411 memcpy(vaddr, buffer + offset, sz);
ef9b1893 412 else
af51a9f1 413 memcpy(buffer + offset, vaddr, sz);
c3eede8e 414 kunmap_atomic(buffer);
ef9b1893 415 local_irq_restore(flags);
fb05a379
BB
416
417 size -= sz;
418 pfn++;
af51a9f1 419 vaddr += sz;
fb05a379 420 offset = 0;
ef9b1893 421 }
af51a9f1
AD
422 } else if (dir == DMA_TO_DEVICE) {
423 memcpy(vaddr, phys_to_virt(orig_addr), size);
ef9b1893 424 } else {
af51a9f1 425 memcpy(phys_to_virt(orig_addr), vaddr, size);
ef9b1893 426 }
1b548f66
JF
427}
428
e05ed4d1
AD
429phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
430 dma_addr_t tbl_dma_addr,
431 phys_addr_t orig_addr, size_t size,
0443fa00
AD
432 enum dma_data_direction dir,
433 unsigned long attrs)
1da177e4
LT
434{
435 unsigned long flags;
e05ed4d1 436 phys_addr_t tlb_addr;
1da177e4
LT
437 unsigned int nslots, stride, index, wrap;
438 int i;
681cc5cd
FT
439 unsigned long mask;
440 unsigned long offset_slots;
441 unsigned long max_slots;
442
ac2cbab2
YL
443 if (no_iotlb_memory)
444 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
445
681cc5cd 446 mask = dma_get_seg_boundary(hwdev);
681cc5cd 447
eb605a57
FT
448 tbl_dma_addr &= mask;
449
450 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
451
452 /*
453 * Carefully handle integer overflow which can occur when mask == ~0UL.
454 */
b15a3891
JB
455 max_slots = mask + 1
456 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
457 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
458
459 /*
460 * For mappings greater than a page, we limit the stride (and
461 * hence alignment) to a page size.
462 */
463 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
464 if (size > PAGE_SIZE)
465 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
466 else
467 stride = 1;
468
34814545 469 BUG_ON(!nslots);
1da177e4
LT
470
471 /*
472 * Find suitable number of IO TLB entries size that will fit this
473 * request and allocate a buffer from that IO TLB pool.
474 */
475 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
476 index = ALIGN(io_tlb_index, stride);
477 if (index >= io_tlb_nslabs)
478 index = 0;
479 wrap = index;
480
481 do {
a8522509
FT
482 while (iommu_is_span_boundary(index, nslots, offset_slots,
483 max_slots)) {
b15a3891
JB
484 index += stride;
485 if (index >= io_tlb_nslabs)
486 index = 0;
a7133a15
AM
487 if (index == wrap)
488 goto not_found;
489 }
490
491 /*
492 * If we find a slot that indicates we have 'nslots' number of
493 * contiguous buffers, we allocate the buffers from that slot
494 * and mark the entries as '0' indicating unavailable.
495 */
496 if (io_tlb_list[index] >= nslots) {
497 int count = 0;
498
499 for (i = index; i < (int) (index + nslots); i++)
500 io_tlb_list[i] = 0;
501 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
502 io_tlb_list[i] = ++count;
e05ed4d1 503 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 504
a7133a15
AM
505 /*
506 * Update the indices to avoid searching in the next
507 * round.
508 */
509 io_tlb_index = ((index + nslots) < io_tlb_nslabs
510 ? (index + nslots) : 0);
511
512 goto found;
513 }
514 index += stride;
515 if (index >= io_tlb_nslabs)
516 index = 0;
517 } while (index != wrap);
518
519not_found:
520 spin_unlock_irqrestore(&io_tlb_lock, flags);
0cb637bf
KRW
521 if (printk_ratelimit())
522 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
e05ed4d1 523 return SWIOTLB_MAP_ERROR;
a7133a15 524found:
1da177e4
LT
525 spin_unlock_irqrestore(&io_tlb_lock, flags);
526
527 /*
528 * Save away the mapping from the original address to the DMA address.
529 * This is needed when we sync the memory. Then we sync the buffer if
530 * needed.
