]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - block/blk-core.c
fs/block_dev.c: Remove WARN_ON() when inode writeback fails
[mirror_ubuntu-zesty-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
eea8f41c 35#include <linux/blk-cgroup.h>
55782138
LZ
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/block.h>
1da177e4 39
8324aa91 40#include "blk.h"
43a5e4e2 41#include "blk-mq.h"
8324aa91 42
d07335e5 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
3291fa57 46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
cbae8d45 47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 48
a73f730d
TH
49DEFINE_IDA(blk_queue_ida);
50
1da177e4
LT
51/*
52 * For the allocated request tables
53 */
320ae51f 54struct kmem_cache *request_cachep = NULL;
1da177e4
LT
55
56/*
57 * For queue allocation
58 */
6728cb0e 59struct kmem_cache *blk_requestq_cachep;
1da177e4 60
1da177e4
LT
61/*
62 * Controlling structure to kblockd
63 */
ff856bad 64static struct workqueue_struct *kblockd_workqueue;
1da177e4 65
d40f75a0
TH
66static void blk_clear_congested(struct request_list *rl, int sync)
67{
d40f75a0
TH
68#ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70#else
482cf79c
TH
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
77#endif
78}
79
80static void blk_set_congested(struct request_list *rl, int sync)
81{
d40f75a0
TH
82#ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84#else
482cf79c
TH
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
d40f75a0
TH
88#endif
89}
90
8324aa91 91void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
92{
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104}
105
1da177e4
LT
106/**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
ff9ea323
TH
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
1da177e4
LT
113 */
114struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115{
165125e1 116 struct request_queue *q = bdev_get_queue(bdev);
1da177e4 117
ff9ea323 118 return &q->backing_dev_info;
1da177e4 119}
1da177e4
LT
120EXPORT_SYMBOL(blk_get_backing_dev_info);
121
2a4aa30c 122void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 123{
1afb20f3
FT
124 memset(rq, 0, sizeof(*rq));
125
1da177e4 126 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 127 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 128 rq->cpu = -1;
63a71386 129 rq->q = q;
a2dec7b3 130 rq->__sector = (sector_t) -1;
2e662b65
JA
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 133 rq->cmd = rq->__cmd;
e2494e1b 134 rq->cmd_len = BLK_MAX_CDB;
63a71386 135 rq->tag = -1;
b243ddcb 136 rq->start_time = jiffies;
9195291e 137 set_start_time_ns(rq);
09e099d4 138 rq->part = NULL;
1da177e4 139}
2a4aa30c 140EXPORT_SYMBOL(blk_rq_init);
1da177e4 141
5bb23a68
N
142static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
1da177e4 144{
78d8e58a 145 if (error)
4246a0b6 146 bio->bi_error = error;
797e7dbb 147
143a87f4 148 if (unlikely(rq->cmd_flags & REQ_QUIET))
b7c44ed9 149 bio_set_flag(bio, BIO_QUIET);
08bafc03 150
f79ea416 151 bio_advance(bio, nbytes);
7ba1ba12 152
143a87f4 153 /* don't actually finish bio if it's part of flush sequence */
78d8e58a 154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
4246a0b6 155 bio_endio(bio);
1da177e4 156}
1da177e4 157
1da177e4
LT
158void blk_dump_rq_flags(struct request *rq, char *msg)
159{
160 int bit;
161
5953316d 162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 164 (unsigned long long) rq->cmd_flags);
1da177e4 165
83096ebf
TH
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
b4f42e28
JA
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
1da177e4 171
33659ebb 172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 173 printk(KERN_INFO " cdb: ");
d34c87e4 174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178}
1da177e4
LT
179EXPORT_SYMBOL(blk_dump_rq_flags);
180
3cca6dc1 181static void blk_delay_work(struct work_struct *work)
1da177e4 182{
3cca6dc1 183 struct request_queue *q;
1da177e4 184
3cca6dc1
JA
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
24ecfbe2 187 __blk_run_queue(q);
3cca6dc1 188 spin_unlock_irq(q->queue_lock);
1da177e4 189}
1da177e4
LT
190
191/**
3cca6dc1
JA
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
1da177e4
LT
195 *
196 * Description:
3cca6dc1
JA
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
70460571 199 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
200 */
201void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 202{
70460571
BVA
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
2ad8b1ef 206}
3cca6dc1 207EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 208
1da177e4
LT
209/**
210 * blk_start_queue - restart a previously stopped queue
165125e1 211 * @q: The &struct request_queue in question
1da177e4
LT
212 *
213 * Description:
214 * blk_start_queue() will clear the stop flag on the queue, and call
215 * the request_fn for the queue if it was in a stopped state when
216 * entered. Also see blk_stop_queue(). Queue lock must be held.
217 **/
165125e1 218void blk_start_queue(struct request_queue *q)
1da177e4 219{
a038e253
PBG
220 WARN_ON(!irqs_disabled());
221
75ad23bc 222 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 223 __blk_run_queue(q);
1da177e4 224}
1da177e4
LT
225EXPORT_SYMBOL(blk_start_queue);
226
227/**
228 * blk_stop_queue - stop a queue
165125e1 229 * @q: The &struct request_queue in question
1da177e4
LT
230 *
231 * Description:
232 * The Linux block layer assumes that a block driver will consume all
233 * entries on the request queue when the request_fn strategy is called.
234 * Often this will not happen, because of hardware limitations (queue
235 * depth settings). If a device driver gets a 'queue full' response,
236 * or if it simply chooses not to queue more I/O at one point, it can
237 * call this function to prevent the request_fn from being called until
238 * the driver has signalled it's ready to go again. This happens by calling
239 * blk_start_queue() to restart queue operations. Queue lock must be held.
240 **/
165125e1 241void blk_stop_queue(struct request_queue *q)
1da177e4 242{
136b5721 243 cancel_delayed_work(&q->delay_work);
75ad23bc 244 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
245}
246EXPORT_SYMBOL(blk_stop_queue);
247
248/**
249 * blk_sync_queue - cancel any pending callbacks on a queue
250 * @q: the queue
251 *
252 * Description:
253 * The block layer may perform asynchronous callback activity
254 * on a queue, such as calling the unplug function after a timeout.
255 * A block device may call blk_sync_queue to ensure that any
256 * such activity is cancelled, thus allowing it to release resources
59c51591 257 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
258 * that its ->make_request_fn will not re-add plugging prior to calling
259 * this function.
260 *
da527770 261 * This function does not cancel any asynchronous activity arising
da3dae54 262 * out of elevator or throttling code. That would require elevator_exit()
5efd6113 263 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 264 *
1da177e4
LT
265 */
266void blk_sync_queue(struct request_queue *q)
267{
70ed28b9 268 del_timer_sync(&q->timeout);
f04c1fe7
ML
269
270 if (q->mq_ops) {
271 struct blk_mq_hw_ctx *hctx;
272 int i;
273
70f4db63
CH
274 queue_for_each_hw_ctx(q, hctx, i) {
275 cancel_delayed_work_sync(&hctx->run_work);
276 cancel_delayed_work_sync(&hctx->delay_work);
277 }
f04c1fe7
ML
278 } else {
279 cancel_delayed_work_sync(&q->delay_work);
280 }
1da177e4
LT
281}
282EXPORT_SYMBOL(blk_sync_queue);
283
c246e80d
BVA
284/**
285 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
286 * @q: The queue to run
287 *
288 * Description:
289 * Invoke request handling on a queue if there are any pending requests.
290 * May be used to restart request handling after a request has completed.
291 * This variant runs the queue whether or not the queue has been
292 * stopped. Must be called with the queue lock held and interrupts
293 * disabled. See also @blk_run_queue.
294 */
295inline void __blk_run_queue_uncond(struct request_queue *q)
296{
297 if (unlikely(blk_queue_dead(q)))
298 return;
299
24faf6f6
BVA
300 /*
301 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
302 * the queue lock internally. As a result multiple threads may be
303 * running such a request function concurrently. Keep track of the
304 * number of active request_fn invocations such that blk_drain_queue()
305 * can wait until all these request_fn calls have finished.
306 */
307 q->request_fn_active++;
c246e80d 308 q->request_fn(q);
24faf6f6 309 q->request_fn_active--;
c246e80d 310}
a7928c15 311EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
c246e80d 312
1da177e4 313/**
80a4b58e 314 * __blk_run_queue - run a single device queue
1da177e4 315 * @q: The queue to run
80a4b58e
JA
316 *
317 * Description:
318 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 319 * held and interrupts disabled.
1da177e4 320 */
24ecfbe2 321void __blk_run_queue(struct request_queue *q)
1da177e4 322{
a538cd03
TH
323 if (unlikely(blk_queue_stopped(q)))
324 return;
325
c246e80d 326 __blk_run_queue_uncond(q);
75ad23bc
NP
327}
328EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 329
24ecfbe2
CH
330/**
331 * blk_run_queue_async - run a single device queue in workqueue context
332 * @q: The queue to run
333 *
334 * Description:
335 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 336 * of us. The caller must hold the queue lock.
24ecfbe2
CH
337 */
338void blk_run_queue_async(struct request_queue *q)
339{
70460571 340 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 341 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 342}
c21e6beb 343EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 344
75ad23bc
NP
345/**
346 * blk_run_queue - run a single device queue
347 * @q: The queue to run
80a4b58e
JA
348 *
349 * Description:
350 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 351 * May be used to restart queueing when a request has completed.
75ad23bc
NP
352 */
353void blk_run_queue(struct request_queue *q)
354{
355 unsigned long flags;
356
357 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 358 __blk_run_queue(q);
1da177e4
LT
359 spin_unlock_irqrestore(q->queue_lock, flags);
360}
361EXPORT_SYMBOL(blk_run_queue);
362
165125e1 363void blk_put_queue(struct request_queue *q)
483f4afc
AV
364{
365 kobject_put(&q->kobj);
366}
d86e0e83 367EXPORT_SYMBOL(blk_put_queue);
483f4afc 368
e3c78ca5 369/**
807592a4 370 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 371 * @q: queue to drain
c9a929dd 372 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 373 *
c9a929dd
TH
374 * Drain requests from @q. If @drain_all is set, all requests are drained.
375 * If not, only ELVPRIV requests are drained. The caller is responsible
376 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 377 */
807592a4
BVA
378static void __blk_drain_queue(struct request_queue *q, bool drain_all)
379 __releases(q->queue_lock)
380 __acquires(q->queue_lock)
e3c78ca5 381{
458f27a9
AH
382 int i;
383
807592a4
BVA
384 lockdep_assert_held(q->queue_lock);
385
e3c78ca5 386 while (true) {
481a7d64 387 bool drain = false;
e3c78ca5 388
b855b04a
TH
389 /*
390 * The caller might be trying to drain @q before its
391 * elevator is initialized.
392 */
393 if (q->elevator)
394 elv_drain_elevator(q);
395
5efd6113 396 blkcg_drain_queue(q);
e3c78ca5 397
4eabc941
TH
398 /*
399 * This function might be called on a queue which failed
b855b04a
TH
400 * driver init after queue creation or is not yet fully
401 * active yet. Some drivers (e.g. fd and loop) get unhappy
402 * in such cases. Kick queue iff dispatch queue has
403 * something on it and @q has request_fn set.
4eabc941 404 */
b855b04a 405 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 406 __blk_run_queue(q);
c9a929dd 407
8a5ecdd4 408 drain |= q->nr_rqs_elvpriv;
24faf6f6 409 drain |= q->request_fn_active;
481a7d64
TH
410
411 /*
412 * Unfortunately, requests are queued at and tracked from
413 * multiple places and there's no single counter which can
414 * be drained. Check all the queues and counters.
415 */
416 if (drain_all) {
e97c293c 417 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
481a7d64
TH
418 drain |= !list_empty(&q->queue_head);
419 for (i = 0; i < 2; i++) {
8a5ecdd4 420 drain |= q->nr_rqs[i];
481a7d64 421 drain |= q->in_flight[i];
7c94e1c1
ML
422 if (fq)
423 drain |= !list_empty(&fq->flush_queue[i]);
481a7d64
TH
424 }
425 }
e3c78ca5 426
481a7d64 427 if (!drain)
e3c78ca5 428 break;
807592a4
BVA
429
430 spin_unlock_irq(q->queue_lock);
431
e3c78ca5 432 msleep(10);
807592a4
BVA
433
434 spin_lock_irq(q->queue_lock);
e3c78ca5 435 }
458f27a9
AH
436
437 /*
438 * With queue marked dead, any woken up waiter will fail the
439 * allocation path, so the wakeup chaining is lost and we're
440 * left with hung waiters. We need to wake up those waiters.
441 */
442 if (q->request_fn) {
a051661c
TH
443 struct request_list *rl;
444
a051661c
TH
445 blk_queue_for_each_rl(rl, q)
446 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
447 wake_up_all(&rl->wait[i]);
458f27a9 448 }
e3c78ca5
TH
449}
450
d732580b
TH
451/**
452 * blk_queue_bypass_start - enter queue bypass mode
453 * @q: queue of interest
454 *
455 * In bypass mode, only the dispatch FIFO queue of @q is used. This
456 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 457 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
458 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
459 * inside queue or RCU read lock.
d732580b
TH
460 */
461void blk_queue_bypass_start(struct request_queue *q)
462{
463 spin_lock_irq(q->queue_lock);
776687bc 464 q->bypass_depth++;
d732580b
TH
465 queue_flag_set(QUEUE_FLAG_BYPASS, q);
466 spin_unlock_irq(q->queue_lock);
467
776687bc
TH
468 /*
469 * Queues start drained. Skip actual draining till init is
470 * complete. This avoids lenghty delays during queue init which
471 * can happen many times during boot.
472 */
473 if (blk_queue_init_done(q)) {
807592a4
BVA
474 spin_lock_irq(q->queue_lock);
475 __blk_drain_queue(q, false);
476 spin_unlock_irq(q->queue_lock);
477
b82d4b19
TH
478 /* ensure blk_queue_bypass() is %true inside RCU read lock */
479 synchronize_rcu();
480 }
d732580b
TH
481}
482EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
483
484/**
485 * blk_queue_bypass_end - leave queue bypass mode
486 * @q: queue of interest
487 *
488 * Leave bypass mode and restore the normal queueing behavior.
