]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/memory-failure.c
dax: fix race between colliding PMD & PTE entries
[mirror_ubuntu-bionic-kernel.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
1c80b990 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 11 * failure.
1c80b990
AK
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
15 *
16 * Handles page cache pages in various states. The tricky part
1c80b990
AK
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
e0de78df
AK
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
1c80b990
AK
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
6a46079c 38 */
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
478c5ffc 42#include <linux/kernel-page-flags.h>
3f07c014 43#include <linux/sched/signal.h>
29930025 44#include <linux/sched/task.h>
01e00f88 45#include <linux/ksm.h>
6a46079c 46#include <linux/rmap.h>
b9e15baf 47#include <linux/export.h>
6a46079c
AK
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/backing-dev.h>
facb6011
AK
51#include <linux/migrate.h>
52#include <linux/page-isolation.h>
53#include <linux/suspend.h>
5a0e3ad6 54#include <linux/slab.h>
bf998156 55#include <linux/swapops.h>
7af446a8 56#include <linux/hugetlb.h>
20d6c96b 57#include <linux/memory_hotplug.h>
5db8a73a 58#include <linux/mm_inline.h>
ea8f5fb8 59#include <linux/kfifo.h>
a5f65109 60#include <linux/ratelimit.h>
6a46079c 61#include "internal.h"
97f0b134 62#include "ras/ras_event.h"
6a46079c
AK
63
64int sysctl_memory_failure_early_kill __read_mostly = 0;
65
66int sysctl_memory_failure_recovery __read_mostly = 1;
67
293c07e3 68atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 69
27df5068
AK
70#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
71
1bfe5feb 72u32 hwpoison_filter_enable = 0;
7c116f2b
WF
73u32 hwpoison_filter_dev_major = ~0U;
74u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
75u64 hwpoison_filter_flags_mask;
76u64 hwpoison_filter_flags_value;
1bfe5feb 77EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
79EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
81EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
82
83static int hwpoison_filter_dev(struct page *p)
84{
85 struct address_space *mapping;
86 dev_t dev;
87
88 if (hwpoison_filter_dev_major == ~0U &&
89 hwpoison_filter_dev_minor == ~0U)
90 return 0;
91
92 /*
1c80b990 93 * page_mapping() does not accept slab pages.
7c116f2b
WF
94 */
95 if (PageSlab(p))
96 return -EINVAL;
97
98 mapping = page_mapping(p);
99 if (mapping == NULL || mapping->host == NULL)
100 return -EINVAL;
101
102 dev = mapping->host->i_sb->s_dev;
103 if (hwpoison_filter_dev_major != ~0U &&
104 hwpoison_filter_dev_major != MAJOR(dev))
105 return -EINVAL;
106 if (hwpoison_filter_dev_minor != ~0U &&
107 hwpoison_filter_dev_minor != MINOR(dev))
108 return -EINVAL;
109
110 return 0;
111}
112
478c5ffc
WF
113static int hwpoison_filter_flags(struct page *p)
114{
115 if (!hwpoison_filter_flags_mask)
116 return 0;
117
118 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
119 hwpoison_filter_flags_value)
120 return 0;
121 else
122 return -EINVAL;
123}
124
4fd466eb
AK
125/*
126 * This allows stress tests to limit test scope to a collection of tasks
127 * by putting them under some memcg. This prevents killing unrelated/important
128 * processes such as /sbin/init. Note that the target task may share clean
129 * pages with init (eg. libc text), which is harmless. If the target task
130 * share _dirty_ pages with another task B, the test scheme must make sure B
131 * is also included in the memcg. At last, due to race conditions this filter
132 * can only guarantee that the page either belongs to the memcg tasks, or is
133 * a freed page.
134 */
94a59fb3 135#ifdef CONFIG_MEMCG
4fd466eb
AK
136u64 hwpoison_filter_memcg;
137EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
138static int hwpoison_filter_task(struct page *p)
139{
4fd466eb
AK
140 if (!hwpoison_filter_memcg)
141 return 0;
142
94a59fb3 143 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
144 return -EINVAL;
145
146 return 0;
147}
148#else
149static int hwpoison_filter_task(struct page *p) { return 0; }
150#endif
151
7c116f2b
WF
152int hwpoison_filter(struct page *p)
153{
1bfe5feb
HL
154 if (!hwpoison_filter_enable)
155 return 0;
156
7c116f2b
WF
157 if (hwpoison_filter_dev(p))
158 return -EINVAL;
159
478c5ffc
WF
160 if (hwpoison_filter_flags(p))
161 return -EINVAL;
162
4fd466eb
AK
163 if (hwpoison_filter_task(p))
164 return -EINVAL;
165
7c116f2b
WF
166 return 0;
167}
27df5068
AK
168#else
169int hwpoison_filter(struct page *p)
170{
171 return 0;
172}
173#endif
174
7c116f2b
WF
175EXPORT_SYMBOL_GPL(hwpoison_filter);
176
6a46079c 177/*
7329bbeb
TL
178 * Send all the processes who have the page mapped a signal.
179 * ``action optional'' if they are not immediately affected by the error
180 * ``action required'' if error happened in current execution context
6a46079c 181 */
7329bbeb
TL
182static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
183 unsigned long pfn, struct page *page, int flags)
6a46079c
AK
184{
185 struct siginfo si;
186 int ret;
187
495367c0
CY
188 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
189 pfn, t->comm, t->pid);
6a46079c
AK
190 si.si_signo = SIGBUS;
191 si.si_errno = 0;
6a46079c
AK
192 si.si_addr = (void *)addr;
193#ifdef __ARCH_SI_TRAPNO
194 si.si_trapno = trapno;
195#endif
f9121153 196 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
7329bbeb 197
a70ffcac 198 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
7329bbeb 199 si.si_code = BUS_MCEERR_AR;
a70ffcac 200 ret = force_sig_info(SIGBUS, &si, current);
7329bbeb
TL
201 } else {
202 /*
203 * Don't use force here, it's convenient if the signal
204 * can be temporarily blocked.
205 * This could cause a loop when the user sets SIGBUS
206 * to SIG_IGN, but hopefully no one will do that?
207 */
208 si.si_code = BUS_MCEERR_AO;
209 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
210 }
6a46079c 211 if (ret < 0)
495367c0 212 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
1170532b 213 t->comm, t->pid, ret);
6a46079c
AK
214 return ret;
215}
216
588f9ce6
AK
217/*
218 * When a unknown page type is encountered drain as many buffers as possible
219 * in the hope to turn the page into a LRU or free page, which we can handle.
220 */
facb6011 221void shake_page(struct page *p, int access)
588f9ce6 222{
8bcb74de
NH
223 if (PageHuge(p))
224 return;
225
588f9ce6
AK
226 if (!PageSlab(p)) {
227 lru_add_drain_all();
228 if (PageLRU(p))
229 return;
c0554329 230 drain_all_pages(page_zone(p));
588f9ce6
AK
231 if (PageLRU(p) || is_free_buddy_page(p))
232 return;
233 }
facb6011 234
588f9ce6 235 /*
6b4f7799
JW
236 * Only call shrink_node_slabs here (which would also shrink
237 * other caches) if access is not potentially fatal.
588f9ce6 238 */
cb731d6c
VD
239 if (access)
240 drop_slab_node(page_to_nid(p));
588f9ce6
AK
241}
242EXPORT_SYMBOL_GPL(shake_page);
243
6a46079c
AK
244/*
245 * Kill all processes that have a poisoned page mapped and then isolate
246 * the page.
247 *
248 * General strategy:
249 * Find all processes having the page mapped and kill them.
250 * But we keep a page reference around so that the page is not
251 * actually freed yet.
252 * Then stash the page away
253 *
254 * There's no convenient way to get back to mapped processes
255 * from the VMAs. So do a brute-force search over all
256 * running processes.