531 */
bc40ac66 532 for (i = 0; i < nslots; i++)
e05ed4d1 533 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
0443fa00
AD
534 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
535 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 536 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
1da177e4 537
e05ed4d1 538 return tlb_addr;
1da177e4 539}
d7ef1533 540EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
1da177e4 541
eb605a57
FT
542/*
543 * Allocates bounce buffer and returns its kernel virtual address.
544 */
545
023600f1
AC
546static phys_addr_t
547map_single(struct device *hwdev, phys_addr_t phys, size_t size,
0443fa00 548 enum dma_data_direction dir, unsigned long attrs)
eb605a57 549{
fff5d992
GU
550 dma_addr_t start_dma_addr;
551
552 if (swiotlb_force == SWIOTLB_NO_FORCE) {
553 dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
554 &phys);
555 return SWIOTLB_MAP_ERROR;
556 }
eb605a57 557
fff5d992 558 start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
0443fa00
AD
559 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
560 dir, attrs);
eb605a57
FT
561}
562
1da177e4
LT
563/*
564 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
565 */
61ca08c3 566void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
0443fa00
AD
567 size_t size, enum dma_data_direction dir,
568 unsigned long attrs)
1da177e4
LT
569{
570 unsigned long flags;
571 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
61ca08c3
AD
572 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
573 phys_addr_t orig_addr = io_tlb_orig_addr[index];
1da177e4
LT
574
575 /*
576 * First, sync the memory before unmapping the entry
577 */
8e0629c1 578 if (orig_addr != INVALID_PHYS_ADDR &&
0443fa00 579 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
8e0629c1 580 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
af51a9f1 581 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
582
583 /*
584 * Return the buffer to the free list by setting the corresponding
af901ca1 585 * entries to indicate the number of contiguous entries available.
1da177e4
LT
586 * While returning the entries to the free list, we merge the entries
587 * with slots below and above the pool being returned.
588 */
589 spin_lock_irqsave(&io_tlb_lock, flags);
590 {
591 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
592 io_tlb_list[index + nslots] : 0);
593 /*
594 * Step 1: return the slots to the free list, merging the
595 * slots with superceeding slots
596 */
8e0629c1 597 for (i = index + nslots - 1; i >= index; i--) {
1da177e4 598 io_tlb_list[i] = ++count;
8e0629c1
JB
599 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
600 }
1da177e4
LT
601 /*
602 * Step 2: merge the returned slots with the preceding slots,
603 * if available (non zero)
604 */
605 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
606 io_tlb_list[i] = ++count;
607 }
608 spin_unlock_irqrestore(&io_tlb_lock, flags);
609}
d7ef1533 610EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
1da177e4 611
fbfda893
AD
612void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
613 size_t size, enum dma_data_direction dir,
614 enum dma_sync_target target)
1da177e4 615{
fbfda893
AD
616 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
617 phys_addr_t orig_addr = io_tlb_orig_addr[index];
bc40ac66 618
8e0629c1
JB
619 if (orig_addr == INVALID_PHYS_ADDR)
620 return;
fbfda893 621 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
df336d1c 622
de69e0f0
JL
623 switch (target) {
624 case SYNC_FOR_CPU:
625 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 626 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 627 size, DMA_FROM_DEVICE);
34814545
ES
628 else
629 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
630 break;
631 case SYNC_FOR_DEVICE:
632 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 633 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 634 size, DMA_TO_DEVICE);
34814545
ES
635 else
636 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
637 break;
638 default:
1da177e4 639 BUG();
de69e0f0 640 }
1da177e4 641}
d7ef1533 642EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
1da177e4
LT
643
644void *
645swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 646 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 647{
563aaf06 648 dma_addr_t dev_addr;
1da177e4
LT
649 void *ret;
650 int order = get_order(size);
284901a9 651 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
652
653 if (hwdev && hwdev->coherent_dma_mask)
654 dma_mask = hwdev->coherent_dma_mask;
1da177e4 655
25667d67 656 ret = (void *)__get_free_pages(flags, order);
e05ed4d1
AD
657 if (ret) {
658 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
659 if (dev_addr + size - 1 > dma_mask) {
660 /*
661 * The allocated memory isn't reachable by the device.