489 */
490void blk_queue_bypass_end(struct request_queue *q)
491{
492 spin_lock_irq(q->queue_lock);
493 if (!--q->bypass_depth)
494 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
495 WARN_ON_ONCE(q->bypass_depth < 0);
496 spin_unlock_irq(q->queue_lock);
497}
498EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
499
aed3ea94
JA
500void blk_set_queue_dying(struct request_queue *q)
501{
502 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
503
504 if (q->mq_ops)
505 blk_mq_wake_waiters(q);
506 else {
507 struct request_list *rl;
508
509 blk_queue_for_each_rl(rl, q) {
510 if (rl->rq_pool) {
511 wake_up(&rl->wait[BLK_RW_SYNC]);
512 wake_up(&rl->wait[BLK_RW_ASYNC]);
513 }
514 }
515 }
516}
517EXPORT_SYMBOL_GPL(blk_set_queue_dying);
518
c9a929dd
TH
519/**
520 * blk_cleanup_queue - shutdown a request queue
521 * @q: request queue to shutdown
522 *
c246e80d
BVA
523 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
524 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 525 */
6728cb0e 526void blk_cleanup_queue(struct request_queue *q)
483f4afc 527{
c9a929dd 528 spinlock_t *lock = q->queue_lock;
e3335de9 529
3f3299d5 530 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 531 mutex_lock(&q->sysfs_lock);
aed3ea94 532 blk_set_queue_dying(q);
c9a929dd 533 spin_lock_irq(lock);
6ecf23af 534
80fd9979 535 /*
3f3299d5 536 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
537 * that, unlike blk_queue_bypass_start(), we aren't performing
538 * synchronize_rcu() after entering bypass mode to avoid the delay
539 * as some drivers create and destroy a lot of queues while
540 * probing. This is still safe because blk_release_queue() will be
541 * called only after the queue refcnt drops to zero and nothing,
542 * RCU or not, would be traversing the queue by then.
543 */
6ecf23af
TH
544 q->bypass_depth++;
545 queue_flag_set(QUEUE_FLAG_BYPASS, q);
546
c9a929dd
TH
547 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
548 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 549 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
550 spin_unlock_irq(lock);
551 mutex_unlock(&q->sysfs_lock);
552
c246e80d
BVA
553 /*
554 * Drain all requests queued before DYING marking. Set DEAD flag to
555 * prevent that q->request_fn() gets invoked after draining finished.
556 */
3ef28e83
DW
557 blk_freeze_queue(q);
558 spin_lock_irq(lock);
559 if (!q->mq_ops)
43a5e4e2 560 __blk_drain_queue(q, true);
c246e80d 561 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 562 spin_unlock_irq(lock);
c9a929dd 563
5a48fc14
DW
564 /* for synchronous bio-based driver finish in-flight integrity i/o */
565 blk_flush_integrity();
566
c9a929dd
TH
567 /* @q won't process any more request, flush async actions */
568 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
569 blk_sync_queue(q);
570
45a9c9d9
BVA
571 if (q->mq_ops)
572 blk_mq_free_queue(q);
3ef28e83 573 percpu_ref_exit(&q->q_usage_counter);
45a9c9d9 574
5e5cfac0
AH
575 spin_lock_irq(lock);
576 if (q->queue_lock != &q->__queue_lock)
577 q->queue_lock = &q->__queue_lock;
578 spin_unlock_irq(lock);
579
b02176f3 580 bdi_unregister(&q->backing_dev_info);
6cd18e71 581
c9a929dd 582 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
583 blk_put_queue(q);
584}
1da177e4
LT
585EXPORT_SYMBOL(blk_cleanup_queue);
586
271508db
DR
587/* Allocate memory local to the request queue */
588static void *alloc_request_struct(gfp_t gfp_mask, void *data)
589{
590 int nid = (int)(long)data;
591 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
592}
593
594static void free_request_struct(void *element, void *unused)
595{
596 kmem_cache_free(request_cachep, element);
597}
598
5b788ce3
TH
599int blk_init_rl(struct request_list *rl, struct request_queue *q,
600 gfp_t gfp_mask)
1da177e4 601{
1abec4fd
MS
602 if (unlikely(rl->rq_pool))
603 return 0;
604
5b788ce3 605 rl->q = q;
1faa16d2
JA
606 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
607 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
608 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
609 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 610
271508db
DR
611 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
612 free_request_struct,
613 (void *)(long)q->node, gfp_mask,
614 q->node);
1da177e4
LT
615 if (!rl->rq_pool)
616 return -ENOMEM;
617
618 return 0;
619}
620
5b788ce3
TH
621void blk_exit_rl(struct request_list *rl)
622{
623 if (rl->rq_pool)
624 mempool_destroy(rl->rq_pool);
625}
626
165125e1 627struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 628{
c304a51b 629 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
630}
631EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 632
3ef28e83
DW
633int blk_queue_enter(struct request_queue *q, gfp_t gfp)
634{
635 while (true) {
636 int ret;
637
638 if (percpu_ref_tryget_live(&q->q_usage_counter))
639 return 0;
640
71baba4b 641 if (!gfpflags_allow_blocking(gfp))
3ef28e83
DW
642 return -EBUSY;
643
644 ret = wait_event_interruptible(q->mq_freeze_wq,
645 !atomic_read(&q->mq_freeze_depth) ||
646 blk_queue_dying(q));
647 if (blk_queue_dying(q))
648 return -ENODEV;
649 if (ret)
650 return ret;
651 }
652}
653
654void blk_queue_exit(struct request_queue *q)
655{
656 percpu_ref_put(&q->q_usage_counter);
657}
658
659static void blk_queue_usage_counter_release(struct percpu_ref *ref)
660{
661 struct request_queue *q =
662 container_of(ref, struct request_queue, q_usage_counter);
663
664 wake_up_all(&q->mq_freeze_wq);
665}
666
165125e1 667struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 668{
165125e1 669 struct request_queue *q;
e0bf68dd 670 int err;
1946089a 671
8324aa91 672 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 673 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
674 if (!q)
675 return NULL;
676
00380a40 677 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 678 if (q->id < 0)
3d2936f4 679 goto fail_q;
a73f730d 680
54efd50b
KO
681 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
682 if (!q->bio_split)
683 goto fail_id;
684
0989a025
JA
685 q->backing_dev_info.ra_pages =
686 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
89e9b9e0 687 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
d993831f 688 q->backing_dev_info.name = "block";
5151412d 689 q->node = node_id;
0989a025 690
e0bf68dd 691 err = bdi_init(&q->backing_dev_info);
a73f730d 692 if (err)
54efd50b 693 goto fail_split;
e0bf68dd 694
31373d09
MG
695 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
696 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 697 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 698 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 699 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 700 INIT_LIST_HEAD(&q->icq_list);
4eef3049 701#ifdef CONFIG_BLK_CGROUP
e8989fae 702 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 703#endif
3cca6dc1 704 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 705
8324aa91 706 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 707
483f4afc 708 mutex_init(&q->sysfs_lock);
e7e72bf6 709 spin_lock_init(&q->__queue_lock);
483f4afc 710
c94a96ac
VG
711 /*
712 * By default initialize queue_lock to internal lock and driver can
713 * override it later if need be.
714 */
715 q->queue_lock = &q->__queue_lock;
716
b82d4b19
TH
717 /*
718 * A queue starts its life with bypass turned on to avoid
719 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
720 * init. The initial bypass will be finished when the queue is
721 * registered by blk_register_queue().
b82d4b19
TH
722 */
723 q->bypass_depth = 1;
724 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
725
320ae51f
JA
726 init_waitqueue_head(&q->mq_freeze_wq);
727
3ef28e83
DW
728 /*
729 * Init percpu_ref in atomic mode so that it's faster to shutdown.
730 * See blk_register_queue() for details.
731 */
732 if (percpu_ref_init(&q->q_usage_counter,
733 blk_queue_usage_counter_release,
734 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
fff4996b 735 goto fail_bdi;
f51b802c 736
3ef28e83
DW
737 if (blkcg_init_queue(q))
738 goto fail_ref;
739
1da177e4 740 return q;
a73f730d 741
3ef28e83
DW
742fail_ref:
743 percpu_ref_exit(&q->q_usage_counter);
fff4996b
MP
744fail_bdi:
745 bdi_destroy(&q->backing_dev_info);
54efd50b
KO
746fail_split:
747 bioset_free(q->bio_split);
a73f730d
TH
748fail_id:
749 ida_simple_remove(&blk_queue_ida, q->id);
750fail_q:
751 kmem_cache_free(blk_requestq_cachep, q);
752 return NULL;
1da177e4 753}
1946089a 754EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
755
756/**
757 * blk_init_queue - prepare a request queue for use with a block device
758 * @rfn: The function to be called to process requests that have been
759 * placed on the queue.
760 * @lock: Request queue spin lock
761 *
762 * Description:
763 * If a block device wishes to use the standard request handling procedures,
764 * which sorts requests and coalesces adjacent requests, then it must
765 * call blk_init_queue(). The function @rfn will be called when there
766 * are requests on the queue that need to be processed. If the device
767 * supports plugging, then @rfn may not be called immediately when requests
768 * are available on the queue, but may be called at some time later instead.
769 * Plugged queues are generally unplugged when a buffer belonging to one
770 * of the requests on the queue is needed, or due to memory pressure.
771 *
772 * @rfn is not required, or even expected, to remove all requests off the
773 * queue, but only as many as it can handle at a time. If it does leave
774 * requests on the queue, it is responsible for arranging that the requests
775 * get dealt with eventually.
776 *
777 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
778 * request queue; this lock will be taken also from interrupt context, so irq
779 * disabling is needed for it.
1da177e4 780 *
710027a4 781 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
782 * it didn't succeed.
783 *
784 * Note:
785 * blk_init_queue() must be paired with a blk_cleanup_queue() call
786 * when the block device is deactivated (such as at module unload).
787 **/
1946089a 788
165125e1 789struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 790{
c304a51b 791 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
792}
793EXPORT_SYMBOL(blk_init_queue);
794
165125e1 795struct request_queue *
1946089a
CL
796blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
797{
c86d1b8a 798 struct request_queue *uninit_q, *q;
1da177e4 799
c86d1b8a
MS
800 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
801 if (!uninit_q)
802 return NULL;
803
5151412d 804 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a 805 if (!q)
7982e90c 806 blk_cleanup_queue(uninit_q);
18741986 807
7982e90c 808 return q;
01effb0d
MS
809}
810EXPORT_SYMBOL(blk_init_queue_node);
811
dece1635 812static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
336b7e1f 813
01effb0d
MS
814struct request_queue *
815blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
816 spinlock_t *lock)
01effb0d 817{
1da177e4
LT
818 if (!q)
819 return NULL;
820
f70ced09 821 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
ba483388 822 if (!q->fq)
7982e90c
MS
823 return NULL;
824
a051661c 825 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
708f04d2 826 goto fail;
1da177e4
LT
827
828 q->request_fn = rfn;
1da177e4 829 q->prep_rq_fn = NULL;
28018c24 830 q->unprep_rq_fn = NULL;
60ea8226 831 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
832
833 /* Override internal queue lock with supplied lock pointer */
834 if (lock)
835 q->queue_lock = lock;
1da177e4 836
f3b144aa
JA
837 /*
838 * This also sets hw/phys segments, boundary and size
839 */
c20e8de2 840 blk_queue_make_request(q, blk_queue_bio);
1da177e4 841
44ec9542
AS
842 q->sg_reserved_size = INT_MAX;
843
eb1c160b
TS
844 /* Protect q->elevator from elevator_change */
845 mutex_lock(&q->sysfs_lock);
846
b82d4b19 847 /* init elevator */
eb1c160b
TS
848 if (elevator_init(q, NULL)) {
849 mutex_unlock(&q->sysfs_lock);
708f04d2 850 goto fail;
eb1c160b
TS
851 }
852
853 mutex_unlock(&q->sysfs_lock);
854
b82d4b19 855 return q;
708f04d2
DJ
856
857fail:
ba483388 858 blk_free_flush_queue(q->fq);
708f04d2 859 return NULL;
1da177e4 860}
5151412d 861EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 862
09ac46c4 863bool blk_get_queue(struct request_queue *q)
1da177e4 864{
3f3299d5 865 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
866 __blk_get_queue(q);
867 return true;
1da177e4
LT
868 }
869
09ac46c4 870 return false;
1da177e4 871}
d86e0e83 872EXPORT_SYMBOL(blk_get_queue);
1da177e4 873
5b788ce3 874static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 875{
f1f8cc94 876 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 877 elv_put_request(rl->q, rq);
f1f8cc94 878 if (rq->elv.icq)
11a3122f 879 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
880 }
881
5b788ce3 882 mempool_free(rq, rl->rq_pool);
1da177e4
LT
883}
884
1da177e4
LT
885/*
886 * ioc_batching returns true if the ioc is a valid batching request and
887 * should be given priority access to a request.
888 */
165125e1 889static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
890{
891 if (!ioc)
892 return 0;
893
894 /*
895 * Make sure the process is able to allocate at least 1 request
896 * even if the batch times out, otherwise we could theoretically
897 * lose wakeups.
898 */
899 return ioc->nr_batch_requests == q->nr_batching ||
900 (ioc->nr_batch_requests > 0
901 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
902}
903
904/*
905 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
906 * will cause the process to be a "batcher" on all queues in the system. This
907 * is the behaviour we want though - once it gets a wakeup it should be given
908 * a nice run.
909 */
165125e1 910static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
911{
912 if (!ioc || ioc_batching(q, ioc))
913 return;
914
915 ioc->nr_batch_requests = q->nr_batching;
916 ioc->last_waited = jiffies;
917}
918
5b788ce3 919static void __freed_request(struct request_list *rl, int sync)
1da177e4 920{
5b788ce3 921 struct request_queue *q = rl->q;
1da177e4 922
d40f75a0
TH
923 if (rl->count[sync] < queue_congestion_off_threshold(q))
924 blk_clear_congested(rl, sync);
1da177e4 925
1faa16d2
JA
926 if (rl->count[sync] + 1 <= q->nr_requests) {
927 if (waitqueue_active(&rl->wait[sync]))
928 wake_up(&rl->wait[sync]);
1da177e4 929
5b788ce3 930 blk_clear_rl_full(rl, sync);
1da177e4
LT
931 }
932}
933
934/*
935 * A request has just been released. Account for it, update the full and
936 * congestion status, wake up any waiters. Called under q->queue_lock.
