]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/bio.c
blk-mq: count the hctx as active before allocating tag
[mirror_ubuntu-bionic-kernel.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
1da177e4 31
55782138 32#include <trace/events/block.h>
9e234eea 33#include "blk.h"
0bfc2455 34
392ddc32
JA
35/*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39#define BIO_INLINE_VECS 4
40
1da177e4
LT
41/*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
7771d96e 46#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 47static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
7771d96e 48 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
49};
50#undef BV
51
1da177e4
LT
52/*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
51d654e1 56struct bio_set *fs_bio_set;
3f86a82a 57EXPORT_SYMBOL(fs_bio_set);
1da177e4 58
bb799ca0
JA
59/*
60 * Our slab pool management
61 */
62struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67};
68static DEFINE_MUTEX(bio_slab_lock);
69static struct bio_slab *bio_slabs;
70static unsigned int bio_slab_nr, bio_slab_max;
71
72static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73{
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
389d7b26 76 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 77 unsigned int new_bio_slab_max;
bb799ca0
JA
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
f06f135d 84 bslab = &bio_slabs[i];
bb799ca0
JA
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 100 new_bio_slab_max = bio_slab_max << 1;
389d7b26 101 new_bio_slabs = krealloc(bio_slabs,
386bc35a 102 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
103 GFP_KERNEL);
104 if (!new_bio_slabs)
bb799ca0 105 goto out_unlock;
386bc35a 106 bio_slab_max = new_bio_slab_max;
389d7b26 107 bio_slabs = new_bio_slabs;
bb799ca0
JA
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
117 if (!slab)
118 goto out_unlock;
119
bb799ca0
JA
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126}
127
128static void bio_put_slab(struct bio_set *bs)
129{
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153out:
154 mutex_unlock(&bio_slab_lock);
155}
156
7ba1ba12
MP
157unsigned int bvec_nr_vecs(unsigned short idx)
158{
cf2a2e6a 159 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
160}
161
9f060e22 162void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 163{
ed996a52
CH
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 169
ed996a52 170 if (idx == BVEC_POOL_MAX) {
9f060e22 171 mempool_free(bv, pool);
ed996a52 172 } else {
bb799ca0
JA
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177}
178
9f060e22
KO
179struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
1da177e4
LT
181{
182 struct bio_vec *bvl;
1da177e4 183
7ff9345f
JA
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
ed996a52 214 if (*idx == BVEC_POOL_MAX) {
7ff9345f 215fallback:
9f060e22 216 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 220
0a0d96b0 221 /*
7ff9345f
JA
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
0a0d96b0 225 */
7ff9345f 226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 227
0a0d96b0 228 /*
d0164adc 229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 230 * is set, retry with the 1-entry mempool
0a0d96b0 231 */
7ff9345f 232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 234 *idx = BVEC_POOL_MAX;
7ff9345f
JA
235 goto fallback;
236 }
237 }
238
ed996a52 239 (*idx)++;
1da177e4
LT
240 return bvl;
241}
242
9ae3b3f5 243void bio_uninit(struct bio *bio)
1da177e4 244{
4254bba1 245 bio_disassociate_task(bio);
4254bba1 246}
9ae3b3f5 247EXPORT_SYMBOL(bio_uninit);
7ba1ba12 248
4254bba1
KO
249static void bio_free(struct bio *bio)
250{
251 struct bio_set *bs = bio->bi_pool;
252 void *p;
253
9ae3b3f5 254 bio_uninit(bio);
4254bba1
KO
255
256 if (bs) {
ed996a52 257 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
258
259 /*
260 * If we have front padding, adjust the bio pointer before freeing
261 */
262 p = bio;
bb799ca0
JA
263 p -= bs->front_pad;
264
4254bba1
KO
265 mempool_free(p, bs->bio_pool);
266 } else {
267 /* Bio was allocated by bio_kmalloc() */
268 kfree(bio);
269 }
3676347a
PO
270}
271
9ae3b3f5
JA
272/*
273 * Users of this function have their own bio allocation. Subsequently,
274 * they must remember to pair any call to bio_init() with bio_uninit()
275 * when IO has completed, or when the bio is released.
276 */
3a83f467
ML
277void bio_init(struct bio *bio, struct bio_vec *table,
278 unsigned short max_vecs)
1da177e4 279{
2b94de55 280 memset(bio, 0, sizeof(*bio));
c4cf5261 281 atomic_set(&bio->__bi_remaining, 1);
dac56212 282 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
283
284 bio->bi_io_vec = table;
285 bio->bi_max_vecs = max_vecs;
1da177e4 286}
a112a71d 287EXPORT_SYMBOL(bio_init);
1da177e4 288
f44b48c7
KO
289/**
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
292 *
293 * Description:
294 * After calling bio_reset(), @bio will be in the same state as a freshly
295 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
296 * preserved are the ones that are initialized by bio_alloc_bioset(). See
297 * comment in struct bio.
298 */
299void bio_reset(struct bio *bio)
300{
301 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
302
9ae3b3f5 303 bio_uninit(bio);
f44b48c7
KO
304
305 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 306 bio->bi_flags = flags;
c4cf5261 307 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
308}
309EXPORT_SYMBOL(bio_reset);
310
38f8baae 311static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 312{
4246a0b6
CH
313 struct bio *parent = bio->bi_private;
314
4e4cbee9
CH
315 if (!parent->bi_status)
316 parent->bi_status = bio->bi_status;
196d38bc 317 bio_put(bio);
38f8baae
CH
318 return parent;
319}
320
321static void bio_chain_endio(struct bio *bio)
322{
323 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
324}
325
326/**
327 * bio_chain - chain bio completions
1051a902
RD
328 * @bio: the target bio
329 * @parent: the @bio's parent bio
196d38bc
KO
330 *
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
334 *
335 * The caller must not set bi_private or bi_end_io in @bio.
336 */
337void bio_chain(struct bio *bio, struct bio *parent)
338{
339 BUG_ON(bio->bi_private || bio->bi_end_io);
340
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
c4cf5261 343 bio_inc_remaining(parent);
196d38bc
KO
344}
345EXPORT_SYMBOL(bio_chain);
346
df2cb6da
KO
347static void bio_alloc_rescue(struct work_struct *work)
348{
349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 struct bio *bio;
351
352 while (1) {
353 spin_lock(&bs->rescue_lock);
354 bio = bio_list_pop(&bs->rescue_list);
355 spin_unlock(&bs->rescue_lock);
356
357 if (!bio)
358 break;
359
360 generic_make_request(bio);
361 }
362}
363
364static void punt_bios_to_rescuer(struct bio_set *bs)
365{
366 struct bio_list punt, nopunt;
367 struct bio *bio;
368
47e0fb46
N
369 if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 return;
df2cb6da
KO
371 /*
372 * In order to guarantee forward progress we must punt only bios that
373 * were allocated from this bio_set; otherwise, if there was a bio on
374 * there for a stacking driver higher up in the stack, processing it
375 * could require allocating bios from this bio_set, and doing that from
376 * our own rescuer would be bad.
377 *
378 * Since bio lists are singly linked, pop them all instead of trying to
379 * remove from the middle of the list:
380 */
381
382 bio_list_init(&punt);
383 bio_list_init(&nopunt);
384
f5fe1b51 385 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 387 current->bio_list[0] = nopunt;
df2cb6da 388
f5fe1b51
N
389 bio_list_init(&nopunt);
390 while ((bio = bio_list_pop(&current->bio_list[1])))
391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 current->bio_list[1] = nopunt;
df2cb6da
KO
393
394 spin_lock(&bs->rescue_lock);
395 bio_list_merge(&bs->rescue_list, &punt);
396 spin_unlock(&bs->rescue_lock);
397
398 queue_work(bs->rescue_workqueue, &bs->rescue_work);
399}
400
1da177e4
LT
401/**
402 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 403 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 404 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 405 * @bs: the bio_set to allocate from.
1da177e4
LT
406 *
407 * Description:
3f86a82a
KO
408 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
409 * backed by the @bs's mempool.