662 */
663 free_pages((unsigned long) ret, order);
664 ret = NULL;
665 }
1da177e4
LT
666 }
667 if (!ret) {
668 /*
bfc5501f
KRW
669 * We are either out of memory or the device can't DMA to
670 * GFP_DMA memory; fall back on map_single(), which
ceb5ac32 671 * will grab memory from the lowest available address range.
1da177e4 672 */
0443fa00
AD
673 phys_addr_t paddr = map_single(hwdev, 0, size,
674 DMA_FROM_DEVICE, 0);
e05ed4d1 675 if (paddr == SWIOTLB_MAP_ERROR)
94cc81f9 676 goto err_warn;
1da177e4 677
e05ed4d1
AD
678 ret = phys_to_virt(paddr);
679 dev_addr = phys_to_dma(hwdev, paddr);
1da177e4 680
61ca08c3
AD
681 /* Confirm address can be DMA'd by device */
682 if (dev_addr + size - 1 > dma_mask) {
683 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
684 (unsigned long long)dma_mask,
685 (unsigned long long)dev_addr);
a2b89b59 686
0443fa00
AD
687 /*
688 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
689 * The DMA_ATTR_SKIP_CPU_SYNC is optional.
690 */
61ca08c3 691 swiotlb_tbl_unmap_single(hwdev, paddr,
0443fa00
AD
692 size, DMA_TO_DEVICE,
693 DMA_ATTR_SKIP_CPU_SYNC);
94cc81f9 694 goto err_warn;
61ca08c3 695 }
1da177e4 696 }
e05ed4d1 697
1da177e4 698 *dma_handle = dev_addr;
e05ed4d1
AD
699 memset(ret, 0, size);
700
1da177e4 701 return ret;
94cc81f9
JR
702
703err_warn:
704 pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
705 dev_name(hwdev), size);
706 dump_stack();
707
708 return NULL;
1da177e4 709}
874d6a95 710EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
711
712void
713swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
02ca646e 714 dma_addr_t dev_addr)
1da177e4 715{
862d196b 716 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
02ca646e 717
aa24886e 718 WARN_ON(irqs_disabled());
02ca646e
FT
719 if (!is_swiotlb_buffer(paddr))
720 free_pages((unsigned long)vaddr, get_order(size));
1da177e4 721 else
0443fa00
AD
722 /*
723 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
724 * DMA_ATTR_SKIP_CPU_SYNC is optional.
725 */
726 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE,
727 DMA_ATTR_SKIP_CPU_SYNC);
1da177e4 728}
874d6a95 729EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
730
731static void
22d48269
KRW
732swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
733 int do_panic)
1da177e4 734{
fff5d992
GU
735 if (swiotlb_force == SWIOTLB_NO_FORCE)
736 return;
737
1da177e4
LT
738 /*
739 * Ran out of IOMMU space for this operation. This is very bad.
740 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 741 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
742 * When the mapping is small enough return a static buffer to limit
743 * the damage, or panic when the transfer is too big.
744 */
0d2e1898
GU
745 dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
746 size);
1da177e4 747
c7084b35
CD
748 if (size <= io_tlb_overflow || !do_panic)
749 return;
750
751 if (dir == DMA_BIDIRECTIONAL)
752 panic("DMA: Random memory could be DMA accessed\n");
753 if (dir == DMA_FROM_DEVICE)
754 panic("DMA: Random memory could be DMA written\n");
755 if (dir == DMA_TO_DEVICE)
756 panic("DMA: Random memory could be DMA read\n");
1da177e4
LT
757}
758
759/*
760 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 761 * physical address to use is returned.
1da177e4
LT
762 *
763 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 764 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 765 */
f98eee8e
FT
766dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
767 unsigned long offset, size_t size,
768 enum dma_data_direction dir,
00085f1e 769 unsigned long attrs)
1da177e4 770{
e05ed4d1 771 phys_addr_t map, phys = page_to_phys(page) + offset;
862d196b 772 dma_addr_t dev_addr = phys_to_dma(dev, phys);
1da177e4 773
34814545 774 BUG_ON(dir == DMA_NONE);
1da177e4 775 /*
ceb5ac32 776 * If the address happens to be in the device's DMA window,
1da177e4
LT
777 * we can safely return the device addr and not worry about bounce
778 * buffering it.