937 */
5b788ce3 938static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 939{
5b788ce3 940 struct request_queue *q = rl->q;
75eb6c37 941 int sync = rw_is_sync(flags);
1da177e4 942
8a5ecdd4 943 q->nr_rqs[sync]--;
1faa16d2 944 rl->count[sync]--;
75eb6c37 945 if (flags & REQ_ELVPRIV)
8a5ecdd4 946 q->nr_rqs_elvpriv--;
1da177e4 947
5b788ce3 948 __freed_request(rl, sync);
1da177e4 949
1faa16d2 950 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 951 __freed_request(rl, sync ^ 1);
1da177e4
LT
952}
953
e3a2b3f9
JA
954int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
955{
956 struct request_list *rl;
d40f75a0 957 int on_thresh, off_thresh;
e3a2b3f9
JA
958
959 spin_lock_irq(q->queue_lock);
960 q->nr_requests = nr;
961 blk_queue_congestion_threshold(q);
d40f75a0
TH
962 on_thresh = queue_congestion_on_threshold(q);
963 off_thresh = queue_congestion_off_threshold(q);
e3a2b3f9 964
d40f75a0
TH
965 blk_queue_for_each_rl(rl, q) {
966 if (rl->count[BLK_RW_SYNC] >= on_thresh)
967 blk_set_congested(rl, BLK_RW_SYNC);
968 else if (rl->count[BLK_RW_SYNC] < off_thresh)
969 blk_clear_congested(rl, BLK_RW_SYNC);
e3a2b3f9 970
d40f75a0
TH
971 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
972 blk_set_congested(rl, BLK_RW_ASYNC);
973 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
974 blk_clear_congested(rl, BLK_RW_ASYNC);
e3a2b3f9 975
e3a2b3f9
JA
976 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
977 blk_set_rl_full(rl, BLK_RW_SYNC);
978 } else {
979 blk_clear_rl_full(rl, BLK_RW_SYNC);
980 wake_up(&rl->wait[BLK_RW_SYNC]);
981 }
982
983 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
984 blk_set_rl_full(rl, BLK_RW_ASYNC);
985 } else {
986 blk_clear_rl_full(rl, BLK_RW_ASYNC);
987 wake_up(&rl->wait[BLK_RW_ASYNC]);
988 }
989 }
990
991 spin_unlock_irq(q->queue_lock);
992 return 0;
993}
994
9d5a4e94
MS
995/*
996 * Determine if elevator data should be initialized when allocating the
997 * request associated with @bio.
998 */
999static bool blk_rq_should_init_elevator(struct bio *bio)
1000{
1001 if (!bio)
1002 return true;
1003
1004 /*
1005 * Flush requests do not use the elevator so skip initialization.
1006 * This allows a request to share the flush and elevator data.
1007 */
1008 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1009 return false;
1010
1011 return true;
1012}
1013
852c788f
TH
1014/**
1015 * rq_ioc - determine io_context for request allocation
1016 * @bio: request being allocated is for this bio (can be %NULL)
1017 *
1018 * Determine io_context to use for request allocation for @bio. May return
1019 * %NULL if %current->io_context doesn't exist.
1020 */
1021static struct io_context *rq_ioc(struct bio *bio)
1022{
1023#ifdef CONFIG_BLK_CGROUP
1024 if (bio && bio->bi_ioc)
1025 return bio->bi_ioc;
1026#endif
1027 return current->io_context;
1028}
1029
da8303c6 1030/**
a06e05e6 1031 * __get_request - get a free request
5b788ce3 1032 * @rl: request list to allocate from
da8303c6
TH
1033 * @rw_flags: RW and SYNC flags
1034 * @bio: bio to allocate request for (can be %NULL)
1035 * @gfp_mask: allocation mask
1036 *
1037 * Get a free request from @q. This function may fail under memory
1038 * pressure or if @q is dead.
1039 *
da3dae54 1040 * Must be called with @q->queue_lock held and,
a492f075
JL
1041 * Returns ERR_PTR on failure, with @q->queue_lock held.
1042 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1043 */
5b788ce3 1044static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 1045 struct bio *bio, gfp_t gfp_mask)
1da177e4 1046{
5b788ce3 1047 struct request_queue *q = rl->q;
b679281a 1048 struct request *rq;
7f4b35d1
TH
1049 struct elevator_type *et = q->elevator->type;
1050 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 1051 struct io_cq *icq = NULL;
1faa16d2 1052 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 1053 int may_queue;
88ee5ef1 1054
3f3299d5 1055 if (unlikely(blk_queue_dying(q)))
a492f075 1056 return ERR_PTR(-ENODEV);
da8303c6 1057
7749a8d4 1058 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
1059 if (may_queue == ELV_MQUEUE_NO)
1060 goto rq_starved;
1061
1faa16d2
JA
1062 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1063 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
1064 /*
1065 * The queue will fill after this allocation, so set
1066 * it as full, and mark this process as "batching".
1067 * This process will be allowed to complete a batch of
1068 * requests, others will be blocked.
1069 */
5b788ce3 1070 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 1071 ioc_set_batching(q, ioc);
5b788ce3 1072 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
1073 } else {
1074 if (may_queue != ELV_MQUEUE_MUST
1075 && !ioc_batching(q, ioc)) {
1076 /*
1077 * The queue is full and the allocating
1078 * process is not a "batcher", and not
1079 * exempted by the IO scheduler
1080 */
a492f075 1081 return ERR_PTR(-ENOMEM);
88ee5ef1
JA
1082 }
1083 }
1da177e4 1084 }
d40f75a0 1085 blk_set_congested(rl, is_sync);
1da177e4
LT
1086 }
1087
082cf69e
JA
1088 /*
1089 * Only allow batching queuers to allocate up to 50% over the defined
1090 * limit of requests, otherwise we could have thousands of requests
1091 * allocated with any setting of ->nr_requests
1092 */
1faa16d2 1093 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
a492f075 1094 return ERR_PTR(-ENOMEM);
fd782a4a 1095
8a5ecdd4 1096 q->nr_rqs[is_sync]++;
1faa16d2
JA
1097 rl->count[is_sync]++;
1098 rl->starved[is_sync] = 0;
cb98fc8b 1099
f1f8cc94
TH
1100 /*
1101 * Decide whether the new request will be managed by elevator. If
1102 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1103 * prevent the current elevator from being destroyed until the new
1104 * request is freed. This guarantees icq's won't be destroyed and
1105 * makes creating new ones safe.
1106 *
1107 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1108 * it will be created after releasing queue_lock.
1109 */
d732580b 1110 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 1111 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 1112 q->nr_rqs_elvpriv++;
f1f8cc94
TH
1113 if (et->icq_cache && ioc)
1114 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 1115 }
cb98fc8b 1116
f253b86b
JA
1117 if (blk_queue_io_stat(q))
1118 rw_flags |= REQ_IO_STAT;
1da177e4
LT
1119 spin_unlock_irq(q->queue_lock);
1120
29e2b09a 1121 /* allocate and init request */
5b788ce3 1122 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 1123 if (!rq)
b679281a 1124 goto fail_alloc;
1da177e4 1125
29e2b09a 1126 blk_rq_init(q, rq);
a051661c 1127 blk_rq_set_rl(rq, rl);
29e2b09a
TH
1128 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1129
aaf7c680 1130 /* init elvpriv */
29e2b09a 1131 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 1132 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
1133 if (ioc)
1134 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1135 if (!icq)
1136 goto fail_elvpriv;
29e2b09a 1137 }
aaf7c680
TH
1138
1139 rq->elv.icq = icq;
1140 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1141 goto fail_elvpriv;
1142
1143 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1144 if (icq)
1145 get_io_context(icq->ioc);
1146 }
aaf7c680 1147out:
88ee5ef1
JA
1148 /*
1149 * ioc may be NULL here, and ioc_batching will be false. That's
1150 * OK, if the queue is under the request limit then requests need
1151 * not count toward the nr_batch_requests limit. There will always
1152 * be some limit enforced by BLK_BATCH_TIME.
1153 */
1da177e4
LT
1154 if (ioc_batching(q, ioc))
1155 ioc->nr_batch_requests--;
6728cb0e 1156
1faa16d2 1157 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1158 return rq;
b679281a 1159
aaf7c680
TH
1160fail_elvpriv:
1161 /*
1162 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1163 * and may fail indefinitely under memory pressure and thus
1164 * shouldn't stall IO. Treat this request as !elvpriv. This will
1165 * disturb iosched and blkcg but weird is bettern than dead.
1166 */
7b2b10e0
RE
1167 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1168 __func__, dev_name(q->backing_dev_info.dev));
aaf7c680
TH
1169
1170 rq->cmd_flags &= ~REQ_ELVPRIV;
1171 rq->elv.icq = NULL;
1172
1173 spin_lock_irq(q->queue_lock);
8a5ecdd4 1174 q->nr_rqs_elvpriv--;
aaf7c680
TH
1175 spin_unlock_irq(q->queue_lock);
1176 goto out;
1177
b679281a
TH
1178fail_alloc:
1179 /*
1180 * Allocation failed presumably due to memory. Undo anything we
1181 * might have messed up.
1182 *
1183 * Allocating task should really be put onto the front of the wait
1184 * queue, but this is pretty rare.
1185 */
1186 spin_lock_irq(q->queue_lock);
5b788ce3 1187 freed_request(rl, rw_flags);
b679281a
TH
1188
1189 /*
1190 * in the very unlikely event that allocation failed and no
1191 * requests for this direction was pending, mark us starved so that
1192 * freeing of a request in the other direction will notice
1193 * us. another possible fix would be to split the rq mempool into
1194 * READ and WRITE
1195 */
1196rq_starved:
1197 if (unlikely(rl->count[is_sync] == 0))
1198 rl->starved[is_sync] = 1;
a492f075 1199 return ERR_PTR(-ENOMEM);
1da177e4
LT
1200}
1201
da8303c6 1202/**
a06e05e6 1203 * get_request - get a free request
da8303c6
TH
1204 * @q: request_queue to allocate request from
1205 * @rw_flags: RW and SYNC flags
1206 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1207 * @gfp_mask: allocation mask
da8303c6 1208 *
d0164adc
MG
1209 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1210 * this function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1211 *
da3dae54 1212 * Must be called with @q->queue_lock held and,
a492f075
JL
1213 * Returns ERR_PTR on failure, with @q->queue_lock held.
1214 * Returns request pointer on success, with @q->queue_lock *not held*.
1da177e4 1215 */
a06e05e6
TH
1216static struct request *get_request(struct request_queue *q, int rw_flags,
1217 struct bio *bio, gfp_t gfp_mask)
1da177e4 1218{
1faa16d2 1219 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1220 DEFINE_WAIT(wait);
a051661c 1221 struct request_list *rl;
1da177e4 1222 struct request *rq;
a051661c
TH
1223
1224 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1225retry:
a051661c 1226 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a492f075 1227 if (!IS_ERR(rq))
a06e05e6 1228 return rq;
1da177e4 1229
d0164adc 1230 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
a051661c 1231 blk_put_rl(rl);
a492f075 1232 return rq;
a051661c 1233 }
1da177e4 1234
a06e05e6
TH
1235 /* wait on @rl and retry */
1236 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1237 TASK_UNINTERRUPTIBLE);
1da177e4 1238
a06e05e6 1239 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1240
a06e05e6
TH
1241 spin_unlock_irq(q->queue_lock);
1242 io_schedule();
d6344532 1243
a06e05e6
TH
1244 /*
1245 * After sleeping, we become a "batching" process and will be able
1246 * to allocate at least one request, and up to a big batch of them
1247 * for a small period time. See ioc_batching, ioc_set_batching
1248 */
a06e05e6 1249 ioc_set_batching(q, current->io_context);
05caf8db 1250
a06e05e6
TH
1251 spin_lock_irq(q->queue_lock);
1252 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1253
a06e05e6 1254 goto retry;
1da177e4
LT
1255}
1256
320ae51f
JA
1257static struct request *blk_old_get_request(struct request_queue *q, int rw,
1258 gfp_t gfp_mask)
1da177e4
LT
1259{
1260 struct request *rq;
1261
1262 BUG_ON(rw != READ && rw != WRITE);
1263
7f4b35d1
TH
1264 /* create ioc upfront */
1265 create_io_context(gfp_mask, q->node);
1266
d6344532 1267 spin_lock_irq(q->queue_lock);
a06e05e6 1268 rq = get_request(q, rw, NULL, gfp_mask);
a492f075 1269 if (IS_ERR(rq))
da8303c6 1270 spin_unlock_irq(q->queue_lock);
d6344532 1271 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1272
1273 return rq;
1274}
320ae51f
JA
1275
1276struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1277{
1278 if (q->mq_ops)
4ce01dd1 1279 return blk_mq_alloc_request(q, rw, gfp_mask, false);
320ae51f
JA
1280 else
1281 return blk_old_get_request(q, rw, gfp_mask);
1282}
1da177e4
LT
1283EXPORT_SYMBOL(blk_get_request);
1284
dc72ef4a 1285/**
79eb63e9 1286 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1287 * @q: target request queue
79eb63e9
BH
1288 * @bio: The bio describing the memory mappings that will be submitted for IO.
1289 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1290 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1291 *
79eb63e9
BH
1292 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1293 * type commands. Where the struct request needs to be farther initialized by
1294 * the caller. It is passed a &struct bio, which describes the memory info of
1295 * the I/O transfer.
dc72ef4a 1296 *
79eb63e9
BH
1297 * The caller of blk_make_request must make sure that bi_io_vec
1298 * are set to describe the memory buffers. That bio_data_dir() will return
1299 * the needed direction of the request. (And all bio's in the passed bio-chain
1300 * are properly set accordingly)
1301 *
1302 * If called under none-sleepable conditions, mapped bio buffers must not
1303 * need bouncing, by calling the appropriate masked or flagged allocator,
1304 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1305 * BUG.
53674ac5
JA
1306 *
1307 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
d0164adc
MG
1308 * given to how you allocate bios. In particular, you cannot use
1309 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1310 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1311 * thus resulting in a deadlock. Alternatively bios should be allocated using
1312 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
53674ac5
JA
1313 * If possible a big IO should be split into smaller parts when allocation
1314 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1315 */
79eb63e9
BH
1316struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1317 gfp_t gfp_mask)
dc72ef4a 1318{
79eb63e9
BH
1319 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1320
a492f075
JL
1321 if (IS_ERR(rq))
1322 return rq;
79eb63e9 1323
f27b087b
JA
1324 blk_rq_set_block_pc(rq);
1325
79eb63e9
BH
1326 for_each_bio(bio) {
1327 struct bio *bounce_bio = bio;
1328 int ret;
1329
1330 blk_queue_bounce(q, &bounce_bio);
1331 ret = blk_rq_append_bio(q, rq, bounce_bio);
1332 if (unlikely(ret)) {
1333 blk_put_request(rq);
1334 return ERR_PTR(ret);
1335 }
1336 }
1337
1338 return rq;
dc72ef4a 1339}
79eb63e9 1340EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1341
f27b087b 1342/**
da3dae54 1343 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
f27b087b
JA
1344 * @rq: request to be initialized
1345 *
1346 */
1347void blk_rq_set_block_pc(struct request *rq)
1348{
1349 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1350 rq->__data_len = 0;
1351 rq->__sector = (sector_t) -1;
1352 rq->bio = rq->biotail = NULL;
1353 memset(rq->__cmd, 0, sizeof(rq->__cmd));
f27b087b
JA
1354}
1355EXPORT_SYMBOL(blk_rq_set_block_pc);
1356
1da177e4
LT
1357/**
1358 * blk_requeue_request - put a request back on queue
1359 * @q: request queue where request should be inserted
1360 * @rq: request to be inserted
1361 *
1362 * Description:
1363 * Drivers often keep queueing requests until the hardware cannot accept
1364 * more, when that condition happens we need to put the request back
1365 * on the queue. Must be called with queue lock held.