410 *
d0164adc
MG
411 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
412 * always be able to allocate a bio. This is due to the mempool guarantees.
413 * To make this work, callers must never allocate more than 1 bio at a time
414 * from this pool. Callers that need to allocate more than 1 bio must always
415 * submit the previously allocated bio for IO before attempting to allocate
416 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 417 *
df2cb6da
KO
418 * Note that when running under generic_make_request() (i.e. any block
419 * driver), bios are not submitted until after you return - see the code in
420 * generic_make_request() that converts recursion into iteration, to prevent
421 * stack overflows.
422 *
423 * This would normally mean allocating multiple bios under
424 * generic_make_request() would be susceptible to deadlocks, but we have
425 * deadlock avoidance code that resubmits any blocked bios from a rescuer
426 * thread.
427 *
428 * However, we do not guarantee forward progress for allocations from other
429 * mempools. Doing multiple allocations from the same mempool under
430 * generic_make_request() should be avoided - instead, use bio_set's front_pad
431 * for per bio allocations.
432 *
3f86a82a
KO
433 * RETURNS:
434 * Pointer to new bio on success, NULL on failure.
435 */
7a88fa19
DC
436struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
437 struct bio_set *bs)
1da177e4 438{
df2cb6da 439 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
440 unsigned front_pad;
441 unsigned inline_vecs;
34053979 442 struct bio_vec *bvl = NULL;
451a9ebf
TH
443 struct bio *bio;
444 void *p;
445
3f86a82a
KO
446 if (!bs) {
447 if (nr_iovecs > UIO_MAXIOV)
448 return NULL;
449
450 p = kmalloc(sizeof(struct bio) +
451 nr_iovecs * sizeof(struct bio_vec),
452 gfp_mask);
453 front_pad = 0;
454 inline_vecs = nr_iovecs;
455 } else {
d8f429e1
JN
456 /* should not use nobvec bioset for nr_iovecs > 0 */
457 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
458 return NULL;
df2cb6da
KO
459 /*
460 * generic_make_request() converts recursion to iteration; this
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
463 * return.
464 *
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
467 * underneath generic_make_request(). If we were to allocate
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
470 * reserve.
471 *
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
d0164adc
MG
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
df2cb6da
KO
478 */
479
f5fe1b51
N
480 if (current->bio_list &&
481 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
482 !bio_list_empty(&current->bio_list[1])) &&
483 bs->rescue_workqueue)
d0164adc 484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 485
3f86a82a 486 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 p = mempool_alloc(bs->bio_pool, gfp_mask);
491 }
492
3f86a82a
KO
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
495 }
496
451a9ebf
TH
497 if (unlikely(!p))
498 return NULL;
1da177e4 499
3f86a82a 500 bio = p + front_pad;
3a83f467 501 bio_init(bio, NULL, 0);
34053979 502
3f86a82a 503 if (nr_iovecs > inline_vecs) {
ed996a52
CH
504 unsigned long idx = 0;
505
9f060e22 506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
9f060e22 510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
511 }
512
34053979
IM
513 if (unlikely(!bvl))
514 goto err_free;
a38352e0 515
ed996a52 516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
1da177e4 519 }
3f86a82a
KO
520
521 bio->bi_pool = bs;
34053979 522 bio->bi_max_vecs = nr_iovecs;
34053979 523 bio->bi_io_vec = bvl;
1da177e4 524 return bio;
34053979
IM
525
526err_free:
451a9ebf 527 mempool_free(p, bs->bio_pool);
34053979 528 return NULL;
1da177e4 529}
a112a71d 530EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 531
1da177e4
LT
532void zero_fill_bio(struct bio *bio)
533{
534 unsigned long flags;
7988613b
KO
535 struct bio_vec bv;
536 struct bvec_iter iter;
1da177e4 537
7988613b
KO
538 bio_for_each_segment(bv, bio, iter) {
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
1da177e4
LT
542 bvec_kunmap_irq(data, &flags);
543 }
544}
545EXPORT_SYMBOL(zero_fill_bio);
546
547/**
548 * bio_put - release a reference to a bio
549 * @bio: bio to release reference to
550 *
551 * Description:
552 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 553 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
554 **/
555void bio_put(struct bio *bio)
556{
dac56212 557 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 558 bio_free(bio);
dac56212
JA
559 else {
560 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
561
562 /*
563 * last put frees it
564 */
565 if (atomic_dec_and_test(&bio->__bi_cnt))
566 bio_free(bio);
567 }
1da177e4 568}
a112a71d 569EXPORT_SYMBOL(bio_put);
1da177e4 570
165125e1 571inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
572{
573 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
574 blk_recount_segments(q, bio);
575
576 return bio->bi_phys_segments;
577}
a112a71d 578EXPORT_SYMBOL(bio_phys_segments);
1da177e4 579
59d276fe
KO
580/**
581 * __bio_clone_fast - clone a bio that shares the original bio's biovec
582 * @bio: destination bio
583 * @bio_src: bio to clone
584 *
585 * Clone a &bio. Caller will own the returned bio, but not
586 * the actual data it points to. Reference count of returned
587 * bio will be one.
588 *
589 * Caller must ensure that @bio_src is not freed before @bio.
590 */
591void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
592{
ed996a52 593 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
594
595 /*
74d46992 596 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
597 * so we don't set nor calculate new physical/hw segment counts here
598 */
74d46992 599 bio->bi_disk = bio_src->bi_disk;
62530ed8 600 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 601 bio_set_flag(bio, BIO_CLONED);
111be883
SL
602 if (bio_flagged(bio_src, BIO_THROTTLED))
603 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 604 bio->bi_opf = bio_src->bi_opf;
cb6934f8 605 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
606 bio->bi_iter = bio_src->bi_iter;
607 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e
PV
608
609 bio_clone_blkcg_association(bio, bio_src);
59d276fe
KO
610}
611EXPORT_SYMBOL(__bio_clone_fast);
612
613/**
614 * bio_clone_fast - clone a bio that shares the original bio's biovec
615 * @bio: bio to clone
616 * @gfp_mask: allocation priority
617 * @bs: bio_set to allocate from
618 *
619 * Like __bio_clone_fast, only also allocates the returned bio
620 */
621struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
622{
623 struct bio *b;
624
625 b = bio_alloc_bioset(gfp_mask, 0, bs);
626 if (!b)
627 return NULL;
628
629 __bio_clone_fast(b, bio);
630
631 if (bio_integrity(bio)) {
632 int ret;
633
634 ret = bio_integrity_clone(b, bio, gfp_mask);
635
636 if (ret < 0) {
637 bio_put(b);
638 return NULL;
639 }
640 }
641
642 return b;
643}
644EXPORT_SYMBOL(bio_clone_fast);
645
f4595875
SL
646/**
647 * bio_clone_bioset - clone a bio
648 * @bio_src: bio to clone
649 * @gfp_mask: allocation priority
650 * @bs: bio_set to allocate from
651 *
652 * Clone bio. Caller will own the returned bio, but not the actual data it
653 * points to. Reference count of returned bio will be one.
654 */
655struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
656 struct bio_set *bs)
1da177e4 657{
bdb53207
KO
658 struct bvec_iter iter;
659 struct bio_vec bv;
660 struct bio *bio;
1da177e4 661
bdb53207
KO
662 /*
663 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
664 * bio_src->bi_io_vec to bio->bi_io_vec.
665 *
666 * We can't do that anymore, because:
667 *
668 * - The point of cloning the biovec is to produce a bio with a biovec
669 * the caller can modify: bi_idx and bi_bvec_done should be 0.
670 *
671 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
672 * we tried to clone the whole thing bio_alloc_bioset() would fail.
673 * But the clone should succeed as long as the number of biovecs we
674 * actually need to allocate is fewer than BIO_MAX_PAGES.