257 *
258 * Remember that machine checks are not common (or rather
259 * if they are common you have other problems), so this shouldn't
260 * be a performance issue.
261 *
262 * Also there are some races possible while we get from the
263 * error detection to actually handle it.
264 */
265
266struct to_kill {
267 struct list_head nd;
268 struct task_struct *tsk;
269 unsigned long addr;
9033ae16 270 char addr_valid;
6a46079c
AK
271};
272
273/*
274 * Failure handling: if we can't find or can't kill a process there's
275 * not much we can do. We just print a message and ignore otherwise.
276 */
277
278/*
279 * Schedule a process for later kill.
280 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
281 * TBD would GFP_NOIO be enough?
282 */
283static void add_to_kill(struct task_struct *tsk, struct page *p,
284 struct vm_area_struct *vma,
285 struct list_head *to_kill,
286 struct to_kill **tkc)
287{
288 struct to_kill *tk;
289
290 if (*tkc) {
291 tk = *tkc;
292 *tkc = NULL;
293 } else {
294 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
295 if (!tk) {
495367c0 296 pr_err("Memory failure: Out of memory while machine check handling\n");
6a46079c
AK
297 return;
298 }
299 }
300 tk->addr = page_address_in_vma(p, vma);
301 tk->addr_valid = 1;
302
303 /*
304 * In theory we don't have to kill when the page was
305 * munmaped. But it could be also a mremap. Since that's
306 * likely very rare kill anyways just out of paranoia, but use
307 * a SIGKILL because the error is not contained anymore.
308 */
309 if (tk->addr == -EFAULT) {
495367c0 310 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
6a46079c
AK
311 page_to_pfn(p), tsk->comm);
312 tk->addr_valid = 0;
313 }
314 get_task_struct(tsk);
315 tk->tsk = tsk;
316 list_add_tail(&tk->nd, to_kill);
317}
318
319/*
320 * Kill the processes that have been collected earlier.
321 *
322 * Only do anything when DOIT is set, otherwise just free the list
323 * (this is used for clean pages which do not need killing)
324 * Also when FAIL is set do a force kill because something went
325 * wrong earlier.
326 */
6751ed65 327static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
666e5a40 328 bool fail, struct page *page, unsigned long pfn,
7329bbeb 329 int flags)
6a46079c
AK
330{
331 struct to_kill *tk, *next;
332
333 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 334 if (forcekill) {
6a46079c 335 /*
af901ca1 336 * In case something went wrong with munmapping
6a46079c
AK
337 * make sure the process doesn't catch the
338 * signal and then access the memory. Just kill it.
6a46079c
AK
339 */
340 if (fail || tk->addr_valid == 0) {
495367c0 341 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 342 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
343 force_sig(SIGKILL, tk->tsk);
344 }
345
346 /*
347 * In theory the process could have mapped
348 * something else on the address in-between. We could
349 * check for that, but we need to tell the
350 * process anyways.
351 */
7329bbeb
TL
352 else if (kill_proc(tk->tsk, tk->addr, trapno,
353 pfn, page, flags) < 0)
495367c0 354 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 355 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
356 }
357 put_task_struct(tk->tsk);
358 kfree(tk);
359 }
360}
361
3ba08129
NH
362/*
363 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
364 * on behalf of the thread group. Return task_struct of the (first found)
365 * dedicated thread if found, and return NULL otherwise.
366 *
367 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
368 * have to call rcu_read_lock/unlock() in this function.
369 */
370static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 371{
3ba08129
NH
372 struct task_struct *t;
373
374 for_each_thread(tsk, t)
375 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
376 return t;
377 return NULL;
378}
379
380/*
381 * Determine whether a given process is "early kill" process which expects
382 * to be signaled when some page under the process is hwpoisoned.
383 * Return task_struct of the dedicated thread (main thread unless explicitly
384 * specified) if the process is "early kill," and otherwise returns NULL.
385 */
386static struct task_struct *task_early_kill(struct task_struct *tsk,
387 int force_early)
388{
389 struct task_struct *t;
6a46079c 390 if (!tsk->mm)
3ba08129 391 return NULL;
74614de1 392 if (force_early)
3ba08129
NH
393 return tsk;
394 t = find_early_kill_thread(tsk);
395 if (t)
396 return t;
397 if (sysctl_memory_failure_early_kill)
398 return tsk;
399 return NULL;
6a46079c
AK
400}
401
402/*
403 * Collect processes when the error hit an anonymous page.
404 */
405static void collect_procs_anon(struct page *page, struct list_head *to_kill,
74614de1 406 struct to_kill **tkc, int force_early)
6a46079c
AK
407{
408 struct vm_area_struct *vma;
409 struct task_struct *tsk;
410 struct anon_vma *av;
bf181b9f 411 pgoff_t pgoff;
6a46079c 412
4fc3f1d6 413 av = page_lock_anon_vma_read(page);
6a46079c 414 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
415 return;
416
a0f7a756 417 pgoff = page_to_pgoff(page);
9b679320 418 read_lock(&tasklist_lock);
6a46079c 419 for_each_process (tsk) {
5beb4930 420 struct anon_vma_chain *vmac;
3ba08129 421 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 422
3ba08129 423 if (!t)
6a46079c 424 continue;
bf181b9f
ML
425 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
426 pgoff, pgoff) {
5beb4930 427 vma = vmac->vma;
6a46079c
AK
428 if (!page_mapped_in_vma(page, vma))
429 continue;
3ba08129
NH
430 if (vma->vm_mm == t->mm)
431 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
432 }
433 }
6a46079c 434 read_unlock(&tasklist_lock);
4fc3f1d6 435 page_unlock_anon_vma_read(av);
6a46079c
AK
436}
437
438/*
439 * Collect processes when the error hit a file mapped page.
440 */
441static void collect_procs_file(struct page *page, struct list_head *to_kill,
74614de1 442 struct to_kill **tkc, int force_early)
6a46079c
AK
443{
444 struct vm_area_struct *vma;
445 struct task_struct *tsk;
6a46079c
AK
446 struct address_space *mapping = page->mapping;
447
d28eb9c8 448 i_mmap_lock_read(mapping);
9b679320 449 read_lock(&tasklist_lock);
6a46079c 450 for_each_process(tsk) {
a0f7a756 451 pgoff_t pgoff = page_to_pgoff(page);
3ba08129 452 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 453
3ba08129 454 if (!t)
6a46079c 455 continue;
6b2dbba8 456 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
457 pgoff) {
458 /*
459 * Send early kill signal to tasks where a vma covers
460 * the page but the corrupted page is not necessarily
461 * mapped it in its pte.
462 * Assume applications who requested early kill want
463 * to be informed of all such data corruptions.
464 */
3ba08129
NH
465 if (vma->vm_mm == t->mm)
466 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
467 }
468 }
6a46079c 469 read_unlock(&tasklist_lock);
d28eb9c8 470 i_mmap_unlock_read(mapping);
6a46079c
AK
471}
472
473/*
474 * Collect the processes who have the corrupted page mapped to kill.
475 * This is done in two steps for locking reasons.
476 * First preallocate one tokill structure outside the spin locks,
477 * so that we can kill at least one process reasonably reliable.