1366 */
165125e1 1367void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1368{
242f9dcb
JA
1369 blk_delete_timer(rq);
1370 blk_clear_rq_complete(rq);
5f3ea37c 1371 trace_block_rq_requeue(q, rq);
2056a782 1372
125c99bc 1373 if (rq->cmd_flags & REQ_QUEUED)
1da177e4
LT
1374 blk_queue_end_tag(q, rq);
1375
ba396a6c
JB
1376 BUG_ON(blk_queued_rq(rq));
1377
1da177e4
LT
1378 elv_requeue_request(q, rq);
1379}
1da177e4
LT
1380EXPORT_SYMBOL(blk_requeue_request);
1381
73c10101
JA
1382static void add_acct_request(struct request_queue *q, struct request *rq,
1383 int where)
1384{
320ae51f 1385 blk_account_io_start(rq, true);
7eaceacc 1386 __elv_add_request(q, rq, where);
73c10101
JA
1387}
1388
074a7aca
TH
1389static void part_round_stats_single(int cpu, struct hd_struct *part,
1390 unsigned long now)
1391{
7276d02e
JA
1392 int inflight;
1393
074a7aca
TH
1394 if (now == part->stamp)
1395 return;
1396
7276d02e
JA
1397 inflight = part_in_flight(part);
1398 if (inflight) {
074a7aca 1399 __part_stat_add(cpu, part, time_in_queue,
7276d02e 1400 inflight * (now - part->stamp));
074a7aca
TH
1401 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1402 }
1403 part->stamp = now;
1404}
1405
1406/**
496aa8a9
RD
1407 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1408 * @cpu: cpu number for stats access
1409 * @part: target partition
1da177e4
LT
1410 *
1411 * The average IO queue length and utilisation statistics are maintained
1412 * by observing the current state of the queue length and the amount of
1413 * time it has been in this state for.
1414 *
1415 * Normally, that accounting is done on IO completion, but that can result
1416 * in more than a second's worth of IO being accounted for within any one
1417 * second, leading to >100% utilisation. To deal with that, we call this
1418 * function to do a round-off before returning the results when reading
1419 * /proc/diskstats. This accounts immediately for all queue usage up to
1420 * the current jiffies and restarts the counters again.
1421 */
c9959059 1422void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1423{
1424 unsigned long now = jiffies;
1425
074a7aca
TH
1426 if (part->partno)
1427 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1428 part_round_stats_single(cpu, part, now);
6f2576af 1429}
074a7aca 1430EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1431
47fafbc7 1432#ifdef CONFIG_PM
c8158819
LM
1433static void blk_pm_put_request(struct request *rq)
1434{
1435 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1436 pm_runtime_mark_last_busy(rq->q->dev);
1437}
1438#else
1439static inline void blk_pm_put_request(struct request *rq) {}
1440#endif
1441
1da177e4
LT
1442/*
1443 * queue lock must be held
1444 */
165125e1 1445void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1446{
1da177e4
LT
1447 if (unlikely(!q))
1448 return;
1da177e4 1449
6f5ba581
CH
1450 if (q->mq_ops) {
1451 blk_mq_free_request(req);
1452 return;
1453 }
1454
c8158819
LM
1455 blk_pm_put_request(req);
1456
8922e16c
TH
1457 elv_completed_request(q, req);
1458
1cd96c24
BH
1459 /* this is a bio leak */
1460 WARN_ON(req->bio != NULL);
1461
1da177e4
LT
1462 /*
1463 * Request may not have originated from ll_rw_blk. if not,
1464 * it didn't come out of our reserved rq pools
1465 */
49171e5c 1466 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1467 unsigned int flags = req->cmd_flags;
a051661c 1468 struct request_list *rl = blk_rq_rl(req);
1da177e4 1469
1da177e4 1470 BUG_ON(!list_empty(&req->queuelist));
360f92c2 1471 BUG_ON(ELV_ON_HASH(req));
1da177e4 1472
a051661c
TH
1473 blk_free_request(rl, req);
1474 freed_request(rl, flags);
1475 blk_put_rl(rl);
1da177e4
LT
1476 }
1477}
6e39b69e
MC
1478EXPORT_SYMBOL_GPL(__blk_put_request);
1479
1da177e4
LT
1480void blk_put_request(struct request *req)
1481{
165125e1 1482 struct request_queue *q = req->q;
8922e16c 1483
320ae51f
JA
1484 if (q->mq_ops)
1485 blk_mq_free_request(req);
1486 else {
1487 unsigned long flags;
1488
1489 spin_lock_irqsave(q->queue_lock, flags);
1490 __blk_put_request(q, req);
1491 spin_unlock_irqrestore(q->queue_lock, flags);
1492 }
1da177e4 1493}
1da177e4
LT
1494EXPORT_SYMBOL(blk_put_request);
1495
66ac0280
CH
1496/**
1497 * blk_add_request_payload - add a payload to a request
1498 * @rq: request to update
1499 * @page: page backing the payload
1500 * @len: length of the payload.
1501 *
1502 * This allows to later add a payload to an already submitted request by
1503 * a block driver. The driver needs to take care of freeing the payload
1504 * itself.
1505 *
1506 * Note that this is a quite horrible hack and nothing but handling of
1507 * discard requests should ever use it.
1508 */
1509void blk_add_request_payload(struct request *rq, struct page *page,
1510 unsigned int len)
1511{
1512 struct bio *bio = rq->bio;
1513
1514 bio->bi_io_vec->bv_page = page;
1515 bio->bi_io_vec->bv_offset = 0;
1516 bio->bi_io_vec->bv_len = len;
1517
4f024f37 1518 bio->bi_iter.bi_size = len;
66ac0280
CH
1519 bio->bi_vcnt = 1;
1520 bio->bi_phys_segments = 1;
1521
1522 rq->__data_len = rq->resid_len = len;
1523 rq->nr_phys_segments = 1;
66ac0280
CH
1524}
1525EXPORT_SYMBOL_GPL(blk_add_request_payload);
1526
320ae51f
JA
1527bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1528 struct bio *bio)
73c10101
JA
1529{
1530 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1531
73c10101
JA
1532 if (!ll_back_merge_fn(q, req, bio))
1533 return false;
1534
8c1cf6bb 1535 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1536
1537 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1538 blk_rq_set_mixed_merge(req);
1539
1540 req->biotail->bi_next = bio;
1541 req->biotail = bio;
4f024f37 1542 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1543 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1544
320ae51f 1545 blk_account_io_start(req, false);
73c10101
JA
1546 return true;
1547}
1548
320ae51f
JA
1549bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1550 struct bio *bio)
73c10101
JA
1551{
1552 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1553
73c10101
JA
1554 if (!ll_front_merge_fn(q, req, bio))
1555 return false;
1556
8c1cf6bb 1557 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1558
1559 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1560 blk_rq_set_mixed_merge(req);
1561
73c10101
JA
1562 bio->bi_next = req->bio;
1563 req->bio = bio;
1564
4f024f37
KO
1565 req->__sector = bio->bi_iter.bi_sector;
1566 req->__data_len += bio->bi_iter.bi_size;
73c10101
JA
1567 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1568
320ae51f 1569 blk_account_io_start(req, false);
73c10101
JA
1570 return true;
1571}
1572
bd87b589 1573/**
320ae51f 1574 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1575 * @q: request_queue new bio is being queued at
1576 * @bio: new bio being queued
1577 * @request_count: out parameter for number of traversed plugged requests
1578 *
1579 * Determine whether @bio being queued on @q can be merged with a request
1580 * on %current's plugged list. Returns %true if merge was successful,
1581 * otherwise %false.
1582 *
07c2bd37
TH
1583 * Plugging coalesces IOs from the same issuer for the same purpose without
1584 * going through @q->queue_lock. As such it's more of an issuing mechanism
1585 * than scheduling, and the request, while may have elvpriv data, is not
1586 * added on the elevator at this point. In addition, we don't have
1587 * reliable access to the elevator outside queue lock. Only check basic
1588 * merging parameters without querying the elevator.
da41a589
RE
1589 *
1590 * Caller must ensure !blk_queue_nomerges(q) beforehand.
73c10101 1591 */
320ae51f 1592bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
5b3f341f
SL
1593 unsigned int *request_count,
1594 struct request **same_queue_rq)
73c10101
JA
1595{
1596 struct blk_plug *plug;
1597 struct request *rq;
1598 bool ret = false;
92f399c7 1599 struct list_head *plug_list;
73c10101 1600
bd87b589 1601 plug = current->plug;
73c10101
JA
1602 if (!plug)
1603 goto out;
56ebdaf2 1604 *request_count = 0;
73c10101 1605
92f399c7
SL
1606 if (q->mq_ops)
1607 plug_list = &plug->mq_list;
1608 else
1609 plug_list = &plug->list;
1610
1611 list_for_each_entry_reverse(rq, plug_list, queuelist) {
73c10101
JA
1612 int el_ret;
1613
5b3f341f 1614 if (rq->q == q) {
1b2e19f1 1615 (*request_count)++;
5b3f341f
SL
1616 /*
1617 * Only blk-mq multiple hardware queues case checks the
1618 * rq in the same queue, there should be only one such
1619 * rq in a queue
1620 **/
1621 if (same_queue_rq)
1622 *same_queue_rq = rq;
1623 }
56ebdaf2 1624
07c2bd37 1625 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1626 continue;
1627
050c8ea8 1628 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1629 if (el_ret == ELEVATOR_BACK_MERGE) {
1630 ret = bio_attempt_back_merge(q, rq, bio);
1631 if (ret)
1632 break;
1633 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1634 ret = bio_attempt_front_merge(q, rq, bio);
1635 if (ret)
1636 break;
1637 }
1638 }
1639out:
1640 return ret;
1641}
1642
0809e3ac
JM
1643unsigned int blk_plug_queued_count(struct request_queue *q)
1644{
1645 struct blk_plug *plug;
1646 struct request *rq;
1647 struct list_head *plug_list;
1648 unsigned int ret = 0;
1649
1650 plug = current->plug;
1651 if (!plug)
1652 goto out;
1653
1654 if (q->mq_ops)
1655 plug_list = &plug->mq_list;
1656 else
1657 plug_list = &plug->list;
1658
1659 list_for_each_entry(rq, plug_list, queuelist) {
1660 if (rq->q == q)
1661 ret++;
1662 }
1663out:
1664 return ret;
1665}
1666
86db1e29 1667void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1668{
4aff5e23 1669 req->cmd_type = REQ_TYPE_FS;
52d9e675 1670
7b6d91da
CH
1671 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1672 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1673 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1674
52d9e675 1675 req->errors = 0;
4f024f37 1676 req->__sector = bio->bi_iter.bi_sector;
52d9e675 1677 req->ioprio = bio_prio(bio);
bc1c56fd 1678 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1679}
1680
dece1635 1681static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1682{
5e00d1b5 1683 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1684 struct blk_plug *plug;
1685 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1686 struct request *req;
56ebdaf2 1687 unsigned int request_count = 0;
1da177e4 1688
54efd50b
KO
1689 blk_queue_split(q, &bio, q->bio_split);
1690
1da177e4
LT
1691 /*
1692 * low level driver can indicate that it wants pages above a
1693 * certain limit bounced to low memory (ie for highmem, or even
1694 * ISA dma in theory)
1695 */
1696 blk_queue_bounce(q, &bio);
1697
ffecfd1a 1698 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6
CH
1699 bio->bi_error = -EIO;
1700 bio_endio(bio);
dece1635 1701 return BLK_QC_T_NONE;
ffecfd1a
DW
1702 }
1703
4fed947c 1704 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1705 spin_lock_irq(q->queue_lock);
ae1b1539 1706 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1707 goto get_rq;
1708 }
1709
73c10101
JA
1710 /*
1711 * Check if we can merge with the plugged list before grabbing
1712 * any locks.
1713 */
0809e3ac
JM
1714 if (!blk_queue_nomerges(q)) {
1715 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
dece1635 1716 return BLK_QC_T_NONE;
0809e3ac
JM
1717 } else
1718 request_count = blk_plug_queued_count(q);
1da177e4 1719
73c10101 1720 spin_lock_irq(q->queue_lock);
2056a782 1721
73c10101
JA
1722 el_ret = elv_merge(q, &req, bio);
1723 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1724 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1725 elv_bio_merged(q, req, bio);
73c10101
JA
1726 if (!attempt_back_merge(q, req))
1727 elv_merged_request(q, req, el_ret);
1728 goto out_unlock;
1729 }
1730 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1731 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1732 elv_bio_merged(q, req, bio);
73c10101
JA
1733 if (!attempt_front_merge(q, req))
1734 elv_merged_request(q, req, el_ret);
1735 goto out_unlock;
80a761fd 1736 }
1da177e4
LT
1737 }
1738
450991bc 1739get_rq:
7749a8d4
JA
1740 /*
1741 * This sync check and mask will be re-done in init_request_from_bio(),
1742 * but we need to set it earlier to expose the sync flag to the
1743 * rq allocator and io schedulers.
1744 */
1745 rw_flags = bio_data_dir(bio);
1746 if (sync)
7b6d91da 1747 rw_flags |= REQ_SYNC;
7749a8d4 1748
1da177e4 1749 /*
450991bc 1750 * Grab a free request. This is might sleep but can not fail.
d6344532 1751 * Returns with the queue unlocked.
450991bc 1752 */
a06e05e6 1753 req = get_request(q, rw_flags, bio, GFP_NOIO);
a492f075 1754 if (IS_ERR(req)) {
4246a0b6
CH
1755 bio->bi_error = PTR_ERR(req);
1756 bio_endio(bio);
da8303c6
TH
1757 goto out_unlock;
1758 }
d6344532 1759
450991bc
NP
1760 /*
1761 * After dropping the lock and possibly sleeping here, our request
1762 * may now be mergeable after it had proven unmergeable (above).
1763 * We don't worry about that case for efficiency. It won't happen
1764 * often, and the elevators are able to handle it.