675 *
676 * - Lastly, bi_vcnt should not be looked at or relied upon by code
677 * that does not own the bio - reason being drivers don't use it for
678 * iterating over the biovec anymore, so expecting it to be kept up
679 * to date (i.e. for clones that share the parent biovec) is just
680 * asking for trouble and would force extra work on
681 * __bio_clone_fast() anyways.
682 */
683
f4595875 684 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
bdb53207 685 if (!bio)
7ba1ba12 686 return NULL;
74d46992 687 bio->bi_disk = bio_src->bi_disk;
1eff9d32 688 bio->bi_opf = bio_src->bi_opf;
cb6934f8 689 bio->bi_write_hint = bio_src->bi_write_hint;
bdb53207
KO
690 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
691 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 692
7afafc8a
AH
693 switch (bio_op(bio)) {
694 case REQ_OP_DISCARD:
695 case REQ_OP_SECURE_ERASE:
a6f0788e 696 case REQ_OP_WRITE_ZEROES:
7afafc8a
AH
697 break;
698 case REQ_OP_WRITE_SAME:
8423ae3d 699 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
7afafc8a
AH
700 break;
701 default:
f4595875 702 bio_for_each_segment(bv, bio_src, iter)
7afafc8a
AH
703 bio->bi_io_vec[bio->bi_vcnt++] = bv;
704 break;
8423ae3d
KO
705 }
706
bdb53207
KO
707 if (bio_integrity(bio_src)) {
708 int ret;
7ba1ba12 709
bdb53207 710 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 711 if (ret < 0) {
bdb53207 712 bio_put(bio);
7ba1ba12 713 return NULL;
059ea331 714 }
3676347a 715 }
1da177e4 716
20bd723e
PV
717 bio_clone_blkcg_association(bio, bio_src);
718
bdb53207 719 return bio;
1da177e4 720}
bf800ef1 721EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
722
723/**
c66a14d0
KO
724 * bio_add_pc_page - attempt to add page to bio
725 * @q: the target queue
726 * @bio: destination bio
727 * @page: page to add
728 * @len: vec entry length
729 * @offset: vec entry offset
1da177e4 730 *
c66a14d0
KO
731 * Attempt to add a page to the bio_vec maplist. This can fail for a
732 * number of reasons, such as the bio being full or target block device
733 * limitations. The target block device must allow bio's up to PAGE_SIZE,
734 * so it is always possible to add a single page to an empty bio.
735 *
736 * This should only be used by REQ_PC bios.
1da177e4 737 */
c66a14d0
KO
738int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
739 *page, unsigned int len, unsigned int offset)
1da177e4
LT
740{
741 int retried_segments = 0;
742 struct bio_vec *bvec;
743
744 /*
745 * cloned bio must not modify vec list
746 */
747 if (unlikely(bio_flagged(bio, BIO_CLONED)))
748 return 0;
749
c66a14d0 750 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
751 return 0;
752
80cfd548
JA
753 /*
754 * For filesystems with a blocksize smaller than the pagesize
755 * we will often be called with the same page as last time and
756 * a consecutive offset. Optimize this special case.
757 */
758 if (bio->bi_vcnt > 0) {
759 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
760
761 if (page == prev->bv_page &&
762 offset == prev->bv_offset + prev->bv_len) {
763 prev->bv_len += len;
fcbf6a08 764 bio->bi_iter.bi_size += len;
80cfd548
JA
765 goto done;
766 }
66cb45aa
JA
767
768 /*
769 * If the queue doesn't support SG gaps and adding this
770 * offset would create a gap, disallow it.
771 */
03100aad 772 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 773 return 0;
80cfd548
JA
774 }
775
a5db5c8f 776 if (bio_full(bio))
1da177e4
LT
777 return 0;
778
779 /*
fcbf6a08
ML
780 * setup the new entry, we might clear it again later if we
781 * cannot add the page
782 */
783 bvec = &bio->bi_io_vec[bio->bi_vcnt];
784 bvec->bv_page = page;
785 bvec->bv_len = len;
786 bvec->bv_offset = offset;
787 bio->bi_vcnt++;
788 bio->bi_phys_segments++;
789 bio->bi_iter.bi_size += len;
790
791 /*
792 * Perform a recount if the number of segments is greater
793 * than queue_max_segments(q).
1da177e4
LT
794 */
795
fcbf6a08 796 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
797
798 if (retried_segments)
fcbf6a08 799 goto failed;
1da177e4
LT
800
801 retried_segments = 1;
802 blk_recount_segments(q, bio);
803 }
804
1da177e4 805 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 806 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
b7c44ed9 807 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 808
80cfd548 809 done:
1da177e4 810 return len;
fcbf6a08
ML
811
812 failed:
813 bvec->bv_page = NULL;
814 bvec->bv_len = 0;
815 bvec->bv_offset = 0;
816 bio->bi_vcnt--;
817 bio->bi_iter.bi_size -= len;
818 blk_recount_segments(q, bio);
819 return 0;
1da177e4 820}
a112a71d 821EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 822
1da177e4 823/**
a5db5c8f
CH
824 * __bio_try_merge_page - try appending data to an existing bvec.
825 * @bio: destination bio
826 * @page: page to add
827 * @len: length of the data to add
828 * @off: offset of the data in @page
1da177e4 829 *
a5db5c8f
CH
830 * Try to add the data at @page + @off to the last bvec of @bio. This is a
831 * a useful optimisation for file systems with a block size smaller than the
832 * page size.
833 *
834 * Return %true on success or %false on failure.
1da177e4 835 */
a5db5c8f
CH
836bool __bio_try_merge_page(struct bio *bio, struct page *page,
837 unsigned int len, unsigned int off)
1da177e4 838{
c66a14d0 839 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
a5db5c8f 840 return false;
762380ad 841
c66a14d0 842 if (bio->bi_vcnt > 0) {
a5db5c8f 843 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 844
a5db5c8f 845 if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
c66a14d0 846 bv->bv_len += len;
a5db5c8f
CH
847 bio->bi_iter.bi_size += len;
848 return true;
c66a14d0
KO
849 }
850 }
a5db5c8f
CH
851 return false;
852}
853EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 854
a5db5c8f
CH
855/**
856 * __bio_add_page - add page to a bio in a new segment
857 * @bio: destination bio
858 * @page: page to add
859 * @len: length of the data to add
860 * @off: offset of the data in @page
861 *
862 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
863 * that @bio has space for another bvec.
864 */
865void __bio_add_page(struct bio *bio, struct page *page,
866 unsigned int len, unsigned int off)
867{
868 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 869
a5db5c8f
CH
870 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
871 WARN_ON_ONCE(bio_full(bio));
872
873 bv->bv_page = page;
874 bv->bv_offset = off;
875 bv->bv_len = len;
c66a14d0 876
c66a14d0 877 bio->bi_iter.bi_size += len;
a5db5c8f
CH
878 bio->bi_vcnt++;
879}
880EXPORT_SYMBOL_GPL(__bio_add_page);
881
882/**
883 * bio_add_page - attempt to add page to bio
884 * @bio: destination bio
885 * @page: page to add
886 * @len: vec entry length
887 * @offset: vec entry offset
888 *
889 * Attempt to add a page to the bio_vec maplist. This will only fail
890 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
891 */
892int bio_add_page(struct bio *bio, struct page *page,
893 unsigned int len, unsigned int offset)
894{
895 if (!__bio_try_merge_page(bio, page, len, offset)) {
896 if (bio_full(bio))
897 return 0;
898 __bio_add_page(bio, page, len, offset);
899 }
c66a14d0 900 return len;
1da177e4 901}
a112a71d 902EXPORT_SYMBOL(bio_add_page);
1da177e4 903
2cefe4db 904/**
6c9de34a 905 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
906 * @bio: bio to add pages to
907 * @iter: iov iterator describing the region to be mapped
908 *
6c9de34a 909 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 910 * pages will have to be released using put_page() when done.
6c9de34a
MW
911 * For multi-segment *iter, this function only adds pages from the
912 * the next non-empty segment of the iov iterator.