478 */
74614de1
TL
479static void collect_procs(struct page *page, struct list_head *tokill,
480 int force_early)
6a46079c
AK
481{
482 struct to_kill *tk;
483
484 if (!page->mapping)
485 return;
486
487 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
488 if (!tk)
489 return;
490 if (PageAnon(page))
74614de1 491 collect_procs_anon(page, tokill, &tk, force_early);
6a46079c 492 else
74614de1 493 collect_procs_file(page, tokill, &tk, force_early);
6a46079c
AK
494 kfree(tk);
495}
496
6a46079c 497static const char *action_name[] = {
cc637b17
XX
498 [MF_IGNORED] = "Ignored",
499 [MF_FAILED] = "Failed",
500 [MF_DELAYED] = "Delayed",
501 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
502};
503
504static const char * const action_page_types[] = {
cc637b17
XX
505 [MF_MSG_KERNEL] = "reserved kernel page",
506 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
507 [MF_MSG_SLAB] = "kernel slab page",
508 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
509 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
510 [MF_MSG_HUGE] = "huge page",
511 [MF_MSG_FREE_HUGE] = "free huge page",
512 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
513 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
514 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
515 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
516 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
517 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
518 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
519 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
520 [MF_MSG_CLEAN_LRU] = "clean LRU page",
521 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
522 [MF_MSG_BUDDY] = "free buddy page",
523 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
524 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
525};
526
dc2a1cbf
WF
527/*
528 * XXX: It is possible that a page is isolated from LRU cache,
529 * and then kept in swap cache or failed to remove from page cache.
530 * The page count will stop it from being freed by unpoison.
531 * Stress tests should be aware of this memory leak problem.
532 */
533static int delete_from_lru_cache(struct page *p)
534{
535 if (!isolate_lru_page(p)) {
536 /*
537 * Clear sensible page flags, so that the buddy system won't
538 * complain when the page is unpoison-and-freed.
539 */
540 ClearPageActive(p);
541 ClearPageUnevictable(p);
18365225
MH
542
543 /*
544 * Poisoned page might never drop its ref count to 0 so we have
545 * to uncharge it manually from its memcg.
546 */
547 mem_cgroup_uncharge(p);
548
dc2a1cbf
WF
549 /*
550 * drop the page count elevated by isolate_lru_page()
551 */
09cbfeaf 552 put_page(p);
dc2a1cbf
WF
553 return 0;
554 }
555 return -EIO;
556}
557
6a46079c
AK
558/*
559 * Error hit kernel page.
560 * Do nothing, try to be lucky and not touch this instead. For a few cases we
561 * could be more sophisticated.
562 */
563static int me_kernel(struct page *p, unsigned long pfn)
6a46079c 564{
cc637b17 565 return MF_IGNORED;
6a46079c
AK
566}
567
568/*
569 * Page in unknown state. Do nothing.
570 */
571static int me_unknown(struct page *p, unsigned long pfn)
572{
495367c0 573 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
cc637b17 574 return MF_FAILED;
6a46079c
AK
575}
576
6a46079c
AK
577/*
578 * Clean (or cleaned) page cache page.
579 */
580static int me_pagecache_clean(struct page *p, unsigned long pfn)
581{
582 int err;
cc637b17 583 int ret = MF_FAILED;
6a46079c
AK
584 struct address_space *mapping;
585
dc2a1cbf
WF
586 delete_from_lru_cache(p);
587
6a46079c
AK
588 /*
589 * For anonymous pages we're done the only reference left
590 * should be the one m_f() holds.
591 */
592 if (PageAnon(p))
cc637b17 593 return MF_RECOVERED;
6a46079c
AK
594
595 /*
596 * Now truncate the page in the page cache. This is really
597 * more like a "temporary hole punch"
598 * Don't do this for block devices when someone else
599 * has a reference, because it could be file system metadata
600 * and that's not safe to truncate.
601 */
602 mapping = page_mapping(p);
603 if (!mapping) {
604 /*
605 * Page has been teared down in the meanwhile
606 */
cc637b17 607 return MF_FAILED;
6a46079c
AK
608 }
609
610 /*
611 * Truncation is a bit tricky. Enable it per file system for now.
612 *
613 * Open: to take i_mutex or not for this? Right now we don't.
614 */
615 if (mapping->a_ops->error_remove_page) {
616 err = mapping->a_ops->error_remove_page(mapping, p);
617 if (err != 0) {
495367c0 618 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
1170532b 619 pfn, err);
6a46079c
AK
620 } else if (page_has_private(p) &&
621 !try_to_release_page(p, GFP_NOIO)) {
495367c0
CY
622 pr_info("Memory failure: %#lx: failed to release buffers\n",
623 pfn);
6a46079c 624 } else {
cc637b17 625 ret = MF_RECOVERED;
6a46079c
AK
626 }
627 } else {
628 /*
629 * If the file system doesn't support it just invalidate
630 * This fails on dirty or anything with private pages
631 */
632 if (invalidate_inode_page(p))
cc637b17 633 ret = MF_RECOVERED;
6a46079c 634 else
495367c0
CY
635 pr_info("Memory failure: %#lx: Failed to invalidate\n",
636 pfn);
6a46079c
AK
637 }
638 return ret;
639}
640
641/*
549543df 642 * Dirty pagecache page
6a46079c
AK
643 * Issues: when the error hit a hole page the error is not properly
644 * propagated.
645 */
646static int me_pagecache_dirty(struct page *p, unsigned long pfn)
647{
648 struct address_space *mapping = page_mapping(p);
649
650 SetPageError(p);
651 /* TBD: print more information about the file. */
652 if (mapping) {
653 /*
654 * IO error will be reported by write(), fsync(), etc.
655 * who check the mapping.
656 * This way the application knows that something went
657 * wrong with its dirty file data.
658 *
659 * There's one open issue:
660 *
661 * The EIO will be only reported on the next IO
662 * operation and then cleared through the IO map.
663 * Normally Linux has two mechanisms to pass IO error
664 * first through the AS_EIO flag in the address space
665 * and then through the PageError flag in the page.
666 * Since we drop pages on memory failure handling the
667 * only mechanism open to use is through AS_AIO.
668 *
669 * This has the disadvantage that it gets cleared on
670 * the first operation that returns an error, while
671 * the PageError bit is more sticky and only cleared
672 * when the page is reread or dropped. If an
673 * application assumes it will always get error on
674 * fsync, but does other operations on the fd before
25985edc 675 * and the page is dropped between then the error
6a46079c
AK
676 * will not be properly reported.
677 *
678 * This can already happen even without hwpoisoned
679 * pages: first on metadata IO errors (which only
680 * report through AS_EIO) or when the page is dropped
681 * at the wrong time.
682 *
683 * So right now we assume that the application DTRT on
684 * the first EIO, but we're not worse than other parts
685 * of the kernel.
686 */
687 mapping_set_error(mapping, EIO);
688 }
689
690 return me_pagecache_clean(p, pfn);
691}
692
693/*
694 * Clean and dirty swap cache.
695 *
696 * Dirty swap cache page is tricky to handle. The page could live both in page
697 * cache and swap cache(ie. page is freshly swapped in). So it could be
698 * referenced concurrently by 2 types of PTEs:
699 * normal PTEs and swap PTEs. We try to handle them consistently by calling
700 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
701 * and then
702 * - clear dirty bit to prevent IO
703 * - remove from LRU
704 * - but keep in the swap cache, so that when we return to it on
705 * a later page fault, we know the application is accessing
706 * corrupted data and shall be killed (we installed simple
707 * interception code in do_swap_page to catch it).
708 *
709 * Clean swap cache pages can be directly isolated. A later page fault will
710 * bring in the known good data from disk.
711 */
712static int me_swapcache_dirty(struct page *p, unsigned long pfn)
713{
6a46079c
AK
714 ClearPageDirty(p);
715 /* Trigger EIO in shmem: */
716 ClearPageUptodate(p);
717
dc2a1cbf 718 if (!delete_from_lru_cache(p))
cc637b17 719 return MF_DELAYED;
dc2a1cbf 720 else
cc637b17 721 return MF_FAILED;
6a46079c
AK
722}
723
724static int me_swapcache_clean(struct page *p, unsigned long pfn)
725{
6a46079c 726 delete_from_swap_cache(p);
e43c3afb 727
dc2a1cbf 728 if (!delete_from_lru_cache(p))
cc637b17 729 return MF_RECOVERED;
dc2a1cbf 730 else
cc637b17 731 return MF_FAILED;
6a46079c
AK
732}
733
734/*
735 * Huge pages. Needs work.