1da177e4 1765 */
52d9e675 1766 init_request_from_bio(req, bio);
1da177e4 1767
9562ad9a 1768 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1769 req->cpu = raw_smp_processor_id();
73c10101
JA
1770
1771 plug = current->plug;
721a9602 1772 if (plug) {
dc6d36c9
JA
1773 /*
1774 * If this is the first request added after a plug, fire
7aef2e78 1775 * of a plug trace.
dc6d36c9 1776 */
7aef2e78 1777 if (!request_count)
dc6d36c9 1778 trace_block_plug(q);
3540d5e8 1779 else {
019ceb7d 1780 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1781 blk_flush_plug_list(plug, false);
019ceb7d
SL
1782 trace_block_plug(q);
1783 }
73c10101 1784 }
73c10101 1785 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1786 blk_account_io_start(req, true);
73c10101
JA
1787 } else {
1788 spin_lock_irq(q->queue_lock);
1789 add_acct_request(q, req, where);
24ecfbe2 1790 __blk_run_queue(q);
73c10101
JA
1791out_unlock:
1792 spin_unlock_irq(q->queue_lock);
1793 }
dece1635
JA
1794
1795 return BLK_QC_T_NONE;
1da177e4
LT
1796}
1797
1798/*
1799 * If bio->bi_dev is a partition, remap the location
1800 */
1801static inline void blk_partition_remap(struct bio *bio)
1802{
1803 struct block_device *bdev = bio->bi_bdev;
1804
bf2de6f5 1805 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1806 struct hd_struct *p = bdev->bd_part;
1807
4f024f37 1808 bio->bi_iter.bi_sector += p->start_sect;
1da177e4 1809 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1810
d07335e5
MS
1811 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1812 bdev->bd_dev,
4f024f37 1813 bio->bi_iter.bi_sector - p->start_sect);
1da177e4
LT
1814 }
1815}
1816
1da177e4
LT
1817static void handle_bad_sector(struct bio *bio)
1818{
1819 char b[BDEVNAME_SIZE];
1820
1821 printk(KERN_INFO "attempt to access beyond end of device\n");
1822 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1823 bdevname(bio->bi_bdev, b),
1824 bio->bi_rw,
f73a1c7d 1825 (unsigned long long)bio_end_sector(bio),
77304d2a 1826 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1827}
1828
c17bb495
AM
1829#ifdef CONFIG_FAIL_MAKE_REQUEST
1830
1831static DECLARE_FAULT_ATTR(fail_make_request);
1832
1833static int __init setup_fail_make_request(char *str)
1834{
1835 return setup_fault_attr(&fail_make_request, str);
1836}
1837__setup("fail_make_request=", setup_fail_make_request);
1838
b2c9cd37 1839static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1840{
b2c9cd37 1841 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1842}
1843
1844static int __init fail_make_request_debugfs(void)
1845{
dd48c085
AM
1846 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1847 NULL, &fail_make_request);
1848
21f9fcd8 1849 return PTR_ERR_OR_ZERO(dir);
c17bb495
AM
1850}
1851
1852late_initcall(fail_make_request_debugfs);
1853
1854#else /* CONFIG_FAIL_MAKE_REQUEST */
1855
b2c9cd37
AM
1856static inline bool should_fail_request(struct hd_struct *part,
1857 unsigned int bytes)
c17bb495 1858{
b2c9cd37 1859 return false;
c17bb495
AM
1860}
1861
1862#endif /* CONFIG_FAIL_MAKE_REQUEST */
1863
c07e2b41
JA
1864/*
1865 * Check whether this bio extends beyond the end of the device.
1866 */
1867static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1868{
1869 sector_t maxsector;
1870
1871 if (!nr_sectors)
1872 return 0;
1873
1874 /* Test device or partition size, when known. */
77304d2a 1875 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41 1876 if (maxsector) {
4f024f37 1877 sector_t sector = bio->bi_iter.bi_sector;
c07e2b41
JA
1878
1879 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1880 /*
1881 * This may well happen - the kernel calls bread()
1882 * without checking the size of the device, e.g., when
1883 * mounting a device.
1884 */
1885 handle_bad_sector(bio);
1886 return 1;
1887 }
1888 }
1889
1890 return 0;
1891}
1892
27a84d54
CH
1893static noinline_for_stack bool
1894generic_make_request_checks(struct bio *bio)
1da177e4 1895{
165125e1 1896 struct request_queue *q;
5a7bbad2 1897 int nr_sectors = bio_sectors(bio);
51fd77bd 1898 int err = -EIO;
5a7bbad2
CH
1899 char b[BDEVNAME_SIZE];
1900 struct hd_struct *part;
1da177e4
LT
1901
1902 might_sleep();
1da177e4 1903
c07e2b41
JA
1904 if (bio_check_eod(bio, nr_sectors))
1905 goto end_io;
1da177e4 1906
5a7bbad2
CH
1907 q = bdev_get_queue(bio->bi_bdev);
1908 if (unlikely(!q)) {
1909 printk(KERN_ERR
1910 "generic_make_request: Trying to access "
1911 "nonexistent block-device %s (%Lu)\n",
1912 bdevname(bio->bi_bdev, b),
4f024f37 1913 (long long) bio->bi_iter.bi_sector);
5a7bbad2
CH
1914 goto end_io;
1915 }
c17bb495 1916
5a7bbad2 1917 part = bio->bi_bdev->bd_part;
4f024f37 1918 if (should_fail_request(part, bio->bi_iter.bi_size) ||
5a7bbad2 1919 should_fail_request(&part_to_disk(part)->part0,
4f024f37 1920 bio->bi_iter.bi_size))
5a7bbad2 1921 goto end_io;
2056a782 1922
5a7bbad2
CH
1923 /*
1924 * If this device has partitions, remap block n
1925 * of partition p to block n+start(p) of the disk.
1926 */
1927 blk_partition_remap(bio);
2056a782 1928
5a7bbad2
CH
1929 if (bio_check_eod(bio, nr_sectors))
1930 goto end_io;
1e87901e 1931
5a7bbad2
CH
1932 /*
1933 * Filter flush bio's early so that make_request based
1934 * drivers without flush support don't have to worry
1935 * about them.
1936 */
1937 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1938 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1939 if (!nr_sectors) {
1940 err = 0;
51fd77bd
JA
1941 goto end_io;
1942 }
5a7bbad2 1943 }
5ddfe969 1944
5a7bbad2
CH
1945 if ((bio->bi_rw & REQ_DISCARD) &&
1946 (!blk_queue_discard(q) ||
e2a60da7 1947 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1948 err = -EOPNOTSUPP;
1949 goto end_io;
1950 }
01edede4 1951
4363ac7c 1952 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1953 err = -EOPNOTSUPP;
1954 goto end_io;
1955 }
01edede4 1956
7f4b35d1
TH
1957 /*
1958 * Various block parts want %current->io_context and lazy ioc
1959 * allocation ends up trading a lot of pain for a small amount of
1960 * memory. Just allocate it upfront. This may fail and block
1961 * layer knows how to live with it.
1962 */
1963 create_io_context(GFP_ATOMIC, q->node);
1964
ae118896
TH
1965 if (!blkcg_bio_issue_check(q, bio))
1966 return false;
27a84d54 1967
5a7bbad2 1968 trace_block_bio_queue(q, bio);
27a84d54 1969 return true;
a7384677
TH
1970
1971end_io:
4246a0b6
CH
1972 bio->bi_error = err;
1973 bio_endio(bio);
27a84d54 1974 return false;
1da177e4
LT
1975}
1976
27a84d54
CH
1977/**
1978 * generic_make_request - hand a buffer to its device driver for I/O
1979 * @bio: The bio describing the location in memory and on the device.
1980 *
1981 * generic_make_request() is used to make I/O requests of block
1982 * devices. It is passed a &struct bio, which describes the I/O that needs
1983 * to be done.
1984 *
1985 * generic_make_request() does not return any status. The
1986 * success/failure status of the request, along with notification of
1987 * completion, is delivered asynchronously through the bio->bi_end_io
1988 * function described (one day) else where.
1989 *
1990 * The caller of generic_make_request must make sure that bi_io_vec
1991 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1992 * set to describe the device address, and the
1993 * bi_end_io and optionally bi_private are set to describe how
1994 * completion notification should be signaled.
1995 *
1996 * generic_make_request and the drivers it calls may use bi_next if this
1997 * bio happens to be merged with someone else, and may resubmit the bio to
1998 * a lower device by calling into generic_make_request recursively, which
1999 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796 2000 */
dece1635 2001blk_qc_t generic_make_request(struct bio *bio)
d89d8796 2002{
bddd87c7 2003 struct bio_list bio_list_on_stack;
dece1635 2004 blk_qc_t ret = BLK_QC_T_NONE;
bddd87c7 2005
27a84d54 2006 if (!generic_make_request_checks(bio))
dece1635 2007 goto out;
27a84d54
CH
2008
2009 /*
2010 * We only want one ->make_request_fn to be active at a time, else
2011 * stack usage with stacked devices could be a problem. So use
2012 * current->bio_list to keep a list of requests submited by a
2013 * make_request_fn function. current->bio_list is also used as a
2014 * flag to say if generic_make_request is currently active in this
2015 * task or not. If it is NULL, then no make_request is active. If
2016 * it is non-NULL, then a make_request is active, and new requests
2017 * should be added at the tail
2018 */
bddd87c7 2019 if (current->bio_list) {
bddd87c7 2020 bio_list_add(current->bio_list, bio);
dece1635 2021 goto out;
d89d8796 2022 }
27a84d54 2023
d89d8796
NB
2024 /* following loop may be a bit non-obvious, and so deserves some
2025 * explanation.
2026 * Before entering the loop, bio->bi_next is NULL (as all callers
2027 * ensure that) so we have a list with a single bio.
2028 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
2029 * we assign bio_list to a pointer to the bio_list_on_stack,
2030 * thus initialising the bio_list of new bios to be
27a84d54 2031 * added. ->make_request() may indeed add some more bios
d89d8796
NB
2032 * through a recursive call to generic_make_request. If it
2033 * did, we find a non-NULL value in bio_list and re-enter the loop
2034 * from the top. In this case we really did just take the bio
bddd87c7 2035 * of the top of the list (no pretending) and so remove it from
27a84d54 2036 * bio_list, and call into ->make_request() again.
d89d8796
NB
2037 */
2038 BUG_ON(bio->bi_next);
bddd87c7
AM
2039 bio_list_init(&bio_list_on_stack);
2040 current->bio_list = &bio_list_on_stack;
d89d8796 2041 do {
27a84d54
CH
2042 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2043
71baba4b 2044 if (likely(blk_queue_enter(q, __GFP_DIRECT_RECLAIM) == 0)) {
3ef28e83 2045
dece1635 2046 ret = q->make_request_fn(q, bio);
3ef28e83
DW
2047
2048 blk_queue_exit(q);
27a84d54 2049
3ef28e83
DW
2050 bio = bio_list_pop(current->bio_list);
2051 } else {
2052 struct bio *bio_next = bio_list_pop(current->bio_list);
2053
2054 bio_io_error(bio);
2055 bio = bio_next;
2056 }
d89d8796 2057 } while (bio);
bddd87c7 2058 current->bio_list = NULL; /* deactivate */
dece1635
JA
2059
2060out:
2061 return ret;
d89d8796 2062}
1da177e4
LT
2063EXPORT_SYMBOL(generic_make_request);
2064
2065/**
710027a4 2066 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
2067 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2068 * @bio: The &struct bio which describes the I/O
2069 *
2070 * submit_bio() is very similar in purpose to generic_make_request(), and
2071 * uses that function to do most of the work. Both are fairly rough
710027a4 2072 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
2073 *
2074 */
dece1635 2075blk_qc_t submit_bio(int rw, struct bio *bio)
1da177e4 2076{
22e2c507 2077 bio->bi_rw |= rw;
1da177e4 2078
bf2de6f5
JA
2079 /*
2080 * If it's a regular read/write or a barrier with data attached,
2081 * go through the normal accounting stuff before submission.
2082 */
e2a60da7 2083 if (bio_has_data(bio)) {
4363ac7c
MP
2084 unsigned int count;
2085
2086 if (unlikely(rw & REQ_WRITE_SAME))
2087 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2088 else
2089 count = bio_sectors(bio);
2090
bf2de6f5
JA
2091 if (rw & WRITE) {
2092 count_vm_events(PGPGOUT, count);
2093 } else {
4f024f37 2094 task_io_account_read(bio->bi_iter.bi_size);
bf2de6f5
JA
2095 count_vm_events(PGPGIN, count);
2096 }
2097
2098 if (unlikely(block_dump)) {
2099 char b[BDEVNAME_SIZE];
8dcbdc74 2100 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 2101 current->comm, task_pid_nr(current),
bf2de6f5 2102 (rw & WRITE) ? "WRITE" : "READ",
4f024f37 2103 (unsigned long long)bio->bi_iter.bi_sector,
8dcbdc74
SM
2104 bdevname(bio->bi_bdev, b),
2105 count);
bf2de6f5 2106 }
1da177e4
LT
2107 }
2108
dece1635 2109 return generic_make_request(bio);
1da177e4 2110}
1da177e4
LT
2111EXPORT_SYMBOL(submit_bio);
2112
82124d60
KU
2113/**
2114 * blk_rq_check_limits - Helper function to check a request for the queue limit
2115 * @q: the queue
2116 * @rq: the request being checked
2117 *
2118 * Description:
2119 * @rq may have been made based on weaker limitations of upper-level queues
2120 * in request stacking drivers, and it may violate the limitation of @q.
2121 * Since the block layer and the underlying device driver trust @rq
2122 * after it is inserted to @q, it should be checked against @q before
2123 * the insertion using this generic function.
2124 *
2125 * This function should also be useful for request stacking drivers
eef35c2d 2126 * in some cases below, so export this function.
82124d60
KU
2127 * Request stacking drivers like request-based dm may change the queue
2128 * limits while requests are in the queue (e.g. dm's table swapping).
e227867f 2129 * Such request stacking drivers should check those requests against
82124d60
KU
2130 * the new queue limits again when they dispatch those requests,
2131 * although such checkings are also done against the old queue limits
2132 * when submitting requests.
2133 */
2134int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2135{
e2a60da7 2136 if (!rq_mergeable(rq))
3383977f
S
2137 return 0;
2138
f31dc1cd 2139 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
2140 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2141 return -EIO;
2142 }
2143
2144 /*
2145 * queue's settings related to segment counting like q->bounce_pfn
2146 * may differ from that of other stacking queues.
2147 * Recalculate it to check the request correctly on this queue's
2148 * limitation.