2cefe4db 913 */
6c9de34a 914static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 915{
c1427d81 916 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt, idx;
2cefe4db
KO
917 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
918 struct page **pages = (struct page **)bv;
c1427d81 919 size_t offset;
2cefe4db
KO
920 ssize_t size;
921
922 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
923 if (unlikely(size <= 0))
924 return size ? size : -EFAULT;
c1427d81 925 idx = nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
2cefe4db
KO
926
927 /*
928 * Deep magic below: We need to walk the pinned pages backwards
929 * because we are abusing the space allocated for the bio_vecs
930 * for the page array. Because the bio_vecs are larger than the
931 * page pointers by definition this will always work. But it also
932 * means we can't use bio_add_page, so any changes to it's semantics
933 * need to be reflected here as well.
934 */
935 bio->bi_iter.bi_size += size;
936 bio->bi_vcnt += nr_pages;
937
c1427d81
MW
938 while (idx--) {
939 bv[idx].bv_page = pages[idx];
940 bv[idx].bv_len = PAGE_SIZE;
941 bv[idx].bv_offset = 0;
2cefe4db
KO
942 }
943
944 bv[0].bv_offset += offset;
945 bv[0].bv_len -= offset;
c1427d81 946 bv[nr_pages - 1].bv_len -= nr_pages * PAGE_SIZE - offset - size;
2cefe4db
KO
947
948 iov_iter_advance(iter, size);
949 return 0;
950}
6c9de34a
MW
951
952/**
953 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
954 * @bio: bio to add pages to
955 * @iter: iov iterator describing the region to be mapped
956 *
957 * Pins pages from *iter and appends them to @bio's bvec array. The
958 * pages will have to be released using put_page() when done.
959 * The function tries, but does not guarantee, to pin as many pages as
960 * fit into the bio, or are requested in *iter, whatever is smaller.
961 * If MM encounters an error pinning the requested pages, it stops.
962 * Error is returned only if 0 pages could be pinned.
963 */
964int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
965{
966 unsigned short orig_vcnt = bio->bi_vcnt;
967
968 do {
969 int ret = __bio_iov_iter_get_pages(bio, iter);
970
971 if (unlikely(ret))
972 return bio->bi_vcnt > orig_vcnt ? 0 : ret;
973
974 } while (iov_iter_count(iter) && !bio_full(bio));
975
976 return 0;
977}
2cefe4db
KO
978EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
979
4246a0b6 980static void submit_bio_wait_endio(struct bio *bio)
9e882242 981{
65e53aab 982 complete(bio->bi_private);
9e882242
KO
983}
984
985/**
986 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
987 * @bio: The &struct bio which describes the I/O
988 *
989 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
990 * bio_endio() on failure.
3d289d68
JK
991 *
992 * WARNING: Unlike to how submit_bio() is usually used, this function does not
993 * result in bio reference to be consumed. The caller must drop the reference
994 * on his own.
9e882242 995 */
4e49ea4a 996int submit_bio_wait(struct bio *bio)
9e882242 997{
e319e1fb 998 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 999
65e53aab 1000 bio->bi_private = &done;
9e882242 1001 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1002 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1003 submit_bio(bio);
65e53aab 1004 wait_for_completion_io(&done);
9e882242 1005
65e53aab 1006 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1007}
1008EXPORT_SYMBOL(submit_bio_wait);
1009
054bdf64
KO
1010/**
1011 * bio_advance - increment/complete a bio by some number of bytes
1012 * @bio: bio to advance
1013 * @bytes: number of bytes to complete
1014 *
1015 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1016 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1017 * be updated on the last bvec as well.
1018 *
1019 * @bio will then represent the remaining, uncompleted portion of the io.
1020 */
1021void bio_advance(struct bio *bio, unsigned bytes)
1022{
1023 if (bio_integrity(bio))
1024 bio_integrity_advance(bio, bytes);
1025
4550dd6c 1026 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1027}
1028EXPORT_SYMBOL(bio_advance);
1029
a0787606
KO
1030/**
1031 * bio_alloc_pages - allocates a single page for each bvec in a bio
1032 * @bio: bio to allocate pages for
1033 * @gfp_mask: flags for allocation
1034 *
1035 * Allocates pages up to @bio->bi_vcnt.
1036 *
1037 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
1038 * freed.
1039 */
1040int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
1041{
1042 int i;
1043 struct bio_vec *bv;
1044
1045 bio_for_each_segment_all(bv, bio, i) {
1046 bv->bv_page = alloc_page(gfp_mask);
1047 if (!bv->bv_page) {
1048 while (--bv >= bio->bi_io_vec)
1049 __free_page(bv->bv_page);
1050 return -ENOMEM;
1051 }
1052 }
1053
1054 return 0;
1055}
1056EXPORT_SYMBOL(bio_alloc_pages);
1057
16ac3d63
KO
1058/**
1059 * bio_copy_data - copy contents of data buffers from one chain of bios to
1060 * another
1061 * @src: source bio list
1062 * @dst: destination bio list
1063 *
1064 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1065 * @src and @dst as linked lists of bios.
1066 *
1067 * Stops when it reaches the end of either @src or @dst - that is, copies
1068 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1069 */
1070void bio_copy_data(struct bio *dst, struct bio *src)
1071{
1cb9dda4
KO
1072 struct bvec_iter src_iter, dst_iter;
1073 struct bio_vec src_bv, dst_bv;
16ac3d63 1074 void *src_p, *dst_p;
1cb9dda4 1075 unsigned bytes;
16ac3d63 1076
1cb9dda4
KO
1077 src_iter = src->bi_iter;
1078 dst_iter = dst->bi_iter;
16ac3d63
KO
1079
1080 while (1) {
1cb9dda4
KO
1081 if (!src_iter.bi_size) {
1082 src = src->bi_next;
1083 if (!src)
1084 break;
16ac3d63 1085
1cb9dda4 1086 src_iter = src->bi_iter;
16ac3d63
KO
1087 }
1088
1cb9dda4
KO
1089 if (!dst_iter.bi_size) {
1090 dst = dst->bi_next;
1091 if (!dst)
1092 break;
16ac3d63 1093
1cb9dda4 1094 dst_iter = dst->bi_iter;
16ac3d63
KO
1095 }
1096
1cb9dda4
KO
1097 src_bv = bio_iter_iovec(src, src_iter);
1098 dst_bv = bio_iter_iovec(dst, dst_iter);
1099
1100 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1101
1cb9dda4
KO
1102 src_p = kmap_atomic(src_bv.bv_page);
1103 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1104
1cb9dda4
KO
1105 memcpy(dst_p + dst_bv.bv_offset,
1106 src_p + src_bv.bv_offset,
16ac3d63
KO
1107 bytes);
1108
1109 kunmap_atomic(dst_p);
1110 kunmap_atomic(src_p);
1111
1cb9dda4
KO
1112 bio_advance_iter(src, &src_iter, bytes);
1113 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
1114 }
1115}
1116EXPORT_SYMBOL(bio_copy_data);
1117
1da177e4 1118struct bio_map_data {
152e283f 1119 int is_our_pages;
26e49cfc
KO
1120 struct iov_iter iter;
1121 struct iovec iov[];
1da177e4
LT
1122};
1123
0e5b935d 1124static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1125 gfp_t gfp_mask)
1da177e4 1126{
0e5b935d
AV
1127 struct bio_map_data *bmd;
1128 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1129 return NULL;
1da177e4 1130
0e5b935d
AV
1131 bmd = kmalloc(sizeof(struct bio_map_data) +
1132 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1133 if (!bmd)
1134 return NULL;
1135 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1136 bmd->iter = *data;
1137 bmd->iter.iov = bmd->iov;
1138 return bmd;
1da177e4
LT
1139}
1140
9124d3fe
DP
1141/**
1142 * bio_copy_from_iter - copy all pages from iov_iter to bio
1143 * @bio: The &struct bio which describes the I/O as destination
1144 * @iter: iov_iter as source
1145 *
1146 * Copy all pages from iov_iter to bio.
1147 * Returns 0 on success, or error on failure.