736 * Issues:
93f70f90
NH
737 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
738 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
739 */
740static int me_huge_page(struct page *p, unsigned long pfn)
741{
6de2b1aa 742 int res = 0;
93f70f90 743 struct page *hpage = compound_head(p);
2491ffee
NH
744
745 if (!PageHuge(hpage))
746 return MF_DELAYED;
747
93f70f90
NH
748 /*
749 * We can safely recover from error on free or reserved (i.e.
750 * not in-use) hugepage by dequeuing it from freelist.
751 * To check whether a hugepage is in-use or not, we can't use
752 * page->lru because it can be used in other hugepage operations,
753 * such as __unmap_hugepage_range() and gather_surplus_pages().
754 * So instead we use page_mapping() and PageAnon().
93f70f90
NH
755 */
756 if (!(page_mapping(hpage) || PageAnon(hpage))) {
6de2b1aa
NH
757 res = dequeue_hwpoisoned_huge_page(hpage);
758 if (!res)
cc637b17 759 return MF_RECOVERED;
93f70f90 760 }
cc637b17 761 return MF_DELAYED;
6a46079c
AK
762}
763
764/*
765 * Various page states we can handle.
766 *
767 * A page state is defined by its current page->flags bits.
768 * The table matches them in order and calls the right handler.
769 *
770 * This is quite tricky because we can access page at any time
25985edc 771 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
772 *
773 * This is not complete. More states could be added.
774 * For any missing state don't attempt recovery.
775 */
776
777#define dirty (1UL << PG_dirty)
6326fec1 778#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
779#define unevict (1UL << PG_unevictable)
780#define mlock (1UL << PG_mlocked)
781#define writeback (1UL << PG_writeback)
782#define lru (1UL << PG_lru)
6a46079c 783#define head (1UL << PG_head)
6a46079c 784#define slab (1UL << PG_slab)
6a46079c
AK
785#define reserved (1UL << PG_reserved)
786
787static struct page_state {
788 unsigned long mask;
789 unsigned long res;
cc637b17 790 enum mf_action_page_type type;
6a46079c
AK
791 int (*action)(struct page *p, unsigned long pfn);
792} error_states[] = {
cc637b17 793 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
794 /*
795 * free pages are specially detected outside this table:
796 * PG_buddy pages only make a small fraction of all free pages.
797 */
6a46079c
AK
798
799 /*
800 * Could in theory check if slab page is free or if we can drop
801 * currently unused objects without touching them. But just
802 * treat it as standard kernel for now.
803 */
cc637b17 804 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 805
cc637b17 806 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 807
cc637b17
XX
808 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
809 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 810
cc637b17
XX
811 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
812 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 813
cc637b17
XX
814 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
815 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 816
cc637b17
XX
817 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
818 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
819
820 /*
821 * Catchall entry: must be at end.
822 */
cc637b17 823 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
824};
825
2326c467
AK
826#undef dirty
827#undef sc
828#undef unevict
829#undef mlock
830#undef writeback
831#undef lru
2326c467 832#undef head
2326c467
AK
833#undef slab
834#undef reserved
835
ff604cf6
NH
836/*
837 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
838 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
839 */
cc3e2af4
XX
840static void action_result(unsigned long pfn, enum mf_action_page_type type,
841 enum mf_result result)
6a46079c 842{
97f0b134
XX
843 trace_memory_failure_event(pfn, type, result);
844
495367c0 845 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
64d37a2b 846 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
847}
848
849static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 850 unsigned long pfn)
6a46079c
AK
851{
852 int result;
7456b040 853 int count;
6a46079c
AK
854
855 result = ps->action(p, pfn);
7456b040 856
bd1ce5f9 857 count = page_count(p) - 1;
cc637b17 858 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
138ce286
WF
859 count--;
860 if (count != 0) {
495367c0 861 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
64d37a2b 862 pfn, action_page_types[ps->type], count);
cc637b17 863 result = MF_FAILED;
138ce286 864 }
64d37a2b 865 action_result(pfn, ps->type, result);
6a46079c
AK
866
867 /* Could do more checks here if page looks ok */
868 /*
869 * Could adjust zone counters here to correct for the missing page.
870 */
871
cc637b17 872 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
873}
874
ead07f6a
NH
875/**
876 * get_hwpoison_page() - Get refcount for memory error handling:
877 * @page: raw error page (hit by memory error)
878 *
879 * Return: return 0 if failed to grab the refcount, otherwise true (some
880 * non-zero value.)
881 */
882int get_hwpoison_page(struct page *page)
883{
884 struct page *head = compound_head(page);
885
4e41a30c 886 if (!PageHuge(head) && PageTransHuge(head)) {
98ed2b00
NH
887 /*
888 * Non anonymous thp exists only in allocation/free time. We
889 * can't handle such a case correctly, so let's give it up.
890 * This should be better than triggering BUG_ON when kernel
891 * tries to touch the "partially handled" page.
892 */
893 if (!PageAnon(head)) {
495367c0 894 pr_err("Memory failure: %#lx: non anonymous thp\n",
98ed2b00
NH
895 page_to_pfn(page));
896 return 0;
897 }
ead07f6a
NH
898 }
899
c2e7e00b
KK
900 if (get_page_unless_zero(head)) {
901 if (head == compound_head(page))
902 return 1;
903
495367c0
CY
904 pr_info("Memory failure: %#lx cannot catch tail\n",
905 page_to_pfn(page));
c2e7e00b
KK
906 put_page(head);
907 }
908
909 return 0;
ead07f6a
NH
910}
911EXPORT_SYMBOL_GPL(get_hwpoison_page);
912
6a46079c
AK
913/*
914 * Do all that is necessary to remove user space mappings. Unmap
915 * the pages and send SIGBUS to the processes if the data was dirty.
916 */
666e5a40 917static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
54b9dd14 918 int trapno, int flags, struct page **hpagep)
6a46079c 919{
a128ca71 920 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
6a46079c
AK
921 struct address_space *mapping;
922 LIST_HEAD(tokill);
666e5a40 923 bool unmap_success;
6751ed65 924 int kill = 1, forcekill;
54b9dd14 925 struct page *hpage = *hpagep;
286c469a 926 bool mlocked = PageMlocked(hpage);
6a46079c 927
93a9eb39
NH
928 /*
929 * Here we are interested only in user-mapped pages, so skip any
930 * other types of pages.
931 */
932 if (PageReserved(p) || PageSlab(p))
666e5a40 933 return true;
93a9eb39 934 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 935 return true;
6a46079c 936
6a46079c
AK
937 /*
938 * This check implies we don't kill processes if their pages
939 * are in the swap cache early. Those are always late kills.
940 */
7af446a8 941 if (!page_mapped(hpage))
666e5a40 942 return true;
1668bfd5 943
52089b14 944 if (PageKsm(p)) {
495367c0 945 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
666e5a40 946 return false;
52089b14 947 }
6a46079c
AK
948
949 if (PageSwapCache(p)) {
495367c0
CY
950 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
951 pfn);
6a46079c
AK
952 ttu |= TTU_IGNORE_HWPOISON;
953 }
954
955 /*
956 * Propagate the dirty bit from PTEs to struct page first, because we
957 * need this to decide if we should kill or just drop the page.
db0480b3
WF
958 * XXX: the dirty test could be racy: set_page_dirty() may not always
959 * be called inside page lock (it's recommended but not enforced).