2149 */
2150 blk_recalc_rq_segments(rq);
8a78362c 2151 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
2152 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2153 return -EIO;
2154 }
2155
2156 return 0;
2157}
2158EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2159
2160/**
2161 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2162 * @q: the queue to submit the request
2163 * @rq: the request being queued
2164 */
2165int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2166{
2167 unsigned long flags;
4853abaa 2168 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
2169
2170 if (blk_rq_check_limits(q, rq))
2171 return -EIO;
2172
b2c9cd37
AM
2173 if (rq->rq_disk &&
2174 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 2175 return -EIO;
82124d60 2176
7fb4898e
KB
2177 if (q->mq_ops) {
2178 if (blk_queue_io_stat(q))
2179 blk_account_io_start(rq, true);
2180 blk_mq_insert_request(rq, false, true, true);
2181 return 0;
2182 }
2183
82124d60 2184 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 2185 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
2186 spin_unlock_irqrestore(q->queue_lock, flags);
2187 return -ENODEV;
2188 }
82124d60
KU
2189
2190 /*
2191 * Submitting request must be dequeued before calling this function
2192 * because it will be linked to another request_queue
2193 */
2194 BUG_ON(blk_queued_rq(rq));
2195
4853abaa
JM
2196 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2197 where = ELEVATOR_INSERT_FLUSH;
2198
2199 add_acct_request(q, rq, where);
e67b77c7
JM
2200 if (where == ELEVATOR_INSERT_FLUSH)
2201 __blk_run_queue(q);
82124d60
KU
2202 spin_unlock_irqrestore(q->queue_lock, flags);
2203
2204 return 0;
2205}
2206EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2207
80a761fd
TH
2208/**
2209 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2210 * @rq: request to examine
2211 *
2212 * Description:
2213 * A request could be merge of IOs which require different failure
2214 * handling. This function determines the number of bytes which
2215 * can be failed from the beginning of the request without
2216 * crossing into area which need to be retried further.
2217 *
2218 * Return:
2219 * The number of bytes to fail.
2220 *
2221 * Context:
2222 * queue_lock must be held.
2223 */
2224unsigned int blk_rq_err_bytes(const struct request *rq)
2225{
2226 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2227 unsigned int bytes = 0;
2228 struct bio *bio;
2229
2230 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2231 return blk_rq_bytes(rq);
2232
2233 /*
2234 * Currently the only 'mixing' which can happen is between
2235 * different fastfail types. We can safely fail portions
2236 * which have all the failfast bits that the first one has -
2237 * the ones which are at least as eager to fail as the first
2238 * one.
2239 */
2240 for (bio = rq->bio; bio; bio = bio->bi_next) {
2241 if ((bio->bi_rw & ff) != ff)
2242 break;
4f024f37 2243 bytes += bio->bi_iter.bi_size;
80a761fd
TH
2244 }
2245
2246 /* this could lead to infinite loop */
2247 BUG_ON(blk_rq_bytes(rq) && !bytes);
2248 return bytes;
2249}
2250EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2251
320ae51f 2252void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2253{
c2553b58 2254 if (blk_do_io_stat(req)) {
bc58ba94
JA
2255 const int rw = rq_data_dir(req);
2256 struct hd_struct *part;
2257 int cpu;
2258
2259 cpu = part_stat_lock();
09e099d4 2260 part = req->part;
bc58ba94
JA
2261 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2262 part_stat_unlock();
2263 }
2264}
2265
320ae51f 2266void blk_account_io_done(struct request *req)
bc58ba94 2267{
bc58ba94 2268 /*
dd4c133f
TH
2269 * Account IO completion. flush_rq isn't accounted as a
2270 * normal IO on queueing nor completion. Accounting the
2271 * containing request is enough.
bc58ba94 2272 */
414b4ff5 2273 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2274 unsigned long duration = jiffies - req->start_time;
2275 const int rw = rq_data_dir(req);
2276 struct hd_struct *part;
2277 int cpu;
2278
2279 cpu = part_stat_lock();
09e099d4 2280 part = req->part;
bc58ba94
JA
2281
2282 part_stat_inc(cpu, part, ios[rw]);
2283 part_stat_add(cpu, part, ticks[rw], duration);
2284 part_round_stats(cpu, part);
316d315b 2285 part_dec_in_flight(part, rw);
bc58ba94 2286
6c23a968 2287 hd_struct_put(part);
bc58ba94
JA
2288 part_stat_unlock();
2289 }
2290}
2291
47fafbc7 2292#ifdef CONFIG_PM
c8158819
LM
2293/*
2294 * Don't process normal requests when queue is suspended
2295 * or in the process of suspending/resuming
2296 */
2297static struct request *blk_pm_peek_request(struct request_queue *q,
2298 struct request *rq)
2299{
2300 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2301 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2302 return NULL;
2303 else
2304 return rq;
2305}
2306#else
2307static inline struct request *blk_pm_peek_request(struct request_queue *q,
2308 struct request *rq)
2309{
2310 return rq;
2311}
2312#endif
2313
320ae51f
JA
2314void blk_account_io_start(struct request *rq, bool new_io)
2315{
2316 struct hd_struct *part;
2317 int rw = rq_data_dir(rq);
2318 int cpu;
2319
2320 if (!blk_do_io_stat(rq))
2321 return;
2322
2323 cpu = part_stat_lock();
2324
2325 if (!new_io) {
2326 part = rq->part;
2327 part_stat_inc(cpu, part, merges[rw]);
2328 } else {
2329 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2330 if (!hd_struct_try_get(part)) {
2331 /*
2332 * The partition is already being removed,
2333 * the request will be accounted on the disk only
2334 *
2335 * We take a reference on disk->part0 although that
2336 * partition will never be deleted, so we can treat
2337 * it as any other partition.
2338 */
2339 part = &rq->rq_disk->part0;
2340 hd_struct_get(part);
2341 }
2342 part_round_stats(cpu, part);
2343 part_inc_in_flight(part, rw);
2344 rq->part = part;
2345 }
2346
2347 part_stat_unlock();
2348}
2349
3bcddeac 2350/**
9934c8c0
TH
2351 * blk_peek_request - peek at the top of a request queue
2352 * @q: request queue to peek at
2353 *
2354 * Description:
2355 * Return the request at the top of @q. The returned request
2356 * should be started using blk_start_request() before LLD starts
2357 * processing it.
2358 *
2359 * Return:
2360 * Pointer to the request at the top of @q if available. Null
2361 * otherwise.
2362 *
2363 * Context:
2364 * queue_lock must be held.
2365 */
2366struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2367{
2368 struct request *rq;
2369 int ret;
2370
2371 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2372
2373 rq = blk_pm_peek_request(q, rq);
2374 if (!rq)
2375 break;
2376
158dbda0
TH
2377 if (!(rq->cmd_flags & REQ_STARTED)) {
2378 /*
2379 * This is the first time the device driver
2380 * sees this request (possibly after
2381 * requeueing). Notify IO scheduler.
2382 */
33659ebb 2383 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2384 elv_activate_rq(q, rq);
2385
2386 /*
2387 * just mark as started even if we don't start
2388 * it, a request that has been delayed should
2389 * not be passed by new incoming requests
2390 */
2391 rq->cmd_flags |= REQ_STARTED;
2392 trace_block_rq_issue(q, rq);
2393 }
2394
2395 if (!q->boundary_rq || q->boundary_rq == rq) {
2396 q->end_sector = rq_end_sector(rq);
2397 q->boundary_rq = NULL;
2398 }
2399
2400 if (rq->cmd_flags & REQ_DONTPREP)
2401 break;
2402
2e46e8b2 2403 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2404 /*
2405 * make sure space for the drain appears we
2406 * know we can do this because max_hw_segments
2407 * has been adjusted to be one fewer than the
2408 * device can handle
2409 */
2410 rq->nr_phys_segments++;
2411 }
2412
2413 if (!q->prep_rq_fn)
2414 break;
2415
2416 ret = q->prep_rq_fn(q, rq);
2417 if (ret == BLKPREP_OK) {
2418 break;
2419 } else if (ret == BLKPREP_DEFER) {
2420 /*
2421 * the request may have been (partially) prepped.
2422 * we need to keep this request in the front to
2423 * avoid resource deadlock. REQ_STARTED will
2424 * prevent other fs requests from passing this one.
2425 */
2e46e8b2 2426 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2427 !(rq->cmd_flags & REQ_DONTPREP)) {
2428 /*
2429 * remove the space for the drain we added
2430 * so that we don't add it again
2431 */
2432 --rq->nr_phys_segments;
2433 }
2434
2435 rq = NULL;
2436 break;
2437 } else if (ret == BLKPREP_KILL) {
2438 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2439 /*
2440 * Mark this request as started so we don't trigger
2441 * any debug logic in the end I/O path.
2442 */
2443 blk_start_request(rq);
40cbbb78 2444 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2445 } else {
2446 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2447 break;
2448 }
2449 }
2450
2451 return rq;
2452}
9934c8c0 2453EXPORT_SYMBOL(blk_peek_request);
158dbda0 2454
9934c8c0 2455void blk_dequeue_request(struct request *rq)
158dbda0 2456{
9934c8c0
TH
2457 struct request_queue *q = rq->q;
2458
158dbda0
TH
2459 BUG_ON(list_empty(&rq->queuelist));
2460 BUG_ON(ELV_ON_HASH(rq));
2461
2462 list_del_init(&rq->queuelist);
2463
2464 /*
2465 * the time frame between a request being removed from the lists
2466 * and to it is freed is accounted as io that is in progress at
2467 * the driver side.
2468 */
9195291e 2469 if (blk_account_rq(rq)) {
0a7ae2ff 2470 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2471 set_io_start_time_ns(rq);
2472 }
158dbda0
TH
2473}
2474
9934c8c0
TH
2475/**
2476 * blk_start_request - start request processing on the driver
2477 * @req: request to dequeue
2478 *
2479 * Description:
2480 * Dequeue @req and start timeout timer on it. This hands off the
2481 * request to the driver.
2482 *
2483 * Block internal functions which don't want to start timer should
2484 * call blk_dequeue_request().
2485 *
2486 * Context:
2487 * queue_lock must be held.
2488 */
2489void blk_start_request(struct request *req)
2490{
2491 blk_dequeue_request(req);
2492
2493 /*
5f49f631
TH
2494 * We are now handing the request to the hardware, initialize
2495 * resid_len to full count and add the timeout handler.
9934c8c0 2496 */
5f49f631 2497 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2498 if (unlikely(blk_bidi_rq(req)))
2499 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2500
4912aa6c 2501 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2502 blk_add_timer(req);
2503}
2504EXPORT_SYMBOL(blk_start_request);
2505
2506/**
2507 * blk_fetch_request - fetch a request from a request queue
2508 * @q: request queue to fetch a request from
2509 *
2510 * Description:
2511 * Return the request at the top of @q. The request is started on
2512 * return and LLD can start processing it immediately.
2513 *
2514 * Return:
2515 * Pointer to the request at the top of @q if available. Null
2516 * otherwise.
2517 *
2518 * Context:
2519 * queue_lock must be held.
2520 */
2521struct request *blk_fetch_request(struct request_queue *q)
2522{
2523 struct request *rq;
2524
2525 rq = blk_peek_request(q);
2526 if (rq)
2527 blk_start_request(rq);
2528 return rq;
2529}
2530EXPORT_SYMBOL(blk_fetch_request);
2531
3bcddeac 2532/**
2e60e022 2533 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2534 * @req: the request being processed
710027a4 2535 * @error: %0 for success, < %0 for error
8ebf9756 2536 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2537 *
2538 * Description:
8ebf9756
RD
2539 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2540 * the request structure even if @req doesn't have leftover.
2541 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2542 *
2543 * This special helper function is only for request stacking drivers
2544 * (e.g. request-based dm) so that they can handle partial completion.
2545 * Actual device drivers should use blk_end_request instead.
2546 *
2547 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2548 * %false return from this function.
3bcddeac
KU
2549 *
2550 * Return:
2e60e022
TH
2551 * %false - this request doesn't have any more data
2552 * %true - this request has more data
3bcddeac 2553 **/
2e60e022 2554bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2555{
f79ea416 2556 int total_bytes;
1da177e4 2557
4a0efdc9
HR
2558 trace_block_rq_complete(req->q, req, nr_bytes);
2559
2e60e022
TH
2560 if (!req->bio)
2561 return false;
2562
1da177e4 2563 /*
6f41469c
TH
2564 * For fs requests, rq is just carrier of independent bio's
2565 * and each partial completion should be handled separately.
2566 * Reset per-request error on each partial completion.
2567 *
2568 * TODO: tj: This is too subtle. It would be better to let
2569 * low level drivers do what they see fit.
1da177e4 2570 */
33659ebb 2571 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2572 req->errors = 0;
2573
33659ebb
CH
2574 if (error && req->cmd_type == REQ_TYPE_FS &&
2575 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2576 char *error_type;
2577
2578 switch (error) {
2579 case -ENOLINK:
2580 error_type = "recoverable transport";
2581 break;
2582 case -EREMOTEIO:
2583 error_type = "critical target";
2584 break;
2585 case -EBADE:
2586 error_type = "critical nexus";
2587 break;
d1ffc1f8
HR
2588 case -ETIMEDOUT:
2589 error_type = "timeout";
2590 break;
a9d6ceb8
HR
2591 case -ENOSPC:
2592 error_type = "critical space allocation";
2593 break;
7e782af5
HR
2594 case -ENODATA:
2595 error_type = "critical medium";
2596 break;
79775567
HR
2597 case -EIO:
2598 default:
2599 error_type = "I/O";
2600 break;
2601 }
ef3ecb66
RE
2602 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2603 __func__, error_type, req->rq_disk ?
37d7b34f
YZ
2604 req->rq_disk->disk_name : "?",
2605 (unsigned long long)blk_rq_pos(req));
2606
1da177e4
LT
2607 }
2608
bc58ba94 2609 blk_account_io_completion(req, nr_bytes);
d72d904a 2610
f79ea416
KO
2611 total_bytes = 0;
2612 while (req->bio) {
2613 struct bio *bio = req->bio;
4f024f37 2614 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1da177e4 2615
4f024f37 2616 if (bio_bytes == bio->bi_iter.bi_size)
1da177e4 2617 req->bio = bio->bi_next;
1da177e4 2618
f79ea416 2619 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2620
f79ea416
KO
2621 total_bytes += bio_bytes;
2622 nr_bytes -= bio_bytes;
1da177e4 2623
f79ea416
KO
2624 if (!nr_bytes)
2625 break;
1da177e4
LT
2626 }
2627
2628 /*
2629 * completely done
2630 */
2e60e022
TH
2631 if (!req->bio) {
2632 /*
2633 * Reset counters so that the request stacking driver
2634 * can find how many bytes remain in the request
2635 * later.