1148 */
98a09d61 1149static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1150{
9124d3fe 1151 int i;
c5dec1c3 1152 struct bio_vec *bvec;
c5dec1c3 1153
d74c6d51 1154 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1155 ssize_t ret;
c5dec1c3 1156
9124d3fe
DP
1157 ret = copy_page_from_iter(bvec->bv_page,
1158 bvec->bv_offset,
1159 bvec->bv_len,
98a09d61 1160 iter);
9124d3fe 1161
98a09d61 1162 if (!iov_iter_count(iter))
9124d3fe
DP
1163 break;
1164
1165 if (ret < bvec->bv_len)
1166 return -EFAULT;
c5dec1c3
FT
1167 }
1168
9124d3fe
DP
1169 return 0;
1170}
1171
1172/**
1173 * bio_copy_to_iter - copy all pages from bio to iov_iter
1174 * @bio: The &struct bio which describes the I/O as source
1175 * @iter: iov_iter as destination
1176 *
1177 * Copy all pages from bio to iov_iter.
1178 * Returns 0 on success, or error on failure.
1179 */
1180static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1181{
1182 int i;
1183 struct bio_vec *bvec;
1184
1185 bio_for_each_segment_all(bvec, bio, i) {
1186 ssize_t ret;
1187
1188 ret = copy_page_to_iter(bvec->bv_page,
1189 bvec->bv_offset,
1190 bvec->bv_len,
1191 &iter);
1192
1193 if (!iov_iter_count(&iter))
1194 break;
1195
1196 if (ret < bvec->bv_len)
1197 return -EFAULT;
1198 }
1199
1200 return 0;
c5dec1c3
FT
1201}
1202
491221f8 1203void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1204{
1205 struct bio_vec *bvec;
1206 int i;
1207
1208 bio_for_each_segment_all(bvec, bio, i)
1209 __free_page(bvec->bv_page);
1210}
491221f8 1211EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1212
1da177e4
LT
1213/**
1214 * bio_uncopy_user - finish previously mapped bio
1215 * @bio: bio being terminated
1216 *
ddad8dd0 1217 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1218 * to user space in case of a read.
1219 */
1220int bio_uncopy_user(struct bio *bio)
1221{
1222 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1223 int ret = 0;
1da177e4 1224
35dc2483
RD
1225 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1226 /*
1227 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1228 * don't copy into a random user address space, just free
1229 * and return -EINTR so user space doesn't expect any data.
35dc2483 1230 */
2d99b55d
HR
1231 if (!current->mm)
1232 ret = -EINTR;
1233 else if (bio_data_dir(bio) == READ)
9124d3fe 1234 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1235 if (bmd->is_our_pages)
1236 bio_free_pages(bio);
35dc2483 1237 }
c8db4448 1238 kfree(bmd);
1da177e4
LT
1239 bio_put(bio);
1240 return ret;
1241}
1242
1243/**
c5dec1c3 1244 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1245 * @q: destination block queue
1246 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1247 * @iter: iovec iterator
1248 * @gfp_mask: memory allocation flags
1da177e4
LT
1249 *
1250 * Prepares and returns a bio for indirect user io, bouncing data
1251 * to/from kernel pages as necessary. Must be paired with
1252 * call bio_uncopy_user() on io completion.
1253 */
152e283f
FT
1254struct bio *bio_copy_user_iov(struct request_queue *q,
1255 struct rq_map_data *map_data,
e81cef5d 1256 struct iov_iter *iter,
26e49cfc 1257 gfp_t gfp_mask)
1da177e4 1258{
1da177e4 1259 struct bio_map_data *bmd;
1da177e4
LT
1260 struct page *page;
1261 struct bio *bio;
d16d44eb
AV
1262 int i = 0, ret;
1263 int nr_pages;
26e49cfc 1264 unsigned int len = iter->count;
bd5cecea 1265 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1266
0e5b935d 1267 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1268 if (!bmd)
1269 return ERR_PTR(-ENOMEM);
1270
26e49cfc
KO
1271 /*
1272 * We need to do a deep copy of the iov_iter including the iovecs.
1273 * The caller provided iov might point to an on-stack or otherwise
1274 * shortlived one.
1275 */
1276 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1277
d16d44eb
AV
1278 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1279 if (nr_pages > BIO_MAX_PAGES)
1280 nr_pages = BIO_MAX_PAGES;
26e49cfc 1281
1da177e4 1282 ret = -ENOMEM;
a9e9dc24 1283 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1284 if (!bio)
1285 goto out_bmd;
1286
1da177e4 1287 ret = 0;
56c451f4
FT
1288
1289 if (map_data) {
e623ddb4 1290 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1291 i = map_data->offset / PAGE_SIZE;
1292 }
1da177e4 1293 while (len) {
e623ddb4 1294 unsigned int bytes = PAGE_SIZE;
1da177e4 1295
56c451f4
FT
1296 bytes -= offset;
1297
1da177e4
LT
1298 if (bytes > len)
1299 bytes = len;
1300
152e283f 1301 if (map_data) {
e623ddb4 1302 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1303 ret = -ENOMEM;
1304 break;
1305 }
e623ddb4
FT
1306
1307 page = map_data->pages[i / nr_pages];
1308 page += (i % nr_pages);
1309
1310 i++;
1311 } else {
152e283f 1312 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1313 if (!page) {
1314 ret = -ENOMEM;
1315 break;
1316 }
1da177e4
LT
1317 }
1318
56c451f4 1319 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1320 break;
1da177e4
LT
1321
1322 len -= bytes;
56c451f4 1323 offset = 0;
1da177e4
LT
1324 }
1325
1326 if (ret)
1327 goto cleanup;
1328
2884d0be
AV
1329 if (map_data)
1330 map_data->offset += bio->bi_iter.bi_size;
1331
1da177e4
LT
1332 /*
1333 * success
1334 */
26e49cfc 1335 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1336 (map_data && map_data->from_user)) {
98a09d61 1337 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1338 if (ret)
1339 goto cleanup;
98a09d61 1340 } else {
f7f5b5ea
KB
1341 if (bmd->is_our_pages)
1342 zero_fill_bio(bio);
98a09d61 1343 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1344 }
1345
26e49cfc 1346 bio->bi_private = bmd;
2884d0be
AV
1347 if (map_data && map_data->null_mapped)
1348 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1349 return bio;
1350cleanup:
152e283f 1351 if (!map_data)
1dfa0f68 1352 bio_free_pages(bio);
1da177e4
LT
1353 bio_put(bio);
1354out_bmd:
c8db4448 1355 kfree(bmd);
1da177e4
LT
1356 return ERR_PTR(ret);
1357}
1358
37f19e57
CH
1359/**
1360 * bio_map_user_iov - map user iovec into bio
1361 * @q: the struct request_queue for the bio
1362 * @iter: iovec iterator
1363 * @gfp_mask: memory allocation flags
1364 *
1365 * Map the user space address into a bio suitable for io to a block
1366 * device. Returns an error pointer in case of error.