6a46079c 960 */
7af446a8 961 mapping = page_mapping(hpage);
6751ed65 962 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
7af446a8
NH
963 mapping_cap_writeback_dirty(mapping)) {
964 if (page_mkclean(hpage)) {
965 SetPageDirty(hpage);
6a46079c
AK
966 } else {
967 kill = 0;
968 ttu |= TTU_IGNORE_HWPOISON;
495367c0 969 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
970 pfn);
971 }
972 }
973
974 /*
975 * First collect all the processes that have the page
976 * mapped in dirty form. This has to be done before try_to_unmap,
977 * because ttu takes the rmap data structures down.
978 *
979 * Error handling: We ignore errors here because
980 * there's nothing that can be done.
981 */
982 if (kill)
415c64c1 983 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 984
666e5a40
MK
985 unmap_success = try_to_unmap(hpage, ttu);
986 if (!unmap_success)
495367c0 987 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1170532b 988 pfn, page_mapcount(hpage));
a6d30ddd 989
286c469a
NH
990 /*
991 * try_to_unmap() might put mlocked page in lru cache, so call
992 * shake_page() again to ensure that it's flushed.
993 */
994 if (mlocked)
995 shake_page(hpage, 0);
996
6a46079c
AK
997 /*
998 * Now that the dirty bit has been propagated to the
999 * struct page and all unmaps done we can decide if
1000 * killing is needed or not. Only kill when the page
6751ed65
TL
1001 * was dirty or the process is not restartable,
1002 * otherwise the tokill list is merely
6a46079c
AK
1003 * freed. When there was a problem unmapping earlier
1004 * use a more force-full uncatchable kill to prevent
1005 * any accesses to the poisoned memory.
1006 */
415c64c1 1007 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
666e5a40 1008 kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
1668bfd5 1009
666e5a40 1010 return unmap_success;
6a46079c
AK
1011}
1012
7013febc
NH
1013static void set_page_hwpoison_huge_page(struct page *hpage)
1014{
1015 int i;
f9121153 1016 int nr_pages = 1 << compound_order(hpage);
7013febc
NH
1017 for (i = 0; i < nr_pages; i++)
1018 SetPageHWPoison(hpage + i);
1019}
1020
1021static void clear_page_hwpoison_huge_page(struct page *hpage)
1022{
1023 int i;
f9121153 1024 int nr_pages = 1 << compound_order(hpage);
7013febc
NH
1025 for (i = 0; i < nr_pages; i++)
1026 ClearPageHWPoison(hpage + i);
1027}
1028
cd42f4a3
TL
1029/**
1030 * memory_failure - Handle memory failure of a page.
1031 * @pfn: Page Number of the corrupted page
1032 * @trapno: Trap number reported in the signal to user space.
1033 * @flags: fine tune action taken
1034 *
1035 * This function is called by the low level machine check code
1036 * of an architecture when it detects hardware memory corruption
1037 * of a page. It tries its best to recover, which includes
1038 * dropping pages, killing processes etc.
1039 *
1040 * The function is primarily of use for corruptions that
1041 * happen outside the current execution context (e.g. when
1042 * detected by a background scrubber)
1043 *
1044 * Must run in process context (e.g. a work queue) with interrupts
1045 * enabled and no spinlocks hold.
1046 */
1047int memory_failure(unsigned long pfn, int trapno, int flags)
6a46079c
AK
1048{
1049 struct page_state *ps;
1050 struct page *p;
7af446a8 1051 struct page *hpage;
415c64c1 1052 struct page *orig_head;
6a46079c 1053 int res;
c9fbdd5f 1054 unsigned int nr_pages;
524fca1e 1055 unsigned long page_flags;
6a46079c
AK
1056
1057 if (!sysctl_memory_failure_recovery)
1058 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1059
1060 if (!pfn_valid(pfn)) {
495367c0
CY
1061 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1062 pfn);
a7560fc8 1063 return -ENXIO;
6a46079c
AK
1064 }
1065
1066 p = pfn_to_page(pfn);
415c64c1 1067 orig_head = hpage = compound_head(p);
6a46079c 1068 if (TestSetPageHWPoison(p)) {
495367c0
CY
1069 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1070 pfn);
6a46079c
AK
1071 return 0;
1072 }
1073
4db0e950
NH
1074 /*
1075 * Currently errors on hugetlbfs pages are measured in hugepage units,
1076 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1077 * transparent hugepages, they are supposed to be split and error
1078 * measurement is done in normal page units. So nr_pages should be one
1079 * in this case.
1080 */
1081 if (PageHuge(p))
1082 nr_pages = 1 << compound_order(hpage);
1083 else /* normal page or thp */
1084 nr_pages = 1;
8e30456b 1085 num_poisoned_pages_add(nr_pages);
6a46079c
AK
1086
1087 /*
1088 * We need/can do nothing about count=0 pages.
1089 * 1) it's a free page, and therefore in safe hand:
1090 * prep_new_page() will be the gate keeper.
8c6c2ecb
NH
1091 * 2) it's a free hugepage, which is also safe:
1092 * an affected hugepage will be dequeued from hugepage freelist,
1093 * so there's no concern about reusing it ever after.
1094 * 3) it's part of a non-compound high order page.
6a46079c
AK
1095 * Implies some kernel user: cannot stop them from
1096 * R/W the page; let's pray that the page has been
1097 * used and will be freed some time later.
1098 * In fact it's dangerous to directly bump up page count from 0,
1099 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1100 */
ead07f6a 1101 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
8d22ba1b 1102 if (is_free_buddy_page(p)) {
cc637b17 1103 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
8d22ba1b 1104 return 0;
8c6c2ecb
NH
1105 } else if (PageHuge(hpage)) {
1106 /*
b985194c 1107 * Check "filter hit" and "race with other subpage."
8c6c2ecb 1108 */
7eaceacc 1109 lock_page(hpage);
b985194c
CY
1110 if (PageHWPoison(hpage)) {
1111 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1112 || (p != hpage && TestSetPageHWPoison(hpage))) {
8e30456b 1113 num_poisoned_pages_sub(nr_pages);
b985194c
CY
1114 unlock_page(hpage);
1115 return 0;
1116 }
8c6c2ecb
NH
1117 }
1118 set_page_hwpoison_huge_page(hpage);
1119 res = dequeue_hwpoisoned_huge_page(hpage);
cc637b17
XX
1120 action_result(pfn, MF_MSG_FREE_HUGE,
1121 res ? MF_IGNORED : MF_DELAYED);
8c6c2ecb
NH
1122 unlock_page(hpage);
1123 return res;
8d22ba1b 1124 } else {
cc637b17 1125 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
8d22ba1b
WF
1126 return -EBUSY;
1127 }
6a46079c
AK
1128 }
1129
415c64c1 1130 if (!PageHuge(p) && PageTransHuge(hpage)) {
c3901e72
NH
1131 lock_page(p);
1132 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1133 unlock_page(p);
1134 if (!PageAnon(p))
495367c0
CY
1135 pr_err("Memory failure: %#lx: non anonymous thp\n",
1136 pfn);
7f6bf39b 1137 else
495367c0
CY
1138 pr_err("Memory failure: %#lx: thp split failed\n",
1139 pfn);
ead07f6a 1140 if (TestClearPageHWPoison(p))
8e30456b 1141 num_poisoned_pages_sub(nr_pages);
665d9da7 1142 put_hwpoison_page(p);
415c64c1
NH
1143 return -EBUSY;
1144 }
c3901e72 1145 unlock_page(p);
415c64c1
NH
1146 VM_BUG_ON_PAGE(!page_count(p), p);
1147 hpage = compound_head(p);
1148 }
1149
e43c3afb
WF
1150 /*
1151 * We ignore non-LRU pages for good reasons.