2636 */
a2dec7b3 2637 req->__data_len = 0;
2e60e022
TH
2638 return false;
2639 }
1da177e4 2640
a2dec7b3 2641 req->__data_len -= total_bytes;
2e46e8b2
TH
2642
2643 /* update sector only for requests with clear definition of sector */
e2a60da7 2644 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2645 req->__sector += total_bytes >> 9;
2e46e8b2 2646
80a761fd
TH
2647 /* mixed attributes always follow the first bio */
2648 if (req->cmd_flags & REQ_MIXED_MERGE) {
2649 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2650 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2651 }
2652
2e46e8b2
TH
2653 /*
2654 * If total number of sectors is less than the first segment
2655 * size, something has gone terribly wrong.
2656 */
2657 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2658 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2659 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2660 }
2661
2662 /* recalculate the number of segments */
1da177e4 2663 blk_recalc_rq_segments(req);
2e46e8b2 2664
2e60e022 2665 return true;
1da177e4 2666}
2e60e022 2667EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2668
2e60e022
TH
2669static bool blk_update_bidi_request(struct request *rq, int error,
2670 unsigned int nr_bytes,
2671 unsigned int bidi_bytes)
5efccd17 2672{
2e60e022
TH
2673 if (blk_update_request(rq, error, nr_bytes))
2674 return true;
5efccd17 2675
2e60e022
TH
2676 /* Bidi request must be completed as a whole */
2677 if (unlikely(blk_bidi_rq(rq)) &&
2678 blk_update_request(rq->next_rq, error, bidi_bytes))
2679 return true;
5efccd17 2680
e2e1a148
JA
2681 if (blk_queue_add_random(rq->q))
2682 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2683
2684 return false;
1da177e4
LT
2685}
2686
28018c24
JB
2687/**
2688 * blk_unprep_request - unprepare a request
2689 * @req: the request
2690 *
2691 * This function makes a request ready for complete resubmission (or
2692 * completion). It happens only after all error handling is complete,
2693 * so represents the appropriate moment to deallocate any resources
2694 * that were allocated to the request in the prep_rq_fn. The queue
2695 * lock is held when calling this.
2696 */
2697void blk_unprep_request(struct request *req)
2698{
2699 struct request_queue *q = req->q;
2700
2701 req->cmd_flags &= ~REQ_DONTPREP;
2702 if (q->unprep_rq_fn)
2703 q->unprep_rq_fn(q, req);
2704}
2705EXPORT_SYMBOL_GPL(blk_unprep_request);
2706
1da177e4
LT
2707/*
2708 * queue lock must be held
2709 */
12120077 2710void blk_finish_request(struct request *req, int error)
1da177e4 2711{
125c99bc 2712 if (req->cmd_flags & REQ_QUEUED)
b8286239
KU
2713 blk_queue_end_tag(req->q, req);
2714
ba396a6c 2715 BUG_ON(blk_queued_rq(req));
1da177e4 2716
33659ebb 2717 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2718 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2719
e78042e5
MA
2720 blk_delete_timer(req);
2721
28018c24
JB
2722 if (req->cmd_flags & REQ_DONTPREP)
2723 blk_unprep_request(req);
2724
bc58ba94 2725 blk_account_io_done(req);
b8286239 2726
1da177e4 2727 if (req->end_io)
8ffdc655 2728 req->end_io(req, error);
b8286239
KU
2729 else {
2730 if (blk_bidi_rq(req))
2731 __blk_put_request(req->next_rq->q, req->next_rq);
2732
1da177e4 2733 __blk_put_request(req->q, req);
b8286239 2734 }
1da177e4 2735}
12120077 2736EXPORT_SYMBOL(blk_finish_request);
1da177e4 2737
3b11313a 2738/**
2e60e022
TH
2739 * blk_end_bidi_request - Complete a bidi request
2740 * @rq: the request to complete
2741 * @error: %0 for success, < %0 for error
2742 * @nr_bytes: number of bytes to complete @rq
2743 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2744 *
2745 * Description:
e3a04fe3 2746 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2747 * Drivers that supports bidi can safely call this member for any
2748 * type of request, bidi or uni. In the later case @bidi_bytes is
2749 * just ignored.
336cdb40
KU
2750 *
2751 * Return:
2e60e022
TH
2752 * %false - we are done with this request
2753 * %true - still buffers pending for this request
a0cd1285 2754 **/
b1f74493 2755static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2756 unsigned int nr_bytes, unsigned int bidi_bytes)
2757{
336cdb40 2758 struct request_queue *q = rq->q;
2e60e022 2759 unsigned long flags;
32fab448 2760
2e60e022
TH
2761 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2762 return true;
32fab448 2763
336cdb40 2764 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2765 blk_finish_request(rq, error);
336cdb40
KU
2766 spin_unlock_irqrestore(q->queue_lock, flags);
2767
2e60e022 2768 return false;
32fab448
KU
2769}
2770
336cdb40 2771/**
2e60e022
TH
2772 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2773 * @rq: the request to complete
710027a4 2774 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2775 * @nr_bytes: number of bytes to complete @rq
2776 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2777 *
2778 * Description:
2e60e022
TH
2779 * Identical to blk_end_bidi_request() except that queue lock is
2780 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2781 *
2782 * Return:
2e60e022
TH
2783 * %false - we are done with this request
2784 * %true - still buffers pending for this request
336cdb40 2785 **/
4853abaa 2786bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2787 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2788{
2e60e022
TH
2789 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2790 return true;
336cdb40 2791
2e60e022 2792 blk_finish_request(rq, error);
336cdb40 2793
2e60e022 2794 return false;
336cdb40 2795}
e19a3ab0
KU
2796
2797/**
2798 * blk_end_request - Helper function for drivers to complete the request.
2799 * @rq: the request being processed
710027a4 2800 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2801 * @nr_bytes: number of bytes to complete
2802 *
2803 * Description:
2804 * Ends I/O on a number of bytes attached to @rq.
2805 * If @rq has leftover, sets it up for the next range of segments.
2806 *
2807 * Return:
b1f74493
FT
2808 * %false - we are done with this request
2809 * %true - still buffers pending for this request
e19a3ab0 2810 **/
b1f74493 2811bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2812{
b1f74493 2813 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2814}
56ad1740 2815EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2816
2817/**
b1f74493
FT
2818 * blk_end_request_all - Helper function for drives to finish the request.
2819 * @rq: the request to finish
8ebf9756 2820 * @error: %0 for success, < %0 for error
336cdb40
KU
2821 *
2822 * Description:
b1f74493
FT
2823 * Completely finish @rq.
2824 */
2825void blk_end_request_all(struct request *rq, int error)
336cdb40 2826{
b1f74493
FT
2827 bool pending;
2828 unsigned int bidi_bytes = 0;
336cdb40 2829
b1f74493
FT
2830 if (unlikely(blk_bidi_rq(rq)))
2831 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2832
b1f74493
FT
2833 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2834 BUG_ON(pending);
2835}
56ad1740 2836EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2837
b1f74493
FT
2838/**
2839 * blk_end_request_cur - Helper function to finish the current request chunk.
2840 * @rq: the request to finish the current chunk for
8ebf9756 2841 * @error: %0 for success, < %0 for error
b1f74493
FT
2842 *
2843 * Description:
2844 * Complete the current consecutively mapped chunk from @rq.
2845 *
2846 * Return:
2847 * %false - we are done with this request
2848 * %true - still buffers pending for this request
2849 */
2850bool blk_end_request_cur(struct request *rq, int error)
2851{
2852 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2853}
56ad1740 2854EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2855
80a761fd
TH
2856/**
2857 * blk_end_request_err - Finish a request till the next failure boundary.
2858 * @rq: the request to finish till the next failure boundary for
2859 * @error: must be negative errno
2860 *
2861 * Description:
2862 * Complete @rq till the next failure boundary.
2863 *
2864 * Return:
2865 * %false - we are done with this request
2866 * %true - still buffers pending for this request
2867 */
2868bool blk_end_request_err(struct request *rq, int error)
2869{
2870 WARN_ON(error >= 0);
2871 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2872}
2873EXPORT_SYMBOL_GPL(blk_end_request_err);
2874
e3a04fe3 2875/**
b1f74493
FT
2876 * __blk_end_request - Helper function for drivers to complete the request.
2877 * @rq: the request being processed
2878 * @error: %0 for success, < %0 for error
2879 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2880 *
2881 * Description:
b1f74493 2882 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2883 *
2884 * Return:
b1f74493
FT
2885 * %false - we are done with this request
2886 * %true - still buffers pending for this request
e3a04fe3 2887 **/
b1f74493 2888bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2889{
b1f74493 2890 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2891}
56ad1740 2892EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2893
32fab448 2894/**
b1f74493
FT
2895 * __blk_end_request_all - Helper function for drives to finish the request.
2896 * @rq: the request to finish
8ebf9756 2897 * @error: %0 for success, < %0 for error
32fab448
KU
2898 *
2899 * Description:
b1f74493 2900 * Completely finish @rq. Must be called with queue lock held.
32fab448 2901 */
b1f74493 2902void __blk_end_request_all(struct request *rq, int error)
32fab448 2903{
b1f74493
FT
2904 bool pending;
2905 unsigned int bidi_bytes = 0;
2906
2907 if (unlikely(blk_bidi_rq(rq)))
2908 bidi_bytes = blk_rq_bytes(rq->next_rq);
2909
2910 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2911 BUG_ON(pending);
32fab448 2912}
56ad1740 2913EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2914
e19a3ab0 2915/**
b1f74493
FT
2916 * __blk_end_request_cur - Helper function to finish the current request chunk.
2917 * @rq: the request to finish the current chunk for
8ebf9756 2918 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2919 *
2920 * Description:
b1f74493
FT
2921 * Complete the current consecutively mapped chunk from @rq. Must
2922 * be called with queue lock held.
e19a3ab0
KU
2923 *
2924 * Return:
b1f74493
FT
2925 * %false - we are done with this request
2926 * %true - still buffers pending for this request
2927 */
2928bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2929{
b1f74493 2930 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2931}
56ad1740 2932EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2933
80a761fd
TH
2934/**
2935 * __blk_end_request_err - Finish a request till the next failure boundary.
2936 * @rq: the request to finish till the next failure boundary for
2937 * @error: must be negative errno
2938 *
2939 * Description:
2940 * Complete @rq till the next failure boundary. Must be called
2941 * with queue lock held.
2942 *
2943 * Return:
2944 * %false - we are done with this request
2945 * %true - still buffers pending for this request
2946 */
2947bool __blk_end_request_err(struct request *rq, int error)
2948{
2949 WARN_ON(error >= 0);
2950 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2951}
2952EXPORT_SYMBOL_GPL(__blk_end_request_err);
2953
86db1e29
JA
2954void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2955 struct bio *bio)
1da177e4 2956{
a82afdfc 2957 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2958 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2959
b4f42e28 2960 if (bio_has_data(bio))
fb2dce86 2961 rq->nr_phys_segments = bio_phys_segments(q, bio);
b4f42e28 2962
4f024f37 2963 rq->__data_len = bio->bi_iter.bi_size;
1da177e4 2964 rq->bio = rq->biotail = bio;
1da177e4 2965
66846572
N
2966 if (bio->bi_bdev)
2967 rq->rq_disk = bio->bi_bdev->bd_disk;
2968}
1da177e4 2969
2d4dc890
IL
2970#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2971/**
2972 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2973 * @rq: the request to be flushed
2974 *
2975 * Description:
2976 * Flush all pages in @rq.
2977 */
2978void rq_flush_dcache_pages(struct request *rq)
2979{
2980 struct req_iterator iter;
7988613b 2981 struct bio_vec bvec;
2d4dc890
IL
2982
2983 rq_for_each_segment(bvec, rq, iter)
7988613b 2984 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
2985}
2986EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2987#endif
2988
ef9e3fac
KU
2989/**
2990 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2991 * @q : the queue of the device being checked
2992 *
2993 * Description:
2994 * Check if underlying low-level drivers of a device are busy.
2995 * If the drivers want to export their busy state, they must set own
2996 * exporting function using blk_queue_lld_busy() first.
2997 *
2998 * Basically, this function is used only by request stacking drivers
2999 * to stop dispatching requests to underlying devices when underlying
3000 * devices are busy. This behavior helps more I/O merging on the queue
3001 * of the request stacking driver and prevents I/O throughput regression
3002 * on burst I/O load.
3003 *
3004 * Return:
3005 * 0 - Not busy (The request stacking driver should dispatch request)
3006 * 1 - Busy (The request stacking driver should stop dispatching request)
3007 */
3008int blk_lld_busy(struct request_queue *q)
3009{
3010 if (q->lld_busy_fn)
3011 return q->lld_busy_fn(q);
3012
3013 return 0;
3014}
3015EXPORT_SYMBOL_GPL(blk_lld_busy);
3016
78d8e58a
MS
3017/**
3018 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3019 * @rq: the clone request to be cleaned up
3020 *
3021 * Description:
3022 * Free all bios in @rq for a cloned request.
3023 */
3024void blk_rq_unprep_clone(struct request *rq)
3025{
3026 struct bio *bio;
3027
3028 while ((bio = rq->bio) != NULL) {
3029 rq->bio = bio->bi_next;
3030
3031 bio_put(bio);
3032 }
3033}
3034EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3035
3036/*
3037 * Copy attributes of the original request to the clone request.
3038 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3039 */
3040static void __blk_rq_prep_clone(struct request *dst, struct request *src)
b0fd271d
KU
3041{
3042 dst->cpu = src->cpu;
78d8e58a 3043 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
3044 dst->cmd_type = src->cmd_type;
3045 dst->__sector = blk_rq_pos(src);
3046 dst->__data_len = blk_rq_bytes(src);
3047 dst->nr_phys_segments = src->nr_phys_segments;
3048 dst->ioprio = src->ioprio;
3049 dst->extra_len = src->extra_len;
78d8e58a
MS
3050}
3051
3052/**
3053 * blk_rq_prep_clone - Helper function to setup clone request
3054 * @rq: the request to be setup
3055 * @rq_src: original request to be cloned
3056 * @bs: bio_set that bios for clone are allocated from
3057 * @gfp_mask: memory allocation mask for bio
3058 * @bio_ctr: setup function to be called for each clone bio.
3059 * Returns %0 for success, non %0 for failure.
3060 * @data: private data to be passed to @bio_ctr
3061 *
3062 * Description:
3063 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3064 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3065 * are not copied, and copying such parts is the caller's responsibility.
3066 * Also, pages which the original bios are pointing to are not copied
3067 * and the cloned bios just point same pages.
3068 * So cloned bios must be completed before original bios, which means
3069 * the caller must complete @rq before @rq_src.