1367 */
1368struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1369 struct iov_iter *iter,
37f19e57 1370 gfp_t gfp_mask)
1da177e4 1371{
26e49cfc 1372 int j;
1da177e4 1373 struct bio *bio;
076098e5 1374 int ret;
2b04e8f6 1375 struct bio_vec *bvec;
1da177e4 1376
b282cc76 1377 if (!iov_iter_count(iter))
1da177e4
LT
1378 return ERR_PTR(-EINVAL);
1379
b282cc76 1380 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1381 if (!bio)
1382 return ERR_PTR(-ENOMEM);
1383
0a0f1513 1384 while (iov_iter_count(iter)) {
629e42bc 1385 struct page **pages;
076098e5
AV
1386 ssize_t bytes;
1387 size_t offs, added = 0;
1388 int npages;
1da177e4 1389
0a0f1513 1390 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1391 if (unlikely(bytes <= 0)) {
1392 ret = bytes ? bytes : -EFAULT;
f1970baf 1393 goto out_unmap;
99172157 1394 }
f1970baf 1395
076098e5 1396 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1397
98f0bc99
AV
1398 if (unlikely(offs & queue_dma_alignment(q))) {
1399 ret = -EINVAL;
1400 j = 0;
1401 } else {
1402 for (j = 0; j < npages; j++) {
1403 struct page *page = pages[j];
1404 unsigned int n = PAGE_SIZE - offs;
1405 unsigned short prev_bi_vcnt = bio->bi_vcnt;
f1970baf 1406
98f0bc99
AV
1407 if (n > bytes)
1408 n = bytes;
95d78c28 1409
98f0bc99
AV
1410 if (!bio_add_pc_page(q, bio, page, n, offs))
1411 break;
1da177e4 1412
98f0bc99
AV
1413 /*
1414 * check if vector was merged with previous
1415 * drop page reference if needed
1416 */
1417 if (bio->bi_vcnt == prev_bi_vcnt)
1418 put_page(page);
1419
1420 added += n;
1421 bytes -= n;
1422 offs = 0;
1423 }
0a0f1513 1424 iov_iter_advance(iter, added);
f1970baf 1425 }
1da177e4 1426 /*
f1970baf 1427 * release the pages we didn't map into the bio, if any
1da177e4 1428 */
629e42bc 1429 while (j < npages)
09cbfeaf 1430 put_page(pages[j++]);
629e42bc 1431 kvfree(pages);
e2e115d1
AV
1432 /* couldn't stuff something into bio? */
1433 if (bytes)
1434 break;
1da177e4
LT
1435 }
1436
b7c44ed9 1437 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1438
1439 /*
5fad1b64 1440 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1441 * it would normally disappear when its bi_end_io is run.
1442 * however, we need it for the unmap, so grab an extra
1443 * reference to it
1444 */
1445 bio_get(bio);
1da177e4 1446 return bio;
f1970baf
JB
1447
1448 out_unmap:
2b04e8f6
AV
1449 bio_for_each_segment_all(bvec, bio, j) {
1450 put_page(bvec->bv_page);
f1970baf 1451 }
1da177e4
LT
1452 bio_put(bio);
1453 return ERR_PTR(ret);
1454}
1455
1da177e4
LT
1456static void __bio_unmap_user(struct bio *bio)
1457{
1458 struct bio_vec *bvec;
1459 int i;
1460
1461 /*
1462 * make sure we dirty pages we wrote to
1463 */
d74c6d51 1464 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1465 if (bio_data_dir(bio) == READ)
1466 set_page_dirty_lock(bvec->bv_page);
1467
09cbfeaf 1468 put_page(bvec->bv_page);
1da177e4
LT
1469 }
1470
1471 bio_put(bio);
1472}
1473
1474/**
1475 * bio_unmap_user - unmap a bio
1476 * @bio: the bio being unmapped
1477 *
5fad1b64
BVA
1478 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1479 * process context.
1da177e4
LT
1480 *
1481 * bio_unmap_user() may sleep.
1482 */
1483void bio_unmap_user(struct bio *bio)
1484{
1485 __bio_unmap_user(bio);
1486 bio_put(bio);
1487}
1488
4246a0b6 1489static void bio_map_kern_endio(struct bio *bio)
b823825e 1490{
b823825e 1491 bio_put(bio);
b823825e
JA
1492}
1493
75c72b83
CH
1494/**
1495 * bio_map_kern - map kernel address into bio
1496 * @q: the struct request_queue for the bio
1497 * @data: pointer to buffer to map
1498 * @len: length in bytes
1499 * @gfp_mask: allocation flags for bio allocation
1500 *
1501 * Map the kernel address into a bio suitable for io to a block
1502 * device. Returns an error pointer in case of error.
1503 */
1504struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1505 gfp_t gfp_mask)
df46b9a4
MC
1506{
1507 unsigned long kaddr = (unsigned long)data;
1508 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1509 unsigned long start = kaddr >> PAGE_SHIFT;
1510 const int nr_pages = end - start;
1511 int offset, i;
1512 struct bio *bio;
1513
a9e9dc24 1514 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1515 if (!bio)
1516 return ERR_PTR(-ENOMEM);
1517
1518 offset = offset_in_page(kaddr);
1519 for (i = 0; i < nr_pages; i++) {
1520 unsigned int bytes = PAGE_SIZE - offset;
1521
1522 if (len <= 0)
1523 break;
1524
1525 if (bytes > len)
1526 bytes = len;
1527
defd94b7 1528 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1529 offset) < bytes) {
1530 /* we don't support partial mappings */
1531 bio_put(bio);
1532 return ERR_PTR(-EINVAL);
1533 }
df46b9a4
MC
1534
1535 data += bytes;
1536 len -= bytes;
1537 offset = 0;
1538 }
1539
b823825e 1540 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1541 return bio;
1542}
a112a71d 1543EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1544
4246a0b6 1545static void bio_copy_kern_endio(struct bio *bio)
68154e90 1546{
1dfa0f68
CH
1547 bio_free_pages(bio);
1548 bio_put(bio);
1549}
1550
4246a0b6 1551static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1552{
42d2683a 1553 char *p = bio->bi_private;
1dfa0f68 1554 struct bio_vec *bvec;
68154e90
FT
1555 int i;
1556
d74c6d51 1557 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1558 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1559 p += bvec->bv_len;
68154e90
FT
1560 }
1561
4246a0b6 1562 bio_copy_kern_endio(bio);
68154e90
FT
1563}
1564
1565/**
1566 * bio_copy_kern - copy kernel address into bio
1567 * @q: the struct request_queue for the bio
1568 * @data: pointer to buffer to copy
1569 * @len: length in bytes
1570 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1571 * @reading: data direction is READ
68154e90
FT
1572 *
1573 * copy the kernel address into a bio suitable for io to a block
1574 * device. Returns an error pointer in case of error.
1575 */
1576struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1577 gfp_t gfp_mask, int reading)
1578{
42d2683a
CH
1579 unsigned long kaddr = (unsigned long)data;
1580 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1581 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1582 struct bio *bio;
1583 void *p = data;
1dfa0f68 1584 int nr_pages = 0;
68154e90 1585
42d2683a
CH
1586 /*
1587 * Overflow, abort
1588 */
1589 if (end < start)
1590 return ERR_PTR(-EINVAL);
68154e90 1591
42d2683a
CH
1592 nr_pages = end - start;
1593 bio = bio_kmalloc(gfp_mask, nr_pages);
1594 if (!bio)
1595 return ERR_PTR(-ENOMEM);
68154e90 1596
42d2683a
CH
1597 while (len) {
1598 struct page *page;
1599 unsigned int bytes = PAGE_SIZE;
68154e90 1600
42d2683a
CH
1601 if (bytes > len)
1602 bytes = len;
1603
1604 page = alloc_page(q->bounce_gfp | gfp_mask);
1605 if (!page)
1606 goto cleanup;
1607
1608 if (!reading)
1609 memcpy(page_address(page), p, bytes);
1610
1611 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1612 break;
1613
1614 len -= bytes;
1615 p += bytes;
68154e90
FT
1616 }
1617
1dfa0f68
CH
1618 if (reading) {
1619 bio->bi_end_io = bio_copy_kern_endio_read;
1620 bio->bi_private = data;
1621 } else {
1622 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1623 }
76029ff3 1624
68154e90 1625 return bio;
42d2683a
CH
1626
1627cleanup:
1dfa0f68 1628 bio_free_pages(bio);
42d2683a
CH
1629 bio_put(bio);
1630 return ERR_PTR(-ENOMEM);
68154e90
FT
1631}
1632
1da177e4
LT
1633/*
1634 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1635 * for performing direct-IO in BIOs.
1636 *
1637 * The problem is that we cannot run set_page_dirty() from interrupt context
1638 * because the required locks are not interrupt-safe. So what we can do is to
1639 * mark the pages dirty _before_ performing IO. And in interrupt context,
1640 * check that the pages are still dirty. If so, fine. If not, redirty them
1641 * in process context.