779 */
ae7871be 780 if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
1da177e4
LT
781 return dev_addr;
782
2b2b614d
ZK
783 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
784
e05ed4d1 785 /* Oh well, have to allocate and map a bounce buffer. */
0443fa00 786 map = map_single(dev, phys, size, dir, attrs);
e05ed4d1 787 if (map == SWIOTLB_MAP_ERROR) {
f98eee8e 788 swiotlb_full(dev, size, dir, 1);
ee3f6ba8 789 return phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4
LT
790 }
791
e05ed4d1 792 dev_addr = phys_to_dma(dev, map);
1da177e4 793
e05ed4d1 794 /* Ensure that the address returned is DMA'ble */
0443fa00
AD
795 if (dma_capable(dev, dev_addr, size))
796 return dev_addr;
797
d29fa0cb
AD
798 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
799 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
1da177e4 800
0443fa00 801 return phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4 802}
f98eee8e 803EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 804
1da177e4
LT
805/*
806 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 807 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
808 * other usages are undefined.
809 *
810 * After this call, reads by the cpu to the buffer are guaranteed to see
811 * whatever the device wrote there.
812 */
7fcebbd2 813static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
0443fa00
AD
814 size_t size, enum dma_data_direction dir,
815 unsigned long attrs)
1da177e4 816{
862d196b 817 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 818
34814545 819 BUG_ON(dir == DMA_NONE);
7fcebbd2 820
02ca646e 821 if (is_swiotlb_buffer(paddr)) {
0443fa00 822 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
7fcebbd2
BB
823 return;
824 }
825
826 if (dir != DMA_FROM_DEVICE)
827 return;
828
02ca646e
FT
829 /*
830 * phys_to_virt doesn't work with hihgmem page but we could
831 * call dma_mark_clean() with hihgmem page here. However, we
832 * are fine since dma_mark_clean() is null on POWERPC. We can
833 * make dma_mark_clean() take a physical address if necessary.
834 */
835 dma_mark_clean(phys_to_virt(paddr), size);
7fcebbd2
BB
836}
837
838void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
839 size_t size, enum dma_data_direction dir,
00085f1e 840 unsigned long attrs)
7fcebbd2 841{
0443fa00 842 unmap_single(hwdev, dev_addr, size, dir, attrs);
1da177e4 843}
f98eee8e 844EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 845
1da177e4
LT
846/*
847 * Make physical memory consistent for a single streaming mode DMA translation
848 * after a transfer.
849 *
ceb5ac32 850 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
851 * using the cpu, yet do not wish to teardown the dma mapping, you must
852 * call this function before doing so. At the next point you give the dma
1da177e4
LT
853 * address back to the card, you must first perform a
854 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
855 */
be6b0267 856static void
8270f3f1 857swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
d7ef1533
KRW
858 size_t size, enum dma_data_direction dir,
859 enum dma_sync_target target)
1da177e4 860{
862d196b 861 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 862
34814545 863 BUG_ON(dir == DMA_NONE);
380d6878 864
02ca646e 865 if (is_swiotlb_buffer(paddr)) {
fbfda893 866 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
380d6878
BB
867 return;
868 }
869
870 if (dir != DMA_FROM_DEVICE)
871 return;
872
02ca646e 873 dma_mark_clean(phys_to_virt(paddr), size);
1da177e4
LT
874}
875
8270f3f1
JL
876void
877swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 878 size_t size, enum dma_data_direction dir)
8270f3f1 879{
de69e0f0 880 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 881}
874d6a95 882EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 883
1da177e4
LT
884void
885swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 886 size_t size, enum dma_data_direction dir)
1da177e4 887{
de69e0f0 888 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 889}
874d6a95 890EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4
LT
891
892/*
893 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 894 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
895 * interface. Here the scatter gather list elements are each tagged with the
896 * appropriate dma address and length. They are obtained via
897 * sg_dma_{address,length}(SG).