3070 */
3071int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3072 struct bio_set *bs, gfp_t gfp_mask,
3073 int (*bio_ctr)(struct bio *, struct bio *, void *),
3074 void *data)
3075{
3076 struct bio *bio, *bio_src;
3077
3078 if (!bs)
3079 bs = fs_bio_set;
3080
3081 __rq_for_each_bio(bio_src, rq_src) {
3082 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3083 if (!bio)
3084 goto free_and_out;
3085
3086 if (bio_ctr && bio_ctr(bio, bio_src, data))
3087 goto free_and_out;
3088
3089 if (rq->bio) {
3090 rq->biotail->bi_next = bio;
3091 rq->biotail = bio;
3092 } else
3093 rq->bio = rq->biotail = bio;
3094 }
3095
3096 __blk_rq_prep_clone(rq, rq_src);
3097
3098 return 0;
3099
3100free_and_out:
3101 if (bio)
3102 bio_put(bio);
3103 blk_rq_unprep_clone(rq);
3104
3105 return -ENOMEM;
b0fd271d
KU
3106}
3107EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3108
59c3d45e 3109int kblockd_schedule_work(struct work_struct *work)
1da177e4
LT
3110{
3111 return queue_work(kblockd_workqueue, work);
3112}
1da177e4
LT
3113EXPORT_SYMBOL(kblockd_schedule_work);
3114
59c3d45e
JA
3115int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3116 unsigned long delay)
e43473b7
VG
3117{
3118 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3119}
3120EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3121
8ab14595
JA
3122int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3123 unsigned long delay)
3124{
3125 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3126}
3127EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3128
75df7136
SJ
3129/**
3130 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3131 * @plug: The &struct blk_plug that needs to be initialized
3132 *
3133 * Description:
3134 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3135 * pending I/O should the task end up blocking between blk_start_plug() and
3136 * blk_finish_plug(). This is important from a performance perspective, but
3137 * also ensures that we don't deadlock. For instance, if the task is blocking
3138 * for a memory allocation, memory reclaim could end up wanting to free a
3139 * page belonging to that request that is currently residing in our private
3140 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3141 * this kind of deadlock.
3142 */
73c10101
JA
3143void blk_start_plug(struct blk_plug *plug)
3144{
3145 struct task_struct *tsk = current;
3146
dd6cf3e1
SL
3147 /*
3148 * If this is a nested plug, don't actually assign it.
3149 */
3150 if (tsk->plug)
3151 return;
3152
73c10101 3153 INIT_LIST_HEAD(&plug->list);
320ae51f 3154 INIT_LIST_HEAD(&plug->mq_list);
048c9374 3155 INIT_LIST_HEAD(&plug->cb_list);
73c10101 3156 /*
dd6cf3e1
SL
3157 * Store ordering should not be needed here, since a potential
3158 * preempt will imply a full memory barrier
73c10101 3159 */
dd6cf3e1 3160 tsk->plug = plug;
73c10101
JA
3161}
3162EXPORT_SYMBOL(blk_start_plug);
3163
3164static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3165{
3166 struct request *rqa = container_of(a, struct request, queuelist);
3167 struct request *rqb = container_of(b, struct request, queuelist);
3168
975927b9
JM
3169 return !(rqa->q < rqb->q ||
3170 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
3171}
3172
49cac01e
JA
3173/*
3174 * If 'from_schedule' is true, then postpone the dispatch of requests
3175 * until a safe kblockd context. We due this to avoid accidental big
3176 * additional stack usage in driver dispatch, in places where the originally
3177 * plugger did not intend it.
3178 */
f6603783 3179static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 3180 bool from_schedule)
99e22598 3181 __releases(q->queue_lock)
94b5eb28 3182{
49cac01e 3183 trace_block_unplug(q, depth, !from_schedule);
99e22598 3184
70460571 3185 if (from_schedule)
24ecfbe2 3186 blk_run_queue_async(q);
70460571 3187 else
24ecfbe2 3188 __blk_run_queue(q);
70460571 3189 spin_unlock(q->queue_lock);
94b5eb28
JA
3190}
3191
74018dc3 3192static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
3193{
3194 LIST_HEAD(callbacks);
3195
2a7d5559
SL
3196 while (!list_empty(&plug->cb_list)) {
3197 list_splice_init(&plug->cb_list, &callbacks);
048c9374 3198
2a7d5559
SL
3199 while (!list_empty(&callbacks)) {
3200 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
3201 struct blk_plug_cb,
3202 list);
2a7d5559 3203 list_del(&cb->list);
74018dc3 3204 cb->callback(cb, from_schedule);
2a7d5559 3205 }
048c9374
N
3206 }
3207}
3208
9cbb1750
N
3209struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3210 int size)
3211{
3212 struct blk_plug *plug = current->plug;
3213 struct blk_plug_cb *cb;
3214
3215 if (!plug)
3216 return NULL;
3217
3218 list_for_each_entry(cb, &plug->cb_list, list)
3219 if (cb->callback == unplug && cb->data == data)
3220 return cb;
3221
3222 /* Not currently on the callback list */
3223 BUG_ON(size < sizeof(*cb));
3224 cb = kzalloc(size, GFP_ATOMIC);
3225 if (cb) {
3226 cb->data = data;
3227 cb->callback = unplug;
3228 list_add(&cb->list, &plug->cb_list);
3229 }
3230 return cb;
3231}
3232EXPORT_SYMBOL(blk_check_plugged);
3233
49cac01e 3234void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
3235{
3236 struct request_queue *q;
3237 unsigned long flags;
3238 struct request *rq;
109b8129 3239 LIST_HEAD(list);
94b5eb28 3240 unsigned int depth;
73c10101 3241
74018dc3 3242 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
3243
3244 if (!list_empty(&plug->mq_list))
3245 blk_mq_flush_plug_list(plug, from_schedule);
3246
73c10101
JA
3247 if (list_empty(&plug->list))
3248 return;
3249
109b8129
N
3250 list_splice_init(&plug->list, &list);
3251
422765c2 3252 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3253
3254 q = NULL;
94b5eb28 3255 depth = 0;
18811272
JA
3256
3257 /*
3258 * Save and disable interrupts here, to avoid doing it for every
3259 * queue lock we have to take.
3260 */
73c10101 3261 local_irq_save(flags);
109b8129
N
3262 while (!list_empty(&list)) {
3263 rq = list_entry_rq(list.next);
73c10101 3264 list_del_init(&rq->queuelist);
73c10101
JA
3265 BUG_ON(!rq->q);
3266 if (rq->q != q) {
99e22598
JA
3267 /*
3268 * This drops the queue lock
3269 */
3270 if (q)
49cac01e 3271 queue_unplugged(q, depth, from_schedule);
73c10101 3272 q = rq->q;
94b5eb28 3273 depth = 0;
73c10101
JA
3274 spin_lock(q->queue_lock);
3275 }
8ba61435
TH
3276
3277 /*
3278 * Short-circuit if @q is dead
3279 */
3f3299d5 3280 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3281 __blk_end_request_all(rq, -ENODEV);
3282 continue;
3283 }
3284
73c10101
JA
3285 /*
3286 * rq is already accounted, so use raw insert
3287 */
401a18e9
JA
3288 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3289 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3290 else
3291 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3292
3293 depth++;
73c10101
JA
3294 }
3295
99e22598
JA
3296 /*
3297 * This drops the queue lock
3298 */
3299 if (q)
49cac01e 3300 queue_unplugged(q, depth, from_schedule);
73c10101 3301
73c10101
JA
3302 local_irq_restore(flags);
3303}
73c10101
JA
3304
3305void blk_finish_plug(struct blk_plug *plug)
3306{
dd6cf3e1
SL
3307 if (plug != current->plug)
3308 return;
f6603783 3309 blk_flush_plug_list(plug, false);
73c10101 3310
dd6cf3e1 3311 current->plug = NULL;
73c10101 3312}
88b996cd 3313EXPORT_SYMBOL(blk_finish_plug);
73c10101 3314
05229bee
JA
3315bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3316{
3317 struct blk_plug *plug;
3318 long state;
3319
3320 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3321 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3322 return false;
3323
3324 plug = current->plug;
3325 if (plug)
3326 blk_flush_plug_list(plug, false);
3327
3328 state = current->state;
3329 while (!need_resched()) {
3330 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3331 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3332 int ret;
3333
3334 hctx->poll_invoked++;
3335
3336 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3337 if (ret > 0) {
3338 hctx->poll_success++;
3339 set_current_state(TASK_RUNNING);
3340 return true;
3341 }
3342
3343 if (signal_pending_state(state, current))
3344 set_current_state(TASK_RUNNING);
3345
3346 if (current->state == TASK_RUNNING)
3347 return true;
3348 if (ret < 0)
3349 break;
3350 cpu_relax();
3351 }
3352
3353 return false;
3354}
3355
47fafbc7 3356#ifdef CONFIG_PM
6c954667
LM
3357/**
3358 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3359 * @q: the queue of the device
3360 * @dev: the device the queue belongs to
3361 *
3362 * Description:
3363 * Initialize runtime-PM-related fields for @q and start auto suspend for
3364 * @dev. Drivers that want to take advantage of request-based runtime PM
3365 * should call this function after @dev has been initialized, and its
3366 * request queue @q has been allocated, and runtime PM for it can not happen
3367 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3368 * cases, driver should call this function before any I/O has taken place.
3369 *
3370 * This function takes care of setting up using auto suspend for the device,
3371 * the autosuspend delay is set to -1 to make runtime suspend impossible
3372 * until an updated value is either set by user or by driver. Drivers do
3373 * not need to touch other autosuspend settings.
3374 *
3375 * The block layer runtime PM is request based, so only works for drivers
3376 * that use request as their IO unit instead of those directly use bio's.
3377 */
3378void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3379{
3380 q->dev = dev;
3381 q->rpm_status = RPM_ACTIVE;
3382 pm_runtime_set_autosuspend_delay(q->dev, -1);
3383 pm_runtime_use_autosuspend(q->dev);
3384}
3385EXPORT_SYMBOL(blk_pm_runtime_init);
3386
3387/**
3388 * blk_pre_runtime_suspend - Pre runtime suspend check
3389 * @q: the queue of the device
3390 *
3391 * Description:
3392 * This function will check if runtime suspend is allowed for the device
3393 * by examining if there are any requests pending in the queue. If there
3394 * are requests pending, the device can not be runtime suspended; otherwise,
3395 * the queue's status will be updated to SUSPENDING and the driver can
3396 * proceed to suspend the device.
3397 *
3398 * For the not allowed case, we mark last busy for the device so that
3399 * runtime PM core will try to autosuspend it some time later.
3400 *
3401 * This function should be called near the start of the device's
3402 * runtime_suspend callback.
3403 *
3404 * Return:
3405 * 0 - OK to runtime suspend the device
3406 * -EBUSY - Device should not be runtime suspended
3407 */
3408int blk_pre_runtime_suspend(struct request_queue *q)
3409{
3410 int ret = 0;
3411
3412 spin_lock_irq(q->queue_lock);
3413 if (q->nr_pending) {
3414 ret = -EBUSY;
3415 pm_runtime_mark_last_busy(q->dev);
3416 } else {
3417 q->rpm_status = RPM_SUSPENDING;
3418 }
3419 spin_unlock_irq(q->queue_lock);
3420 return ret;
3421}
3422EXPORT_SYMBOL(blk_pre_runtime_suspend);
3423
3424/**
3425 * blk_post_runtime_suspend - Post runtime suspend processing
3426 * @q: the queue of the device
3427 * @err: return value of the device's runtime_suspend function
3428 *
3429 * Description:
3430 * Update the queue's runtime status according to the return value of the
3431 * device's runtime suspend function and mark last busy for the device so
3432 * that PM core will try to auto suspend the device at a later time.
3433 *
3434 * This function should be called near the end of the device's
3435 * runtime_suspend callback.
3436 */
3437void blk_post_runtime_suspend(struct request_queue *q, int err)
3438{
3439 spin_lock_irq(q->queue_lock);
3440 if (!err) {
3441 q->rpm_status = RPM_SUSPENDED;
3442 } else {
3443 q->rpm_status = RPM_ACTIVE;
3444 pm_runtime_mark_last_busy(q->dev);
3445 }
3446 spin_unlock_irq(q->queue_lock);
3447}
3448EXPORT_SYMBOL(blk_post_runtime_suspend);
3449
3450/**
3451 * blk_pre_runtime_resume - Pre runtime resume processing
3452 * @q: the queue of the device
3453 *
3454 * Description:
3455 * Update the queue's runtime status to RESUMING in preparation for the
3456 * runtime resume of the device.
3457 *
3458 * This function should be called near the start of the device's
3459 * runtime_resume callback.
3460 */
3461void blk_pre_runtime_resume(struct request_queue *q)
3462{
3463 spin_lock_irq(q->queue_lock);
3464 q->rpm_status = RPM_RESUMING;
3465 spin_unlock_irq(q->queue_lock);
3466}
3467EXPORT_SYMBOL(blk_pre_runtime_resume);
3468
3469/**
3470 * blk_post_runtime_resume - Post runtime resume processing
3471 * @q: the queue of the device
3472 * @err: return value of the device's runtime_resume function
3473 *
3474 * Description:
3475 * Update the queue's runtime status according to the return value of the
3476 * device's runtime_resume function. If it is successfully resumed, process
3477 * the requests that are queued into the device's queue when it is resuming
3478 * and then mark last busy and initiate autosuspend for it.
3479 *
3480 * This function should be called near the end of the device's
3481 * runtime_resume callback.
3482 */
3483void blk_post_runtime_resume(struct request_queue *q, int err)
3484{
3485 spin_lock_irq(q->queue_lock);
3486 if (!err) {
3487 q->rpm_status = RPM_ACTIVE;
3488 __blk_run_queue(q);
3489 pm_runtime_mark_last_busy(q->dev);
c60855cd 3490 pm_request_autosuspend(q->dev);
6c954667
LM
3491 } else {
3492 q->rpm_status = RPM_SUSPENDED;
3493 }
3494 spin_unlock_irq(q->queue_lock);
3495}
3496EXPORT_SYMBOL(blk_post_runtime_resume);
3497#endif
3498
1da177e4
LT
3499int __init blk_dev_init(void)
3500{
9eb55b03 3501 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
0762b23d 3502 FIELD_SIZEOF(struct request, cmd_flags));
9eb55b03 3503
89b90be2
TH
3504 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3505 kblockd_workqueue = alloc_workqueue("kblockd",
28747fcd 3506 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3507 if (!kblockd_workqueue)
3508 panic("Failed to create kblockd\n");
3509
3510 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3511 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3512
8324aa91 3513 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3514 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3515
d38ecf93 3516 return 0;
1da177e4 3517}