1642 *
1643 * We special-case compound pages here: normally this means reads into hugetlb
1644 * pages. The logic in here doesn't really work right for compound pages
1645 * because the VM does not uniformly chase down the head page in all cases.
1646 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1647 * handle them at all. So we skip compound pages here at an early stage.
1648 *
1649 * Note that this code is very hard to test under normal circumstances because
1650 * direct-io pins the pages with get_user_pages(). This makes
1651 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1652 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1653 * pagecache.
1654 *
1655 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1656 * deferred bio dirtying paths.
1657 */
1658
1659/*
1660 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1661 */
1662void bio_set_pages_dirty(struct bio *bio)
1663{
cb34e057 1664 struct bio_vec *bvec;
1da177e4
LT
1665 int i;
1666
cb34e057
KO
1667 bio_for_each_segment_all(bvec, bio, i) {
1668 struct page *page = bvec->bv_page;
1da177e4
LT
1669
1670 if (page && !PageCompound(page))
1671 set_page_dirty_lock(page);
1672 }
1673}
1674
86b6c7a7 1675static void bio_release_pages(struct bio *bio)
1da177e4 1676{
cb34e057 1677 struct bio_vec *bvec;
1da177e4
LT
1678 int i;
1679
cb34e057
KO
1680 bio_for_each_segment_all(bvec, bio, i) {
1681 struct page *page = bvec->bv_page;
1da177e4
LT
1682
1683 if (page)
1684 put_page(page);
1685 }
1686}
1687
1688/*
1689 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1690 * If they are, then fine. If, however, some pages are clean then they must
1691 * have been written out during the direct-IO read. So we take another ref on
1692 * the BIO and the offending pages and re-dirty the pages in process context.
1693 *
1694 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1695 * here on. It will run one put_page() against each page and will run one
1696 * bio_put() against the BIO.
1da177e4
LT
1697 */
1698
65f27f38 1699static void bio_dirty_fn(struct work_struct *work);
1da177e4 1700
65f27f38 1701static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1702static DEFINE_SPINLOCK(bio_dirty_lock);
1703static struct bio *bio_dirty_list;
1704
1705/*
1706 * This runs in process context
1707 */
65f27f38 1708static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1709{
1710 unsigned long flags;
1711 struct bio *bio;
1712
1713 spin_lock_irqsave(&bio_dirty_lock, flags);
1714 bio = bio_dirty_list;
1715 bio_dirty_list = NULL;
1716 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1717
1718 while (bio) {
1719 struct bio *next = bio->bi_private;
1720
1721 bio_set_pages_dirty(bio);
1722 bio_release_pages(bio);
1723 bio_put(bio);
1724 bio = next;
1725 }
1726}
1727
1728void bio_check_pages_dirty(struct bio *bio)
1729{
cb34e057 1730 struct bio_vec *bvec;
1da177e4
LT
1731 int nr_clean_pages = 0;
1732 int i;
1733
cb34e057
KO
1734 bio_for_each_segment_all(bvec, bio, i) {
1735 struct page *page = bvec->bv_page;
1da177e4
LT
1736
1737 if (PageDirty(page) || PageCompound(page)) {
09cbfeaf 1738 put_page(page);
cb34e057 1739 bvec->bv_page = NULL;
1da177e4
LT
1740 } else {
1741 nr_clean_pages++;
1742 }
1743 }
1744
1745 if (nr_clean_pages) {
1746 unsigned long flags;
1747
1748 spin_lock_irqsave(&bio_dirty_lock, flags);
1749 bio->bi_private = bio_dirty_list;
1750 bio_dirty_list = bio;
1751 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1752 schedule_work(&bio_dirty_work);
1753 } else {
1754 bio_put(bio);
1755 }
1756}
1757
d62e26b3
JA
1758void generic_start_io_acct(struct request_queue *q, int rw,
1759 unsigned long sectors, struct hd_struct *part)
394ffa50
GZ
1760{
1761 int cpu = part_stat_lock();
1762
d62e26b3 1763 part_round_stats(q, cpu, part);
394ffa50
GZ
1764 part_stat_inc(cpu, part, ios[rw]);
1765 part_stat_add(cpu, part, sectors[rw], sectors);
d62e26b3 1766 part_inc_in_flight(q, part, rw);
394ffa50
GZ
1767
1768 part_stat_unlock();
1769}
1770EXPORT_SYMBOL(generic_start_io_acct);
1771
d62e26b3
JA
1772void generic_end_io_acct(struct request_queue *q, int rw,
1773 struct hd_struct *part, unsigned long start_time)
394ffa50
GZ
1774{
1775 unsigned long duration = jiffies - start_time;
1776 int cpu = part_stat_lock();
1777
1778 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
1779 part_round_stats(q, cpu, part);
1780 part_dec_in_flight(q, part, rw);
394ffa50
GZ
1781
1782 part_stat_unlock();
1783}
1784EXPORT_SYMBOL(generic_end_io_acct);
1785
2d4dc890
IL
1786#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1787void bio_flush_dcache_pages(struct bio *bi)
1788{
7988613b
KO
1789 struct bio_vec bvec;
1790 struct bvec_iter iter;
2d4dc890 1791
7988613b
KO
1792 bio_for_each_segment(bvec, bi, iter)
1793 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1794}
1795EXPORT_SYMBOL(bio_flush_dcache_pages);
1796#endif
1797
c4cf5261
JA
1798static inline bool bio_remaining_done(struct bio *bio)
1799{
1800 /*
1801 * If we're not chaining, then ->__bi_remaining is always 1 and
1802 * we always end io on the first invocation.
1803 */
1804 if (!bio_flagged(bio, BIO_CHAIN))
1805 return true;
1806
1807 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1808
326e1dbb 1809 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1810 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1811 return true;
326e1dbb 1812 }
c4cf5261
JA
1813
1814 return false;
1815}
1816
1da177e4
LT
1817/**
1818 * bio_endio - end I/O on a bio
1819 * @bio: bio
1da177e4
LT
1820 *
1821 * Description:
4246a0b6
CH
1822 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1823 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1824 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1825 *
1826 * bio_endio() can be called several times on a bio that has been chained
1827 * using bio_chain(). The ->bi_end_io() function will only be called the
1828 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1829 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1830 **/
4246a0b6 1831void bio_endio(struct bio *bio)
1da177e4 1832{
ba8c6967 1833again:
2b885517 1834 if (!bio_remaining_done(bio))
ba8c6967 1835 return;
7c20f116
CH
1836 if (!bio_integrity_endio(bio))
1837 return;
1da177e4 1838
ba8c6967
CH
1839 /*
1840 * Need to have a real endio function for chained bios, otherwise
1841 * various corner cases will break (like stacking block devices that
1842 * save/restore bi_end_io) - however, we want to avoid unbounded
1843 * recursion and blowing the stack. Tail call optimization would
1844 * handle this, but compiling with frame pointers also disables
1845 * gcc's sibling call optimization.
1846 */
1847 if (bio->bi_end_io == bio_chain_endio) {
1848 bio = __bio_chain_endio(bio);
1849 goto again;
196d38bc 1850 }
ba8c6967 1851
74d46992
CH
1852 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1853 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1854 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1855 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1856 }
1857
9e234eea 1858 blk_throtl_bio_endio(bio);
b222dd2f
SL
1859 /* release cgroup info */
1860 bio_uninit(bio);
ba8c6967
CH
1861 if (bio->bi_end_io)
1862 bio->bi_end_io(bio);
1da177e4 1863}
a112a71d 1864EXPORT_SYMBOL(bio_endio);
1da177e4 1865
20d0189b
KO
1866/**
1867 * bio_split - split a bio
1868 * @bio: bio to split
1869 * @sectors: number of sectors to split from the front of @bio
1870 * @gfp: gfp mask
1871 * @bs: bio set to allocate from
1872 *
1873 * Allocates and returns a new bio which represents @sectors from the start of
1874 * @bio, and updates @bio to represent the remaining sectors.
1875 *
f3f5da62
MP
1876 * Unless this is a discard request the newly allocated bio will point
1877 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1878 * @bio is not freed before the split.