898 *
899 * NOTE: An implementation may be able to use a smaller number of
900 * DMA address/length pairs than there are SG table elements.
901 * (for example via virtual mapping capabilities)
902 * The routine returns the number of addr/length pairs actually
903 * used, at most nents.
904 *
ceb5ac32 905 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
906 * same here.
907 */
908int
309df0c5 909swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
00085f1e 910 enum dma_data_direction dir, unsigned long attrs)
1da177e4 911{
dbfd49fe 912 struct scatterlist *sg;
1da177e4
LT
913 int i;
914
34814545 915 BUG_ON(dir == DMA_NONE);
1da177e4 916
dbfd49fe 917 for_each_sg(sgl, sg, nelems, i) {
961d7d0e 918 phys_addr_t paddr = sg_phys(sg);
862d196b 919 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
bc40ac66 920
ae7871be 921 if (swiotlb_force == SWIOTLB_FORCE ||
b9394647 922 !dma_capable(hwdev, dev_addr, sg->length)) {
e05ed4d1 923 phys_addr_t map = map_single(hwdev, sg_phys(sg),
0443fa00 924 sg->length, dir, attrs);
e05ed4d1 925 if (map == SWIOTLB_MAP_ERROR) {
1da177e4
LT
926 /* Don't panic here, we expect map_sg users
927 to do proper error handling. */
928 swiotlb_full(hwdev, sg->length, dir, 0);
d29fa0cb 929 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
309df0c5
AK
930 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
931 attrs);
4d86ec7a 932 sg_dma_len(sgl) = 0;
1da177e4
LT
933 return 0;
934 }
e05ed4d1 935 sg->dma_address = phys_to_dma(hwdev, map);
1da177e4
LT
936 } else
937 sg->dma_address = dev_addr;
4d86ec7a 938 sg_dma_len(sg) = sg->length;
1da177e4
LT
939 }
940 return nelems;
941}
309df0c5
AK
942EXPORT_SYMBOL(swiotlb_map_sg_attrs);
943
1da177e4
LT
944/*
945 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 946 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
947 */
948void
309df0c5 949swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
00085f1e
KK
950 int nelems, enum dma_data_direction dir,
951 unsigned long attrs)
1da177e4 952{
dbfd49fe 953 struct scatterlist *sg;
1da177e4
LT
954 int i;
955
34814545 956 BUG_ON(dir == DMA_NONE);
1da177e4 957
7fcebbd2 958 for_each_sg(sgl, sg, nelems, i)
0443fa00
AD
959 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
960 attrs);
1da177e4 961}
309df0c5
AK
962EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
963
1da177e4
LT
964/*
965 * Make physical memory consistent for a set of streaming mode DMA translations
966 * after a transfer.
967 *
968 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
969 * and usage.
970 */
be6b0267 971static void
dbfd49fe 972swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
d7ef1533
KRW
973 int nelems, enum dma_data_direction dir,
974 enum dma_sync_target target)
1da177e4 975{
dbfd49fe 976 struct scatterlist *sg;
1da177e4
LT
977 int i;
978
380d6878
BB
979 for_each_sg(sgl, sg, nelems, i)
980 swiotlb_sync_single(hwdev, sg->dma_address,
4d86ec7a 981 sg_dma_len(sg), dir, target);
1da177e4
LT
982}
983
8270f3f1
JL
984void
985swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 986 int nelems, enum dma_data_direction dir)
8270f3f1 987{
de69e0f0 988 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 989}
874d6a95 990EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 991
1da177e4
LT
992void
993swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 994 int nelems, enum dma_data_direction dir)
1da177e4 995{
de69e0f0 996 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 997}
874d6a95 998EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
999
1000int
8d8bb39b 1001swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 1002{
ee3f6ba8 1003 return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
1da177e4 1004}
874d6a95 1005EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
1006
1007/*
17e5ad6c 1008 * Return whether the given device DMA address mask can be supported
1da177e4 1009 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 1010 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
1011 * this function.
1012 */
1013int
563aaf06 1014swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 1015{
c40dba06 1016 return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1da177e4 1017}
1da177e4 1018EXPORT_SYMBOL(swiotlb_dma_supported);