1152 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 1153 * - to avoid races with __SetPageLocked()
e43c3afb
WF
1154 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1155 * The check (unnecessarily) ignores LRU pages being isolated and
1156 * walked by the page reclaim code, however that's not a big loss.
1157 */
8bcb74de
NH
1158 shake_page(p, 0);
1159 /* shake_page could have turned it free. */
1160 if (!PageLRU(p) && is_free_buddy_page(p)) {
1161 if (flags & MF_COUNT_INCREASED)
1162 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1163 else
1164 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1165 return 0;
e43c3afb 1166 }
e43c3afb 1167
7eaceacc 1168 lock_page(hpage);
847ce401 1169
f37d4298
AK
1170 /*
1171 * The page could have changed compound pages during the locking.
1172 * If this happens just bail out.
1173 */
415c64c1 1174 if (PageCompound(p) && compound_head(p) != orig_head) {
cc637b17 1175 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298
AK
1176 res = -EBUSY;
1177 goto out;
1178 }
1179
524fca1e
NH
1180 /*
1181 * We use page flags to determine what action should be taken, but
1182 * the flags can be modified by the error containment action. One
1183 * example is an mlocked page, where PG_mlocked is cleared by
1184 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1185 * correctly, we save a copy of the page flags at this time.
1186 */
1187 page_flags = p->flags;
1188
847ce401
WF
1189 /*
1190 * unpoison always clear PG_hwpoison inside page lock
1191 */
1192 if (!PageHWPoison(p)) {
495367c0 1193 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
8e30456b 1194 num_poisoned_pages_sub(nr_pages);
a09233f3 1195 unlock_page(hpage);
665d9da7 1196 put_hwpoison_page(hpage);
a09233f3 1197 return 0;
847ce401 1198 }
7c116f2b
WF
1199 if (hwpoison_filter(p)) {
1200 if (TestClearPageHWPoison(p))
8e30456b 1201 num_poisoned_pages_sub(nr_pages);
7af446a8 1202 unlock_page(hpage);
665d9da7 1203 put_hwpoison_page(hpage);
7c116f2b
WF
1204 return 0;
1205 }
847ce401 1206
0bc1f8b0
CY
1207 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1208 goto identify_page_state;
1209
7013febc
NH
1210 /*
1211 * For error on the tail page, we should set PG_hwpoison
1212 * on the head page to show that the hugepage is hwpoisoned
1213 */
a6d30ddd 1214 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
cc637b17 1215 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
7013febc 1216 unlock_page(hpage);
665d9da7 1217 put_hwpoison_page(hpage);
7013febc
NH
1218 return 0;
1219 }
1220 /*
1221 * Set PG_hwpoison on all pages in an error hugepage,
1222 * because containment is done in hugepage unit for now.
1223 * Since we have done TestSetPageHWPoison() for the head page with
1224 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1225 */
1226 if (PageHuge(p))
1227 set_page_hwpoison_huge_page(hpage);
1228
6edd6cc6
NH
1229 /*
1230 * It's very difficult to mess with pages currently under IO
1231 * and in many cases impossible, so we just avoid it here.
1232 */
6a46079c
AK
1233 wait_on_page_writeback(p);
1234
1235 /*
1236 * Now take care of user space mappings.
e64a782f 1237 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
54b9dd14
NH
1238 *
1239 * When the raw error page is thp tail page, hpage points to the raw
1240 * page after thp split.
6a46079c 1241 */
666e5a40 1242 if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
cc637b17 1243 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5
WF
1244 res = -EBUSY;
1245 goto out;
1246 }
6a46079c
AK
1247
1248 /*
1249 * Torn down by someone else?
1250 */
dc2a1cbf 1251 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 1252 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 1253 res = -EBUSY;
6a46079c
AK
1254 goto out;
1255 }
1256
0bc1f8b0 1257identify_page_state:
6a46079c 1258 res = -EBUSY;
524fca1e
NH
1259 /*
1260 * The first check uses the current page flags which may not have any
1261 * relevant information. The second check with the saved page flagss is
1262 * carried out only if the first check can't determine the page status.
1263 */
1264 for (ps = error_states;; ps++)
1265 if ((p->flags & ps->mask) == ps->res)
6a46079c 1266 break;
841fcc58
WL
1267
1268 page_flags |= (p->flags & (1UL << PG_dirty));
1269
524fca1e
NH
1270 if (!ps->mask)
1271 for (ps = error_states;; ps++)
1272 if ((page_flags & ps->mask) == ps->res)
1273 break;
1274 res = page_action(ps, p, pfn);
6a46079c 1275out:
7af446a8 1276 unlock_page(hpage);
6a46079c
AK
1277 return res;
1278}
cd42f4a3 1279EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1280
ea8f5fb8
HY
1281#define MEMORY_FAILURE_FIFO_ORDER 4
1282#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1283
1284struct memory_failure_entry {
1285 unsigned long pfn;
1286 int trapno;
1287 int flags;
1288};
1289
1290struct memory_failure_cpu {
1291 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1292 MEMORY_FAILURE_FIFO_SIZE);
1293 spinlock_t lock;
1294 struct work_struct work;
1295};
1296
1297static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1298
1299/**
1300 * memory_failure_queue - Schedule handling memory failure of a page.
1301 * @pfn: Page Number of the corrupted page
1302 * @trapno: Trap number reported in the signal to user space.
1303 * @flags: Flags for memory failure handling
1304 *
1305 * This function is called by the low level hardware error handler
1306 * when it detects hardware memory corruption of a page. It schedules
1307 * the recovering of error page, including dropping pages, killing
1308 * processes etc.
1309 *
1310 * The function is primarily of use for corruptions that
1311 * happen outside the current execution context (e.g. when
1312 * detected by a background scrubber)
1313 *
1314 * Can run in IRQ context.
1315 */
1316void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1317{
1318 struct memory_failure_cpu *mf_cpu;
1319 unsigned long proc_flags;
1320 struct memory_failure_entry entry = {
1321 .pfn = pfn,
1322 .trapno = trapno,
1323 .flags = flags,
1324 };
1325
1326 mf_cpu = &get_cpu_var(memory_failure_cpu);
1327 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 1328 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
1329 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1330 else
8e33a52f 1331 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
1332 pfn);
1333 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1334 put_cpu_var(memory_failure_cpu);
1335}
1336EXPORT_SYMBOL_GPL(memory_failure_queue);
1337
1338static void memory_failure_work_func(struct work_struct *work)
1339{
1340 struct memory_failure_cpu *mf_cpu;
1341 struct memory_failure_entry entry = { 0, };
1342 unsigned long proc_flags;
1343 int gotten;
1344
7c8e0181 1345 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
ea8f5fb8
HY
1346 for (;;) {
1347 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1348 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1349 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1350 if (!gotten)
1351 break;
cf870c70
NR
1352 if (entry.flags & MF_SOFT_OFFLINE)
1353 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1354 else
1355 memory_failure(entry.pfn, entry.trapno, entry.flags);
ea8f5fb8
HY
1356 }
1357}
1358
1359static int __init memory_failure_init(void)
1360{
1361 struct memory_failure_cpu *mf_cpu;
1362 int cpu;
1363
1364 for_each_possible_cpu(cpu) {
1365 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1366 spin_lock_init(&mf_cpu->lock);
1367 INIT_KFIFO(mf_cpu->fifo);
1368 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1369 }
1370
1371 return 0;
1372}
1373core_initcall(memory_failure_init);
1374
a5f65109
NH
1375#define unpoison_pr_info(fmt, pfn, rs) \
1376({ \
1377 if (__ratelimit(rs)) \
1378 pr_info(fmt, pfn); \
1379})
1380
847ce401
WF
1381/**
1382 * unpoison_memory - Unpoison a previously poisoned page
1383 * @pfn: Page number of the to be unpoisoned page
1384 *
1385 * Software-unpoison a page that has been poisoned by
1386 * memory_failure() earlier.