20d0189b
KO
1879 */
1880struct bio *bio_split(struct bio *bio, int sectors,
1881 gfp_t gfp, struct bio_set *bs)
1882{
f341a4d3 1883 struct bio *split;
20d0189b
KO
1884
1885 BUG_ON(sectors <= 0);
1886 BUG_ON(sectors >= bio_sectors(bio));
1887
f9d03f96 1888 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1889 if (!split)
1890 return NULL;
1891
1892 split->bi_iter.bi_size = sectors << 9;
1893
1894 if (bio_integrity(split))
fbd08e76 1895 bio_integrity_trim(split);
20d0189b
KO
1896
1897 bio_advance(bio, split->bi_iter.bi_size);
484da385 1898 bio->bi_iter.bi_done = 0;
20d0189b 1899
fbbaf700 1900 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
6ba79cf2 1901 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1902
20d0189b
KO
1903 return split;
1904}
1905EXPORT_SYMBOL(bio_split);
1906
6678d83f
KO
1907/**
1908 * bio_trim - trim a bio
1909 * @bio: bio to trim
1910 * @offset: number of sectors to trim from the front of @bio
1911 * @size: size we want to trim @bio to, in sectors
1912 */
1913void bio_trim(struct bio *bio, int offset, int size)
1914{
1915 /* 'bio' is a cloned bio which we need to trim to match
1916 * the given offset and size.
6678d83f 1917 */
6678d83f
KO
1918
1919 size <<= 9;
4f024f37 1920 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1921 return;
1922
b7c44ed9 1923 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1924
1925 bio_advance(bio, offset << 9);
1926
4f024f37 1927 bio->bi_iter.bi_size = size;
376a78ab
DM
1928
1929 if (bio_integrity(bio))
fbd08e76 1930 bio_integrity_trim(bio);
376a78ab 1931
6678d83f
KO
1932}
1933EXPORT_SYMBOL_GPL(bio_trim);
1934
1da177e4
LT
1935/*
1936 * create memory pools for biovec's in a bio_set.
1937 * use the global biovec slabs created for general use.
1938 */
a6c39cb4 1939mempool_t *biovec_create_pool(int pool_entries)
1da177e4 1940{
ed996a52 1941 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1942
9f060e22 1943 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1944}
1945
1946void bioset_free(struct bio_set *bs)
1947{
df2cb6da
KO
1948 if (bs->rescue_workqueue)
1949 destroy_workqueue(bs->rescue_workqueue);
1950
4078def8
TH
1951 mempool_destroy(bs->bio_pool);
1952 mempool_destroy(bs->bvec_pool);
9f060e22 1953
7878cba9 1954 bioset_integrity_free(bs);
bb799ca0 1955 bio_put_slab(bs);
1da177e4
LT
1956
1957 kfree(bs);
1958}
a112a71d 1959EXPORT_SYMBOL(bioset_free);
1da177e4 1960
011067b0
N
1961/**
1962 * bioset_create - Create a bio_set
1963 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1964 * @front_pad: Number of bytes to allocate in front of the returned bio
47e0fb46
N
1965 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1966 * and %BIOSET_NEED_RESCUER
011067b0
N
1967 *
1968 * Description:
1969 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1970 * to ask for a number of bytes to be allocated in front of the bio.
1971 * Front pad allocation is useful for embedding the bio inside
1972 * another structure, to avoid allocating extra data to go with the bio.
1973 * Note that the bio must be embedded at the END of that structure always,
1974 * or things will break badly.
1975 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1976 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
47e0fb46
N
1977 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1978 * dispatch queued requests when the mempool runs out of space.
011067b0
N
1979 *
1980 */
1981struct bio_set *bioset_create(unsigned int pool_size,
1982 unsigned int front_pad,
1983 int flags)
1da177e4 1984{
392ddc32 1985 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1986 struct bio_set *bs;
1da177e4 1987
1b434498 1988 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1989 if (!bs)
1990 return NULL;
1991
bb799ca0 1992 bs->front_pad = front_pad;
1b434498 1993
df2cb6da
KO
1994 spin_lock_init(&bs->rescue_lock);
1995 bio_list_init(&bs->rescue_list);
1996 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1997
392ddc32 1998 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1999 if (!bs->bio_slab) {
2000 kfree(bs);
2001 return NULL;
2002 }
2003
2004 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
2005 if (!bs->bio_pool)
2006 goto bad;
2007
011067b0 2008 if (flags & BIOSET_NEED_BVECS) {
d8f429e1
JN
2009 bs->bvec_pool = biovec_create_pool(pool_size);
2010 if (!bs->bvec_pool)
2011 goto bad;
2012 }
df2cb6da 2013
47e0fb46
N
2014 if (!(flags & BIOSET_NEED_RESCUER))
2015 return bs;
2016
df2cb6da
KO
2017 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2018 if (!bs->rescue_workqueue)
2019 goto bad;
1da177e4 2020
df2cb6da 2021 return bs;
1da177e4
LT
2022bad:
2023 bioset_free(bs);
2024 return NULL;
2025}
a112a71d 2026EXPORT_SYMBOL(bioset_create);
1da177e4 2027
852c788f 2028#ifdef CONFIG_BLK_CGROUP
1d933cf0
TH
2029
2030/**
2031 * bio_associate_blkcg - associate a bio with the specified blkcg
2032 * @bio: target bio
2033 * @blkcg_css: css of the blkcg to associate
2034 *
2035 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2036 * treat @bio as if it were issued by a task which belongs to the blkcg.
2037 *
2038 * This function takes an extra reference of @blkcg_css which will be put
2039 * when @bio is released. The caller must own @bio and is responsible for
2040 * synchronizing calls to this function.
2041 */
2042int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2043{
2044 if (unlikely(bio->bi_css))
2045 return -EBUSY;
2046 css_get(blkcg_css);
2047 bio->bi_css = blkcg_css;
2048 return 0;
2049}
5aa2a96b 2050EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1d933cf0 2051
852c788f
TH
2052/**
2053 * bio_disassociate_task - undo bio_associate_current()
2054 * @bio: target bio
2055 */
2056void bio_disassociate_task(struct bio *bio)
2057{
2058 if (bio->bi_ioc) {
2059 put_io_context(bio->bi_ioc);
2060 bio->bi_ioc = NULL;
2061 }
2062 if (bio->bi_css) {
2063 css_put(bio->bi_css);
2064 bio->bi_css = NULL;
2065 }
2066}
2067
20bd723e
PV
2068/**
2069 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2070 * @dst: destination bio
2071 * @src: source bio
2072 */
2073void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2074{
2075 if (src->bi_css)
2076 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2077}
8a8e6f84 2078EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
852c788f
TH
2079#endif /* CONFIG_BLK_CGROUP */
2080
1da177e4
LT
2081static void __init biovec_init_slabs(void)
2082{
2083 int i;
2084
ed996a52 2085 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2086 int size;
2087 struct biovec_slab *bvs = bvec_slabs + i;
2088
a7fcd37c
JA
2089 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2090 bvs->slab = NULL;
2091 continue;
2092 }
a7fcd37c 2093
1da177e4
LT
2094 size = bvs->nr_vecs * sizeof(struct bio_vec);
2095 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2096 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2097 }
2098}
2099
2100static int __init init_bio(void)
2101{
bb799ca0
JA
2102 bio_slab_max = 2;
2103 bio_slab_nr = 0;
2104 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2105 if (!bio_slabs)
2106 panic("bio: can't allocate bios\n");
1da177e4 2107
7878cba9 2108 bio_integrity_init();
1da177e4
LT
2109 biovec_init_slabs();
2110
011067b0 2111 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1da177e4
LT
2112 if (!fs_bio_set)
2113 panic("bio: can't allocate bios\n");
2114
a91a2785
MP
2115 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2116 panic("bio: can't create integrity pool\n");
2117
1da177e4
LT
2118 return 0;
2119}
1da177e4 2120subsys_initcall(init_bio);