1387 *
1388 * This is only done on the software-level, so it only works
1389 * for linux injected failures, not real hardware failures
1390 *
1391 * Returns 0 for success, otherwise -errno.
1392 */
1393int unpoison_memory(unsigned long pfn)
1394{
1395 struct page *page;
1396 struct page *p;
1397 int freeit = 0;
c9fbdd5f 1398 unsigned int nr_pages;
a5f65109
NH
1399 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1400 DEFAULT_RATELIMIT_BURST);
847ce401
WF
1401
1402 if (!pfn_valid(pfn))
1403 return -ENXIO;
1404
1405 p = pfn_to_page(pfn);
1406 page = compound_head(p);
1407
1408 if (!PageHWPoison(p)) {
495367c0 1409 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 1410 pfn, &unpoison_rs);
847ce401
WF
1411 return 0;
1412 }
1413
230ac719 1414 if (page_count(page) > 1) {
495367c0 1415 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 1416 pfn, &unpoison_rs);
230ac719
NH
1417 return 0;
1418 }
1419
1420 if (page_mapped(page)) {
495367c0 1421 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 1422 pfn, &unpoison_rs);
230ac719
NH
1423 return 0;
1424 }
1425
1426 if (page_mapping(page)) {
495367c0 1427 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 1428 pfn, &unpoison_rs);
230ac719
NH
1429 return 0;
1430 }
1431
0cea3fdc
WL
1432 /*
1433 * unpoison_memory() can encounter thp only when the thp is being
1434 * worked by memory_failure() and the page lock is not held yet.
1435 * In such case, we yield to memory_failure() and make unpoison fail.
1436 */
e76d30e2 1437 if (!PageHuge(page) && PageTransHuge(page)) {
495367c0 1438 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
a5f65109 1439 pfn, &unpoison_rs);
ead07f6a 1440 return 0;
0cea3fdc
WL
1441 }
1442
f9121153 1443 nr_pages = 1 << compound_order(page);
c9fbdd5f 1444
ead07f6a 1445 if (!get_hwpoison_page(p)) {
8c6c2ecb
NH
1446 /*
1447 * Since HWPoisoned hugepage should have non-zero refcount,
1448 * race between memory failure and unpoison seems to happen.
1449 * In such case unpoison fails and memory failure runs
1450 * to the end.
1451 */
1452 if (PageHuge(page)) {
495367c0 1453 unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
a5f65109 1454 pfn, &unpoison_rs);
8c6c2ecb
NH
1455 return 0;
1456 }
847ce401 1457 if (TestClearPageHWPoison(p))
8e30456b 1458 num_poisoned_pages_dec();
495367c0 1459 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
a5f65109 1460 pfn, &unpoison_rs);
847ce401
WF
1461 return 0;
1462 }
1463
7eaceacc 1464 lock_page(page);
847ce401
WF
1465 /*
1466 * This test is racy because PG_hwpoison is set outside of page lock.
1467 * That's acceptable because that won't trigger kernel panic. Instead,
1468 * the PG_hwpoison page will be caught and isolated on the entrance to
1469 * the free buddy page pool.
1470 */
c9fbdd5f 1471 if (TestClearPageHWPoison(page)) {
495367c0 1472 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
a5f65109 1473 pfn, &unpoison_rs);
8e30456b 1474 num_poisoned_pages_sub(nr_pages);
847ce401 1475 freeit = 1;
6a90181c
NH
1476 if (PageHuge(page))
1477 clear_page_hwpoison_huge_page(page);
847ce401
WF
1478 }
1479 unlock_page(page);
1480
665d9da7 1481 put_hwpoison_page(page);
3ba5eebc 1482 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
665d9da7 1483 put_hwpoison_page(page);
847ce401
WF
1484
1485 return 0;
1486}
1487EXPORT_SYMBOL(unpoison_memory);
facb6011
AK
1488
1489static struct page *new_page(struct page *p, unsigned long private, int **x)
1490{
12686d15 1491 int nid = page_to_nid(p);
d950b958
NH
1492 if (PageHuge(p))
1493 return alloc_huge_page_node(page_hstate(compound_head(p)),
1494 nid);
1495 else
96db800f 1496 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
facb6011
AK
1497}
1498
1499/*
1500 * Safely get reference count of an arbitrary page.
1501 * Returns 0 for a free page, -EIO for a zero refcount page
1502 * that is not free, and 1 for any other page type.
1503 * For 1 the page is returned with increased page count, otherwise not.
1504 */
af8fae7c 1505static int __get_any_page(struct page *p, unsigned long pfn, int flags)
facb6011
AK
1506{
1507 int ret;
1508
1509 if (flags & MF_COUNT_INCREASED)
1510 return 1;
1511
d950b958
NH
1512 /*
1513 * When the target page is a free hugepage, just remove it
1514 * from free hugepage list.
1515 */
ead07f6a 1516 if (!get_hwpoison_page(p)) {
d950b958 1517 if (PageHuge(p)) {
71dd0b8a 1518 pr_info("%s: %#lx free huge page\n", __func__, pfn);
af8fae7c 1519 ret = 0;
d950b958 1520 } else if (is_free_buddy_page(p)) {
71dd0b8a 1521 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
facb6011
AK
1522 ret = 0;
1523 } else {
71dd0b8a
BP
1524 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1525 __func__, pfn, p->flags);
facb6011
AK
1526 ret = -EIO;
1527 }
1528 } else {
1529 /* Not a free page */
1530 ret = 1;
1531 }
facb6011
AK
1532 return ret;
1533}
1534
af8fae7c
NH
1535static int get_any_page(struct page *page, unsigned long pfn, int flags)
1536{
1537 int ret = __get_any_page(page, pfn, flags);
1538
85fbe5d1
YX
1539 if (ret == 1 && !PageHuge(page) &&
1540 !PageLRU(page) && !__PageMovable(page)) {
af8fae7c
NH
1541 /*
1542 * Try to free it.
1543 */
665d9da7 1544 put_hwpoison_page(page);
af8fae7c
NH
1545 shake_page(page, 1);
1546
1547 /*
1548 * Did it turn free?
1549 */
1550 ret = __get_any_page(page, pfn, 0);
d96b339f 1551 if (ret == 1 && !PageLRU(page)) {
4f32be67 1552 /* Drop page reference which is from __get_any_page() */
665d9da7 1553 put_hwpoison_page(page);
82a2481e
AK
1554 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1555 pfn, page->flags, &page->flags);
af8fae7c
NH
1556 return -EIO;
1557 }
1558 }
1559 return ret;
1560}
1561
d950b958
NH
1562static int soft_offline_huge_page(struct page *page, int flags)
1563{
1564 int ret;
1565 unsigned long pfn = page_to_pfn(page);
1566 struct page *hpage = compound_head(page);
b8ec1cee 1567 LIST_HEAD(pagelist);
d950b958 1568
af8fae7c
NH
1569 /*
1570 * This double-check of PageHWPoison is to avoid the race with
1571 * memory_failure(). See also comment in __soft_offline_page().
1572 */
1573 lock_page(hpage);
0ebff32c 1574 if (PageHWPoison(hpage)) {
af8fae7c 1575 unlock_page(hpage);
665d9da7 1576 put_hwpoison_page(hpage);
0ebff32c 1577 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
af8fae7c 1578 return -EBUSY;
0ebff32c 1579 }
af8fae7c 1580 unlock_page(hpage);
d950b958 1581
bcc54222 1582 ret = isolate_huge_page(hpage, &pagelist);
03613808
WL
1583 /*
1584 * get_any_page() and isolate_huge_page() takes a refcount each,
1585 * so need to drop one here.
1586 */
665d9da7 1587 put_hwpoison_page(hpage);
03613808 1588 if (!ret) {
bcc54222
NH
1589 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1590 return -EBUSY;
1591 }
1592
68711a74 1593 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
b8ec1cee 1594 MIGRATE_SYNC, MR_MEMORY_FAILURE);
d950b958 1595 if (ret) {
82a2481e
AK
1596 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1597 pfn, ret, page->flags, &page->flags);
b8ec1cee
NH
1598 /*
1599 * We know that soft_offline_huge_page() tries to migrate
1600 * only one hugepage pointed to by hpage, so we need not
1601 * run through the pagelist here.
1602 */
1603 putback_active_hugepage(hpage);
1604 if (ret > 0)
1605 ret = -EIO;
af8fae7c 1606 } else {
a49ecbcd
JW
1607 /* overcommit hugetlb page will be freed to buddy */
1608 if (PageHuge(page)) {
1609 set_page_hwpoison_huge_page(hpage);
1610 dequeue_hwpoisoned_huge_page(hpage);
8e30456b 1611 num_poisoned_pages_add(1 << compound_order(hpage));
a49ecbcd
JW
1612 } else {
1613 SetPageHWPoison(page);
8e30456b 1614 num_poisoned_pages_inc();
a49ecbcd 1615 }
d950b958 1616 }
d950b958
NH
1617 return ret;
1618}
1619
af8fae7c
NH
1620static int __soft_offline_page(struct page *page, int flags)
1621{
1622 int ret;
1623 unsigned long pfn = page_to_pfn(page);
facb6011 1624
facb6011 1625 /*
af8fae7c
NH
1626 * Check PageHWPoison again inside page lock because PageHWPoison
1627 * is set by memory_failure() outside page lock. Note that
1628 * memory_failure() also double-checks PageHWPoison inside page lock,
1629 * so there's no race between soft_offline_page() and memory_failure().
facb6011 1630 */
0ebff32c
XQ
1631 lock_page(page);
1632 wait_on_page_writeback(page);
af8fae7c
NH
1633 if (PageHWPoison(page)) {
1634 unlock_page(page);
665d9da7 1635 put_hwpoison_page(page);
af8fae7c
NH
1636 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1637 return -EBUSY;
1638 }
facb6011
AK
1639 /*
1640 * Try to invalidate first. This should work for
1641 * non dirty unmapped page cache pages.
1642 */
1643 ret = invalidate_inode_page(page);
1644 unlock_page(page);
facb6011 1645 /*
facb6011
AK
1646 * RED-PEN would be better to keep it isolated here, but we
1647 * would need to fix isolation locking first.
1648 */
facb6011 1649 if (ret == 1) {
665d9da7 1650 put_hwpoison_page(page);
fb46e735 1651 pr_info("soft_offline: %#lx: invalidated\n", pfn);
af8fae7c 1652 SetPageHWPoison(page);
8e30456b 1653 num_poisoned_pages_inc();
af8fae7c 1654 return 0;
facb6011
AK
1655 }
1656
1657 /*
1658 * Simple invalidation didn't work.
1659 * Try to migrate to a new page instead. migrate.c
1660 * handles a large number of cases for us.
1661 */
85fbe5d1
YX
1662 if (PageLRU(page))
1663 ret = isolate_lru_page(page);
1664 else
1665 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
bd486285
KK
1666 /*
1667 * Drop page reference which is came from get_any_page()
1668 * successful isolate_lru_page() already took another one.
1669 */
665d9da7 1670 put_hwpoison_page(page);
facb6011
AK
1671 if (!ret) {
1672 LIST_HEAD(pagelist);
85fbe5d1
YX
1673 /*
1674 * After isolated lru page, the PageLRU will be cleared,
1675 * so use !__PageMovable instead for LRU page's mapping
1676 * cannot have PAGE_MAPPING_MOVABLE.
1677 */
1678 if (!__PageMovable(page))
1679 inc_node_page_state(page, NR_ISOLATED_ANON +
1680 page_is_file_cache(page));
facb6011 1681 list_add(&page->lru, &pagelist);
68711a74 1682 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
9c620e2b 1683 MIGRATE_SYNC, MR_MEMORY_FAILURE);
facb6011 1684 if (ret) {
85fbe5d1
YX
1685 if (!list_empty(&pagelist))
1686 putback_movable_pages(&pagelist);
59c82b70 1687
82a2481e
AK
1688 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1689 pfn, ret, page->flags, &page->flags);
facb6011
AK
1690 if (ret > 0)
1691 ret = -EIO;
1692 }
1693 } else {
82a2481e
AK
1694 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1695 pfn, ret, page_count(page), page->flags, &page->flags);
facb6011 1696 }
facb6011
AK
1697 return ret;
1698}
86e05773 1699
acc14dc4
NH
1700static int soft_offline_in_use_page(struct page *page, int flags)
1701{
1702 int ret;
1703 struct page *hpage = compound_head(page);
1704
1705 if (!PageHuge(page) && PageTransHuge(hpage)) {
1706 lock_page(hpage);
98fd1ef4
NH
1707 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1708 unlock_page(hpage);
1709 if (!PageAnon(hpage))
1710 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1711 else
1712 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1713 put_hwpoison_page(hpage);
acc14dc4
NH
1714 return -EBUSY;
1715 }
98fd1ef4 1716 unlock_page(hpage);
acc14dc4
NH
1717 get_hwpoison_page(page);
1718 put_hwpoison_page(hpage);
1719 }
1720
1721 if (PageHuge(page))
1722 ret = soft_offline_huge_page(page, flags);
1723 else
1724 ret = __soft_offline_page(page, flags);
1725
1726 return ret;
1727}
1728
1729static void soft_offline_free_page(struct page *page)
1730{
1731 if (PageHuge(page)) {
1732 struct page *hpage = compound_head(page);
1733
1734 set_page_hwpoison_huge_page(hpage);
1735 if (!dequeue_hwpoisoned_huge_page(hpage))
1736 num_poisoned_pages_add(1 << compound_order(hpage));
1737 } else {
1738 if (!TestSetPageHWPoison(page))
1739 num_poisoned_pages_inc();
1740 }
1741}
1742
86e05773
WL
1743/**
1744 * soft_offline_page - Soft offline a page.
1745 * @page: page to offline
1746 * @flags: flags. Same as memory_failure().
1747 *
1748 * Returns 0 on success, otherwise negated errno.
1749 *
1750 * Soft offline a page, by migration or invalidation,
1751 * without killing anything. This is for the case when
1752 * a page is not corrupted yet (so it's still valid to access),
1753 * but has had a number of corrected errors and is better taken
1754 * out.
1755 *
1756 * The actual policy on when to do that is maintained by
1757 * user space.
1758 *
1759 * This should never impact any application or cause data loss,
1760 * however it might take some time.
1761 *
1762 * This is not a 100% solution for all memory, but tries to be
1763 * ``good enough'' for the majority of memory.
1764 */
1765int soft_offline_page(struct page *page, int flags)
1766{
1767 int ret;
1768 unsigned long pfn = page_to_pfn(page);
86e05773
WL
1769
1770 if (PageHWPoison(page)) {
1771 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1e0e635b 1772 if (flags & MF_COUNT_INCREASED)
665d9da7 1773 put_hwpoison_page(page);
86e05773
WL
1774 return -EBUSY;
1775 }
86e05773 1776
bfc8c901 1777 get_online_mems();
86e05773 1778 ret = get_any_page(page, pfn, flags);
bfc8c901 1779 put_online_mems();
4e41a30c 1780
acc14dc4
NH
1781 if (ret > 0)
1782 ret = soft_offline_in_use_page(page, flags);
1783 else if (ret == 0)
1784 soft_offline_free_page(page);
4e41a30c 1785
86e05773
WL
1786 return ret;
1787}